

 Navigation

 	
 index

 	
 next |

 	Inca Tool 0.4.0 documentation

Welcome to Inca Tool’s documentation!

Contents:

	Task Files
	What are they?

	File Extension

	Syntax

	Task File Structure

	Task File Example

	Inventory File
	Multiple Inventory Files

 Copyright 2016, Lee Keitel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Inca Tool 0.4.0 documentation

Task Files

What are they?

Task files are make up the core of Inca Tool. A task file is used to manage a particular job. A task file is meant to perform a single task. However, multiple tasks files may be ran at once if needed. Task files use a custom syntax that provides metadata for the task, various parameters, and the commands to execute for the task.

File Extension

Although the file extension doesn’t matter, it’s recommended to use .itf which stands for Inca Task File.

Syntax

The syntax of task files can be broken up into three types: key: value, simple list, and extended list.

Comments

Comments must be on their own line and begin with a pound sign #. Comments may not be on the same line as data.

Key Value

Most settings are simple key value pairs which take the form:

key: value

The space before the value is not required but is there for readability.

Simple List

A list is defined as:

key:
 value1
 value2

Note that the values are indented and have the same indention. For both types of lists, indention matters. If two values have a different indention, or if one uses tabs and the other spaces, the task file will return an error when it’s parsed. Be sure to use consistent indention.

Extended List

And extended list is a simple list but can take a main value as well as key value pairs as settings for the list:

key: value setting=val setting2=val2
 list value1
 list value2

Currently, setting values cannot contain a space. Although it may seem strange at first, this is can be very powerful for creating complex task files.

User Defined Variables

Custom variables can be declared in a task file and then used with commands. This can be very helpful to avoid duplicate data and can provide a clean, easy way to update data later on. The format is simply a modified key value pair:

$key: value

To use the value in a command block, simply use the syntax {{key}}. Note, there’s no dollar sign ($) when using the key, only when setting.

Included Files

Other files may be included into a task file. The included file is parsed as if it were part of the parent task file at the exact place it’s included. This can be useful for creating command blocks to share amoung multiple task files. Here’s the syntax:

@path/to/included/file.itf

Included files are relative to their respective parent task file.

Task File Structure

A task file is made up of several parts. Settings are optional unless marked otherwise.

Metadata

Metadata does not affect how the task is ran, but can be used to ensure the correct task was run and can serve as documentation. All metadata are simple key value pairs. Here’s a list of all available metadata settings:

	name

	description

	author

	date

	version

Job Settings

There are a couple of settings that affect how templates are generated and ran.

	
	concurrent

	
	Type: key-value integer

	Default: 300

	Valid values: Any integer

	
	Description:

	
	The number of devices that can be configured concurrently. The higher this number, the more file descriptors are needed to run the job. Setting this to 0 means no limit.

	
	template

	
	Type: key-value string

	Default: expect

	Valid values: expect, bash

	
	Description:

	
	The template to use when generating a job file.

	
	prompt

	
	Type key-value string

	Default: #

	Valid values: Any string

	
	Description:

	
	The unique part of a prompt to wait for when using Expect.

	
	default command block

	
	Type key-value string

	Default: Empty string

	Valid values: Any command block name

	
	Description:

	
	This controls which command block acts as the entry point into the task. By default a nameless block will be used. Generally this setting should be used but is made available for customization.

Inventory

For a task to run, Inca Tool needs to know which devices should be configured. This is where the inventory file and device filter come in.

	
	inventory

	
	Type: key-value string

	Default: devices.conf

	Valid values: File system path

	
	Description:

	
	The path to the inventory file. It may be absolute or relative. The path will be relative to the current working directory. NOTE: It is recommended to provide the inventory file via the -i cli flag. If this setting is used in a task file, it will override the file given on the command line.

	
	devices

	
	Required

	Type: simple list

	Default: Empty

	Valid values: group or device names

	
	Description:

	
	This list contains the group or devices names that will configured with the task. If a group or name doesn’t exist in the provided inventory file, an error will be given.

Command Blocks

Command blocks are where the set of commands are defined that will be ran on the client device. Multiple command blocks may be created so long as they have different names. One command block must be named whatever default command block is set to. By default this is a nameless block. Names cannot contain an equal sign or space. This is the block that will be used as the entry point into the task. Other blocks can be included using the _c syntax described below.

Block Syntax:

commands: name setting=value
 command 1
 command 2
 _c other-command-block
 _b builtin-command-block
 _s /path/to/script

For a nameless block simply omit the name, settings can still be used as normal.

Command Block Settings

	
	type

	
	Default: expect

	Valid Values: expect, raw

	
	Description:

	
	Determines any extra processing needed for the block. Expect will encapsulate the commands in a send and add a corresponding expect command.

