

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 This repository contains my ImageJ plugins to help with some medical physics tasks. The skeleton I have used was taken from https://github.com/imagingbook/imagej1-plugins-ide-setup. I have stripped out the netbeans and Eclipse folders.

A jar file called “QuantitativeIQ.jar” contains all of the plugins.
It can be downloaded from the project-intellij/jars folder and dropped into the plugins folder of your ImageJ installation.
These plugins depend on the Apache commons maths library version 3.6.1. You’ll need to put a copy of the commons-math3-3.6.1.jar file in your ImageJ plugins folder.
You will find a copy of commons-math3-3.6.1.jar in this project’s project-intellij/jars folder.
If you would rather download it from Apache then you can extract it from the commons-math3-3.6.1-bin.zip file that you can download from this page: https://commons.apache.org/proper/commons-math/download_math.cgi

The plugins

TextureMap

Diagnostic Radiology. Calculate a variance or signal-to-noise map of a
digital x-ray image.

The routine will run on a user-selected rectangular region of
interest (ROI). If no ROI is selected then the whole image is
selected and analysed.

It breaks the large ROI into smaller square ROIs, and calculates
the chosen statistical parameter for each region. The user is
asked to supply the side-length of the smaller ROIs (in mm).

The routine calculates variance as:

sum[x - mean(x)] / n

The routine calculates standard deviation as:

sqrt(variance)

The routine calculates signal-to-noise as:

mean(x) / standard deviation(x)

ResampleImage

Nuclear Medicine. This re-samples an existing image to simulate a new image that would
have been acquired using a lower number of counts.

TaskTransferFunction

Diagnostic Radiology. This calculates the task transfer function of a circular
object within an image.

NoisePowerSpectrum

Diagnostic Radiology. This calculates the noise power spectrum from a series of regions
of interest in a uniform image.

EyeModel

ImageJ plugin to calculate eye frequency response using either
Richard and Siewerdsen 2008, http://dx.doi.org/10.1118/1.2988161:

E(f) = f^n.exp(-c.f^2)

where f = radial spatial frequency (mm-1)
n = 1.3
c = 3.093 for a 50 cm viewing distance for E(f) to peak at 4 degree-1

or Solomon et al 2015, http://dx.doi.org/10.1118/1.4923172:

E(p) = |n.p^a1.exp(-a2.p^a3)|^2

where a1 = 1.5
a2 = 0.98
a3 = 0.68
n is a normalisation constant to make max E(p) = 1.0
p is angular spatial frequency (degree^-1)

p can be calculated from radial spatial frequency using:

p = (f.FOV.R.pi) / (D.180)

where f is radial spatial frequency (mm^-1)
FOV is the reconstructed field of view of the image (mm)
R is the viewing distance (mm)
D is the display size (mm) (assumed to be 305 mm in the Solomon paper)

or Saunders et al 2006 (http://dx.doi.org/10.1118/1.2150777) which
is the same as Solomon et al 2015 except the a2 coefficient has the value 3.22. This matches
the Saunders option in the imquest software.

The Solomon et al 2015 section above is mathematically the same as that used by
the imquest software Eckstein option except that the original Eckstein work did not
normalise the function, nor did it square the result (http://dx.doi.org/10.1364/OE.11.000460).

TaskFunction

This calculates the radial frequency response of a disc-shaped object of a user-specified
diameter and contrast.

DetectabilityIndex

Uses the TaskTransferFunction, NoisePowerSpectrum, EyeModel and TaskFunction
to calculate a numerical index that relates to the detectability of an object.
The detectability index (d’) is calculated according to equation 2 in
http://dx.doi.org/10.1118/1.4923172 adapted for radial frequency rather than u, v.
In this plugin the integration limits for calculating d’ are 0 to the Nyquist frequency.

Using this repository

Setup for writing ImageJ Plugins with IntelliJ

This repo contains a minimal setup for writing ImageJ (1) plugins with IntelliJ [https://www.jetbrains.com/idea/].
The project is set up with <project-root>/plugins/ as the default output folder (for generated .class files).

This repository is based on the imagingbook [http://imagingbook.com] support suite.
See www.imagingbook.com [http://imagingbook.com] for additional resources.

Setup

Clone this repository. It contains a folder for project-intellij/, a self-contained project for IntelliJ.

IntelliJ:

Start the IntelliJ IDEA and use Open in the Welcome screen to navigate to the project-intellij/ folder.
Editing and saving plugin source files should update the associated class files (in plugins/) automatically.

Starting ImageJ

The ImageJ runtime can be launched in various ways:

	Windows: Execute ImageJ.exe (by double-clicking on the file).
When ImageJ starts up, it may ask for the javaw.exe executable, typically located in C:\Program Files\java\jre1.8xxx\bin\. In case of problems, simply delete the ImageJ.cfg file and start anew.

	MacOS: Launch ij.jar.

	Java: Run the ij.ImageJ.main() method within Eclipse.

The entire ImageJ functionality is contained in the single archive ij.jar. To update to the most recent version, simply select Help -> Update ImageJ... from the ImageJ main menu.

Adding/editing your plugin code

Code for ImageJ plugins is contained in the <project-root>/src-plugins/ directory. Plugins may be contained in Java packages (such as my_plugins in this example). Note that packages with plugins may only be one level deep, otherwise ImageJ will not find them! It is recommended to use at least one underscore (_) in a plugin name to make ImageJ automatically install the plugin into the Plugins menu at startup.

Executing plugins

At startup, ImageJ automatically installs existing plugins (under the above conditions) into the Plugins menu. To execute, simply select the listed plugin from the menu.

When the plugin’s source code is edited in the IDE, the associated .class file in plugins/ is updated (by Eclipse/IntelliJ), but not automatically reloaded by the ImageJ runtime. To exectute an edited plugin in ImageJ, use Plugins -> Compile and Run... and select the associated .class file (no compiler is needed).

Adding other libraries (jars)

This project uses no dependency management (such as Maven) to keep things simple. If any external libraries are required, just do the following:

	Copy the associated JAR file xxx.jar into jars/.

	In your IDE, add the JAR file to Java build path.

	Restart ImageJ.

Additional ImageJ resources

	ImageJ Home [https://imagej.nih.gov/ij/index.html]

	ImageJ Plugins [http://rsbweb.nih.gov/ij/plugins/index.html]

	ImageJ API (JavaDoc) [http://rsbweb.nih.gov/ij/developer/api/index.html]

	ImagingBook (book and source code) [http://imagingbook.com]

Test change

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

