

Welcome to REST API Documentation’s documentation!

Contents:

	REST API Introduction

	Authentication

	Unique record identifiers

	API Versioning

	Field formats

	API resources

	GET responses

REST API Introduction

This document describes a RESTful API implemented in Indicia and BirdTrack allowing
the sharing of records between systems. It can be implemented within other online
recording systems wishing to participate in record sharing.

Todo

Appropriate reflection of BSBI and BTO as partners in this development.

BirdTrack and Indicia both collect records from a wide range of taxonomic groups. Although
BirdTrack is in its nature primarily a system for recording birds, it has been extended
to allow recording of other taxonomic groups such as Odonata, which are frequently
included on lists produced by bird recorders. However, the expert verifiers who are
engaged with the BTO BirdTrack system do not have the expertise to verify these data and
furthermore, these records would be of great interest to recording schemes such as the
British Dragonfly Society who are using Indicia and iRecord. Similarly, iRecord is used by
recorders to enter records from a wide range of taxonomic groups including birds. However
as many bird expert verifiers are already engaged with BirdTrack it would not make sense
to encourage them to use iRecord, especially given the fact that the majority of expert
verifiers give their time voluntarily. Therefore a mechanism for synchronising records
from one online recording system to another and to synchronise verification decisions back
again is required.

Note

The RESTful API described here provides the part of the mechanism which exposes records
to outside systems; it does not define how those systems should go about pulling the
records from another system’s API into their database.

In general, the master copy of any record remains in the source system, but other systems
will be able to annotate records in the context of verification messages and outcomes.
At the minimum, implementations of the REST API provide the following:

	A list of sets of records which are available to the other participating system
(projects).

	A list of records entered onto the system since a given date for each project so that
they can be synchronised into other systems.

	A list of annotations of records as a result of expert verification. This allows
verification outcomes to be exported back to the source of the record. Annotations can
be added to a record either by the system performing NBN Record Cleaner style
automated checks, by user comments, or by expert verifiers.

Synchronisation requires that the API is implemented by all participating systems. The
following steps describe an example configuration for synchronisation between iRecord and
BirdTrack:

	BirdTrack declares a project created called “BirdTrack Odonata” which filters
BirdTrack records to only the dragonfly and damselfy records.

	BirdTrack is configured to allow iRecord to access it’s API and to allow iRecord
to access the BirdTrack Odonata project.

	iRecord declares a project created called “iRecord Birds” which filters iRecord
records to only the bird records.

	iRecord is configured to allow BirdTrack to access it’s API and to allow
BirdTrack to access the iRecord Birds project.

	A process is written as part of the BirdTrack system to run periodically
(e.g. nightly). This process calls the iRecord RESTful API to retrieve entered or
changed records in the iRecord Birds project since the last time the process was run.
The records are imported into BirdTrack.

	
	A process is written as part of the iRecord system to run periodically (nightly?).

	This process calls the BirdTrack RESTful API to retrieve entered or changed records in
the BirdTrack Odonata project since the last time the process was run. The records are
imported into iRecord.

	The BirdTrack Odonata records are made available to expert verifiers on iRecord.
Verification outcomes are stored in the iRecord database as annotations in the
occurrence_comments table.

	The iRecord Birds records is made available to expert verifiers on BirdTrack.
Verification outcomes are stored in the BirdTrack database as annotations.

	The periodic process on BirdTrack requests any verification responses for the
BirdTrack Odonata project from the annotations on iRecord and pulls them back into
BirdTrack. BirdTrack then notifies recorders as it sees fit.

	The periodic process on iRecord will request any verification responses for the
iRecord Birds project from the annotations on BirdTrack and pulls them back into
iRecord.

	iRecord then notifies recorders as it sees fit.

The API receives requests via URLs and returns JSON format responses. Although other
formats (NBN exchange, CSV, XML etc) could be considered, the existing NBN REST API also
returns JSON so this will limit the number of technologies users of these APIs need to
learn.

