

Welcome to Ignition Transport’s documentation!

Contents:

	 Introduction

	Installation
	Ubuntu Linux

	Mac OS X

	Windows

	Install from sources (Ubuntu Linux)

	 Nodes and topics
	Nodes

	Topics

	Topic scope

	Partition and namespaces

	 Using messages
	Publisher

	Subscriber

	Building the code

	Running the examples

	Advertise Options

	Subscribe Options

	Generic subscribers

	 Using services
	Responser

	Synchronous requester

	Asynchronous requester

	Oneway responser

	Oneway requester

	Service without input parameter

	Empty requester sync and async

	Building the code

	Running the examples

	Environment variables

	 Contribute
	Development process

	Debugging Ignition Transport

	Code Check

	Development
	Discovery service

	API

Indices and tables

	Index

	Module Index

	Search Page

What is Ignition Transport?

Ignition Transport is an open source communication library that allows sharing
data between clients. In our context, a client is called a node. Nodes might
be running within the same process in the same machine or in machines located in
different continents. Ignition Transport is multi-platform (Linux, Mac OS X, and
Windows), so all the low level details, such as data alignment or endianness are
hidden for you.

Ignition Transport uses Google Protocol buffers [https://developers.google.com/protocol-buffers/?hl=en] as the data type for
communicating between nodes. Users can define their own messages using the
Protobuf utils, and then, exchange them between the nodes. Ignition Transport
discovers, serializes and delivers messages to the destinations using a
combination of custom code and ZeroMQ [http://zeromq.org/].

	What programming language can I use to interface Ignition Transport?

C++ is our native implementation and so far the only way to use the library. We
might offer different wrappers for the most popular languages in the future.

Installation

Instructions to install Ignition Transport on all the platforms supported: major Linux distributions, Mac OS X and Windows.

Next, you can see the major Ignition Transport versions, their availability and lifetime.

	Version
	Available on
Ubuntu directly
	Available on
Ubuntu via OSRF
	Available on MacOS
via Homebrew tab
	Since
	EOL

	0.y
	Ubuntu X
	Ubuntu T
	–
	February 2015
	April 2021

	1.y
	Ubuntu Y,Z
	Ubuntu T,X
	Yosemite,El Capitan
	February 2016
	January 2018

	2.y
	–
	Ubuntu T,X,Y
	Yosemite,El Capitan
	August 2016
	TBD

	3.y
	–
	Ubuntu T,X,Y
	Yosemite,El Capitan
	January 2017
	TBD

Ubuntu Linux

Setup your computer to accept software from packages.osrfoundation.org:

sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable `lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'

Setup keys:

wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -

Install Ignition Transport:

sudo apt-get update
sudo apt-get install libignition-transport2-dev

Mac OS X

Ignition Transport and several of its dependencies can be compiled on OS X with
Homebrew [http://brew.sh/] using the
osrf/simulation tap [https://github.com/osrf/homebrew-simulation]. Ignition
Transport is straightforward to install on Mac OS X 10.9 (Mavericks) or higher.
Installation on older versions requires changing the default standard library
and rebuilding dependencies due to the use of c++11. For purposes of this
documentation, I will assume OS X 10.9 or greater is in use. Here are the
instructions:

Install homebrew, which should also prompt you to install the XCode command-line tools:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Run the following commands:

brew tap osrf/simulation
brew install ignition-transport2

Windows

At this moment, compilation has been tested on Windows 7 and 8.1 and is
supported when using
Visual Studio 2013 [https://www.visualstudio.com/downloads/]. Patches for
other versions are welcome.

This installation procedure uses pre-compiled binaries in a local workspace. To make things easier, use a MinGW shell for your editing work (such as the
Git Bash Shell [https://msysgit.github.io/] with
Mercurial [http://tortoisehg.bitbucket.org/download/index.html]), and only
use the Windows cmd for configuring and building. You might also need to
disable the Windows firewall [http://windows.microsoft.com/en-us/windows/turn-windows-firewall-on-off#turn-windows-firewall-on-off=windows-7].

Make a directory to work in, e.g.:

mkdir ign-ws
cd ign-ws

Download the following dependencies into that directory:

	cppzmq [http://packages.osrfoundation.org/win32/deps/cppzmq-noarch.zip]

	Protobuf 2.6.0 (32-bit) [http://packages.osrfoundation.org/win32/deps/protobuf-2.6.0-win32-vc12.zip]

	Protobuf 2.6.0 (64-bit) [http://packages.osrfoundation.org/win32/deps/protobuf-2.6.0-win64-vc12.zip]

Choose one of these options:

	ZeroMQ 4.0.4 (32-bit) [http://packages.osrfoundation.org/win32/deps/zeromq-4.0.4-x86.zip]

	ZeroMQ 4.0.4 (64-bit) [http://packages.osrfoundation.org/win32/deps/zeromq-4.0.4-amd64.zip]

Unzip each of them. The Windows unzip utility will likely create an incorrect directory structure, where a directory with the name of the zip contains the directory that has the source files. Here is an example:

ign-ws/cppzmq-noarch/cppzmq

The correct structure is

ign-ws/cppzmq

To fix this problem, manually move the nested directories up one level.

Clone and prepare the Ignition Math dependency:

hg clone https://bitbucket.org/ignitionrobotics/ign-math
cd ign-math
mkdir build

In a Windows Command Prompt, load your compiler setup, e.g.:

"C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\vcvarsall.bat" amd64

In the Windows Command Prompt, configure and build:

cd ign-math\build
..\configure
nmake install

Clone and prepare the Ignition Msgs dependency:

hg clone https://bitbucket.org/ignitionrobotics/ign-msgs
cd ign-msgs
mkdir build

In the Windows Command Prompt, configure and build:

cd ign-msgs\build
..\configure
nmake install

Clone ign-transport:

hg clone https://bitbucket.org/ignitionrobotics/ign-transport
cd ign-transport

In a Windows Command Prompt, load your compiler setup, e.g.:

"C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\vcvarsall.bat" amd64

Configure and build:

mkdir build
cd build
..\configure
nmake
nmake install

You should now have an installation of ign-transport in ign-ws/ign-transport/build/install.

Before running any executables, you need to modify your PATH to include the bin subdirectory of ZeroMQ to let Windows find dynamic libs (similar to LD_LIBRARY_PATH on Linux). Don’t put quotes around the path, even if it contains spaces. E.g., if you’re working in C:\My Stuff\ign-ws:

set PATH %PATH%;C:\My Stuff\ign-ws\ZeroMQ 4.0.4\bin

Now build the examples:

cd ign-ws\ign-transport\example
mkdir build
cd build
..\configure
nmake

Now try an example. In one Windows terminal run:

responser

In another Windows terminal run:

requester

Install from sources (Ubuntu Linux)

For compiling the latest version of Ignition Transport you will need an Ubuntu
distribution equal to 14.04.2 (Trusty) or newer.

Make sure you have removed the Ubuntu pre-compiled binaries before installing
from source:

sudo apt-get remove libignition-transport2-dev

Install prerequisites. A clean Ubuntu system will need:

sudo apt-get install mercurial cmake pkg-config python ruby-ronn libprotoc-dev libprotobuf-dev protobuf-compiler uuid-dev libzmq3-dev libignition-msgs-dev

Clone the repository into a directory and go into it:

hg clone https://bitbucket.org/ignitionrobotics/ign-transport /tmp/ign-transport
cd /tmp/ign-transport

Create a build directory and go there:

mkdir build
cd build

Configure Ignition Transport (choose either method a or b below):

	Release mode: This will generate optimized code, but will not have debug symbols. Use this mode if you don’t need to use GDB.

cmake ../

Note: You can use a custom install path to make it easier to switch between source and debian installs:

cmake -DCMAKE_INSTALL_PREFIX=/home/$USER/local ../

B. Debug mode: This will generate code with debug symbols. Ignition Transport
will run slower, but you’ll be able to use GDB.

cmake -DCMAKE_BUILD_TYPE=Debug ../

The output from cmake ../ may generate a number of errors and warnings about
missing packages. You must install the missing packages that have errors and
re-run cmake ../. Make sure all the build errors are resolved before
continuing (they should be there from the earlier step in which you installed
prerequisites).

