

InfraScraper Documentation

	Application Overview
	Installation
	PIP Installation

	Instalation from Source

	Configuration
	Configuration in ETCD

	Storage Configuration

	Endpoints Configuration

	Usage
	Scraping Commands

	UI and Utility Commands

	Supported Platforms
	Amazon Web Services

	Kubernetes Clusters

	OpenStack Clouds

	SaltStack Infrastructures

	TerraForm Templates

	Visualization Layouts
	Arc Diagram
	Sample Visualizations

	More Information

	Hierarchical Edge Bundling
	Sample Visualizations

	More Information

	Force-Directed Graph
	Sample Visualizations

	More Information

	Hive Plot
	Sample Visualizations

	More Information

	Adjacency Matrix
	More Information

Indices and tables

	Index

	Module Index

	Search Page

Application Overview

	Installation
	PIP Installation

	Instalation from Source

	Configuration
	Configuration in ETCD

	Storage Configuration

	Endpoints Configuration

	Usage
	Scraping Commands

	UI and Utility Commands

Installation

PIP Installation

Release version of infra-scraper is currently available on Pypi [https://pypi.org/project/infra-scraper/], to install it, simply execute:

pip install infra-scraper

Instalation from Source

To bootstrap latest development version into virtualenv, run following
commands:

git clone git@github.com:cznewt/infra-scraper.git
cd infra-scraper
virtualenv venv
source venv/bin/activate
python setup.py install

Configuration

You provide one configuration file for all providers. The default location is
/etc/infra-scraper/config.yaml but it can be overriden by
INFRA_SCRAPER_CONFIG_PATH environmental variable, for example:

export INFRA_SCRAPER_CONFIG_PATH=~/scraper.yml

Configuration in ETCD

You can use ETCD as a storage backend for the configuration and scrape results. Following environmental parameters need to be set:

export INFRA_SCRAPER_CONFIG_BACKEND=etcd
export INFRA_SCRAPER_CONFIG_PATH=/service/scraper/config

Storage Configuration

You can set you local filesystem path where scraped data will be saved.

storage:
 backend: localfs
 path: /tmp/scraper
endpoints: {}

You can also set the scraping storage backend to use the ETCD service instead
of a local filesystem backend.

storage:
 backend: etcd
 path: /scraper
endpoints: {}

Endpoints Configuration

Each endpoint kind expects a little different set of configuration. Look at
individual chapters for samples of required parameters to setup individual
endpoints.

Usage

The application comes with several entry commands:

Scraping Commands

scraper_get <endpoint-name>

Scrape single endpoint once.

scraper_get_forever <endpoint-name>

Scrape single endpoint continuously.

scraper_get_all

Scrape all defined endpoints once.

scraper_get_all_forever

Scrape all defined endpoints continuously.

UI and Utility Commands

scraper_status

Display the service status, endpoints, scrapes, etc.

scraper_web

Start the UI with visualization samples and API that provides the scraped
data.

Supported Platforms

	Amazon Web Services

	Kubernetes Clusters

	OpenStack Clouds

	SaltStack Infrastructures

	TerraForm Templates

Amazon Web Services

AWS scraping uses boto3 high level AWS python SDK for accessing and
manipulating AWS resources.

endpoints:
 aws-us-west-2-admin:
 kind: aws
 config:
 region: us-west-2
 aws_access_key_id: <access_key_id>
 aws_secret_access_key: <secret_access_key>

Kubernetes Clusters

Kubernetes requires some information from kubeconfig file. You provide the
parameters of the cluster and the user to the scraper. These can be found
under corresponding keys in the kubernetes configuration file.

endpoints:
 k8s-admin:
 kind: kubernetes
 layouts:
 - force
 - hive
 config:
 cluster:
 server: https://kubernetes-api:443
 certificate-authority-data: |
 <ca-for-server-and-clients>
 user:
 client-certificate-data: |
 <client-cert-public>
 client-key-data: |
 <client-cert-private>

