

Iktomi

Iktomi is a python package providing some basic tools for creating web applications.
Iktomi is built on top of webob and supports Python 2.7 and Python 3.5.

It contains few independent subpackages, you can use both, or just one of them:

	iktomi.web, a flexible and extensible routing tool, suitable to dispatch HTTP
requests between various views (or controllers).

	iktomi.forms, a web forms validation and rendering tool.

	iktomi.cli, a layer for building command-line utilities.

	iktomi.templates, an adaptation layer for template engines,
in particular, for jinja2.

	iktomi.db, database utilities, in particular, sqlalchemy types,
collections, declarative mixins.

Some things are dedicated to package iktomi.unstable. This means the interfaces are
unstable or unclear in some point, and we do not want to gurarantee their permanence
for a long time.

Routing

	Basic Practices
	Hello, World

	Basic Routing

	URL parameters

	Nested handlers and URL Namespaces

	Building URLs

	Controlling execution flow

	Scopes of environment and data variables

	Smart URL object

	Throwing HTTPException

	Advanced Practices
	Advanced routing tools

	Custom URL converters

	Make an application configurable

	Web Routing Reference

Forms

	Overview: Form Abstraction Layers

	Form Class
	Form Validation

	Rendering to HTML

	Filling Initial Data

	Providing Access to the Environment

	Fields
	Field Naming

	Converters and Widgets

	Scalar and Multiple Fields

	Setting Initial Value

	Aggregate Fields

	Access to Converted and Raw Values

	Field permissions

	Converters
	Value convertation

	ValidationError

	Require Check

	ListOf and Multiple Values

	Filters and validators:

	Internationalization

	Converters for Aggregate Fields

	Converter implementations

	Widgets
	Rendering

	Render Types

	Data Preparations

	Multiple and Redonly options

	Widget implementations

	Forms Reference

Cli

	Cli Reference
	Base

	Development Server

	FCGI Server

	SQLAlchemy

Templates

	Template

	Templates Reference

Utilities

Unsorted stuff for make iktomi working.

	Various utilities
	Property sugar

	Versioned Storage

	Internationalization

	Paginator

	Other

	Utils

Basic Practices

Hello, World

Iktomi produces WSGI application from a couple of own web handlers.
It wraps environment into webob.Request and accepts the result as webob.Response object.
In most cases, web handler is represented by function.

Here is the common interface of web handlers:

def handler(env, data):
 ...
 return response

env is an iktomi application’s current environment. Basically it
contains only one significant attribute: webob.Request object in env.request.
data will be described below.

A handler returns webob.Response or None (this case will be described below),
also it can raise webob.exc.HTTPException subclasses or call other
(in most cases, next) handlers and return their result.

So, here is an example for very basic web handler:

import webob

def hello_world(env, data):
 name = env.request.GET.get('name', 'world')
 return webob.Response('Hello, %s!' %name)

Any handler can be converted to WSGI app:

from iktomi import web
from iktomi.web.app import Application

wsgi_app = Application(hello_world)

Here it is! You can use the given object as common WSGI application, make server,
for example, using Flup. Implementation of development server can be found at
Development server. Now we can create manage.py file with the
following content:

#!/usr/bin/python2.7
import sys
from iktomi.cli import manage
from iktomi.cli.app import App

def run():
 manage(dict(
 # dev-server
 app = App(wsgi_app),
), sys.argv)

if __name__ == '__main__':
 run()

And now we can run the server:

./manage.py app:serve

Basic Routing

There are a couple of handlers to match different url parts or other request
properties: web.match, web.prefix, web.methods, web.subdomain, etc.

Iktomi routing is based on web.cases and web.match class. Constructor
of web.cases class accepts a couple of other handlers.
When called the web.cases instance calls
each of handlers until one of them returns webob.Response object or
raises webob.exc.HTTPException.

If any handler returns None, it is interpreted as “request does not match,
the handler has nothing to do with it and web.cases should try to call the next handler”.

Constructor of web.match class accepts URL path to match and a handler name
to be used to build an URL (see below). If the request has been matched, web.match calls next handler,
otherwise returns None. Let’s see an example:

web.cases(
 web.match('/', 'index') | index,
 web.match('/contacts', 'contacts') | contacts,
 web.match('/about', 'about') | about,
)

As we see, | operator chains handlers and makes second handler next for the first.

Note: handlers are stateful, they store their next and nested handlers in the attributes.
Therefore, they can be reused (i.e. can be included in application in two places),
because `|` operator copies instances of handlers.

And here’s how it works. For request:

GET /contacts

	web.cases is called, it calls the first web.match handler

	web.match(‘/’, ‘index’) does not accept the request and returns None.

	web.cases gets None from first handler and calls the next.

	web.match(‘/contacts’, ‘contacts’) accepts the request, calls next
handler (contacts) and returns it’s result.

	web.cases gets not-None result from handler, stops iteration over
handlers and returns the result.

Note that execution of chain can be cancelled by every handler. For example,
if contacts handler returns None, web.cases does not stop iteration of handlers
and web.match(‘/about’, ‘about’) is called.

URL parameters

If URL contains values that should be used in handlers (object ids, slugs, etc),
werkzeug-style URL parameters are used:

web.match('/user/<int:user_id>')

Where int is name of an url converter, and user_id is attribute name.
All url-matching handlers use common url parsing engine.
They get parameters’ values from url and put them to data object by __setattr__.

Iktomi provides some basic url converters: string (default), int, bool, any.
It also allows you to create and use own ones (see below).