Make note of your install path, which is output from cmake and should look something like:

-- Install path: /home/$USER/local

Build Ignition Transport:

make -j4

Install Ignition Transport:

sudo make install

If you decide to install gazebo in a local directory you’ll need to modify your
LD_LIBRARY_PATH:

echo "export LD_LIBRARY_PATH=<install_path>/local/lib:$LD_LIBRARY_PATH" >> ~/.bashrc

Uninstalling Source-based Install

If you need to uninstall Ignition Transport or switch back to a debian-based
install when you currently have installed the library from source, navigate to
your source code directory’s build folders and run make uninstall:

cd /tmp/ign-transport/build
sudo make uninstall

Understanding nodes and topics

Nodes

The communication in Ignition Transport follows a pure distributed architecture,
where there is no central process, broker or similar. All the nodes in the
network can act as publishers, subscribers, provide services and request
services.

A publisher is a node that produces information and a subscriber is a node that
consumes information. There are two categories or ways to communicate in
Ignition Transport. First, we could use a publish/subscribe approach, where a
node advertises a topic, and then, publishes periodic updates. On the other
side, one or more nodes subscribe to the same topic registering a function that
will be executed each time a new message is received. An alternative
communication paradigm is based on service calls. A service call is a remote
service that a node offers to the rest of the nodes. A node can request a
service in a similar way a local function is executed.

Topics

A topic is just a name for grouping a specific set of messages or a particular
service. Imagine that you have a camera and want to periodically publish its
images. Your node could advertise a topic called /image, and then, publish a
new message on this topic every time a new image is available. Other nodes, will
subscribe to the same topic and will receive the messages containing the image.
A node could also offer an echo service in the topic /echo. Any node
interested in this service will request a service call on topic /echo. The
service call will accept arguments and will return a result. In our echo
service example, the result will be similar to the input parameter passed to the
service.

There are some rules to follow when selecting a topic name. It should be any
alphanumeric name followed by zero or more slashes. For example: /image,
head_position, /robot1/joints/HeadPitch are examples of valid topic
names. The next table summarizes the allowed and not allowed topic rules.

	Topic name
	Validity
	Comment

	/topicA
	Valid
	

	/topicA/
	Valid
	Equivalent to /topicA

	topicA
	Valid
	

	/a/b
	Valid
	

	
	Invalid
	Empty string is invalid

	my topic
	Invalid
	Contains white space

	//image
	Invalid
	Contains two consecutive //

	/
	Invalid
	/ topic is not allowed

	~myTopic
	Invalid
	Symbol ~ not allowed

Topic scope

A topic can be optionally advertised with a scope. A scope allows you to set the
visibility of this topic. The available scopes are Process, Host, and
All. A Process scope means that the advertised topic will only be
visible in the nodes within the same process as the advertiser. A topic with a
Host scope restricts the visibility of a topic to nodes located in the same
machine as the advertiser. Finally, by specifying a scope with an All value,
you’re allowing your topic to be visible by any node.

Partition and namespaces

When you create your node you can specify some options to customize its
behavior. Among those options you can set a partition name and a namespace.

A partition is used to isolate a set of topics or services within a group of
nodes that share the same partition name. E.g.: Node1 advertises topic /foo
and Node2 advertises /foo too. If we don’t use a partition, a node
subscribed to /foo will receive the messages published from Node1 and Node2.
Alternatively, we could specify p1 as a partition for Node1 and p2 as a
partition for Node2. When we create the node for our subscriber, if we specify
p1 as a partition name, we’ll receive the messages published only by Node1.
If we use p2, we’ll only receive the messages published by Node2. If we
don’t set a partition name, we won’t receive any messages from Node1 or Node2.

A partition name is any alphanumeric string with a few exceptions.
The symbol / is allowed as part of a partition name but just / is
not allowed. The symbols @, ~ or white spaces are not allowed as
part of a partition name. Two or more consecutive slashes (//) are not
allowed.

The default partition name is created using a combination of your hostname,
followed by : and your username. E.g.: bb8:caguero . It’s also possible
to use the environment variable IGN_PARTITION for setting a custom partition
name.

A namespace is considered a prefix that might be potentially applied to some of
the topic/services advertised in a node.

E.g.: Node1 sets a namespace ns1 and advertises the topics
t1, t2 and /t3. /t3 is considered an absolute topic (starts
with /) and it won’t be affected by a namespace. However, t1 and
t2 will be advertised as /ns1/t1 and /ns1/t2.

A namespace is any alphanumeric string with a few exceptions.
The symbol / is allowed as part of a namespace but just / is not
allowed. The symbols @, ~ or white spaces are not allowed as
part of a namespace. Two or more consecutive slashes (//) are not allowed.
If topic name or namespace is invalid than fully qualified topic name is
invalid too.

	Namespace
	Topic name
	Fully qualified topic
	Validity
	Comment

	ns1
	/topicA
	/topicA
	Valid
	Absolute topic

	
	/topicA
	/topicA
	Valid
	Absolute topic

	ns1
	topicA
	/ns1/topicA
	Valid
	

	
	topicA
	/topicA
	Valid
	

	ns1
	topic A
	
	Invalid
	Topic contains white space

	
	topic A
	
	Invalid
	Topic contains white space

	my ns
	topicA
	
	Invalid
	Namespace contains white space

	//ns
	topicA
	
	Invalid
	Namespace contains two consecutive //

	/
	topicA
	
	Invalid
	/ namespace is not allowed

	~myns
	topicA
	
	Invalid
	Symbol ~ not allowed

Node communication via messages

In this tutorial, we are going to create two nodes that are going to communicate
via messages. One node will be a publisher that generates the information,
whereas the other node will be the subscriber consuming the information. Our
nodes will be running on different processes within the same machine.

mkdir ~/ign_transport_tutorial
cd ~/ign_transport_tutorial

Publisher

Download the publisher.cc [https://bitbucket.org/ignitionrobotics/ign-transport/raw/default/example/publisher.cc] file within the ign_transport_tutorial
folder and open it with your favorite editor:

#include <atomic>
#include <chrono>
#include <csignal>
#include <iostream>
#include <string>
#include <thread>
#include <ignition/msgs.hh>
#include <ignition/transport.hh>

/// \brief Flag used to break the publisher loop and terminate the program.
static std::atomic<bool> g_terminatePub(false);

//
/// \brief Function callback executed when a SIGINT or SIGTERM signals are
/// captured. This is used to break the infinite loop that publishes messages
/// and exit the program smoothly.
void signal_handler(int _signal)
{
 if (_signal == SIGINT || _signal == SIGTERM)
 g_terminatePub = true;
}

//
int main(int argc, char **argv)
{
 // Install a signal handler for SIGINT and SIGTERM.
 std::signal(SIGINT, signal_handler);
 std::signal(SIGTERM, signal_handler);

 // Create a transport node and advertise a topic.
 ignition::transport::Node node;
 std::string topic = "/foo";

 auto pub = node.Advertise<ignition::msgs::StringMsg>(topic);
 if (!pub)
 {
 std::cerr << "Error advertising topic [" << topic << "]" << std::endl;
 return -1;
 }

 // Prepare the message.
 ignition::msgs::StringMsg msg;
 msg.set_data("HELLO");

 // Publish messages at 1Hz.
 while (!g_terminatePub)
 {
 if (!pub.Publish(msg))
 break;

 std::cout << "Publishing hello on topic [" << topic << "]" << std::endl;
 std::this_thread::sleep_for(std::chrono::milliseconds(1000));
 }

 return 0;
}

Walkthrough

#include <ignition/msgs.hh>
#include <ignition/transport.hh>

The line #include <ignition/transport.hh> contains all the Ignition
Transport headers for using the transport library.

