
imagemounter Documentation
Release 1.5.1

Ralph Broenink, Peter Wagenaar

Apr 04, 2022

Contents

1 Contents 3
1.1 Installation . 3
1.2 Dependencies . 4
1.3 Command-line usage . 5
1.4 Python interface . 8
1.5 File and volume system specifics . 9
1.6 Release notes . 14

Python Module Index 25

Index 27

i

ii

imagemounter Documentation, Release 1.5.1

imagemounter is a command-line utility and Python package to ease the mounting and unmounting of EnCase, Affuse,
vmdk and dd disk images (and other formats supported by supported tools). It supports mounting disk images using
xmount (with optional RW cache), affuse, ewfmount, vmware-mount and qemu-nbd; detecting DOS, BSD, Sun, Mac
and GPT volume systems; mounting FAT, Ext, XFS UFS, HFS+, LUKS and NTFS volumes, in addition to some less
known filesystems; detecting (nested) LVM volume systems and mounting its subvolumes; and reconstructing Linux
Software RAID arrays.

In its default mode, imagemounter will try to start mounting the base image on a temporary mount point, detect the
volume system and then mount each volume seperately. If it fails finding a volume system, it will try to mount the
entire image as a whole if it succeeds in detecting what it actually is.

Note: Not all combinations of file and volume systems have been tested. If you encounter an issue, please try to
change some of your arguments first, before creating a new GitHub issue.

Warning: Mounting disks and volumes from unknown sources may pose an important security risk (especially
since you probably need to run imagemounter as root).

Contents 1

imagemounter Documentation, Release 1.5.1

2 Contents

CHAPTER 1

Contents

1.1 Installation

If you need an installation with basic support, you are suggested to run the following commands:

apt-get install xmount ewf-tools afflib-tools sleuthkit
pip3 install imagemounter
imount --check

The latter command will list all other packages you could install to expand the capabilities of imagemounter.

1.1.1 Python packages

This package does not require other packages, though the termcolor package is recommended if you are using the
imount command line utility with the --color argument.

If you wish to use pytsk3 support, you require python-dev and libtsk-dev. For compilation, the build-essential
package from your distribution is also required. After that, you can easily install the pytsk3 package from PyPI
(pip requires the --pre flag to allow installing the package).

1.1.2 Other dependencies

This package highly depends on other utilities to be present on your system. For a full installation, you require more
tools. You can run imount --check to get a full list of all required tools.

A basic installation contains at least one of the mount tools. Highly recommended is also fsstat, others are required
for specific file system types.

You can install vmware-mount by installing VMware Workstation on your system.

3

imagemounter Documentation, Release 1.5.1

1.2 Dependencies

The imagemounter.dependencies module defines several optional and required dependencies to use
imagemounter. This data is used by the imount --check command, and can also be accessed via Python
code:

from imagemounter.dependencies import ewfmount

...

if ewfmount.is_available:
do_something_with_ewfmount()

else:
print(ewfmount.printable_status)

Full list of dependencies:

• imagemounter.dependencies.affuse

• imagemounter.dependencies.bdemount

• imagemounter.dependencies.blkid

• imagemounter.dependencies.cryptsetup

• imagemounter.dependencies.disktype

• imagemounter.dependencies.ewfmount

• imagemounter.dependencies.file

• imagemounter.dependencies.fsstat

• imagemounter.dependencies.lvm

• imagemounter.dependencies.magic

• imagemounter.dependencies.mdadm

• imagemounter.dependencies.mmls

• imagemounter.dependencies.mount_jffs2

• imagemounter.dependencies.mount_ntfs

• imagemounter.dependencies.mount_squashfs

• imagemounter.dependencies.mount_xfs

• imagemounter.dependencies.mountavfs

• imagemounter.dependencies.parted

• imagemounter.dependencies.pytsk3

• imagemounter.dependencies.qemu_nbd

• imagemounter.dependencies.vmfs_fuse

• imagemounter.dependencies.vmware_mount

• imagemounter.dependencies.vshadowmount

• imagemounter.dependencies.xmount

4 Chapter 1. Contents

imagemounter Documentation, Release 1.5.1

1.2.1 API

The following classes are how dependencies are represented within imagemounter:

1.3 Command-line usage

One of the core functionalities of imagemounter is the command-line utility imount that eases the mounting and
unmounting of different types of disks and volumes. In its most basic form, the utility accepts a positional argument
pointing to a disk image, disk or volume, e.g.:

imount disk.E01

Multiple files can be passed to this command, allowing the mounting of volume systems that span multiple disks,
which can be useful for those wishing to reconstruct a system that entailed multiple disks or for reconstructing RAID
arrays.

By default, imount will mount each single volume in /tmp and wait until you confirm an unmount operation.
Common usage is therefore to keep imount running in a separate window and perform other operations in a second
window.

1.3.1 Arguments

The imount utility requires one (or more) positional arguments and offers the ability to pass several optional argu-
ments.

<image> [<image> ...]
The positional argument(s) should provide the path(s) to the disk images you want to mount. Many different
formats are supported, including the EnCase evidence format, split dd files, mounted hard drives, etc. In the
case of split files, you can refer to the folder containing these files.