Nested handlers and URL Namespaces

There is very handy way to logically organize your url map: namespaces:

web.cases(
 web.prefix('/api', name="api") | web.cases(...),
 # this is equal to:
 # web.prefix('/api') | web.namespace('api') | web.cases(...),
 web.prefix('/user/<int:user_id>', name='user') | web.cases(...),
)

For more complex projects a simple combinations of web.cases and web.match
does not satisfy. Iktomi provides some handlers to create complex routing
rules and allows to create your own handlers. And you can combine handlers as you want.
Here is an example:

web.cases(
 web.prefix('/api', name="api") | web.methods(['GET']) | web.cases(
 web.match('/users', 'users') | users_list,
 web.match('/comments', 'comments') | comments_list
) | to_json,

 web.match('/', 'index') | index,
 web.prefix('/user/<int:user_id>', name="user") | web.cases(
 web.match('', 'profile') | user_profile,
 web.match('/comments', 'comments') | user_comments,
)
)

URL namespacing is useful to include similar app parts to many places
in your app, or for plug-in any reusable app from outside without warry
about name clashes.:

def handler(env, data):
 curr_namespace = env.namespace if hasattr(env, 'namespace') else None
 en_url = env.root.build_url('en.index')
 curr_url = env.root.build_url('.index')
 return webob.Response('%s %s %s' % (curr_namespace,
 en_url, curr_url))

part = web.match('/index', 'index') | handler

web.cases(
 # first renders "en /en/index /en/index"
 web.prefix('/en', name='en') | part,
 # second renders "ru /en/index /ru/index"
 web.prefix('/ru', name='ru') | part,
)

Building URLs

Iktomi provides url building (or reversing) engine.

URL reverse object is a callable that can be created for any handler:

root = web.Reverse.from_handler(app)

or the same object can be found in env.root attribute during the request handling.

There are two ways of using Reverse object. Attribute-based one:

root.user(user_id=5).as_url
root.user(user_id=5).comments.as_url

or string-based method:

root.build_url('user', user_id=5)
root.build_url('user.comments', user_id=5)

Note: string-based API is just a shortcut layer on top of attribute-based one
Note: attribute-based API returns a subreverse object (also `Reverse` instance),
while string-based API returns `web.URL` instances. If you want to get subreverse,
use `root.build_subreverse(‘user’, user_id=5)`

Controlling execution flow

Iktomi allows to natively implement many use cases without any extra essences
like Django-middlewares, etc.

For example, to implement “middleware” you can do something like:

@web.request_filter
def wrapper(env, data, next_handler):
 do_something()
 result = next_handler(env, data)
 do_something_else(result)
 return result

wrapped_app = wrapper | web.cases(..)

Note: `web.request_filter` is decorator transforming function to regular WebHandler,
this allows to chain other handlers after given. The chained handler is passed as third
argument into the handler.

It is transparent, obvious and native way. Also, it is possible to use try...except
statements with next_handler:

@web.request_filter
def wrapper(env, data, next_handler):
 try:
 return next_handler(env, data)
 except MyError:
 return exc.HTTPNotFound()

or even something like that:

@web.request_filter
def wrapper(env, data, next_handler):
 with open_db_connection() as db:
 env.db = db
 return next_handler(env, data)

Scopes of environment and data variables

env and data objects does not just store a data, also they
delimitate data between handlers from differrent app parts. web.cases handler
is responsible for this delimitation. For each nested handler call it “stores”
the state of env and data objects and restores it after handler execution.

Each nested handler can change env and data objects and these changes will not affect
other routing branches. So you don’t worry about the data you’ve added
to data and env will involve any unexpected problems in other part of your app.
Therefore, be careful with this feature, it can lead to design mistakes.

Smart URL object

URL build functions does not return actually str object, but it’s web.URL
subclass’es instance. It allows to make common operations with queryString
parameters (add, set, delete) and also has method returning
URL as human-readable unicode string:

>>> print(URL('/').set(q=1))
/?q=1
>>> print(URL('/').set(q=1).add(q=2))
/?q=1&q=2
>>> print(URL('/').set(q=1).set(q=3))
/?q=3
>>> print(URL('/').set(q=1).delete('q'))
/
>>> print(URL('/', host=u"образец.рф").set(q=u'ок'))
http://xn--80abnh6an9b.xn--p1ai/?q=%D0%BE%D0%BA
>>> print(URL('/', host=u"образец.рф").set(q=u'ок').get_readable())
http://образец.рф/?q=ок

Throwing HTTPException

Iktomi allows webob.HTTPException raising from inside a handler:

from webob import exc

@web.request_filter
def handler(env, data, next_handler):
 if not is_allowed(env):
 raise exc.HTTPForbidden()
 return next_handler(env, data)

Also you can use HTTPException instances in route map:

web.cases(
 web.match('/', 'index') | index,
 web.match('/contacts', 'contacts') | contacts,
 web.match('/about', 'about') | about,
 exc.HTTPNotFound(),
)

Advanced Practices

Advanced routing tools

Iktomi provides some additional filters.

A subdomain filter allows to select requests with a given domain or subdomain:

web.cases(
 web.subdomain('example.com') | web.cases(
 web.match('/', 'index1') | index1,
),
 web.subdomain('example.org') | web.cases(
 web.match('/', 'index2') | index2,
),
)

You can use multiple subdomain filters in a line to select lower-level subdomains.
To specify a base domain chain one subdomain filter before:

web.subdomain('example.com') | web.cases(
 # all *.example.com requests get here
 web.subdomain('my') | web.cases(
 # all *.my.example.com requests get here
 ...
),
 ...
)

A static_files handles static files requests and also provides a reverse function to build
urls for static files:

static = web.static_files(cfg.STATIC_PATH, cfg.STATIC_URL)

@web.request_filter
def environment(env, data, next_handler):
 ...
 env.url_for_static = static.construct_reverse()
 ...

app = web.request_filter(environment) | web.cases(
 static,
 ...
)

Handling files is provided for development and testing reasons. You can use it to serve static
file on development server, but it is strictly not recommended to use it for this purpose on
production (use your web server configuration requests instead of it). Surely, reverse function
is recommended to use on both production and development servers.