The next line includes the generated protobuf code that we are going to use
for our messages. We are going to publish StringMsg type protobuf messages.

// Create a transport node and advertise a topic.
ignition::transport::Node node;
std::string topic = "/foo";

auto pub = node.Advertise<ignition::msgs::StringMsg>(topic);
if (!pub)
{
 std::cerr << "Error advertising topic [" << topic << "]" << std::endl;
 return -1;
}

First of all we declare a Node that will offer some of the transport
functionality. In our case, we are interested on publishing topic updates, so
the first step is to announce our topic name and its type. Once a topic name is
advertised, we can start publishing periodic messages using the publisher
object.

// Prepare the message.
ignition::msgs::StringMsg msg;
msg.set_data("HELLO");

// Publish messages at 1Hz.
while (!g_terminatePub)
{
 if (!pub.Publish(msg))
 break;

 std::cout << "Publishing hello on topic [" << topic << "]" << std::endl;
 std::this_thread::sleep_for(std::chrono::milliseconds(1000));
}

In this section of the code we create a protobuf message and fill it with
content. Next, we iterate in a loop that publishes one message every second.
The method Publish() sends a message to all the subscribers.

Subscriber

Download the subscriber.cc [https://bitbucket.org/ignitionrobotics/ign-transport/raw/default/example/subscriber.cc] file within the ign_transport_tutorial
folder and open it with your favorite editor:

#include <iostream>
#include <string>
#include <ignition/msgs.hh>
#include <ignition/transport.hh>

//
/// \brief Function called each time a topic update is received.
void cb(const ignition::msgs::StringMsg &_msg)
{
 std::cout << "Msg: " << _msg.data() << std::endl << std::endl;
}

//
int main(int argc, char **argv)
{
 ignition::transport::Node node;
 std::string topic = "/foo";

 // Subscribe to a topic by registering a callback.
 if (!node.Subscribe(topic, cb))
 {
 std::cerr << "Error subscribing to topic [" << topic << "]" << std::endl;
 return -1;
 }

 // Zzzzzz.
 ignition::transport::waitForShutdown();

 return 0;
}

Walkthrough

//
/// \brief Function called each time a topic update is received.
void cb(const ignition::msgs::StringMsg &_msg)
{
 std::cout << "Msg: " << _msg.data() << std::endl << std::endl;
}

We need to register a function callback that will execute every time we receive
a new topic update. The signature of the callback is always similar to the one
shown in this example with the only exception of the protobuf message type.
You should create a function callback with the appropriate protobuf type
depending on the type of the topic advertised. In our case, we know that topic
/foo will contain a Protobuf StringMsg type.

ignition::transport::Node node;
std::string topic = "/foo";

// Subscribe to a topic by registering a callback.
if (!node.Subscribe(topic, cb))
{
 std::cerr << "Error subscribing to topic [" << topic << "]" << std::endl;
 return -1;
}

After the node creation, the method Subscribe() allows you to subscribe to a
given topic name by specifying your subscription callback function.

// Zzzzzz.
ignition::transport::waitForShutdown();

If you don’t have any other tasks to do besides waiting for incoming messages,
you can use the call waitForShutdown() that will block your current thread
until you hit CTRL-C. Note that this function captures the SIGINT and
SIGTERM signals.

Building the code

Download the CMakeLists.txt [https://bitbucket.org/ignitionrobotics/ign-transport/raw/default/example/CMakeLists.txt] file within the ign_transport_tutorial folder.

Once you have all your files, go ahead and create a build/ directory within
the ign_transport_tutorial directory.

mkdir build
cd build

Run cmake and build the code.

cmake ..
make publisher subscriber

Running the examples

Open two new terminals and from your build/ directory run the executables.

From terminal 1:

./publisher

From terminal 2:

./subscriber

In your subscriber terminal, you should expect an output similar to this one,
showing that your subscriber is receiving the topic updates:

caguero@turtlebot:~/ign_transport_tutorial/build$./subscriber
Data: [helloWorld]
Data: [helloWorld]
Data: [helloWorld]
Data: [helloWorld]
Data: [helloWorld]
Data: [helloWorld]

Advertise Options

We can specify some options before we publish the messages. One such option is
to specify the number of messages published per topic per second. It is optional
to use but it can be handy in situations like where we want to control the rate
of messages published per topic.

We can declare the throttling option using the following code :

// Create a transport node and advertise a topic with throttling enabled.
ignition::transport::Node node;
std::string topic = "/foo";

// Setting the throttling option
ignition::transport::AdvertiseMessageOptions opts;
opts.SetMsgsPerSec(1u);

auto pub = node.Advertise<ignition::msgs::StringMsg>(topic, opts);
if (!pub)
{
 std::cerr << "Error advertising topic [" << topic << "]" << std::endl;
 return -1;
}

Walkthrough

ignition::transport::AdvertiseMessageOptions opts;
opts.SetMsgsPerSec(1u);

In this section of code, we declare an AdvertiseMessageOptions object and use it
to pass message rate as argument to SetMsgsPerSec() method. In our case, the object
name is opts and message rate specified is 1 msg/sec.

auto pub = node.Advertise<ignition::msgs::StringMsg>(topic, opts);

Next, we advertise the topic with message throttling enabled. To do it, we pass opts
as argument to Advertise() method.

Subscribe Options

A similar option has also been provided to the Subscriber node which enables it
to control the rate of incoming messages from a specific topic. While subscribing
to a topic, we can use this option to control the number of messages received per
second from that particular topic.

We can declare the throttling option using the following code :

// Create a transport node and subscribe to a topic with throttling enabled.
ignition::transport::Node node;
ignition::transport::SubscribeOptions opts;
opts.SetMsgsPerSec(1u);
node.Subscribe(topic, cb, opts);

Walkthrough

ignition::transport::SubscribeOptions opts;
opts.SetMsgsPerSec(1u);
node.Subscribe(topic, cb, opts);

In this section of code, we declare a SubscribeOptions object and use it
to pass message rate as argument to SetMsgsPerSec() method. In our case, the object
name is opts and message rate specified is 1 msg/sec. Then, we subscribe to the topic
using Subscribe() method with opts passed as arguments to it.

Generic subscribers

As you have seen in the previous examples so far, the callbacks used by the
subscribers contain a specific protobuf parameter, such as
ignition::msgs::StringMsg. As the name of this section suggests, it is also
possible to create a generic subscriber callback that can receive messages of
different types. This use case might be interesting if you are building a bridge
between Ignition Transport and other protocol or if you want to just print the
content of a generic protobuf message using DebugString(), among other use
cases.

Download the subscriber_generic.cc [https://bitbucket.org/ignitionrobotics/ign-transport/raw/default/example/subscriber_generic.cc] file within the ign_transport_tutorial folder and open it with your favorite editor:

#include <google/protobuf/message.h>
#include <iostream>
#include <string>
#include <ignition/transport.hh>

//
/// \brief Function called each time a topic update is received.
/// Note that this callback uses the generic signature, hence it may receive
/// messages with different types.
void cb(const google::protobuf::Message &_msg,
 const ignition::transport::MessageInfo &_info)
{
 std::cout << "Topic: [" << _info.Topic() << "]" << std::endl;
 std::cout << _msg.DebugString() << std::endl;
}

//
int main(int argc, char **argv)
{
 ignition::transport::Node node;
 std::string topic = "/foo";

 // Subscribe to a topic by registering a callback.
 if (!node.Subscribe(topic, cb))
 {
 std::cerr << "Error subscribing to topic [" << topic << "]" << std::endl;
 return -1;
 }

 // Zzzzzz.
 ignition::transport::waitForShutdown();

 return 0;
}

Walkthrough

//
/// \brief Function called each time a topic update is received.
/// Note that this callback uses the generic signature, hence it may receive
/// messages with different types.
void cb(const google::protobuf::Message &_msg,
 const ignition::transport::MessageInfo &_info)
{
 std::cout << "Topic: [" << _info.Topic() << "]" << std::endl;
 std::cout << _msg.DebugString() << std::endl;
}

Here, we use the generic callback function signature. Note the use of
google::protobuf::Message as the message type in the subscription callback
function cb(). It enables us to receive topic updates with different message
types, such as Int32, String from the subscribed topic.
Furthermore, we don’t need to worry about the type of the topic advertised while
specifying the callback function. The parameter
ignition::transport::MessageInfo &_info provides some information about the
message received (e.g.: the topic name).