Authentication

Several authentication mechanisms have been reviewed to see if they meet the needs of this
API. In particular, the mechanism must be:

	Secure

	RESTful (and therefore stateless)

	Easily understood and implemented.

Login/session based approaches are not stateless and therefore not truly RESTful, so
authentication data must be presented with every request.

In order to achieve the requirements a protocol based the standard method of using an
HMAC (keyed-hash message authentication code) has been implemented:

	The requesting entity creates a HMAC-SHA1 value of the complete request url
(including parameters). The hash value uses the user password as the shared secret.

	The requesting entity adds an Authorization header to the request containing the
following string USER:[user_id]:HMAC:[hmac] where:

	[user_id] is the requesting user’s agreed system identifier

	[hmac] is the HMAC-SHA1 value computed in (1)

	The receiving entity recomputes the HMAC-SHA1 in the same manner as (1) and any
authorisation failure is returned as HTTP 401 Unauthorized.

This authentication should provide suitable protection against tampering and sufficient
level of authentication providing the shared secret is sufficiently long.

The following example PHP snippet illustrates the code required for authentication against
the REST API:

<?php
$sharedSecret = 'mypassword';
$userId = 'ME';
$url = 'http://www.example.com/index.php/services/rest/projects';
$session = curl_init();
// Set the POST options.
curl_setopt($session, CURLOPT_URL, $url);
curl_setopt($session, CURLOPT_HEADER, FALSE);
curl_setopt($session, CURLOPT_RETURNTRANSFER, TRUE);
// Create the authentication HMAC.
$hmac = hash_hmac("sha1", $url, $sharedSecret, $raw_output = FALSE);
curl_setopt($session,
 CURLOPT_HTTPHEADER,
 array("Authorization: USER:$userId:HMAC:$hmac")
);
// Do the request.
$response = curl_exec($session);
$httpCode = curl_getinfo($session, CURLINFO_HTTP_CODE);
$curlErrno = curl_errno($session);
// Check for an error, or check if the http response was not OK.
if ($curlErrno || $httpCode != 200) {
 echo "Error occurred accessing $url
";
 echo "Rest API error $httpCode
";
 if ($curlErrno) {
 echo "Error number: $curlErrno
";
 echo 'Error message: ' . curl_error($session) . '
';
 }
 echo 'Response: <pre>' . htmlspecialchars($response) . '
';
 throw new exception('Request to server failed');
}
$data = json_decode($response, TRUE);
echo json_encode($data);
?>

Unique record identifiers

Each participating system will be given a unique user ID - a code that unqiuely identifies
the system to other participants. The system identifiers can be mutually agreed since a
relatively small number of participating systems will exist, for example “BRC” or “BTO”
would be suitable candidates.

Presumably each participating system will use a standard relational database model with a
primary key for all database tables. As this primary key is likely to be a locally
generated sequential integer, the IDs will not be unique across all databases.

Therefore each participating system will need to prefix it’s user_id to its record IDs to
make a globally unique ID, so record ID 100 on iRecord might be expressed as BRC100 for
example. Limiting these to 3 alphabetical characters makes parsing of IDs easier. The
resultant record identifiers only need to be unique within each resource type and not
globally across all resource types.

API Versioning

The default version for all calls is the latest available API version on that system.
Requests for a specific API version can be made by inserting the API version name into the
URL segments, placing it before the resource name. For example:

http://example.com/rest/v1.0/projects

is equivalent to:

http://example.com/rest/projects

when the API is at version 1.0.

The API should normally be used without specifying the version and the option to use the
version is only recommended in specific circumstances, e.g. during development. This
approach ensures that resource URIs are effectively permalinks that will not change over
time. For more information on the reasoning here, see
http://stackoverflow.com/questions/389169/best-practices-for-api-versioning.