If you specify more than one file, all files are considered to be part of the same originating system, which is
relevant for the --reconstruct command-line option.

Arguments that immediately exit

Some useful facilities.

--help
-h

Shows a help message and exits.

--version
Shows the current version and exits.

--check
Shows which third-party utilities you have installed for a correct functioning of imagemounter.

--unmount
-u

Option that will try to identify leftover files from previous imount executions and try to delete these. This will,
for instance, clean leftover /tmp/im_... mounts and mountpoints. This command will allow you to review
the actions that will be taken before they are done.

Can be combined with --casename, --mountdir and --pretty to specify which mount points to delete.

1.3. Command-line usage 5

imagemounter Documentation, Release 1.5.1

CLI behaviour

The next four command-line options alter the behaviour of the imount utility, but does not affect the behaviour of
the underlying imagemounter module.

--wait
-w

Pauses the execution of the program on all warnings.

--keep
-k

Skips the unmounting at the end of the program.

--no-interaction
Never ask for input from the user, implies --keep.

--only-mount
Comma-separated list of volume indexes you want to mount. Other volumes are skipped.

--skip
Comma-separated list of volume indexes you do not want to mount.

--verbose
-v

Show verbose output. Repeat for more verbosity (up to 4).

--color
--no-color

Force toggle colorizing the output. Verbose message will be colored blue, for instance. Requires the
termcolor package.

Additional features

This command-line option enables an additional and useful feature.

--reconstruct
-r

Attempts to reconstruct the full filesystem tree by identifying the last mountpoint of each identified volume and
bindmounting this in the previous root directory. For instance, if volumes have previously been mounted at / ,
/var and /home ; /var and /home will be bind-mounted in / , providing you with a single filesystem tree
in the mount location of / that is easily traversible.

This only works with Linux-based filesystems and only if / can be identified.

Implies --stats.

--carve
Carves the filesystem for missing files.

--vshadow
Also mounts volume shadow copies

Mount behaviour

These arguments alter some pieces of the mount behaviour of imagemounter, mostly to ease your work.

--mountdir <directory>
-md <directory>

Specifies the directory to place volume mounts. Defaults to a temporary directory.

6 Chapter 1. Contents

imagemounter Documentation, Release 1.5.1

--pretty
-p

Uses pretty names for volume mount points. This is useful in combination with --mountdir, but you should
be careful using this option. It does not provide a fallback when the mount point is not available or other issues
arise. It can also not be cleaned with --clean.

--casename
-cn

Use to specify the case name, which is used in pretty mounts, but also for the location of the mountdir. Useful
if you want to be able to identify the mountpoints later.

--read-write
-rw

Will use read-write mounts. Written data will be stored using a local write cache.

Implies --method xmount.

Advanced options

While imagemounter will try to automatically detect as much as possible, there are some cases where you may
wish to override the automatically detected options. You can specify which detection methods should be used and
override the volume system and file system types if needed.

--disk-mounter <method>
-m <method>

Specifies the method to use to mount the base image(s). Defaults to automatic detection, though different
methods deliver different results. Available options are xmount, affuse and ewfmount (defaulting to auto).

If you provide dummy, the base is not mounted but used directly.

--volume-detector <method>
-d <method>

Specifies the volume detection method. Available options are pytsk3, mmls, parted and auto, which is the
default. Though pytsk3 and mmls should in principle deliver identical results, pytsk3 can be considered more
reliable as this uses the C API of The Sleuth Kit (TSK). However, it also requires pytsk3 to be installed, which
is not possible with Py3K.

--vstypes <types>
Specifies the type of the volume system, defaulting to detect. However, detection may not always succeed and
valid options are dos, bsd, sun, mac, gpt and dbfiller, though the exact available options depend on the detection
method and installed modules on the operating system.

--fstypes <types>
Specifies the filesystem of a volume to use. Available options include ext, ufs, ntfs, luks, lvm and unknown, with
the latter simply mounting the volume without specifying type. See the command-line help for all available
volume types.

Filesystem types are specified for each volume separately. You can use subvolumes, examples including:

1=ntfs
2=luks,2.0=lvm,2.0.1=ext

If you wish to specify a fallback to use if automatic detection fails, you can use the special question mark (?)
volume index. If you wish to override automatic detection at all for all unspecified volumes, you can use the
asterisk (*) volume type. There is no point is specifying both a question mark and an asterisk.

--keys <keys>
Allows the specification of key information for each volume separately. This is similar to --fstypes, except

1.3. Command-line usage 7

imagemounter Documentation, Release 1.5.1

that you can only specify one key per argument (i.e. a comma is not interpreted as special). The format of the
specifc value depends on the volume type:

For BDE, you can use a single letter, followed by a colon, followed by the value. This leads to the following
accepted formats, similar to how the bdemount command interprets input:

k:full volume encryption and tweak key
p:passphrase
r:recovery password
s:file to startup key (.bek)

For LUKS, you can use a similar format:

p:passphrase
f:key-file
m:master-key-file

--lazy-unmount
Enables to unmount the volumes and disk lazily when the direct unmounting of the volumes fails.