//
int main(int argc, char **argv)
{
 ignition::transport::Node node;
 std::string topic = "/foo";

 // Subscribe to a topic by registering a callback.
 if (!node.Subscribe(topic, cb))
 {
 std::cerr << "Error subscribing to topic [" << topic << "]" << std::endl;
 return -1;
 }

 // Zzzzzz.
 ignition::transport::waitForShutdown();

 return 0;
}

Similar to the previous examples, we use the Subscribe() function to
subscribe to a given topic name by specifying the callback function. In our
example, the topic name subscribed is /foo.

Follow the next instructions to compile and run the generic subscriber example:

Run cmake and build the example:

cd build
cmake ..
make subscriber_generic

From terminal 1:

./publisher

From terminal 2:

./subscriber_generic

Node communication via services

In this tutorial, we are going to create two nodes that are going to communicate
via services. You can see a service as a function that is going to be executed
in a different node. Services have two main components: a service provider and a
service consumer. A service provider is the node that offers the service to the
rest of the world. The service consumers are the nodes that request the function
offered by the provider. Note that in Ignition Transport the location of the
service is hidden. The discovery layer of the library is in charge of
discovering and keeping and updated list of services available.

In the next tutorial, one node will be the service provider that offers an echo
service, whereas the other node will be the service consumer requesting an
echo call.

mkdir ~/ign_transport_tutorial
cd ~/ign_transport_tutorial

Responser

Download the responser.cc [https://bitbucket.org/ignitionrobotics/ign-transport/raw/default/example/responser.cc] file within the ign_transport_tutorial
folder and open it with your favorite editor:

#include <iostream>
#include <string>
#include <ignition/msgs.hh>
#include <ignition/transport.hh>

//
/// \brief Provide an "echo" service.
void srvEcho(const ignition::msgs::StringMsg &_req,
 ignition::msgs::StringMsg &_rep, bool &_result)
{
 // Set the response's content.
 _rep.set_data(_req.data());

 // The response succeed.
 _result = true;
}

//
int main(int argc, char **argv)
{
 // Let's print the list of our network interfaces.
 std::cout << "List of network interfaces in this machine:" << std::endl;
 for (const auto &netIface : ignition::transport::determineInterfaces())
 std::cout << "\t" << netIface << std::endl;

 // Create a transport node.
 ignition::transport::Node node;
 std::string service = "/echo";

 // Advertise a service call.
 if (!node.Advertise(service, srvEcho))
 {
 std::cerr << "Error advertising service [" << service << "]" << std::endl;
 return -1;
 }

 // Zzzzzz.
 ignition::transport::waitForShutdown();
}

Walkthrough

#include <ignition/msgs.hh>
#include <ignition/transport.hh>

The line #include <ignition/transport.hh> contains the Ignition Transport
header for using the transport library.

The next line includes the generated Protobuf code that we are going to use
for our messages. We are going to use StringMsg type Protobuf messages
for our services.

//
/// \brief Provide an "echo" service.
void srvEcho(const ignition::msgs::StringMsg &_req,
 ignition::msgs::StringMsg &_rep, bool &_result)
{
 // Set the response's content.
 _rep.set_data(_req.data());

 // The response succeed.
 _result = true;
}

As a service provider, our node needs to register a function callback that will
execute every time a new service request is received. The signature of the
callback is always similar to the one shown in this example with the exception
of the Protobuf messages types for the _req (request) and _rep
(response). The request parameter contains the input parameters of the request.
The response message contains any resulting data from the service call. The
_result parameter denotes if the overall service call was considered
successful or not. In our example, as a simple echo service, we just fill the
response with the same data contained in the request.

// Create a transport node.
ignition::transport::Node node;
std::string service = "/echo";

// Advertise a service call.
if (!node.Advertise(service, srvEcho))
{
 std::cerr << "Error advertising service [" << service << "]" << std::endl;
 return -1;
}

// Zzzzzz.
ignition::transport::waitForShutdown();

We declare a Node that will offer all the transport functionality. In our
case, we are interested in offering a service, so the first step is to announce
our service name. Once a service name is advertised, we can accept service
requests.

If you don’t have any other tasks to do besides waiting for service requests,
you can use the call waitForShutdown() that will block your current thread
until you hit CTRL-C. Note that this function captures the SIGINT and
SIGTERM signals.

Synchronous requester

Download the requester.cc [https://bitbucket.org/ignitionrobotics/ign-transport/raw/default/example/requester.cc] file within the ign_transport_tutorial
folder and open it with your favorite editor:

#include <iostream>
#include <ignition/msgs.hh>
#include <ignition/transport.hh>

//
int main(int argc, char **argv)
{
 // Create a transport node.
 ignition::transport::Node node;

 // Prepare the input parameters.
 ignition::msgs::StringMsg req;
 req.set_data("HELLO");

 ignition::msgs::StringMsg rep;
 bool result;
 unsigned int timeout = 5000;

 // Request the "/echo" service.
 bool executed = node.Request("/echo", req, timeout, rep, result);

 if (executed)
 {
 if (result)
 std::cout << "Response: [" << rep.data() << "]" << std::endl;
 else
 std::cout << "Service call failed" << std::endl;
 }
 else
 std::cerr << "Service call timed out" << std::endl;
}

Walkthrough

// Create a transport node.
ignition::transport::Node node;

// Prepare the input parameters.
ignition::msgs::StringMsg req;
req.set_data("HELLO");

ignition::msgs::StringMsg rep;
bool result;
unsigned int timeout = 5000;

We declare the Node that allows us to request a service. Next, we declare and
fill the message used as an input parameter for our echo request. Then, we
declare the Protobuf message that will contain the response and the variable
that will tell us if the service request succeed or failed. In this example, we
will use a synchronous request, meaning that our code will block until the
response is received or a timeout expires. The value of the timeout is expressed
in milliseconds.

// Request the "/echo" service.
bool executed = node.Request("/echo", req, timeout, rep, result);

if (executed)
{
 if (result)
 std::cout << "Response: [" << rep.data() << "]" << std::endl;
 else
 std::cout << "Service call failed" << std::endl;
}
else
 std::cerr << "Service call timed out" << std::endl;

In this section of the code we use the method Request() for forwarding the
service call to any service provider of the service /echo.
Ignition Transport will find a node, communicate the input data, capture the
response and pass it to your output parameter. The return value will tell you
if the request expired or the response was received. The result value will
tell you if the service provider considered the operation valid.

Imagine for example that we are using a division service, where our input
message contains the numerator and denominator. If there are no nodes offering
this service, our request will timeout (return value false). On the other
hand, if there’s at least one node providing the service, the request will
return true signaling that the request was received. However, if we set our
denominator to 0 in the input message, result will be false
reporting that something went wrong in the request. If the input parameters are
valid, we’ll receive a result value of true and we can use our response
message.