Custom URL converters

You can add custom URL converters by subclassing web.url.Converter.
A subclass should provide to_python and to_url methods. First accepts unicode
url part and returns any python object. Second does reverse transformation. Note, that
url parts are escaped automatically outside URL converter:

class MonthConv(url.Converter):
 def to_python(self, value, **kwargs):
 try:
 return int(value)
 except ValueError:
 raise ConvertError(self.name, value)

 def to_url(self, value):
 return str(value)

To include URL converter, pass convs argument to handler constructor:

prefix('/<month:month_num>', convs={'month': MonthConv})

Make an application configurable

Configuring env object:

class FrontEnvironment(web.AppEnvironment):
 cfg = cfg
 cache = memcache_client

 def __init__(self, *args, **kwargs):
 super(FrontEnvironment, self).__init__(*args, **kwargs)
 self.template_data = {}

 @cached_property
 def url_for(self):
 return self.root.build_url

 @storage_cached_property
 def template(storage):
 return BoundTemplate(storage, template_loader)

 @storage_method
 def render_to_string(storage, template_name, _data, *args, **kwargs):
 _data = dict(storage.template_data, **_data)
 result = storage.template.render(template_name, _data, *args, **kwargs)
 return Markup(result)

 @storage_method
 def render_to_response(self, template_name, _data,
 content_type="text/html"):
 _data = dict(self.template_data, **_data)
 return self.template.render_to_response(template_name, _data,
 content_type=content_type)

 @storage_method
 def redirect_to(storage, name, qs, **kwargs):
 url = storage.url_for(name, **kwargs)
 if qs:
 url = url.qs_set(qs)
 return HTTPSeeOther(location=str(url))

 def json(self, data):
 return webob.Response(json.dumps(data),
 content_type="application/json")

 @cached_property
 def db(self):
 return db_maker()

wsgi_app = Application(app, env_class=FrontEnvironment)

Describe differences between storage_method, storage_property, storage_cached_property,
cached_property here.

	BoundTemplate subclassing

	environment handler

Web Routing Reference

Basic handlers

Builtin filters

Url converters

Reversing urls

URL object

WSGI application

Overview: Form Abstraction Layers

Form is abstraction designed to validate user form data and convert it to inner
representation form.

Iktomi forms can accept data in webob.MultiDict-like form (basically
request.POST and request.GET objects), and return it in form of any python
objects hierarchy, depending only on implementation. Basically it is structured
combination of python dicts and lists containing atomic values.

The most basic usage of forms is the following:

from iktomi.forms.form import Form
from iktomi.forms.fields import Field, FieldList

class UncleForm(Form):
 fields = [
 Field('name'),
 FieldList('nephews', field=FieldSet(None, fields=[
 Field('name'),
])),
]

def process_form(request):
 form = UncleForm()
 if form.accept(request.POST):
 render_somehow(form.python_data)
 # {"name": "Scrooge",
 # "nephews": [{"name": "Huey"},
 # {"name": "Dewey"},
 # {"name": "Louie"}]}
 else:
 render_somehow(form, form.errors)

Iktomi form implementation contains of few abstraction layers:

Forms

iktomi.forms.form.Form subclasses contain a scheme of validated data as list
of fields. Instances of these classes provide an interface to work with entire
form, such as: validate the data (Form.accept), render the entire form
(Form.render). Also they store common form data: initial, raw and resulting
values, environment, errors occured during validation.

See more.

Fields

iktomi.forms.fields.BaseField instances represent one node in data scheme.
It can be atomic data (string, integer, boolean) or data aggregated from
collection of other fields (FieldList or FieldSet, see below).
Atomic values correspond to Field class.

Each field has a name. Name is a key in resulting value dictionary.

Also there are a few auxillary attributes like label, hint.

Finally, the main options of BaseField instances are converter and widget
objects.

See more.

Converters

iktomi.forms.convs.Converter instances are responsible for all staff related
to data validation and convertation. Converter subclasses should define
methods for transformations in two directions:

	to_python method accepts unicode value of user info, and returns value
converted to python object of defined type. If the value can not be converted,
it raises iktomi.forms.convs.ValidationError.

	from_python method accepts python object and returns corresponding unicode string.

Examples of converters are Int, Char, Html, Bool, Date, etc.

Converters support few interesting additional features.

The most used feature is require check. If the converter has require
attribute set to True, it checks whether to_python result is an empty
value:

Field('name',
 conv=convs.Char(required=True))

Multiple values are implemented by ListOf converter:

class MyForm(Form):

 fields = [
 Field('ids',
 conv=ListOf(Int()))
]

ids=1&ids=2 =>
{"ids" [1, 2]}

Additional validation and simple one-way convertation can be made by validators:

Field('name',
 Char(strip, length(0, 100), required=True))

See more.

Widgets

iktomi.forms.widget.Widget instances are responsible for visual representation
of an item.

The main method of widget is render, which is called to get HTML code of field
with actual value.

Widget can do some data preparations and finally it is rendered to template
named widget.template (by default, jinja2 is used).

Examples of widgets are TextInput, Textarea, Select, CheckBox,
HiddenInput, etc.

See more.

Aggregate Fields

Iktomi forms are very useful to validate and convert structured data with nested
values.

There are three basic subclasses of BaseField. Combining fields of
those classes, you can describe a scheme for nested JSON-like data (containing
lists and dictionaries). And you can easily describe any tree-like python objects
structure using custom Converter subclasses.

These classes are:

	FieldSet represents a collection of various fields with different names,
converters and widgets. Purpose of FieldSet is to combine values into a
dictionary or object (you can get an object of whatever type you want by
defining your own converter for FieldSet with transformation rules to/from
dictionary):

class MyForm(Form):
 fields = [
 FieldSet('name',
 fields=[
 Field('first_name'),
 Field('last_name'),
])
]

{"name": {'first_name': 'Jar Jar', 'last_name': "Binks"}}

	FieldBlock is like FieldSet, but it does not form separate object.
Instead, it adds it’s own values to parent field’s value, as if they are not
wrapped in separate field. FieldBlock is used for visually group fields or
for purposes of combined validation of those fields:

class MyForm(Form):
 fields = [
 FieldBlock(None,
 fields=[
 Field('first_name'),
 Field('last_name'),
])
]

{'first_name': 'Jar Jar', 'last_name': "Binks"}

	FieldList represent a list (basically infinite) of identical fields:

class MyForm(Form):
 fields = [
 FieldList(
 'characters',
 field=FieldSet(None,
 fields=[
 Field('first_name'),
 Field('last_name'),
]))
]

{'characters': [{'first_name': 'Jar Jar', 'last_name': 'Binks'},
{'first_name': 'Jabba', 'last_name': 'Hutt'}]}

See more.

File Handling

Readonly Fields, Permissions

Iktomi forms have a customizable permission layer. Two permissions supported by
default are read (r) and write (w).