OpenStack Clouds

Configurations for keystone v2 and keystone v3 clouds. Config for single
tenant scraping.

endpoints:
 os-v2-admin:
 kind: openstack
 scope: local
 layouts:
 - hive
 config:
 region_name: RegionOne
 auth:
 username: admin
 password: password
 project_name: admin
 auth_url: https://keystone-api:5000/v2.0

Config for scraping resources from entire cloud.

endpoints:
 os-v2-admin:
 kind: openstack
 scope: global
 layouts:
 - hive
 config:
 region_name: RegionOne
 auth:
 username: admin
 password: password
 project_name: admin
 auth_url: https://keystone-api:5000/v2.0

SaltStack Infrastructures

Configuration for connecting to Salt API.

endpoints:
 salt-global:
 kind: salt
 layouts:
 - hive
 config:
 auth_url: http://127.0.0.1:8000
 username: salt-user
 password: password

TerraForm Templates

Configuration for parsing terraform templates.

endpoints:
 tf-aws-app:
 kind: terraform
 layouts:
 - hive
 config:
 dir: ~/terraform/two-tier-aws

Visualization Layouts

Diagrams are symbolic representation of information according to some
visualization technique. Diagrams have been used since ancient times, but
became more prevalent during the Enlightenment. Sometimes, the technique uses
a three-dimensional visualization which is then projected onto a two-
dimensional surface. The word graph is sometimes used as a synonym for
diagram.

	Arc Diagram
	Sample Visualizations

	More Information

	Hierarchical Edge Bundling
	Sample Visualizations

	More Information

	Force-Directed Graph
	Sample Visualizations

	More Information

	Hive Plot
	Sample Visualizations

	More Information

	Adjacency Matrix
	More Information

Arc Diagram

An arc diagram is a style of graph drawing, in which the vertices of a graph
are placed along a line in the Euclidean plane, with edges being drawn as
semicircles in one of the two halfplanes bounded by the line, or as smooth
curves formed by sequences of semicircles. In some cases, line segments of the
line itself are also allowed as edges, as long as they connect only vertices
that are consecutive along the line.

The use of the phrase “arc diagram” for this kind of drawings follows the use
of a similar type of diagram by Wattenberg (2002) to visualize the repetition
patterns in strings, by using arcs to connect pairs of equal substrings.
However, this style of graph drawing is much older than its name, dating back
to the work of Saaty (1964) and Nicholson (1968), who used arc diagrams to
study crossing numbers of graphs. An older but less frequently used name for
arc diagrams is linear embeddings.

Heer, Bostock & Ogievetsky wrote that arc diagrams “may not convey the overall
structure of the graph as effectively as a two-dimensional layout”, but that
their layout makes it easy to display multivariate data associated with the
vertices of the graph.

Sample Visualizations

[image: ../_images/arc-diagram.png]
Arc diagram of OpenStack project’s resources (cca 100 nodes)

More Information

	https://bl.ocks.org/rpgove/53bb49d6ed762139f33bdaea1f3a9e1c

	https://en.wikipedia.org/wiki/Arc_diagram

Hierarchical Edge Bundling

A compound graph is a frequently encountered type of data set. Relations are
given between items, and a hierarchy is defined on the items as well.
Hierarchical Edge Bundling is a new method for visualizing such compound
graphs. Our approach is based on visually bundling the adjacency edges, i.e.,
non-hierarchical edges, together. We realize this as follows. We assume that
the hierarchy is shown via a standard tree visualization method. Next, we bend
each adjacency edge, modeled as a B-spline curve, toward the polyline defined
by the path via the inclusion edges from one node to another. This
hierarchical bundling reduces visual clutter and also visualizes implicit
adjacency edges between parent nodes that are the result of explicit adjacency
edges between their respective child nodes. Furthermore, hierarchical edge
bundling is a generic method which can be used in conjunction with existing
tree visualization techniques.