Asynchronous requester

Download the requester_async.cc [https://bitbucket.org/ignitionrobotics/ign-transport/raw/default/example/requester_async.cc] file within the ign_transport_tutorial folder and open it with your favorite editor:

#include <iostream>
#include <ignition/msgs.hh>
#include <ignition/transport.hh>

//
/// \brief Service response callback.
void responseCb(const ignition::msgs::StringMsg &_rep, const bool _result)
{
 if (_result)
 std::cout << "Response: [" << _rep.data() << "]" << std::endl;
 else
 std::cerr << "Service call failed" << std::endl;
}

//
int main(int argc, char **argv)
{
 // Create a transport node.
 ignition::transport::Node node;

 // Prepare the input parameters.
 ignition::msgs::StringMsg req;
 req.set_data("HELLO");

 std::cout << "Press <CTRL-C> to exit" << std::endl;

 // Request the "/echo" service.
 node.Request("/echo", req, responseCb);

 // Zzzzzz.
 ignition::transport::waitForShutdown();
}

Walkthrough

//
/// \brief Service response callback.
void responseCb(const ignition::msgs::StringMsg &_rep, const bool _result)
{
 if (_result)
 std::cout << "Response: [" << _rep.data() << "]" << std::endl;
 else
 std::cerr << "Service call failed" << std::endl;
}

We need to register a function callback that will execute when we receive our
service response. The signature of the callback is always similar to the one
shown in this example with the only exception of the Protobuf message type used
in the response. You should create a function callback with the appropriate
Protobuf type depending on the response type of the service requested. In our
case, we know that the service /echo will answer with a Protobuf
StringMsg` type.

// Create a transport node.
ignition::transport::Node node;

// Prepare the input parameters.
ignition::msgs::StringMsg req;
req.set_data("HELLO");

// Request the "/echo" service.
node.Request("/echo", req, responseCb);

In this section of the code we declare a node and a Protobuf message that is
filled with the input parameters for our request. Next, we just use the
asynchronous variant of the Request() method that forwards a service call to
any service provider of the service /echo.
Ignition Transport will find a node, communicate the data, capture the response
and pass it to your callback, in addition of the service call result. Note that
this variant of Request() is asynchronous, so your code will not block while
your service request is handled.

Oneway responser

Not all the service requests require a response. In these cases we can use a
oneway service to process service requests without sending back responses.
Oneway services don’t accept any output parameters nor the requests have to wait
for the response.

Download the responser_oneway.cc [https://bitbucket.org/ignitionrobotics/ign-transport/raw/default/example/responser_oneway.cc] file within the ign_transport_tutorial
folder and open it with your favorite editor:

#include <iostream>
#include <string>
#include <ignition/transport.hh>
#include <ignition/msgs.hh>

//
void srvOneway(const ignition::msgs::StringMsg &_req)
{
 std::cout << "Request received: [" << _req.data() << "]" << std::endl;
}

//
int main(int argc, char **argv)
{
 // Create a transport node.
 ignition::transport::Node node;
 std::string service = "/oneway";

 // Advertise a oneway service.
 if (!node.Advertise(service, srvOneway))
 {
 std::cerr << "Error advertising service [" << service << "]" << std::endl;
 return -1;
 }

 // Zzzzzz.
 ignition::transport::waitForShutdown();
}

Walkthrough

//
void srvOneway(const ignition::msgs::StringMsg &_req)
{
 std::cout << "Request received: [" << _req.data() << "]" << std::endl;
}

As a oneway service provider, our node needs to advertise a service that doesn’t
send a response back. The signature of the callback contains only one parameter
that is the input parameter, _req (request). We don’t need _rep
(response) or _result as there is no response expected. In our example,
the value of the input parameter is printed on the screen.

// Create a transport node.
ignition::transport::Node node;
std::string service = "/oneway";

// Advertise a oneway service.
if (!node.Advertise(service, srvOneway))
{
 std::cerr << "Error advertising service [" << service << "]" << std::endl;
 return -1;
}

We declare a Node that will offer all the transport functionality. In our
case, we are interested in offering a oneway service, so the first step is to
announce our service name. Once a service name is advertised, we can accept
service requests.

Oneway requester

This case is similar to the oneway service provider. This code can be used for
requesting a service that does not need a response back. We don’t need any
output parameters in this case nor we have to wait for the response.

Download the requester_oneway.cc [https://bitbucket.org/ignitionrobotics/ign-transport/raw/default/example/requester_oneway.cc] file within the ign_transport_tutorial
folder and open it with your favorite editor:

#include <iostream>
#include <ignition/transport.hh>
#include <ignition/msgs.hh>

//
int main(int argc, char **argv)
{
 // Create a transport node.
 ignition::transport::Node node;

 // Prepare the input parameters.
 ignition::msgs::StringMsg req;
 req.set_data("HELLO");

 // Request the "/oneway" service.
 bool executed = node.Request("/oneway", req);

 if (!executed)
 std::cerr << "Service call failed" << std::endl;
}

Walkthrough

// Create a transport node.
ignition::transport::Node node;

// Prepare the input parameters.
ignition::msgs::StringMsg req;
req.set_data("HELLO");

// Request the "/oneway" service.
bool executed = node.Request("/oneway", req);

if (!executed)
std::cerr << "Service call failed" << std::endl;

First of all we declare a node and a Protobuf message that is filled with the
input parameters for our /oneway service. Next, we just use the oneway
variant of the Request() method that forwards a service call to any service
provider of the service /oneway. Ignition Transport will find a node and
communicate the data without waiting for the response. The return value of
Request() indicates if the request was successfully queued. Note that this
variant of Request() is also asynchronous, so your code will not block while
your service request is handled.

Service without input parameter

Sometimes we want to receive some result but don’t have any input parameter to
send.

	Download the responser_no_input.cc [https://bitbucket.org/ignitionrobotics/ign-transport/raw/default/example/responser_no_input.cc]

	file within the ign_transport_tutorial folder and open it with your

favorite editor:

#include <iostream>
#include <string>
#include <ignition/msgs.hh>
#include <ignition/transport.hh>

//
/// \brief Provide a "quote" service.
/// Well OK, it's just single-quote service but do you really need more?
void srvQuote(ignition::msgs::StringMsg &_rep, bool &_result)
{
 std::string awesomeQuote = "This is it! This is the answer. It says here..."
 "that a bolt of lightning is going to strike the clock tower at precisely "
 "10:04pm, next Saturday night! If...If we could somehow...harness this "
 "lightning...channel it...into the flux capacitor...it just might work. "
 "Next Saturday night, we're sending you back to the future!";

 // Set the response's content.
 _rep.set_data(awesomeQuote);

 // The response succeed.
 _result = true;
}

//
int main(int argc, char **argv)
{
 // Create a transport node.
 ignition::transport::Node node;
 std::string service = "/quote";

 // Advertise a service call.
 if (!node.Advertise(service, srvQuote))
 {
 std::cerr << "Error advertising service [" << service << "]" << std::endl;
 return -1;
 }

 // Zzzzzz.
 ignition::transport::waitForShutdown();
}

Walkthrough

void srvQuote(ignition::msgs::StringMsg &_rep, bool &_result)

Service doesn’t receive anything. The signature of the callback contains two
parameters _rep (response) and _result. In our example, we return
the quote.

// Create a transport node.
ignition::transport::Node node;
std::string service = "/quote";

// Advertise a service call.
if (!node.Advertise(service, srvQuote))
{
 std::cerr << "Error advertising service [" << service << "]" << std::endl;
 return -1;
}

// Zzzzzz.
ignition::transport::waitForShutdown();

We declare a Node that will offer all the transport functionality. In our
case, we are interested in offering service without input, so the first step is
to announce the service name. Once a service name is advertised, we can accept
service requests.

Empty requester sync and async

This case is similar to the service without input parameter. We don’t send any
request.

Download the requester_no_input.cc [https://bitbucket.org/ignitionrobotics/ign-transport/raw/default/example/requester_no_input.cc]
file within the ign_transport_tutorial folder and open it with your
favorite editor:

#include <iostream>
#include <ignition/msgs.hh>
#include <ignition/transport.hh>

//
int main(int argc, char **argv)
{
 // Create a transport node.
 ignition::transport::Node node;

 ignition::msgs::StringMsg rep;
 bool result;
 unsigned int timeout = 5000;

 // Request the "/quote" service.
 bool executed = node.Request("/quote", timeout, rep, result);

 if (executed)
 {
 if (result)
 std::cout << "Response: [" << rep.data() << "]" << std::endl;
 else
 std::cout << "Service call failed" << std::endl;
 }
 else
 std::cerr << "Service call timed out" << std::endl;
}

Walkthrough

First of all we declare a node and a message that will contain the response from
/quote service. Next, we use the variant without input parameter of the
Request() method. The return value of Request() indicates whether the
request timed out or reached the service provider and result shows if the
service was successfully executed.