Field formats

Dates in requests and responses are formatted to ISO 8601. The following possibilities are
accepted:

	Format

	Notes

	Date

	yyyy-mm-dd, e.g. 2014-12-25

	Date and time

	
	yyyy-mm-ddThh:mm:ss, e.g. 2014-12-25T16:25:27 (without timestamp)

	yyyy-mm-ddThh mm:ss+hh:mm, e.g. 2014-12-25T16:25:27+02:00 (with
timestamp)

API resources

The RESTful API defines a set of resources available at the following URLs and request
types. Since it is effectively a uni-directional read only specification, we are using GET
for all requests. Resource names are lower case and use hyphens as a word separator, to
meet with current best-practice for URI naming.

Because a server might not want to expose all its records to a client, the API includes
the notion of projects that a client can access. A project is effectively a filter on the
underlying records; the mechanism of how this filter may be defined internally is up to
each system. For example, in Indicia a project would use the reporting saved filters
system to allow a flexible definition of the list of records available.

Resource object definitions

The API returns resource objects (in JSON format), either individually, or in lists
depending on the API call made. The following list of object types are defined for the
API.

	project

	taxon-observation

	annotation

project

The metadata describing a set of records on the server which are being made available to a
client. A project might, for example, be the bird records from iRecord. For a simplicity
of implementation, each project is unique to the calling client (so clients cannot call
projects set up for other clients and there is no need for a many-many relationship).

Projects contain the following fields (fields marked with a * are mandatory):

	id* - the unique identifier of the project. This must be provided with requests for
taxon-observations and annotations from within this project.

	href* - provides a link back to the resource API endpoint describing the individual
project.

	title* - project title.

	description* - a description of the project.

An example project object is:

{
 "id":"BTO12",
 "href":"http://www.bto.org/rest/projects/BTO12",
 "title":"BTO Odonata",
 "description":"Odonata records for verification on iRecord"
}

taxon-observation

The attributes of a single wildlife record.

The API is based on but not exactly the same as the NBN data exchange format field
specifications to define taxon observations, as described in the guide to the NBN data
exchange format Version 2.7, September 2014. Field names are always lowercased. The
RecordKey field is replaced by an id field to keep taxon-observations consistent with
other entities exposed by the API. In addition to the fields defined by the NBN exchange
format, a lasteditdate field is required.

Todo

Consider case issues here - should fields be lowercased? T/F values are also
inconsistently cased throughout the spec.

Taxon observations contain the following properties. Properties marked with a * are
mandatory though check the property description for rules relating to the specific field.

	id* - The unique identifier of the observation

	href* - link to the observation’s URI. This can be omitted if the API implementation
does not support access to a single observation by ID.

	srchref - link to the URI of the object in its originating location, if different to
href.

	datasetName - name of the dataset this record was sourced from.

	taxonVersionKey* - the Taxon Version Key from the UKSI species database.

	taxonName* - the taxon name used by the recorder.

	zeroAbundance - set to T to indicate an absence record or F otherwise. The
default if not provided is F.

	count - integer value representing the count.

	delete - set to T to indicate this record has been deleted.

	sensitive - set to T to indicate a sensitive record or F otherwise. The
default if not provided is F.

	startDate* - the start of the range of dates that the record covers, which will be the
same as the enddate field when a record occurred on a single date.

	endDate* - the end of the range of dates that the record covers, which will be the same
as the startdate field when a record occurred on a single date.

	dateType* - see the NBN Gateway Exchange format
(http://www.nbn.org.uk/Share-Data/Providing-Data/NBN-Data-Exchange-format.aspx) for a
definition of how date types are defined.

	siteKey - a unique ID for the site if available.

	siteName - the name of the site provided with the record.

	gridReference* - the grid reference notation for the record. Mandatory unless east
and north are provided. British National Grid or Irish Grid notation depending on
projection.

	east* - position of record in east/west direction. Mandatory unless gridreference is
provided. Either a decimal longitude or easting.

	north* - position of record in north/south direction. Mandatory unless gridreference
is provided. Either a decimal latitude or northing.

	projection* - indiciates the projection used for gridreference, east and north fields.
Can be:

	OSGB

	OSI

	WGS84

	OSGB36

	precision* - the spatial precision of the georeference in metres. Typically the size of
the grid square.

	recorder* - the recorder name(s).

	determiner - the name of the person providing the initial identification.

	lastEditDate - returns the date and time time of last edit.