Advanced toggles

imount has some facilities that automatically detect some types of disks and volumes. However, these facilities may
sometimes fail and can be disabled if needed.

--single
--no-single

imount will, by default, try to detect whether the disk that is being mounted, contains an entire volume sys-
tem, or only a single volume. If you know your volumes are not single volumes, or you know they are, use
--no-single and --single respectively.

Where --single forces the mounting of the disk as a single volume, --no-single will prevent the identi-
fication of the disk as a single volume if no volume system is found.

1.4 Python interface

While imount heavily utilizes the Python API of imagemounter, this API is also available for other classes.

1.4.1 Data structure

The basic structure of imagemounter is the imagemounter.ImageParser class, which provides access
to underlying imagemounter.Disk and imagemounter.Volume objects. Each file name passed to a
new imagemounter.ImageParser object results in one imagemounter.Disk object. imagemounter.
Volume objects are created by analysis of the Disk object (each volume generates one object, even if it is not
mountable), and each imagemounter.Volume can have one or more subvolumes.

For instance, a LUKS volume may contain a LVM system that contains a Ext volume. This would create a
Disk with a Volume containing a Volume which contains the actual Ext Volume. Subvolumes are man-
aged through imagemounter.VolumeSystem`s, which is used by both the :class:`Volume
and Disk classes.

Most operations are managed on a Volume level, although individual disk file mounting (and volume detection) is
performed on a Disk level and reconstruction is performed on a ImageParser level. This means the following
main parts make up the Python package:

8 Chapter 1. Contents

imagemounter Documentation, Release 1.5.1

• imagemounter.ImageParser, maintaining a list of Disks, providing several methods that are carried out
on all disks (e.g. mount) and reconstruct.

• imagemounter.Disk, which represents a single disk iamge and can be mounted, and maintain volumes. It
is also responsible for maintaining the write cache. Although a Disk is able to detect volumes, a Volume has
similar capabilities.

• imagemounter.Volume, which can detect its own type and fill its stats, can be mounted, and maintain
subvolumes.

• imagemounter.VolumeSystem, which is used to manage subvolumes and can detect volumes from a
volume system.

All three classes maintain an init() method that yields the volumes below it. You should call clean() on the
parser as soon as you are done; you may also call unmount() on separate volumes or disks, which will also unmount
all volumes below it. Warning: unmounting one of the RAID volumes in a RAID array, causes the entire array to be
unmounted.

1.4.2 Reference

If you utilize the API, you typically only require the ImageParser object, e.g.:

parser = ImageParser(['/path/to/disk'])
for v in parser.init():

print v.size
root = parser.reconstruct()
print root.mountpoint
parser.clean()

The best example of the use of the Python interface is the imount command. The entirety of all methods and attributes
is documented below.

ImageParser

Disk

Volume

VolumeSystem

Unmounter

1.5 File and volume system specifics

This section contains specifics on different file systems and volume systems supported by imagemounter. This section
is not complete and does not cover every edge case. You are invited to amend this section with additional details.

1.5.1 File systems

ext

ext2, ext3 and ext4 are all supported by imagemounter. All mounts use the ext4 drivers, allowing us to specify the
noload argument to the mount subsystem.

1.5. File and volume system specifics 9

imagemounter Documentation, Release 1.5.1

UFS

Supported is UFS2, as we explicitly pass in the UFS2 driver type in the mount call. This may result in some UFS
volumes not mounting. There is currently no workaround for that.

Normally, a volume can be detected as both a UFS volume, as well as a BSD partition table. When the former happens,
it may appear as if there is only a single volume, as this hides the other UFS volumes. Although detections have been
amended for this, it is important to note that you can explicitly override detection using --fstypes if detection fails
for some reason.

(See BSD volume system below for more information.)

Depending on your OS, you may need to run modprobe ufs to enable UFS support in your kernel.

NTFS

For mounting NTFS, you may need the ntfs-3g package. The show_sys_files option is enabled by default.

This file system type may (accidentally) be detected when a BDE volume should be used instead.

HFS / HFS+

No additional details.

LUKS

For mounting LUKS volumes, the cryptsetup command is used. At this point, it is not possible to specify more
options to the cryptsetup subsystem. To specify keys, use --keys. The following values are accepted:

p:passphrase
f:key-file
m:master-key-file

Note that you can’t provide multiple keys using a single –keys argument. Repeat the argument to accomplish this, e.g.
--keys 0=p:passphrase --keys 1=p:passphrase.

To determine whether a volume is a LUKS volume, cryptsetup isLuks is called. This method should re-
turn true; if it doesn’t, imagemounter will also not be able to mount the volume. The next step is to create a
loopback device that is used to call cryptsetup luksOpen <device> <name>, where name is of the form
image_mounter_luks_<number>. Additional details of the volume are extracted by using cryptsetup
status. The actual dd image of the volume is mounted in /dev/mapper/<name> by the OS.