We also have the async version for service request without input. You should
download requester_no_input.cc [https://bitbucket.org/ignitionrobotics/ign-transport/raw/default/example/requester_no_input.cc]
file within the ign_transport_tutorial folder.

Building the code

Download the CMakeLists.txt [https://bitbucket.org/ignitionrobotics/ign-transport/raw/default/example/CMakeLists.txt] file within the ign_transport_tutorial folder. Then, download CMakeLists.txt [https://bitbucket.org/ignitionrobotics/ign-transport/raw/default/example/msgs/CMakeLists.txt] and stringmsg.proto [https://bitbucket.org/ignitionrobotics/ign-transport/raw/default/example/msgs/stringmsg.proto] inside the msgs directory.

Once you have all your files, go ahead and create a build/ folder within
the ign_transport_tutorial directory.

mkdir build
cd build

Run cmake and build the code.

cmake ..
make responser responser_oneway requester requester_async requester_oneway
make responser_no_input requester_no_input requester_async_no_input

Running the examples

Open three new terminals and from your build/ directory run the executables.

From terminal 1:

./responser

From terminal 2:

./requester

From terminal 3:

./requester_async

In your requester terminals, you should expect an output similar to this one,
showing that your requesters have received their responses:

caguero@turtlebot:~/ign_transport_tutorial/build$./requester
Response: [Hello World!]

caguero@turtlebot:~/ign_transport_tutorial/build$./requester_async
Response: [Hello World!]

For running the oneway examples, open two terminals and from your build/
directory run the executables.

From terminal 1:

./responser_oneway

From terminal 2:

./requester_oneway

In your responser terminal, you should expect an output similar to this one,
showing that your service provider has received a request:

caguero@turtlebot:~/ign_transport_tutorial/build$./responser_oneway
Request received: [HELLO]

For running the examples without input, open three terminals and from your build/
directory run the executables.

From terminal 1:

./responser_no_input

From terminal 2:

./requester_no_input

From terminal 3:

./requester_async_no_input

In your requesters’ terminals, you should expect an output similar to this one,
showing that you have received a response:

caguero@turtlebot:~/ign_transport_tutorial/build$./requester_no_input
Response: [This is it! This is the answer. It says here...that a bolt of
lightning is going to strike the clock tower at precisely 10:04pm, next
Saturday night! If...If we could somehow...harness this lightning...channel
it...into the flux capacitor...it just might work. Next Saturday night,
we're sending you back to the future!]

Configuration via environment variables

In a similar way you can programatically customize the behavior of your nodes or
specify some options when you advertise a topic, it is possible to use an
environment variable to tweak the behavior of Ignition Transport. Next you can
see a description of the available environment variables:

	Environment variable
	Value allowed
	Description

	IGN_PARTITION
	Any partition value
	Specifies a partition name for all
the nodes declared inside this
process. Note that an alternative
partition name declared
programatically and passed to the
constructor of a Node class will
take priority over
IGN_PARTITION.

	IGN_IP
	Any local IP address
	This setting is needed in
situations where you have multiple
IP addresses for a computer and
need to force Ignition Transport
to use a particular one. This
setting is only required if you
advertise a topic or a service.
If you are only subscribed to
topics or requesting services you
don’t need to use this option
because the discovery service will
try all the available network
interfaces during the search of
the topic/service.

	IGN_VERBOSE
	1
	Show debug information.

How to contribute

Ignition Transport is an open source project based on the Apache License
Version 2.0, and is maintained by hardworking developers for everyone’s benefit.
If you would like to contribute software patches, read on to find out how. You’ll probably want to check out the Development Section [http://ignition-transport.readthedocs.io/en/latest/api/api.html] for learning about the internal design of the library when planning your contribution.

Development process

We follow a development process designed to reduce errors, encourage
collaboration, and make high quality code. The process may seem rigid and
tedious, but every step is worth the effort (especially if you like
applications that work).

Steps to follow

	Are you sure? Has your idea already been done, or maybe someone is already working on it?

Check the issue tracker [https://bitbucket.org/ignitionrobotics/ign-transport].

2. Fork Ignition Transport [https://bitbucket.org/ignitionrobotics/ign-transport/fork]. This will create your own personal copy of the project. All of your
development should take place in your fork.

	Work out of a branch:

hg branch my_new_branch_name

Always work out of a new branch, never off of default. This is a good habit to get in, and will make your life easier. If you’re solving an issue, make the branch
name issue_ followed by the issue number. E.g.: issue_23.

	Write your code.

This is the fun part.

	Write tests.

A pull request will only be accepted if it has tests. See the Test coverage section below for more information.

	Compiler warnings.

Code must have zero compile warnings. This currently only applies to Linux.

	Style.

A tool is provided to check for correct style. Your code must have no errors
after running the following command from the root of the source tree:

sh tools/code_check.sh

The tool does not catch all style errors. See the Style section below for more
information.

	Tests pass.

There must be no failing tests. You can check by running make test in your
build directory.

	Documentation.

Document all your code. Every class, function, member variable must have
doxygen comments. All code in source files must have documentation that
describes the functionality. This will help reviewers, and future developers.

	Review your code.

Before submitting your code through a pull request, take some time to review
everything line-by-line. The review process will go much faster if you make
sure everything is perfect before other people look at your code. There is a
bit of the human-condition involved here. Folks are less likely to spend time
reviewing your code if it’s bad.

	Small pull requests.

A large pull request is hard to review, and will take a long time. It is worth
your time to split a large pull request into multiple smaller pull requests.
For reference, here are a few examples:

	Small, very nice [https://bitbucket.org/osrf/gazebo/pull-request/1732]

	Medium, still okay [https://bitbucket.org/osrf/gazebo/pull-request/1700]

	Too large [https://bitbucket.org/osrf/gazebo/pull-request/30]

	Pull request [https://bitbucket.org/ignitionrobotics/ign-transport/pull-request/new].

Submit a pull request when you ready.

	Review.

At least two other people have to approve your pull request before it can be merged. Please be responsive to any questions and comments.

	Done, phew.

Once you have met all the requirements, you’re code will be merged. Thanks for improving Ignition Transport!

Internal Developers

This section is targeted mostly for people who have commit access to the main repositories.

In addition to the general development process, please follow these steps
before submitting a pull request. Each step is pass/fail, where the test or
check must pass before continuing to the next step.

	Run the style checker on your personal computer.

	Run all tests on your personal computer.

	Run your branch through a jenkins trusty build [http://build.osrfoundation.org/view/main/view/ignition/job/ignition_transport-ci-pr_any-trusty-amd64/].

	Run your branch through a jenkins homebrew build [http://build.osrfoundation.org/view/main/view/ignition/job/ignition_transport-ci-pr_any-homebrew-amd64/].

	Run your branch through a jenkins windows7 build [http://build.osrfoundation.org/view/main/view/ignition/job/ignition_transport-ci-pr_any-windows7-amd64/].

	Submit the pull request, and include the following:

	Link to a passing trusty build [http://build.osrfoundation.org/view/main/view/ignition/job/ignition_transport-ci-pr_any-trusty-amd64/].

	Link to a passing homebrew build [http://build.osrfoundation.org/view/main/view/ignition/job/ignition_transport-ci-pr_any-homebrew-amd64/].

	Link to a passing windows7 build [http://build.osrfoundation.org/view/main/view/ignition/job/ignition_transport-ci-pr_any-windows7-amd64/].

	A set of jenkins jobs will run automatically once the pull request is created. Reviewers can reference these automatic jobs and the jenkins jobs listed in your pull request.

Style

In general, we follow Google’s style guide [https://google.github.io/styleguide/cppguide.html]. However, we add in some extras.