Each field can have it’s own permissions, but the common rule is that child
field permissions are subset of the parent field’s (or form’s) ones:

class MyForm(Form):

 fields = [
 Field('name', permissions="rw")
]

form = MyForm(permissions="r")

Permissions can be calculated dinamically based on environment (request, logged
in user roles, etc.).

See more.

Copy Interface

Some classes (fields, widgets, converters) implement copy by __call__. This is
very useful when making widely customizable interfaces.

You do not need to create a subclass every time you want reuse your widgets or
converters. From other side, there is no need to instantiate a class every time
with all the options.

Instead, you can just create an object once and then copy it redefining only
options you want:

char = Char(length(0,100), NoUpper, required=False)

field1 = Field(conv=conv)
field2 = Field(conv=conv(required=True))

or even:

field1 = Field(conv=Char(length(0, 100)))
field2 = field1(conv=field1.conv(required=True))

Form Class

iktomi.forms.form.Form is the most top-level class in iktomi forms objects hierarchy.
Instances of this class encapsulate all the data needed to validate a form and
a result of the validation: field hierarchy with converters
and forms-widgets, initial data, raw data which is converted and validated, resulting
value, errors occured during validation, environment including all the data and
context related to current request.

Form instances are usually the only objects user interacts with on runtime
(during a request).

Form class is designed to serve on several purposes.

Form Validation

Form validation is done by form.accept method. This is main interface method of the form.

It accepts a webob.MultiDict-like object as argument and returns boolean value whether that value
passes validation or not. In particular, it can be GET and POST properties of webob.Request
object:

form = MyForm()
if form.accept(request.POST):
 do_something(form.python_data)

Forms are stateful, and accept method sets form state regarding given value. Here are some
variables representing form set:

	form.is_valid, a boolean value: wheter form validation was successful or not.

	form.python_data, a dictionary, result of form, actual converted value. Can be inconsistent if
form is not valid.

	form.raw_data is a copy of input MultiDict possibly mutated in converting process. It contains
all the values from all form’s fields, but can also contain an unrelated values if they existed in
the source MultiDict. To get canonical and clear raw value of the actual state of the form, use
Form.get_data method.

	form.errors is a dictionary containing errors occured during validation. Key of the dict is
field.input_name, and value is error message related to that field.

Rendering to HTML

Form provide an interface to be rendered to HTML. This is render method. It takes no parameters
and renders a template with name equal to form.template passing form as a variable.

For example, if you have form variable in jinja2 template, you can call:

<table>
 {{ form.render() }}
</table>

In that template forms fields are iterated and each field is rendered by field.widget.render().

If you have non-trivial HTML layout, it is OK to ignore form.render interface and call directly
field.widget.render method:

{{ form.get_field('field_input_name').widget.render() }}

And finally, for sure, you can redefine a template name in your Form subclass:

class MyForm(Form):

 template = "custom-form.html"
 fields = [...]

For details of rendering engine, see Widgets section.

Filling Initial Data

Form may have initial value. This is useful, for example, for object editing
forms:

initial = as_dict(obj)
form = ObjForm(initial=obj)

Initial value is set to forms’python data, and then re-filled with each field’s
loaded initial value. At the same time form’s raw value is updated to be in
accordance with initial value.

To learn how each field loads an initial value, see Fields: Setting
initial value section.

Providing Access to the Environment

Form instances have one more purpose. They store env object, a request-level
iktomi environment, and provide an access to this environment for all other
objects in form hierarchy: fields, convs, widgets:

form = MyForm(env)

form.env # same as
form.get_field(field_name).env # same as
form.get_field(field_name).widget.env # same as
form.get_field(field_name).conv.env

The environment can be used to acces a database, template engine, webob.Request,
configuration, etc.

Fields

Field in iktomi are basic concept representing a single item in data model.

It can be atomic data (string, integer, boolean) or data aggregated from
collection of other fields (FieldList or FieldSet, see below).
Atomic values correspond to Field class.

Fields implement copy interface.

Field Naming

Each field has a name. Name is used to get a value from raw data and as
key in resulting value dictionary. Name used to lookup in raw data is
Field.input_name, it is calculated as input_name of parent field joined by a
dot with the name of the field.

Data that has no related field, is not present in python value.

Here is example of form without convertation and validation just to show how
field naming works:

class MyForm(Form):

 fields = [
 Field('name'),
 FieldSet('info', fields=[
 Field('address'),
 Field('birth_date'),
]),
]

raw_value = MultiDict([
 ('name', 'John'),
 ('info.address', 'Moscow'),
 ('info.birth_date', '19.05.1986'),
 ('info.more', 'This value is ignored'),
])

form = MyForm()
form.accept(raw_value)
print form.python_data
{"name": "John",
"info": {"address": "Moscow",
"birth_date": "19.05.1986"}}

Also field name can be used to retrieve a field object from form or from
parent fields. If there are nested fields, those values are joined by dot:

name_field = form.get_field('name')
address_field = form.get_field('info.address')
birth_field = form.get_field('info').get_field('birth_date')

Name of field should be unique throught it’s neighbours.

Converters and Widgets

Two main properties of the field are BaseField.conv, defining convertation and
validation rules, and BaseField.widget, defining how widget is rendered to
HTML.

See more in Converters and Widgets
sections.

Scalar and Multiple Fields

Iktomi forms have a way to MultiDict feature of having multiple values on the
same key. It is implementes by ListOf converter.

Fields having ListOf converter are marked as multiple. This means they always
return a list, each value of this list is converted by ListOf.conv converter.

Empty and defult values of multiple fields is empty list, while for scalar
fields it is None.

See ListOf for details.

Setting Initial Value

Initial value of the field is calculated as follows:

	If the key equal to field’s name is present in parent’s initial value,
it is used.

	If BaseField.get_initial is redefined, it is called and the result is used.

	If BaseField.initial is defined, it is used.

	Otherwise field initial value is set to empty value: None for scalar field
and empty list for multiple field.

Aggregate Fields

The most significant feature of iktomi forms is ability to work with structured
data with nested values.

Using iktomi you can easily work with deep JSON-like structures (containing
lists and dictionaries), generate ORM objects, ORM object collections, and
even ORM object collection inside other ORM object.

There are three common aggregate classes implemented in iktomi.

FieldSet

FieldSet is representation of dictionary (or object with named attribute).