An example taxon-observation object is:

{
 "id":"BRC100",
 "href":"http://example.com/rest/taxon-observations/BRC100",
 "srchref":"http://source-server-at-brc.com/rest/taxon-observations/BRC100",
 "datasetName":"iRecord::Mammals::Dorset Mammal Group",
 "taxonVersionKey":"NHMSYS0000530482",
 "taxonName":"Red Kite",
 "startDate":"2014-07-12",
 "endDate":"2014-07-12",
 "dateType":"D",
 "gridReference":"SU956436",
 "projection":"OSGB",
 "precision":"8",
 "recorder":"Joe Brown",
 "lastEditDate":"2014-09-12T13:24:11"
}

annotation

The definition of an annotation against a taxon-observation. An annotation is an extra piece of information added after the initial record creation event and may describe a user comment, verification event or redetermination of the record.

Annotations contain the following fields (fields marked with a * are mandatory):

	id* - The unique identifier of the annotation

	href* - link to the annotation’s URI. This can be omitted if the API implementation
does not support access to a single annotation by ID.

	taxonObservation* - contains a child-object, itself containing the id and href for the
taxon observation being annotated

	taxonVersionKey* - the unique identifier of the taxon concept that this annotation was
made against. This might differ from the original or current taxon concept associated
with the record. This allows annotations to maintain an audit trail of the changing
opinions of a record’s identification.

	comment - free text

	statusCode1 - either A (accepted), U (unconfirmed) or N (not accepted) to
indicate a status if this annotation is setting the verification state of the record.

	statusCode2 - provides additional detail regarding the status code. For
accepted records, can be 1 (correct) or 2 (considered correct). For unconfirmed
records, can be 3 (plausible) or 4 (not reviewed). For not accepted records, can be 5
(unable to verify) or 6 (incorrect).

	emailAddress - optionally contains the email address of the person creating the
annotation. It is recommended that when a user takes an action that results in an
annotation (such as commenting on or verifying a record), then the system should give
the user an option to opt in to providing their email address. If provided, then on
other systems receiving the annotation, the email address must only be made available
to the recipient of the notification. This allows an external communication thread to
start to discuss the record. Note that email addresses should not be provided if the
user creating the annotation has not opted in.

	question - t or f to indicate true or false. If true, then this annotation contains a
question that needs answering.

	authorName* - name of the comment author.

	dateTime* - ISO 8601 date format for the timestamp of the annotation.

	lastEditDate - returns the date and time time of last edit.

An example annotation object is:

{
 "id":"BRC452",
 "href":"http://indicia.org.uk/rest/annotations/BRC452",
 "taxonObservation":{
 "id":"BRC251",
 "href":"http://indicia.org.uk/rest/taxon-observations/BRC251"
 },
 "taxonVersionKey":"NBNSYS0012345678",
 "comment":"Some text commenting on the record",
 "statusCode1":"A",
 "statusCode2":"1",
 "emailAddress":"example@example.com",
 "question":"f",
 "authorName":"John Smith",
 "dateTime":"2014-02-01T09:00:22+05:00",
 "lastEditDate":"2014-02-01T09:00:22+05:00"
}

GET responses

Responses to HTTP GET requests are either a single object (one of _project_,
taxon-observation or _annotation_ as described above) or a list/array of objects. When
returning a list of objects, the each individual response includes a single page of
objects and it may be necessary to make multiple calls to page through the dataset.
Therefore the structure also includes metadata to simple support pagination by providing
links to the current, next and previous page. The following template is used:

{
 “data”:[
 { project, taxon-observation or annotation object },
 { project, taxon-observation or annotation object },
 { project, taxon-observation or annotation object },
 etc
],
 “paging”:{
 “self”:”uri for current page in set”,
 “previous”:”uri for previous page in set”,
 “next”:”uri for next page in set”,
 }
}

The next and previous page links are only provided when there is a next or previous page
available in the dataset.