The LUKS volume will get a subvolume at index 0 with the file system description LUKS Volume. When this volume
is a LVM volume that is not be properly recognized by imagemounter, you could use something like the following to
amend this:

imount image.E01 --fstypes=1=luks,1.0=lvm,1.0.0=ext --keys=1=p:passphrase

LUKS volumes are automatically unmounted by ending the script normally, but can’t be unmounted by --unmount.

The LUKS volume type may not be automatically detected in some cases.

10 Chapter 1. Contents

imagemounter Documentation, Release 1.5.1

BDE (Bitlocker)

Bitlocker Drive Encrypted volumes are mounted using the bdemount command. imagemounter allows you to provide
the crypto material to the command using --keys. Examples of valid commands are:

imount image.E01 --fstypes=2=bde --keys=2=p:passphrase
imount image.E01 --fstypes=2=bde --keys=2=r:recovery_password

See the manpage for bdemount for all valid arguments that can be passed to the subsystem (crypto material is
provided by replacing <key>:<value> with -<key> <value>).

The BDE volume will get a subvolume at index 0 with the file system description BDE Volume. imagemounter
should normally correctly detect this subvolume to be a NTFS volume.

BDE volumes are automatically unmounted by ending the script normally, but in some cases may not be properly
unmounted by --unmount.

The BDE volume type may not be properly recognized and may instead by recognized as NTFS volume. You can
override this by explicitly stating the volume type as in the examples above.

LVM

LVM systems host multiple volumes inside a single volume. imagemounter is able to detect these volumes on most
occassions, though it may not always be possible to detect the file system type of the volumes inside the LVM.

Mounting an LVM is done by mounting the volume to a loopback device and running lvm pvscan. This should
return a list of all LVMs on the system, but by matching the mount point of the base image, the scirpt should be able to
identify the volume group name. This name is then used to enable the LVM by running vgchange -a y <name>.
Using lvdisplay <name>, the volumes inside the volume group are extracted. The volume themselves are found
at the LV Path provided by this command.

Volumes inside a LVM are given the FS description Logical Volume. The file system types should be recognized
properly by the detection methods, and otherwise unknown should work, but otherwise you could explicitly specify
the file system type as follows:

imount image.E01 --fstypes=1=lvm,1.0=ext

Please note that many Linux based operating systems will try to mount LVMs for you. Although imagemounter tries
to circumvent this automation, if you are unable to properly unmount, you should try to unmount through the interface
of your OS first. Another useful command is vgchange -a n to disable all LVMs currently active (only use if you
are not using a LVM for your own OS!).

Unmounting LVMs is supported both by properly closing from the script as well as by using --unmount

Linux Software RAID

Linux RAID volume support is provided by the mdadm command. A volume is added to a RAID array incrementally;
the mdadm command is responsible for adding the volume to the correct array. The location of the RAID array is
captured by imagemounter so it can be unmounted again. A subvolume will be added with the description RAID
volume at index 0.

If the RAID volume can not be started directly after adding the volume, mounting will have succeeded, but the
mountpoint will not be available yet. When another volume is added to the same RAID array, it will get the same
(identical) subvolume as the original RAID volume. You should not mount it again. init will take care of both cases
for you.

1.5. File and volume system specifics 11

imagemounter Documentation, Release 1.5.1

Warning: If, for any reason, you have multiple RAID volumes in the same RAID array, unmounting one of the
volumes will also immediately unmount all other RAID volumes in the same array. Because of this, you should
ensure that you keep all RAID volumes mounted until you are done building and examining a specific array.

RAID volumes are sometimes correctly detected, but there are also cases where the volume appears to successfully
mount as another volume type. You should be very careful with this.

Note: A disk leveraging full disk RAID can be mounted as a single volume with the RAID filesystem type.

XFS

XFS is supported through the xfsprogs package.

ISO (ISO9660)

No additional details.

UDF

No additional details.

FAT

FAT volumes, independent of type, are mounted through the VFAT driver.

exFAT

exFAT volumes are mounted by teh exFAT driver. Note that exFAT volumes are sometimes recognized as NTFS
volumes.

Another quirk may be that parted recognizes a single exFAT volume as a DOS partition table with some free space
(also see this comment). Use another detection method or an explicit --single to amend this.

VMFS

VMFS is supported through the vmfs-tools package. Mounting is performed by finding a loopback device and using
the vmfs-fuse command to mount this loopback on the mountpoint.

SquashFS

SquashFS is supported through the squashfs-tools package.

12 Chapter 1. Contents

https://github.com/ralphje/imagemounter/pull/18/files/bcfdc26b954c4831e93a1afd0a2b7763de851328#r125325626

imagemounter Documentation, Release 1.5.1

JFFS2

JFFS2 is supported through the mtd-tools package. JFFS2 is sometimes used by BIOS images and the like.

The following commands are executed to open a JFFS2 image, where <size> is given a buffer of 1.2 times the size
of the volume:

modprobe -v mtd
modprobe -v jffs2
modprobe -v mtdram total_size=<size> erase_size=256
modprobe -v mtdblock
dd if=<path> of=/dev/mtd0
mount -t jffs2 /dev/mtdblock0 <mountpoint>

Warning: This filesystem type may not work while mounting multiple images of the same type at the same time.