FieldSet contains a collection of various fields with different names,
converters and widgets. FieldSet is to combines values converted with child
fields into a dictionary or object:

class MyForm(Form):
 fields = [
 FieldSet('name',
 fields=[
 Field('first_name'),
 Field('last_name'),
])
]

raw_value = MultiDict([
 ('name.first_name', 'Jar Jar'),
 ('name.last_name', 'Binks'),
])

form = MyForm()
form.accept(raw_value)
print form.python_data
{"name": {'first_name': 'Jar Jar', 'last_name': "Binks"}}

FieldSet adds it’s input name as prefix for child fields, joined with a dot.

There is a way to get object of custom type as a result of FieldSet.
See Custom FieldSet Value Type.

And, of course, you can add extra validation rules for FieldSet, including
combined common validation of child values.
See Collective validation.

FieldBlock

FieldBlock is like FieldSet, but it does not form separate object.
Instead, it adds it’s own key-value pairs to parent field’s value,
as if they are not wrapped in separate field.

FieldBlock is used for visually group fields or
for purposes of combined validation of those fields:

class MyForm(Form):
 fields = [
 FieldBlock(None,
 fields=[
 Field('first_name'),
 Field('last_name'),
])
]

raw_value = MultiDict([
 ('first_name', 'Jar Jar'),
 ('last_name', 'Binks'),
])

form = MyForm()
form.accept(raw_value)
print form.python_data
{'first_name': 'Jar Jar', 'last_name': "Binks"}

Combined validation of nested fields is also easy to implement:

def validate(field_block, value):
 if not (value['first_name'] or value['last_name']):
 raise convs.ValidationError('specify first or last name')
 return value

FieldBlock(None,
 fields=[
 Field('first_name'),
 Field('last_name'),
],
 conv=FieldBlock.conv(validate))

FieldBlock does not affect on input names of child fields. It is named as if
they are children of FieldBlock’s parent.

FieldList

FieldList represent a list (basically infinite) of identical fields.

FieldList creates instances of child field for each value list item.
Their input name is equal to FieldList’s input name joined by a dot with
value index in a list.

FieldList stores indexes of it’s values in raw data, to use them to find
data of nested fields. The order of values in python_data depends on order of
indices of values in raw data.

Here is an example:

class MyForm(Form):
 fields = [
 FieldList(
 'characters',
 field=FieldSet(None,
 fields=[
 Field('first_name'),
 Field('last_name'),
]))
]

raw_value = MultiDict([
 ('characters.1.first_name', 'Jar Jar'),
 ('characters.2.last_name', 'Binks'),
])

form = MyForm()
form.accept(raw_value)
print form.python_data
{'characters': [{'first_name': 'Jar Jar', 'last_name': 'Binks'},
{'first_name': 'Jabba', 'last_name': 'Hutt'}]}

Access to Converted and Raw Values

Access to current field value is provided by two properties: raw_value -
actual field raw (unconverted, result of from_python) and
clean_value - actual field converted value.

Raw data is stored in Form instance and actual clean value is stored directly
in the field.

Field instances are responsible for raw and clean value consistency with
current form state.

They fill raw_data with initial value reflection on form initialization
and they fill raw_data with actual validated value reflection during
validation process. Raw data is managed by set_raw_value method.

And clean_value is managed by accept method, the result of converter call is
set to self.clean_value.

These methods are already implemented for all fields provided by default and
done automatically. But if you want to implement your own field class with
specific data flow, you should carefully handle data consistency.

Field permissions

Iktomi provides a simple but flexible permission system. Permissions can be set
in UNIX-like way by string where every single letter defines a permission:

Field('name', permissions="rw")

Permissions propagate from parent fields (or form) to their children: child
field permissions are subset of it’s parent permissions.

Two permissions supported by default are read (r) and write (w).

Read permission allows field to be rendered.

Write permission allows assign a field value to convertation result. If
the field has no ‘w’ permission, it can not be changed by form.accept
method.

Permission can be set explicitly by passing permissions argument to Field or
by defining a custom permission getter object. For example, if you want a field
to be accessible only for several users, you can define your own subclass of
FieldPerm and pass it to the field:

Field('name', perm_getter=UserBasedFieldAuth())

See more about permission customization.

Converters

iktomi.forms.convs.Converter instances are responsible for all staff related
to data validation and convertation.

Converters implement copy interface.

Value convertation

Converter subclasses should define methods for transformations in two directions:

	to_python method accepts unicode value of user info, and returns value
converted to python object of defined type. If the value can not be converted,
it raises iktomi.forms.convs.ValidationError.

	Filters and validators provide extra validation and are called after
to_python method. See below for details.

	from_python method accepts python object and returns corresponding unicode string.

ValidationError

The common way for converter to indicate that given value can not be accepted is
to raise ValidationError from to_python method:

def to_python(self, value):
 if not self.match(value):
 raise ValidationError(error_message)
 return value

If ValidationError was raised, the error is added to form.errors dictionary.
The key is current field’s input name and the value is

In the case ValidationError occured, converter returns field’s
initial/last valid value. In other words, the value is reverted to it’s last
valid state, basically it is initial state.

Raise error for other field

Sometimes you need to show error not on a field which is validating, or show
error on multiple fields on the same condition. In this case
ValidationError.by_field argument can be used.

Just pass in by_field kwarg a dict where a key is input_name of any field in the
form and a value is error message:

raise convs.ValidationError(by_field={
 'name': 'Provide a name or a nickname',
 'nickname': 'Provide a name or a nickname'})

Relative field input names can be used. If a name starts with a dot,
conv.field.get_field will be used to get target field. If it starts with two
dots, conv.field.parent.get_field will be used, three dots -
conv.field.parent.parent.get_field, etc.

Why not to set form.errors[field.input_name] directly? Trust me, it is not
good idea! One reason is conv.accept silent mode, used to fill in
initial values of the field and sometimes can be used to call converter as a function
without form attached and error handling. Other reasons?

Error messages redefinition

Default converters support redefinition of default error messages.

Set error_<type> parameter to your own message template, for example:

convs.Char(required=True,
 regex="\d{2}\.\d{2}\.\d{2}",
 error_regex='Should match YY.MM.DD',
 error_required='Do not forget this field!')