	``this`` pointer

	All class attributes and member functions must be accessed using the this-> pointer. Here is an example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Base.cc#cl-40].

	Underscore function parameters

	All function parameters must start with an underscore. Here is an example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Base.cc#cl-77].

	Do not cuddle braces

	All braces must be on their own line. Here is an example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Base.cc#cl-131].

	Multi-line code blocks

	If a block of code spans multiple lines and is part of a flow control statement, such as an if, then it must be wrapped in braces. Here is an example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Base.cc#cl-249]

	++ operator

	This occurs mostly in for loops. Prefix the ++ operator, which is slightly more efficient than postfix in some cases [http://programmers.stackexchange.com/questions/59880/avoid-postfix-increment-operator].

	PIMPL/Opaque pointer

	If you are writing a new class, it must use a private data pointer. Here is an example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/World.hh?at=default#cl-479], and you can read more here [https://en.wikipedia.org/wiki/Opaque_pointer].

	const functions

	Any class function that does not change a member variable should be marked as const. Here is an example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Entity.cc?at=default#cl-175].

	const parameters

	All parameters that are not modified by a function should be marked as const. This applies to parameters that are passed by reference, pointer, and value. Here is an example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Entity.cc?at=default#cl-217].

	Pointer and reference variables

	Place the * and & next to the variable name, not next to the type. For example: int &variable is good, but int& variable is not. Here is an example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Entity.cc?at=default#cl-217].

	Camel case

	In general, everything should use camel case. Exceptions include protobuf variable names.

	Class function names

	Class functions must start with a capital letter, and capitalize every word.

void MyFunction(); : Good

void myFunction(); : Bad

void my_function(); : Bad

	Variable names

	Variables must start with a lower case letter, and capitalize every word thereafter.

int myVariable; : Good

int myvariable; : Bad

int my_variable; : Bad

Reduce Code Duplication

Check to make sure someone else is not currently working on the same
feature, before embarking on a project to add something to Ignition Transport.
Check the issue tracker [https://bitbucket.org/ignitionrobotics/ign-transport/issues] looking for issues with similar ideas.

Write Tests

All code should have a corresponding unit test. Ignition Transport uses GTest [http://code.google.com/p/googletest] for unit testing.

Test coverage

The goal is to achieve 100% line and branch coverage. However, this is not
always possible due to complexity issues, analysis tools misreporting
coverage, and time constraints. Try to write as complete of a test suite as
possible, and use the coverage analysis tools as guide. If you have trouble
writing a test please ask for help in your pull request.

Ignition Transport has a build target called make coverage that will produce a code coverage report. You’ll need lcov [http://ltp.sourceforge.net/coverage/lcov.php] installed.

	In your build folder, compile Ignition Transport with -DCMAKE_BUILD_TYPE=Coverage:

cmake -DCMAKE_BUILD_TYPE=Coverage ..\
make

	Run a single test, or all the tests:

make test

	Make the coverage report:

make coverage

	View the coverage report:

firefox coverage/index.html

Debugging Ignition Transport

Meaningful backtraces

In order to provide meaningful backtraces when using a debugger, such as GDB, Ignition Transport should be compiled with debugging support enabled. When using the ubuntu packages, specially the -dbg package, this support is limited but could be enough in most of the situations. This are the three level of traces which can be obtained:

	Maximum level of debugging support

	This only can be obtained compiling Ignition Transport from source and setting the CMAKE_BUILD_TYPE to DEBUG. This will set up no optimizations and debugging symbols. It can be required by developers in situations specially difficult to reproduce.

	Medium level of debugging support

	This can be obtained installing the libignition-transport1-dbg package or compiling Ignition Transport from source using the RELWITHDEBINFO CMAKE_BUILD_TYPE mode (which is the default if no mode is provided). This will set up -O2 optimization level but provide debugging symbols. This should be the default when firing up gdb to explore errors and submit traces.

	Minimum level of debugging support

	This one is present in package versions (no -dbg package present) or compiling Ignition Transport from source using the RELEASE CMAKE_BUILD_TYPE option. This will set up the maximum level of optimizations and does not provide any debugging symbol information. This traces are particularly difficult to follow.

Code Check

Code pushed into the repository should pass a few simple tests. It is also helpful if patches submitted through bitbucket pass these tests. Passing these tests is defined as generating no error or warning messages for each of the following tests.

Static Code Check

Static code checking analyzes your code for bugs, such as potential memory leaks, and style. The Ignition Transport static code checker uses cppcheck, and a modified cpplint. You’ll need to install cppcheck on your system. Ubuntu users can install via:

sudo apt-get install cppcheck

To check your code, run the following script from the root of the Ignition Transport sources:

sh tools/code_check.sh

It takes a few minutes to run. Fix all errors and warnings until the output looks like:

Total errors found: 0

Internal architecture

The purpose of this section is to describe the internal design of Ignition
Transport. You don’t need to read this section if you just want to use the
library in your code. This section will help you to understand our source code
if you’re interested in making code contributions.

Ignition Transport’s internal architecture can be illustrated with the following
diagram:

+===+ +=====================+
Host #1		Host #2															
+-------------------------+ +-----------------+		+------------------+															
	Process #1		Process #2				Process #3										
	+-------+ +-------+		+-------+				+-------+										
		Node #1		Node #2				Node #3						Node #4			
	+-------+ +-------+		+-------+				+-------+										
	⇅ ⇅		⇅				⇅										
	+-------------------+		+-------------+				+--------------+										
		Shared #1				Shared #3						Shared #4					
	+-------------------+		+-------------+				+--------------+										
	⇅ ⇑		⇅ ⇑				⇅ ⇑										
	+--------------+			+------------+					+------------+								
		Discovery #1					Discovery #2							Discovery #3			
	+--------------+ ⇓		+------------+ ⇓				+------------+ ⇓										
+-------------------------+ +-----------------+		+------------------+															
+===+ +=====================+
 ⇅ ⇅ ⇅
 ==
 \ Local Area Network \
 ==

Next, are the most important components of the library:

	Node.

This class is the main interface with the users. The Node class contains
all the functions that allow users to advertise, subscribe and publish
topics, as well as advertise and request services. This is the only class
that a user should directly use.

	NodeShared (shown as Shared in the diagram for space purposes).

A single instance of a NodeShared class is shared between all the
Node objects running inside the same process. The NodeShared instance
contains all the ZMQ sockets used for sending and receiving data for topic
and service communication. The goal of this class is to share resources
between a group of nodes.

	Discovery.

A discovery layer is required in each process to learn about the location of
topics and services. Our topics and services don’t have any location
information, they are just plain strings, so we need a way to learn where are
they located (similar to a DNS service). Discovery uses a custom protocol
and UDP multicast for communicating with other Discovery instances. These
instances can be located on the same or different machines over the same LAN.
At this point is not possible to discover a Node outside of the LAN, this
is a future request that will eventually be added to the library.

Discovery service

Communication occurs between nodes via named data streams, called topics. Each
node has a universally unique id (UUID) and may run on any machine in a local
network. A mechanism, called discovery, is needed to help nodes find each other
and the topics that they manage.

The Discovery class implements the protocol for distributed node discovery.
The topics are plain strings (/echo, /my_robot/camera) and this layer
learns about the meta information associated to each topic. The topic
location, the unique identifier of the node providing a service or its process
are some examples of the information that the discovery component learns for
each topic. The main responsibility of the discovery is to keep an updated
list of active topics ready to be queried by other entities.

In Ignition Transport we use two discovery objects, each one operating on a
different UDP port. One object is dedicated to topics and the other is dedicated
to services.

API

The first thing to do before using a discovery object is to create it. The
Discovery class constructor requires a parameter for specifying the UDP port
to be used by the discovery sockets and the UUID of the process in which the
discovery is running. This UUID will be used when announcing a local topic.

Once a Discovery object is created it won’t discover anything. You’ll need
to call the Start() function for enabling the discovery.