Sample Visualizations

[image: ../_images/hiearchical-edge-bundling.png]
Hierarchical edge bundling of SaltStack services and their relations (cca 100 nodes)

More Information

	http://www.win.tue.nl/vis1/home/dholten/papers/bundles_infovis.pdf

	https://www.win.tue.nl/vis1/home/dholten/papers/forcebundles_eurovis.pdf

Force-Directed Graph

Force-directed graph drawing algorithms are used for drawing graphs in an
aesthetically pleasing way. Their purpose is to position the nodes of a graph
in two-dimensional or three-dimensional space so that all the edges are of
more or less equal length and there are as few crossing edges as possible, by
assigning forces among the set of edges and the set of nodes, based on their
relative positions, and then using these forces either to simulate the motion
of the edges and nodes or to minimize their energy.

While graph drawing can be a difficult problem, force-directed algorithms,
being physical simulations, usually require no special knowledge about graph
theory such as planarity.

Good-quality results can be achieved for graphs of medium size (up to 50–500
vertices), the results obtained have usually very good results based on the
following criteria: uniform edge length, uniform vertex distribution and
showing symmetry. This last criterion is among the most important ones and is
hard to achieve with any other type of algorithm.

Sample Visualizations

[image: ../_images/force-directed-plot.png]
Force-directed plot of all OpenStack resources (cca 3000 nodes)

More Information

	https://en.wikipedia.org/wiki/Force-directed_graph_drawing

	https://bl.ocks.org/shimizu/e6209de87cdddde38dadbb746feaf3a3 (shimizu’s D3 v4 - force layout)

	https://bl.ocks.org/mbostock/3750558 (Mike Bostock’s Sticky Force Layout)

	https://bl.ocks.org/emeeks/302096884d5fbc1817062492605b50dd (D3v4 Constraint-Based Layout)

Hive Plot

The hive plot is a visualization method for drawing networks. Nodes
are mapped to and positioned on radially distributed linear axes — this
mapping is based on network structural properties. Edges are drawn as curved
links. Simple and interpretable.

The purpose of the hive plot is to establish a new baseline for visualization
of large networks — a method that is both general and tunable and useful as a
starting point in visually exploring network structure.

Sample Visualizations

[image: ../_images/hive-plot.png]
Hive plot of all OpenStack resources (cca 3000 nodes)

More Information

	http://mkweb.bcgsc.ca/linnet/

	https://bost.ocks.org/mike/hive/

Adjacency Matrix

An adjacency matrix is a square matrix used to represent a finite graph. The
elements of the matrix indicate whether pairs of vertices are adjacent or not
in the graph.

In the special case of a finite simple graph, the adjacency matrix is a
(0,1)-matrix with zeros on its diagonal. If the graph is undirected, the
adjacency matrix is symmetric. The relationship between a graph and the
eigenvalues and eigenvectors of its adjacency matrix is studied in spectral
graph theory.

The adjacency matrix should be distinguished from the incidence matrix for a
graph, a different matrix representation whose elements indicate whether
vertex–edge pairs are incident or not, and degree matrix which contains
information about the degree of each vertex.

[image: ../_images/adjacency-matrix.png]
Adjacency matrix of OpenStack project’s resources (cca 100 nodes)

More Information

	https://github.com/micahstubbs/d3-adjacency-matrix-layout

	https://bl.ocks.org/micahstubbs/7f360cc66abfa28b400b96bc75b8984e (Micah Stubbs’s adjacency matrix layout)