Require Check

The most used feature is require check. If the converter has require
attribute set to True, it checks whether to_python result is an empty
value:

Field('name',
 conv=convs.Char(required=True))

Empty values are empty string, emty list, empty dict and None. If the result
value is equal to one of these values, ValidationError with
conv.error_required is raised.

ListOf and Multiple Values

Multiple values with same key in raw data are supported by ListOf converter.

ListOf gets all values by field’s key from raw data MultiDict, applies
ListOf.conv to each of them, and collects non-empty results
into a list. If ValidationError was raised in ListOf.conv, the value is also
ignored:

class MyForm(Form):

 fields = [
 Field('ids',
 conv=ListOf(Int()))
]

ids=1&ids=2&ids=x =>
{"ids" [1, 2]}

The multiple property of fields and widgets having ListOf converter, is equal
to True.

Filters and validators:

Additional validation and simple one-way convertation can be made by validators:

Field('name',
 Char(strip, length(0, 100), required=True))

Filters are functions performing additional validation and convertation
after to_python() method. The interface of filters is following:

def filter_value(conv, value):
 if wrong(value):
 raise ValidationError(..)
 new_value = do_smth(value)
 return new_value

convs.Char(filter_value, required=True)

Validators are shortcuts to filters that do no convertations, but only
do assertions:

@validator(error_message)
def validate(conv, value):
 return is_valid(value)

Both filters and validators can be passed to converter as positional
arguments and will be applied after to_python() method and
required check in order they are mentioned.

Internationalization

Iktomi implements very basic internationalization support. There are N_ and
M_ markers for single and plural translatable strings respectively.

There is no complex mechanics with threadlocals or other things allowing to
transparently “in place” and lazy translate these strings. Iktomi by default supports
only translation of ValidationError messages before they are added in
form.errors.

For single messages env.gettext is called, and for plural ones env.ngettext is
called. You must provide these methods in your Application subclass.

Here is an example of how plural merker works. Dictionary formatting with % is
used and a key M_.count_field is used as count indicator to ngettext:

message = M_(u'must be less than %(max)d symbol',
 u'must be less than %(max)d symbols',
 count_field="max")
def validate(conv, value):
 max_length = get_max_length(conv)
 if len(value) > max_length:
 message = message % dict(max=max_length)
 raise convs.ValidationError(message)
 return value

Converters for Aggregate Fields

Collective validation

FieldSet and FieldBlock converters are good place to implement a complex
validation rules, including data from more than one field.

You can implement them in to_python method of converter or in a validator. To
access a value of child field just get it from actual dict by a field name:

#def validate(conv, value):
def to_python(self, value):
 if value['field1'] == value['field2']:
 raise ValidationError('values must not be equal')
 return value

ValidationError.by_field feature also can be useful here.

Custom FieldSet Value Type

To get a custom object as a clean value of FieldSet, you can define own
Converter subclass implementing transformations from an object to dictionary
(in from_python method) and from dictionary to an object (in to_python).

The most basic example of converter of this kind:

class ObjConv(Converter):

 def from_python(self, value):
 result = {}
 # in case there are nested FieldBlock fields, always use field.field_names
 # to get a list of fields directly contained in the value
 field_names = sum([x.field_names for x in self.field.fields], [])
 for field_name in field_names:
 result[field_name] = getattr(value, field_name)
 return result

 def to_python(self, value):
 return self.model(** value)

You can see iktomi.unstable.forms.convs.ModelDictConv as an example of custom
FieldSet converter.

Converter implementations

Examples of converters are Int, Char, Html, Bool, Date, etc.

Widgets

iktomi.forms.widget.Widget instances are responsible for visual representation
of an item.

Widgets implement copy interface.

Rendering

General way to render a form to HTML is to call Form.render method. This method
iterates over all top-level fields and calls their widgets’ render methods. This
method is called to get HTML code of field with actual value.

Widget can do some data preparations and finally it is rendered to template
named widget.template (by default, jinja2 is used).
You can redefine template name by passing it to the widget:

class MyWidget(TextInput):

 template = 'widgets/my-widget.html'

widget = MyWidget(template="widgets/my-widget-2.html")

Widget class is considered to render a widget itself, without labels, hints,
form layout, etc. These things are rendered in parent instance
(form or parent field’s widget)

Render Types

As we just have learned above, widget labels, form layout, etc are rendered
in parent template. But there is some inconsistense, because different widgets
can expect different different layout. For example, checkboxes usually
should be rendered on the left to the label, while ordinary field’s widget
should be on the right.

Iktomi provides a way to make this trick. There is a widget attribute called
render_type, parent instance can use it to figure out how to render the widget,
the implementation of expected layout is completely on parent instance:

widget = MyWidget(render_type="full-width")

There are a few render types supported by default, and you are free to implement
own one:

	‘default’: label is rendered in usual place;

	‘checkbox’: label and widget are rendered close to each other;

	‘full-width’: for table-like templates, a widget takes a full row of the form,
the label can be rendered above the widget;

	‘hidden’: label is not rendered, and the widget is rendered in hidden HTML
element.

Data Preparations

If you need to pass extra data to template, you can extend Widget.prepare_data
method:

class MyWidget(TextInput):
 def prepare_data(self):
 template_data = TextInput.prepare_data(self)
 value = template_data['value']
 var1 = get_var1(value)
 return dict(template_data,
 var1=var1)

Multiple and Redonly options

The important thing, widget implementation should carry about, is to support
readonly option, and, optionally, support multiple option.

Readonly fields can not be changed by user, and it should be represented in user
interface. For example, <select readonly=”readonly”> or
<input disabled=”disabled”> can be used. It is recommended to still submit
readonly widget’s value, so duplicating disabled input (which is not submitted)
with hidden input containing actual value is fine.

Multiple options indicate that the field has conv.ListOf instance as it’s converter.
Fields of this kind accept multiple values under the same name. From HTML
point of view it can be implemented, for example, as
<select multiple=”multiple”> or as multiple checkboxes with the same name.

Widget implementations

Examples of widgets are TextInput, Textarea, Select, CheckBox,
HiddenInput, etc.

Forms Reference

Forms

Fields

Converters

Validators and filters

Widgets

Cli Reference

Base

manage

	
iktomi.cli.base.manage(commands, argv=None, delim=':')

	Parses argv and runs neccessary command. Is to be used in manage.py file.