Unmounting for this filesystem type is not fully supported.

CramFS

No additional details.

Minix

No additional details.

Dir

The dir filesystem type is not an actual mount type, but is used by imagemounter to indicate directories. This can be
used in conjunction with the AVFS mount method, but basically just symlinks a directory to the mount location. It is
provided for abstraction purposes.

Unknown

The unknown filesystem type is not an actual mount type, but used by imagemounter to indicate that the volume should
be mounted without specifying the volume type. This is less specific and does not work in most cases (since it lacks
the ability to provide additional options to the mount subsystem) but may result in the volume actually being able to
be used.

The unknown filesystem type is used as fallback by default, and is for instance used if no specific volume type is
provided by any of the detection methods other than ‘Linux’. If you wish to override this default, and choose skipping
mounting instead, you can also use the none filesystem type:

imount image.dd --fstypes=?=none

1.5.2 Volume systems

1.5. File and volume system specifics 13

imagemounter Documentation, Release 1.5.1

DOS (MBR)

In some cases, the DOS volume system is recognized as either a DOS or a GPT volume system. This appears to be a
bug in The Sleuth Kit used by some detection methods. imagemounter works around this by choosing in this case for
the GPT volume system and will log a warning. In the case that this is not the right choice, you must use --vstype
to explicitly provide the correct volume system.

In the case you have picked the wrong volume system, you can easily spot this. If you see GPT Safety
Partition popping up, you should have chosen GPT.

GPT

See the DOS/MBR volume system.

BSD

The BSD volume system (BSD disklabel) is commonly used in conjunction with UFS.

BSD volume c (BSD disk label uses letters to indicate the volumes, imagemounter will number this as volume 3) may
appear to contain the entire volume set, and have the same offset as UFS volume a. The correct volume is volume a,
and you should skip volume c. This is currently not fixed by imagemounter.

Sun

No additional details.

MAC

No additional details.

Detect

Lets the subsystem automatically decide the correct volume system type.

1.6 Release notes

We try to reduce backwards compatibility breakage only to major version releases, i.e. X.0.0. Minor releases (1.X.0)
may include new features, whereas patch releases (1.0.X) will generally be used to fix bugs. Not all versions have
followed these simple rules to date (and sometimes new features may creep up in patch releases), but we try to adhere
them as much as possible :).

1.6.1 Release history

4.0.0 (unreleased)

This release contains some major improvements in the API of imagemounter, making large if-statements obsolete and
obtaining more ‘Pythonic’ code where possible. It is a continuation of the efforts in version 3.0 and includes fixes
from many contributors.

14 Chapter 1. Contents

imagemounter Documentation, Release 1.5.1

New features:

• Drop support for Python 2, bump version requirement for Python to 3.6.

• Allowed programmatic access to dependency checks (contributed by gtback). This enables you to write code
that checks whether certain dependencies are satisfied.

• Changed the way file system types work. Large if-statements in the code have been replaced by class-based
filesystem types. Backwards incompatible * The fstype attribute has been replaced with the filesystem
attribute, but a backwards-compatible

attribute is still available.

– The _paths attribute is no longer available, but replaced by attributes on the :cls:‘FileSystem‘ classes

– The class-based filesystems implement a form of heuristic to determine the filesystem type.

Note: This change may result in file systems that were previously correctly detected suddenly not being
identified correctly. If you encounter such an error, please submit a bug report stating the outputs of the
different identifiers, the actual result and the expected result. You can obtain this information using -vvvv
on the command line.

– carve and volume shadow copies are now also subvolumes.

• Add support for VBox disk images (vdi) (contributed by ruzzle)

• Add support for VHD volumes (contributed by Jarmo van Lenthe)

Bugfixes:

• Renamed nbd to qemu-nbd (contributed by Jarmo van Lenthe)

• Support for segmented filenames higher than 999 (contributed by jdossett)

• Fixed xmount command order (contributed by Jarmo van Lenthe)

3.1.0 (2017-08-06)

New features:

• Support for exFAT filesystems (contributed by ldgriffin)

• Addition of force_clean method to ImageParser

• Addition of --skip, to complement --only-mount

• Improved support for UFS / BSD volumes

Bugfixes:

• Updated --keys to not parse commas (as these may be part of the key themselves) and properly support the
asterisk key.

• Several fixes for fsstat call, including actually killing it after 3 seconds and optimizations by passing in the
correct FS type, making mounting actually a lot faster.

• Fixes for path expanding (contributed by ruzzle)

• Re-index loopbacks prior to unmounting in the Unmounter class (contributed by ldgriffin)

• Use --sizelimit for various mounts, for support in newer kernel versions (contributed by ldgriffin)

• Improved support for non-ASCII volume labels

1.6. Release notes 15

imagemounter Documentation, Release 1.5.1

• The parted detection method does not hang anymore when parted requests input

• Fix for communication of LUKS keys to the cryptsetup command

• Fixes for reconstruction when multiple roots exist

3.0.1 (2017-04-08)

• Add support for qcow2 (contributed by Jarmo van Lenthe)

• Allow use of lowercase e01 file extension when mounting a directory in imount CLI (contributed by sourcex)

• Add ADS support for NTFS volumes (contributed by Patrick Leedom)

• Ability to lazily call fusermount -uz when unmounting (contributed by Patrick Leedom)

• Fix regression in mounting LV volumes; the path was incorrectly detected in get_raw_path() for these
volumes.