Besides discovering topics from the outside world, the discovery will announce
the topics that are offered in the same process that the discovery is running.
The Advertise() function will register a local topic and announce it over
the network. The symmetric Unadvertise() will notify that a topic won’t be
offered anymore.

Discover() is used to learn about a given topic as soon as possible. It’s
important to remark about the “as soon as possible” because discovery will eventually
learn about all the topics but this might take some time (depending on your
configuration). If a client needs to know about a particular topic,
Discover() will trigger a discovery request that will reduce the time needed
to discover the information about a topic.

As you can imagine, exchanging messages over the network can be slow and we
cannot block the users waiting for discovery information. We don’t even know how
many nodes are on the network so it would be hard and really slow to block and
return all the information to our users when available. The way we tackle the
notification inside Discovery is through callbacks. A discovery user
needs to register two callbacks: one for receiving notifications when new
topics are available and another for notifying when a topic is no longer
active. The functions ConnectionsCb() and DisconnectionsCb() allow
the discovery user to set these two notification callbacks. For example, a user
will invoke the Discover() call and, after some time, its ConnectionCb
will be executed with the information about the requested topic. In the
meantime, other callback invocations could be triggered because Discovery
will pro-actively learn about all the available topics and generate
notifications.

You can check the complete API details here.

[Un]Announce a local topic

This feature registers a new topic in the internal data structure that keeps
all the discovery information. Local and remote topics are stored in the same
way, the only difference is that the local topics will share the process UUID
with the discovery service. We store what we call a Publisher, which
contains the topic name and all the associated meta-data.

Each publisher advertises the topic with a specific scope as described here [http://ignition-transport.readthedocs.io/en/latest/nodesAndTopics/nodesAndTopics.html#topic-scope].
If the topic’s scope is PROCESS, the discovery won’t announce it over the
network. Otherwise, it will send to the multicast group an ADVERTISE message
with the following format:

HEADER
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Version | Process UUID Length |
+-+
| |
\ Process UUID \
| |
+-+
| Message Type | Flags |
+-+

The value of the Message Type field in the header is [UN]ADVERTISE.

[UN]ADVERTISE
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
\ Header \
| |
+-+
| |
\ Serialized Publisher \
| |
+-+

All discovery nodes will receive this request and should update its discovery
information and notify its user via the notification callbacks if they didn’t
have previous information about the topic received. An ADVERTISE message
should trigger the connection callback, while an UNADVERTISE message should
fire the disconnection callback.

Trigger a topic discovery

A user can call Discover() for triggering the immediate discovery of a
topic. Over the wire, this call will generate a SUBSCRIBE message with
the following format:

SUBSCRIBE
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
\ Header \
| |
+-+
| Topic length | Topic |
+-+
| |
\ Topic \
| |
+-+

The value of the Message Type field in the header is SUBSCRIBE.

All discovery instances listening on the same port where the SUBSCRIBE
message was sent will receive the message. Each discovery instance with a local
topic registered should answer with an ADVERTISE message. The answer is a
multicast message too that should be received by all discovery instances.

Topic update

Each discovery instance should periodically send an ADVERTISE message per
local topic announced over the multicast channel to notify that all
information already announced is still valid. The frequency of sending these
topic update messages can be changed with the function
SetHeartbeatInterval(). By default, the topic update frequency is set to
one second.

Alternatively, we could replace the send of all ADVERTISE messages with one
HEARTBEAT message that contains the process UUID of the discovery instance.
Upon reception, all other discovery instances should update all their entries
associated with the received process UUID. Although this approach is more
efficient and saves some messages sent over the network, it prevents a discovery
instance to learn about topics available without explicitly asking for them.
We think this is a good feature to have. For example, an introspection tool that
shows all the topics available can take advantage of this feature without any
prior knowledge.

It is the responsibility of each discovery instance to cancel any topic that hasn’t
been updated for a while. The function SilenceInterval() sets the maximum
time that an entry should be stored in memory without hearing an ADVERTISE
message. Every ADVERTISE message received should refresh the topic
timestamp associated with it.

When a discovery instance terminates, it should notify through the discovery
channel that all its topics need to invalidated. This is performed by sending
a BYE message with the following format:

BYE
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| |
\ Header \
| |
+-+

The value of the Message Type field in the header is BYE.

When this message is received, a discovery instance should invalidate all
entries associated with the process UUID contained in the header. Note that this
is the expected behavior when a discovery instance gently terminates. In the
case of an abrupt termination, the lack of topic updates will cause the same
result, although it’ll take a bit more time.

Threading model

A discovery instance will create an additional internal thread when the user
calls Start(). This thread takes care of the topic update tasks. This
involves the reception of other discovery messages and the update of the
discovery information. Also, it’s among its responsibilities to answer with an
ADVERTISE message when a SUBSCRIBE message is received and there are
local topics available.

The first time announcement of a local topic and the explicit discovery
request of a topic happen on the user thread. So, in a regular scenario where
the user doesn’t share discovery among other threads, all the discovery
operations will run in two threads, the user thread and the internal discovery
thread spawned after calling Start(). All the functions in the discovery are
thread safe.

Multiple network interfaces

The goal of the discovery service is to discover all topics available. It’s not
uncommon these days that a machine has multiple network interfaces for its wired
and wireless connections, a virtual machine, or a localhost device, among
others. By selecting one network interface and listening only on this one, we
would miss the discovery messages that are sent by instances sitting on other
subnets.

Our discovery service handles this problem in several steps. First, it learns
about the network interfaces that are available locally. The
determineInterfaces() function (contained in NetUtils file) returns a
list of all the network interfaces found on the machine. When we know all the
available network interfaces we create a container of sockets, one per local IP
address. These sockets are used for sending discovery data over the network,
flooding all the subnets and reaching other potential discovery instances.

We use one of the sockets contained in the vector for receiving data via the
multicast channel. We have to join the multicast group for each local network
interface but we can reuse the same socket. This will guarantee that our socket
will receive the multicast traffic coming from any of our local network
interfaces. This is the reason for having a single bind() function in our
call even if we can receive data from multiple interfaces. Our receiving socket
is the one we register in the zmq::poll() function for processing incoming
discovery data.

When it’s time to send outbound data, we iterate through the list of sockets and
send the message over each one, flooding all the subnets with our discovery
requests.

Note that the result of determineInterfaces() can be manually set by using
the IGN_IP environment variable, as described here. This will essentially ignore other network interfaces,
isolating all discovery traffic through the specified interface.

API

Please, visit this link [https://s3.amazonaws.com/osrf-distributions/ign-transport/api/3.0.1/index.html] for version 3.x.

Index

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to Ignition Transport's documentation!

 		 Introduction

 		Installation

 		Ubuntu Linux

 		Mac OS X

 		Windows

 		Install from sources (Ubuntu Linux)

 		Uninstalling Source-based Install

 		 Nodes and topics

 		Nodes

 		Topics

 		Topic scope

 		Partition and namespaces

 		 Using messages

 		Publisher

 		Walkthrough

 		Subscriber

 		Walkthrough

 		Building the code

 		Running the examples

 		Advertise Options

 		Walkthrough

 		Subscribe Options

 		Walkthrough

 		Generic subscribers

 		Walkthrough

 		 Using services

 		Responser

 		Walkthrough

 		Synchronous requester

 		Walkthrough

 		Asynchronous requester

 		Walkthrough

 		Oneway responser

 		Walkthrough

 		Oneway requester

 		Walkthrough

 		Service without input parameter

 		Walkthrough

 		Empty requester sync and async

 		Walkthrough

 		Building the code

 		Running the examples

 		Environment variables

 		 Contribute

 		Development process

 		Steps to follow

 		Internal Developers

 		Style

 		Reduce Code Duplication

 		Write Tests

 		Debugging Ignition Transport

 		Meaningful backtraces

 		Code Check

 		Static Code Check

 		Development

 		Discovery service

 		API

 		[Un]Announce a local topic

 		Trigger a topic discovery

 		Topic update

 		Threading model

 		Multiple network interfaces

 		API

_static/comment.png

_static/plus.png