Resource API end-points

The following list of end-points are exposed by an implementation of the REST API:

	GET /projects

	GET /taxon-observations

	GET /annotations

GET /projects

Retrieves a list of projects available to the client.

The server side needs a mechanism for associating records to “projects” and for
associating projects to the accessing client’s authorisation. So, iRecord might be able to
access BirdTrack Odonata records but not bird records, therefore BirdTrack will need to be
able to identify the Odonata records with a unique project ID and to recognise that
iRecord can access this project.

Note

In iRecord, it is likely that projects will be managed using the existing filters
system, giving great flexibility over the records exposed. This is a detail of
implementation which does not affect the transfer specification.

Request fields

	page_size - number of records to return in the page.

	page - index of the page to return, default 1.

Response status codes

200 - Success
401 - unauthorized

Response

A successful request receives a list of projects in JSON format, using the GET
response template and the project resource format.

GET /taxon-observations

Retrieve a list of records as a JSON array.

By default the request returns 1 day of records if no end date is specified.

If there are no records, then an empty array should be returned.

Implementations of this API might choose to reject requests for date ranges wider than 1
week, but this restriction can be omitted where the API is being put to wider use.

Deleted records can be included in batches of updates. A deleted record will at the
minimum include the unique identifier for the record plus a flag “Deleted=t”.

Request fields

Fields marked with a * are mandatory so must be included in the request.

	proj_id* - ID of the project whose records are being requested.

	edited_date_from* - format yyyy-mm-dd or ISO 8601 yyyy-mm-ddThh:mm:ss. Limits to
records created or updated on or after this date.

	edited_date_to - format yyyy-mm-dd or ISO 8601 yyyy-mm-ddThh:mm:ss. Limits to
records created or updated on or before this date.

	page_size - number of records to return in the page.

	page - index of the page to return, default 1.

Note that this date format confirms to ISO 8601.

Response status codes

	200 - Success

	400 - Bad request (Invalid parameters)

	401 - unauthorized

Response

A successful request receives a list of taxon-observations in JSON format, using the
GET response template and the taxon-observation resource
format.

Note

The server is responsible for ensuring that the default sort order of any taxon
observations returned is stable and not affected by edits happening whilst the client
pages through the dataset. For example, a sort by creation timestamp or record ID (if
sequentially generated) would be appropriate.

GET /annotations

Retrieve a list of annotations as a JSON array.

Use query parameters in the URL to filter – e.g. edited_date_from, edited_date_to to
define the date range for edits to include. If there are no results then an empty array is
returned.

Request fields

Fields marked with a * are mandatory.

	proj_id* - the ID of the project whose annotations are being requested.

	edited_date_from* - format yyyy-mm-dd or ISO 8601 yyyy-mm-ddThh:mm:ss. Limits to
records created or updated on or after this date.

	edited_date_to - format yyyy-mm-dd or ISO 8601 yyyy-mm-ddThh:mm:ss. Limits to
records created or updated on or before this date.

	page_size - number of records to return in the page.

	page - index of the page to return, default 1.

Note that the 2 date filter fields relate to the edit date of the annotation record itself
and are independent of the taxon-observation’s edit date.

Response status codes

	200 - Success

	400 - Bad request (Invalid parameters)

	401 - unauthorized

Response

A successful request receives a list of annotations in JSON format, using the GET
response template and the annotation resource
format.

Index

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to REST API Documentation’s documentation!

 		
 REST API Introduction

 		
 Authentication

 		
 Unique record identifiers

 		
 API Versioning

 		
 Field formats

 		
 API resources

 		
 Resource object definitions

 		
 project

 		
 taxon-observation

 		
 annotation

 		
 GET responses

 		
 Resource API end-points

 		
 GET /projects

 		
 GET /taxon-observations

 		
 GET /annotations