• Fix regression in detection of single volumes that would be detected as DOS/MBR based on file type.

3.0.0 (2016-12-11)

This new release includes several backwards-incompatible changes, mostly because features were removed from the
public API or have been renamed to obtain a more consistent API.

It was released after a long time of development, and does not even contain all features that were originally planned to
go into this release, but it contains some important bugfixes that warranted a release.

New major features:

• Add volume shadow copy support for NTFS

• Add BDE (Bitlocker) support

• Addition of --keys CLI argument and corresponding argument to Volume class, allowing to specify key
material for crypto mounts, supporting both BDE and LUKS.

• (Experimental) support for volume systems inside a volume. This is useful when e.g. a LVM volume contains
in itself a MBR.

• A split between detection and initialization of volumes has been made. The basic way to access volumes as
calling init(), but that mounted all volumes immediately. Now, detect_* methods have been added.

• Support blkid to retrieve FS type info

• Support for Linux RAID volumes

• (Still in development) interactive console, which will eventually become the primary means to interact with
imagemounter.

Bugfixes:

• Calling init() will not automatically mount the volume when it is not alloc.

• Fix a bug where .e01 files (lowercase) would not be recognized as Encase

• Fixed support for newer versions of mmls

• Fixed support for pytsk3 under Python 3 (contributed by insomniacslk)

• Fixed support for EnCase v7 (EX01) image files (contributed by pix)

• Improved detection of several volume types

16 Chapter 1. Contents

imagemounter Documentation, Release 1.5.1

• index is now always str

• Volume.size is now always int

• Improved the unmounter with generic loopback support

Removed and modified features:

• Stopped providing None and False results when things go wrong for most methods. Instead, numerous
exceptions have been added. These exceptions should be catched instead, or when using mount_volumes or
init, you can specify swallow_exceptions (default) to restore previous behaviour. This is useful, since
iteration will continue regardless of exceptions.

• Moved the attributes fstypes, vstypes, keys, mountdir and pretty to the ImageParser instance,
so it does not need to get passed down through the *args hack anymore. For instance, fstypes has been
moved; the dict will be inspected upon Volume instantiation and stored in the fstype attribute. Other argu-
ments and attributes have been eliminated completely, or have been replaced by arguments to specific methods.

• Added an intermediary class VolumeSystem. Both Volume and Disk now use this (iterable) base class in
their volumes attribute. If you relied on volumes being a list, you should now use list(volumes). If
you relied on indexing of the attribute, you could now also use disk[0] or volume[0] for finding the correct
volume index. volume_source was moved to this class, as have vstype and volume_detector.

• Changes to the CLI:

– Removed --fsforce and --fsfallback. Use * and ? as fstypes instead for the same effect.
This should make the CLI more sensible, especially regarding the --fsforce argument. The default
FS fallback is still unknown, which can only be overridden by specifying --fstypes=?=none.
(You can now specify --fstypes=TYPE, which equals to --fstypes=*=TYPE)

– Removed --stats and --no-stats. These only complicated things and fsstat has been work-
ing fine for years now.

– Removed --raid and --no-raid (due to Volume RAID support)

– Removed --disktype and --no-disktype.

– Renamed --method to --disk-mounter.

– Renamed --detection to --volume-detector.

– Renamed --vstype to --vstypes, now accepting a dict, similar to --fstypes

– Moved the imount.py file into a new cli module, where also a new experimental shell-style CLI
is under development.

• Changes specific to ImageParser:

– Added add_disk and made paths optional in constructor.

– Added indexing of the ImageParser and added get_volume_by_index method.

– Removed mount_single_volume and mount_multiple_volumes. Use init_volumes
instead, or use a custom loop for more control.

– Dropped support for a single string argument for paths in __init__. Additionally, dropped the
paths attribute entirely.

• Changes specific to Disk:

– Renamed method to disk_mounter (see also CLI)

– Removed name, avfs_mountpoint and md_device from public API.

1.6. Release notes 17

imagemounter Documentation, Release 1.5.1

– Removed Linux RAID Disk support. Instead, mount as a single volume, with the type of this volume
being RAID. This greatly simplifies the Disk class. (This means that loopback has also been
dropped from Disk)

– Added detect_volumes method, which can be used to detect volumes.

– Removed most mount_* methods. Moved mount_volumes to init_volumes. Functionality
from the other methods can be restored with only a few lines of code.

– Removed the need for the rather obsure multifile attribute of mount. Only xmount actually
required this, so we just implicitly use it there.

– Moved the type attribute to a method get_disk_type.

• Changes specific to Volume:

– Renamed get_raw_base_path to get_raw_path

– Renamed get_size_gib to get_formatted_size

– Removed get_magic_type, fill_stats, open_jffs2, find_lvm_volumes and
open_luks_container from public API.