	https://en.wikipedia.org/wiki/Adjacency_matrix

Index

Application Architecture

Treemap

More Information

	https://bl.ocks.org/shimizu/6d60e554dcbba406721e73ed5afdf713

 _static/up.png

_static/comment-close.png

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_images/hive-plot.png

nav.xhtml

 Table of Contents

 		InfraScraper Documentation

 		Application Overview

 		Installation

 		PIP Installation

 		Instalation from Source

 		Configuration

 		Configuration in ETCD

 		Storage Configuration

 		Endpoints Configuration

 		Usage

 		Scraping Commands

 		UI and Utility Commands

 		Supported Platforms

 		Amazon Web Services

 		Kubernetes Clusters

 		OpenStack Clouds

 		SaltStack Infrastructures

 		TerraForm Templates

 		Visualization Layouts

 		Arc Diagram

 		Sample Visualizations

 		More Information

 		Hierarchical Edge Bundling

 		Sample Visualizations

 		More Information

 		Force-Directed Graph

 		Sample Visualizations

 		More Information

 		Hive Plot

 		Sample Visualizations

 		More Information

 		Adjacency Matrix

 		More Information

_images/arc-diagram.png

_images/adjacency-matrix.png
compactcid

compact

testqummy
92173000
bumklocal

sall_smail-1
oc_aio_laged

+ ha_calico-140
pn_ha_mon
oc_aio_medum
os_aio_ct
oc_venc
alca-141-ne101
compactmsg
ALbutmklocal
cpn_cls
marge100
spinnaker
alca-141ne105
-aass0a12364c
bsa7IcazT)
cph_ha_oss
scrazate1ds
mLxarge20
oc_alo_small
mLmedum
520536207961
compact pox
oc_alo_targe.
ALbutmklocal
io
vindows
mLarge
marge
>2cs00an20
marekinstance
mLsmal
0s_cmp_smal
+ ha_callco-141
clg_sall_smal
503502235141
compactgtw
Ibutmklocal
mLxargod0
allco-140-10104
compactmon
Jo_manager_int
0082044235
nager_int1et02
Lmon_medum
ALbutmklocal
os_ha_cu
mLmedumzo
allco-140-1e101
alca-141ne102
nager_intnet01
mLlarged0

AL butmklocal
allco-140-10105
allco-140-10102
putic
compactdbs.
b29tblaz2ces

mLiargez0
Kas_cu_small
mLdarged

alca-1a1-ne104
mL medumso
nager_intnet0a

alca-141ne103
terratom
compact.ct
allco-140-10103
oae18006300
+10sdszessite
“Lo7sesaszcas
Lty

Ly

S107666032c4

210652665116

calco-140ne03

reratorm | [
calco- 143 ne03

jer_intoet0a.

nag

mLmediums0

calco-141nei04
Kes_cu_medium.

apt_minor
ka_em;

p_small

mLxdarged0.

Kes_ct_small

mLlarge20.
mlarge1000

s

nag

sb-29M0H42265

‘compactdbs.

calco-140ne02
calco-140ne0S

a1 bumklocal

mlargodo.
jer_intnet01.

nag

calco-L4snetc2
calco-140net01

mLmedum20

o5 haci

(a1 bucmiiocal {
4 mon_medium

jer_intoet02.

nag

compactmon.
calco-140ne04

el

mL argodo.
itbudmklocal-

compact gt

+swasozzasier

clg_sall_small

5 ha_calco 161

p_small
mLsmal

amarelcinsance

marge
mLarge-

wndons.

cid_aio

a1 bumk ocal

oc_aio_arge.

compactpox

razbsa6aaTony

mLmedum

oc_aio_small

mLarge20.
sacrazads21es

cpn_hia_osd.

sosa7icaznnsa

calco-141ne0S

spinnaker
marge100

eph_cts

a1 bumk ocal

compactimsg
calco- 143 nei0L

os_aio_ct

oc_sio_medum

ha_mon.

5 ha_calco-140

oc_aio_laged-

clg_salt_smal1.

itbudmklocal

ata092173e0m0

testdummy

compactg

Jonkins.

o s

conpacead | gy

_images/hiearchical-edge-bundling.png
p .
o, &
o, S
L8 A
0
15,
%o,
g, 3l
0162, most®
u
sonsn, 0que, <l im0
50
oede pninw senVel
vagrantcontio!
wou
s yirtualbox host
Janias yssuado
openssh.client
wapposon

gitclient

devops_portal server

collectd.client

_images/force-directed-plot.png
®
e

®®

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