Special Command Syntax

There are a few special command prefixes that change how the command block is parsed and even how the job is ran.

	_c foobar - Inline a command block named foobar

	_s foobar.sh -a arg1 arg2 - Immediately execute the file named foobar.sh. This stops all parsing and immediately executes the file. When the file is done executing, the job is complete. All other command lines are ignored.

	_b foo - This functions the same as _c but can only be used with builtin command block. Inca Tool has a few builtin command blocks for common functions on Juniper and Cisco devices. A list of block names can be found below.

Builtin Command Blocks

	juniper-configure - Enter Juniper’s configure mode.

	juniper-exit-nocommit - Exits from the Juniper configure mode and if requested will exit without committing changes.

	juniper-commit-rollback-failed - Attempt to commit changes on a Juniper device and rollback if the commit fails. The script as a whole will fail for that device and an error will be show to the console.

	cisco-enable-mode - Enter Cisco’s Enable exec mode.

	cisco-end-wrmem - Exit a Cisco’s configure terminal mode and save the running configuration.

Task File Example

This is a minimal example that uses all the default settings and adds remote logging to a Cisco device:

Metadata - Doesn't really matter, for information purposes
name: Cisco Logging
description: Add switch logging to host 10.0.0.1
author: John Doe
date: 10/27/2015
version: 1.0.0

devices:
 group1
 device2

commands: main
 _b cisco-enable-mode
 set logging 10.0.0.1
 _b cisco-end-wrmem

 Copyright 2016, Lee Keitel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Inca Tool 0.4.0 documentation

Inventory File

The inventory file is the list of all devices that a task file could possibly run against. They are separated into groups which can then be specified in a task file to run against. An inventory file can be set in the task file itself, or on the command line using the -i flag. Using the cli flag is recommended.

	All devices must be in a group.

	The global group may contain settings that apply to all devices unless overridden by the device.

	The global group cannot contain devices.

	Device names cannot contain a space.

	Group names may contain numbers, letters, underscores, hyphens and spaces.

	
	If multiple groups are declared with the same name, the devices will be appended to a single group.

	
	Example: The following will result in a single group named “group1” with devices device1, device2, device3, and device4:

[group1]
device1
device2

[group1]
device3
device4

	Devices may be in multiple groups. Any device settings must be declared on the first declaration.

	Settings are “key=value” pairs separated by a space on the same line as the device name. If a setting value contains a space, it must be enclosed in double quotes.

	Both devices and groups may have settings

	Order of setting precedence is Global -> Task -> Group -> Device

	
	Available settings:

	
	remote_user - Defaults to “root”

	remote_password - Defaults to “”

	cisco_enable - Defaults to remote_password

	protocol - Defaults to “ssh”

	address - Defaults to device name

Example:

[global]
remote_user = user
remote_password = pass

[server room]
Server_Switch_1 address=10.0.0.1
Switch2.example.com

[building 1] remote_user="jarvis"
Building1_1 address=10.0.0.2 protocol=telnet
Builsing1_2 address=10.0.0.3 remote_password="chicken feet"

[all switches]
Server_Switch_1
Switch2.example.com
Building1_1
Building1_2

Multiple Inventory Files

Inventories can be separated into multiple files and then brought together at run time. There two ways to do this. The first is by including each file individually. The second is to use the output of an executable file and add it to the inventory. Both methods simply replace the include line in the parent file with the text from the included file itself or from the standard output of the executable. The purpose of includes is to provide a way to separate the different parts of a network/system and break them into manageable chunks.

Example using normal file includes

Example root inventory file:

[global]
remote_user = user
remote_password = pass

@devices/server_room_1.conf
@devices/server_room_2.conf

devices/server_room_1.conf:

[server room 1]
webserver1.example.com
webserver2.example.com

devices/server_room_2.conf:

[server room 2]
db1.example.com
db2.example.com

When compiled, it will turn into this:

[global]
remote_user = user
remote_password = pass

[server room 1]
webserver1.example.com
webserver2.example.com

[server room 2]
db1.example.com
db2.example.com

Example using script include

Say we have a directory that contains ”.conf” files containing our inventory. We can create a script that will dynamically concatenate the files together. This way we don’t need to specify each file by hand.

Example root inventory file:

@!devices/compile.sh

devices/compile.sh:

#!/bin/sh
for f in *.conf; do
 cat $f
done

When ran, it could generate something like the example file above. Again, this would make it so when a new ”.conf” file is created in the directory, it would be picked up automatically on the next run. This can be very helpful for dynamic environments.

 Copyright 2016, Lee Keitel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Inca Tool 0.4.0 documentation

Index

 Copyright 2016, Lee Keitel.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		Inca Tool 0.4.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Lee Keitel.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