– Removed the *_path, carvepoint and bindmountpoint attributes from the public API. For
carvepoint, the carve method now returns the path to the carvepoint. All data has been moved
to the private _paths attribute. The mountpoint and loopback attributes are kept.

– Removed fsforce and fsfallback arguments and attributes from Volume (see also CLI)

– Added init_volume, which only mounts the single volume. It is used by init and the preferred
way of mounting a single volume (instead of using mount)

– Moved several attributes of Volume to a new info attribute, which is publicly accessible, but its
contents are not part of a stable public API.

• Changes specific to VolumeSystem (if you consider it on par with the functionality moved from Disk):

– Renamed detection to volume_detector (see also CLI)

– Added a VolumeSystem.detect_volumes() iterable, which is the basic functionality of this
class.

– Moved mount_single_volume code from Disk to this class, adding the single volume de-
tection method. The directory detection method has been incorporated in this new method.

• Dropped support for Python 3.2, since everyone seems to be doing that these days.

2.0.4 (2016-03-15)

• Add HFS+ support

2.0.3 (2015-08-02)

• Remove error prefix ([-]) from some of the warnings

• Do not warn about using unknown as fsfallback anymore

• Also work properly with the python-magic system package (in addition to the totally different
python-magic PyPI package)

• vmware-mount Add -r to vmware-mount for readonly mounts

18 Chapter 1. Contents

imagemounter Documentation, Release 1.5.1

• ntfs Add force to mount options

2.0.2 (2015-06-17)

• Bugfix in --check regarding the python-magic module

• vmware-mount Fix vmware-mount support

2.0.1 (2015-06-17)

• Changed the default fsfallback to unknown, instead of none.

2.0.0 (2015-06-17)

• Introduce support for XFS, ISO, JFFS2, FAT, SquashFS, CramFS, VMFS, UDF and Minix (cheers martinvw!)

• Add ability to read the disk GUID using disktype, and read the filesystem magic for better detection of filesys-
tems (cheers martinvw!)

• Add support for ‘mounting’ directories and compressed files using avfs (cheers martinvw!)

• Add support for detecting volumes using parted

• Introduce facility to carve filesystems for removed files, even in unallocated spaces

• Add --no-interaction for scripted access to the CLI

• Add --check for access to an overview of all dependencies of imagemounter

• Add --casename (and corresponding Python argument) to easily recognize and organize multiple mounts on
the same system

• Change --clean to --unmount, supporting arguments such as --mountdir and --pretty , and made
the code more robust and easier to read and extend

• Detect terminal color support and show color by default

• BSD is now called UFS

• --stats is now the default in the Python script

• NTFS mount now also shows the system files by default

• Do not stop when not running as root, but warn and probably fail miserably later on

• fstype now stores the detected file system type, instead of the fstype as determined by fill_stats()

• Logging now properly uses the Python logging framework, and there are now 4 verbosity levels

• Changes to how the pretty names are formatted

• Some Py2/Py3 compatibility fixes

1.5.3 (2015-04-08)

• Add support for vmware-mount

1.6. Release notes 19

imagemounter Documentation, Release 1.5.1

1.5.2 (2015-04-08)

• Ensure Volume.size is always int

• Fixed a GPT/DOS bug caused by TSK

• Add FAT support

1.5.1 (2014-05-22)

• Add disk index for multi-disk mounts

1.5.0 (2014-05-14)

• Add support for volume detection using mmls

• Python 3 support

• Bugfix in luksOpen

1.4.3 (2014-04-26)

• Experimental LUKS support

1.4.2 (2014-04-26)

• Bugfix that would prevent proper unmounting

1.4.1 (2014-02-10)

• Initial Py3K support

• Included script is now called imount instead of mount_images

1.4.0 (2014-02-03)

• Disk is now a seperate class

• Some huge refactoring

• Numerous bugfixes, including resolving issues with unmounting

• Rename image_mounter to imagemounter

• Remove mount_images alias

1.3.1 (2014-01-23)

• More verbosity with respect to failing mounts

20 Chapter 1. Contents

imagemounter Documentation, Release 1.5.1

1.3.0 (2014-01-23)

• Add support for single volume mounts

• Add support for dummy base mounting

• Add support for RAID detection and mounting

1.2.9 (2014-01-21)

• Improve support for some types of disk images

• Some changes in the way some command-line arguments work (removed -vs, -fs and -fsf)

1.2.8 (2014-01-08)

• Make :option:‘–stats the default

• Print the volume size and offset in verbose mode in the CLI

• Add imount as command line utility name

1.2.7 (2014-01-08)

• Add --keep

1.2.6 (2014-01-08)

• Use fallback commands for base image mounting if the normal one fails

• Add multifile option to Volume to control whether multifile argument passing should be attempted

• Fix error in backwards compatibility of mount_partitions

• Copy the label of a volume to the last mountpoint if it looks like a mountpoint

1.2.5 (2014-01-07)

• Ability to automatically detect the mountpoint based on files in the filesystem