Accept a dict with digest name as keys and instances of
Cli
objects as values.

The format of command is the following:

./manage.py digest_name:command_name[arg1[arg2[...]]][--key1=kwarg1[...]]

where command_name is a part of digest instance method name, args and kwargs
are passed to the method. For details, see
Cli docs.

Cli

	
class iktomi.cli.base.Cli

	Base class for all command digests

	
__call__(command_name, *args, **kwargs)

	

	
description(argv0='manage.py', command=None)

	Description outputed to console

	
class iktomi.cli.lazy.LazyCli(func)

	Wrapper for creating lazy command digests.

Sometimes it is not needed to import all of application parts to start
a particular command. LazyCli allows you to define all imports in a
function called only on the command:

@LazyCli
def db_command():
 import admin
 from admin.environment import db_maker

 from models import initial
 from iktomi.cli import sqla
 return sqla.Sqla(db_maker, initial=initial.install)

...

def run(args=sys.argv):
 manage(dict(db=db_command,), args)

Development Server

	
class iktomi.cli.app.App(app, shell_namespace=None, extra_files=None, bootstrap=None)

	Development application

	Parameters:	
	app – iktomi app

	shell_namespace – dict with initial namespace for shell command

	extra_files – extra files to watch and reload if they are changed

	bootstrap – bootstrap function before called dev server is being runned

	
command_serve(host='', port='8000', level='debug')

	Run development server with automated reload on code change:

./manage.py app:serve [host] [port] [level]

	
command_shell()

	Shell command:

./manage.py app:shell

Executed with self.shell_namespace as local variables namespace.

FCGI Server

	
class iktomi.cli.fcgi.Flup(app, bind='', logfile=None, pidfile=None, cwd='.', umask=2, fastcgi_params=None)

	Flup FastCGI server

	Parameters:	
	app – iktomi app

	bind – socket file

	logfile – log file

	pidfile – PID file

	cwd – current working directory

	umask –

	fastcgi_params (dict) – arguments accepted by flup WSGIServer,
plus preforked

	
command_start(daemonize=False)

	Start a server:

./manage.py flup:start [--daemonize]

	
command_stop()

	Stop a server:

./manage.py flup:stop

SQLAlchemy

Template

iktomi.templates.Template class is originnaly designed to unify
template interface for forms, but can be used in anywhere else.

Template object provides render, render_to_response methods
and render_to handler factory. The constructor accepts a list of
directories for search temlates in (as *args) and following keyworg
arguments:

	globs.

	cache.

	engines.

Engine is class providing render method, which accepts template name
and template arguments as keyword args, and returns rendered string.
The constructor shoul accept templates paths list and option switching
template cache on/off:

class MyEngine(object):
 def __init__(self, paths, cache=False):
 self.engine = MyTemplateEngine(paths, cache=cache)

 def render(self, template_name, **kw):
 template = self.engine.get_template(template_name)
 return template.render(kw)

Iktomi supports jinja2 engine by default.

Now we can instantiate Template object with engines we have:

from iktomi.templates import jinja2, Template
from iktomi import web

jinja_loader = jinja2.TemplateEngine(cfg.TEMPLATES,
 extensions=[])
template = Template(engines={'html': jinja_loader,
 'my': MyEngine},
 *cfg.TEMPLATES)

To bound a template object to the iktomi env, to add request-specific
values to template variables, BoundTemplate is used:

class BoundTemplate(BaseBoundTemplate):

 constant_template_vars = dict(template_vars)

 def get_template_vars(self):
 lang = self.env.lang
 d = dict(
 lang = self.env.lang,
 url = self.env.root,
 url_for_object = self.env.url_for_object,
 url_for_static = self.env.url_for_static,
 now = datetime.now(),
)
 return d

It is recommended to put it into env.template object. Particularly, this is
required for correct form rendering. And it may be useful to define
env.render_to_string and env.render_to_response shortcuts:

class MyAppEnvironment(web.AppEnvironment):

 # ...

 @storage_cached_property
 def template(storage):
 return BoundTemplate(storage, template_loader)

 @storage_method
 def render_to_string(storage, template_name, _data, *args, **kwargs):
 _data = dict(storage.template_data, **_data)
 result = storage.template.render(template_name, _data, *args, **kwargs)
 return Markup(result)

 @storage_method
 def render_to_response(self, template_name, _data,
 content_type="text/html"):
 _data = dict(self.template_data, **_data)
 return self.template.render_to_response(template_name, _data,
 content_type=content_type)

Templates Reference

Template

Jinja2

Various utilities

Property sugar

	
iktomi.utils.cached_property(method, name=None)

	Turns decorated method into caching property (method is called once on
first access to property).

	
iktomi.utils.cached_class_property(method, name=None)

	Turns decorated method into caching class property (method is called
once on first access to property of class or any of its instances).

Versioned Storage

Versioned storage, a classes for env and data objects.

	
class iktomi.utils.storage.VersionedStorage(cls=<class 'iktomi.utils.storage.StorageFrame'>, *args, **kwargs)

	Storage implements state managing interface, allowing to safely set
attributes for env and data objects.

Safity means that state of the storage is rolled back every time routing
case returns ContinueRoute signal (None).

Be very accurate defining methods or properties for storage, choose correct
method or property type depending on what do you want to achieve.

Regular methods will hold the state of storage frame they are added to.
If you want to have an access to actual value, use storage property and
method decorators.

	
as_dict()

	Returns attributes of storage as dict

	
class iktomi.utils.storage.StorageFrame(_parent_storage=None, **kwargs)

	A single frame in the storage

	
class iktomi.utils.storage.storage_property(method, name=None)

	Turns decorated method into storage property (method is called with
VersionedStorage as self).

	
class iktomi.utils.storage.storage_cached_property(method, name=None)

	Turns decorated method into storage cached property
(method is called only once with VersionedStorage as self).

	
iktomi.utils.storage.storage_method(func)

	Calls decorated method with VersionedStorage as self

Internationalization

	
iktomi.utils.N_(msg)

	Single translatable string marker.
Does nothing, just a marker for *.pot file compilers.