1.2.4 (2013-12-16)

• Partition is now Volume

• Store the volume flag (alloc, unalloc, meta)

1.2.3 (2013-12-10)

• Add support for pretty mount point names

1.2.2 (2013-12-09)

• Fix issue where ‘extended’ is detected as ext (again)

1.6. Release notes 21

imagemounter Documentation, Release 1.5.1

1.2.1 (2013-12-09)

• Fix issue where ‘extended’ is detected as ext

• ImagePartition is now Volume

1.2.0 (2013-12-05)

• ImagePartition is now responsible for mounting and obtaining its stats, and detecting lvm volumes

• LVM partitions are now mounted using this new mount method

• Utilize the partition size for disk size, which is more reliable

• Renamed ImagePartition to Volume (no backwards compatibility is provided)

• Add unknown mount type, for use with --fstype, which mounts without knowing anything

• Support mounting a directory containing *.001/*.E01 files

1.1.2 (2013-12-05)

• Resolve bug with respect to determining free loopback device

1.1.1 (2013-12-04)

• Improve --clean by showing the commands to be executed beforehand

1.1.0 (2013-12-04)

• Do not add sudo to internal commands anymore

• --loopback is removed, detects it automatically now

• --clean is added; will remove all traces of an unsuccessful previous run

1.0.4 (2013-12-03)

• Add the any vstype

• Fix some errors in the mount_images script

1.0.3 (2013-12-02)

• Support forcing the fstype

• Improved LVM support

• Added some warnings to CLI

1.0.2 (2013-11-28)

• Improved NTFS support

22 Chapter 1. Contents

imagemounter Documentation, Release 1.5.1

1.0.1 (2013-11-28)

• command_exists now works properly

1.0.0 (2013-11-28)

• Now includes proper setup.py and versioning

• Add support for reconstructing the filesystem using bindmounts

• More reliable use of fsstat

• Overhauled Python API with more transparency and less CLI requirements

– Store yielded information in a ImagePartition

– Remove dependency on args and add them to the class explicitly

– Do not depend on user interaction or CLI output in ImageParser or util, but do CLI in __main__

• Support for LVM

• Support for ewfmount

• Retrieve stats more reliably

• New CLI arguments:

– Colored output with --color

– Wait for warnings with --wait

– Support for automatic method with --method=auto

– Specify custom mount dir with --mountdir

– Specify explicit volume system type with --vstype

– Specify explicit file system type with --fstype

– Specify loopback device with --loopback (required by LVM support)

1.6. Release notes 23

imagemounter Documentation, Release 1.5.1

24 Chapter 1. Contents

Python Module Index

i
imagemounter, 9

25

imagemounter Documentation, Release 1.5.1

26 Python Module Index

Index

Symbols
-carve

command line option, 6
-casename

command line option, 7
-check

command line option, 5
-color

command line option, 6
-disk-mounter <method>

command line option, 7
-fstypes <types>

command line option, 7
-help

command line option, 5
-keep

command line option, 6
-keys <keys>

command line option, 7
-lazy-unmount

command line option, 8
-mountdir <directory>

command line option, 6
-no-color

command line option, 6
-no-interaction

command line option, 6
-no-single

command line option, 8
-only-mount

command line option, 6
-pretty

command line option, 6
-read-write

command line option, 7
-reconstruct

command line option, 6
-single

command line option, 8

-skip
command line option, 6

-unmount
command line option, 5

-verbose
command line option, 6

-version
command line option, 5

-volume-detector <method>
command line option, 7

-vshadow
command line option, 6

-vstypes <types>
command line option, 7

-wait
command line option, 6

-cn
command line option, 7

-d <method>
command line option, 7

-h
command line option, 5

-k
command line option, 6

-m <method>
command line option, 7

-md <directory>
command line option, 6

-p
command line option, 6

-r
command line option, 6

-rw
command line option, 7

-u
command line option, 5

-v
command line option, 6

-w
command line option, 6

27

imagemounter Documentation, Release 1.5.1

<image> [<image> ...]
command line option, 5

C
command line option

-carve, 6
-casename, 7
-check, 5
-color, 6
-disk-mounter <method>, 7
-fstypes <types>, 7
-help, 5
-keep, 6
-keys <keys>, 7
-lazy-unmount, 8
-mountdir <directory>, 6
-no-color, 6
-no-interaction, 6
-no-single, 8
-only-mount, 6
-pretty, 6
-read-write, 7
-reconstruct, 6
-single, 8
-skip, 6
-unmount, 5
-verbose, 6
-version, 5
-volume-detector <method>, 7
-vshadow, 6
-vstypes <types>, 7
-wait, 6
-cn, 7
-d <method>, 7
-h, 5
-k, 6
-m <method>, 7
-md <directory>, 6
-p, 6
-r, 6
-rw, 7
-u, 5
-v, 6
-w, 6
<image> [<image> ...], 5

I
imagemounter (module), 9

28 Index

	Contents
	Installation
	Dependencies
	Command-line usage
	Python interface
	File and volume system specifics
	Release notes

	Python Module Index
	Index