Usage:

n = N_('translate me')
translated = env.gettext(n)

	
class iktomi.utils.M_(single, plural, count_field='count', format_args=None)

	Marker for translatable string with plural form.
Does not make a translation, just incapsulates a data about
the translatable string.

	Parameters:	
	single – a single form

	plural – a plural form. Count can be included in %-format syntax

	count_field – a key used to format

Usage:

message = M_(u'max length is %(max)d symbol',
 u'max length is %(max)d symbols',
 count_field="max")
m = message % {'max': 10}
trans = env.ngettext(m.single,
 m.plural,
 m.count
) % m.format_args

	
count

	A count based on count_field and format_args.

Paginator

Other

	
iktomi.utils.quoteattr(value)

	Works like quoteattr from saxutils (returns escaped string in quotes),
but is safe for HTML

	
iktomi.utils.quoteattrs(data)

	Takes dict of attributes and returns their HTML representation

	
iktomi.utils.quote_js(text)

	Quotes text to be used as JavaScript string in HTML templates. The
result doesn’t contain surrounding quotes.

	
iktomi.utils.weakproxy(obj)

	Safe version of weakref.proxy.

	
iktomi.utils.deprecation.deprecated(comment=None)

	This is a decorator which can be used to mark functions
as deprecated. It will result in a warning being emitted
when the function is used. Usage:

@deprecated()
def foo():
 pass

or:

@deprecated('Use bar() instead.')
def foo():
 pass

	
iktomi.utils.dt.strftime(dt, fmt)

	strftime implementation working before 1900

Utils

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 iktomi	

 	
 	
 iktomi.cli.base	

 	
 	
 iktomi.forms.convs	

 	
 	
 iktomi.forms.fields	

 	
 	
 iktomi.forms.form	

 	
 	
 iktomi.forms.widgets	

 	
 	
 iktomi.templates	

 	
 	
 iktomi.templates.jinja2	

 	
 	
 iktomi.utils	

 	
 	
 iktomi.utils.storage	

 	
 	
 iktomi.web.app	

 	
 	
 iktomi.web.core	

 	
 	
 iktomi.web.filters	

 	
 	
 iktomi.web.reverse	

 	
 	
 iktomi.web.url	

 	
 	
 iktomi.web.url_converters	

Index

 _
 | A
 | C
 | D
 | F
 | I
 | L
 | M
 | N
 | Q
 | S
 | V
 | W

_

 	
 	__call__() (iktomi.cli.base.Cli method)

A

 	
 	App (class in iktomi.cli.app)

 	
 	as_dict() (iktomi.utils.storage.VersionedStorage method)

C

 	
 	cached_class_property() (in module iktomi.utils)

 	cached_property() (in module iktomi.utils)

 	Cli (class in iktomi.cli.base)

 	command_serve() (iktomi.cli.app.App method)

 	
 	command_shell() (iktomi.cli.app.App method)

 	command_start() (iktomi.cli.fcgi.Flup method)

 	command_stop() (iktomi.cli.fcgi.Flup method)

 	count (iktomi.utils.M_ attribute)

D

 	
 	deprecated() (in module iktomi.utils.deprecation)

 	
 	description() (iktomi.cli.base.Cli method)

F

 	
 	Flup (class in iktomi.cli.fcgi)

I

 	
 	iktomi.cli.base (module)

 	iktomi.forms.convs (module)

 	iktomi.forms.fields (module)

 	iktomi.forms.form (module)

 	iktomi.forms.widgets (module)

 	iktomi.templates (module)

 	iktomi.templates.jinja2 (module)

 	
 	iktomi.utils (module)

 	iktomi.utils.storage (module)

 	iktomi.web.app (module)

 	iktomi.web.core (module)

 	iktomi.web.filters (module)

 	iktomi.web.reverse (module)

 	iktomi.web.url (module)

 	iktomi.web.url_converters (module)

L

 	
 	LazyCli (class in iktomi.cli.lazy)

M

 	
 	M_ (class in iktomi.utils)

 	
 	manage() (in module iktomi.cli.base)

N

 	
 	N_() (in module iktomi.utils)

Q

 	
 	quote_js() (in module iktomi.utils)

 	
 	quoteattr() (in module iktomi.utils)

 	quoteattrs() (in module iktomi.utils)

S

 	
 	storage_cached_property (class in iktomi.utils.storage)

 	storage_method() (in module iktomi.utils.storage)

 	
 	storage_property (class in iktomi.utils.storage)

 	StorageFrame (class in iktomi.utils.storage)

 	strftime() (in module iktomi.utils.dt)

V

 	
 	VersionedStorage (class in iktomi.utils.storage)

W

 	
 	weakproxy() (in module iktomi.utils)

 _static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Iktomi

 		Basic Practices

 		Hello, World

 		Basic Routing

 		URL parameters

 		Nested handlers and URL Namespaces

 		Building URLs

 		Controlling execution flow

 		Scopes of environment and data variables

 		Smart URL object

 		Throwing HTTPException

 		Advanced Practices

 		Advanced routing tools

 		Custom URL converters

 		Make an application configurable

 		Web Routing Reference

 		Overview: Form Abstraction Layers

 		Form Class

 		Form Validation

 		Rendering to HTML

 		Filling Initial Data

 		Providing Access to the Environment

 		Fields

 		Field Naming

 		Converters and Widgets

 		Scalar and Multiple Fields

 		Setting Initial Value

 		Aggregate Fields

 		FieldSet

 		FieldBlock

 		FieldList

 		Access to Converted and Raw Values

 		Field permissions

 		Converters

 		Value convertation

 		ValidationError

 		Raise error for other field

 		Error messages redefinition

 		Require Check

 		ListOf and Multiple Values

 		Filters and validators:

 		Internationalization

 		Converters for Aggregate Fields

 		Collective validation

 		Custom FieldSet Value Type

 		Converter implementations

 		Widgets

 		Rendering

 		Render Types

 		Data Preparations

 		Multiple and Redonly options

 		Widget implementations

 		Forms Reference

 		Cli Reference

 		Base

 		Development Server

 		FCGI Server

 		SQLAlchemy

 		Template

 		Templates Reference

 		Various utilities

 		Property sugar

 		Versioned Storage

 		Internationalization

 		Paginator

 		Other

 		Utils

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

