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The Idris Tutorial

This is the Idris Tutorial.
It provides a brief introduction to programming in the Idris Language.
It covers the core language features, and assumes some familiarity with an
existing functional programming language such as Haskell or OCaml.


Note

The documentation for Idris has been published under the Creative
Commons CC0 License. As such to the extent possible under law, The
Idris Community has waived all copyright and related or neighboring
rights to Documentation for Idris.

More information concerning the CC0 can be found online at: https://creativecommons.org/publicdomain/zero/1.0/
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Introduction

In conventional programming languages, there is a clear distinction
between types and values. For example, in Haskell [https://www.haskell.org], the following are types, representing
integers, characters, lists of characters, and lists of any value
respectively:


	Int, Char, [Char], [a]




Correspondingly, the following values are examples of inhabitants of
those types:


	42, ’a’, "Hello world!", [2,3,4,5,6]




In a language with dependent types, however, the distinction is less
clear. Dependent types allow types to “depend” on values — in other
words, types are a first class language construct and can be
manipulated like any other value. The standard example is the type of
lists of a given length [1], Vect n a, where a is the element
type and n is the length of the list and can be an arbitrary term.

When types can contain values, and where those values describe
properties, for example the length of a list, the type of a function
can begin to describe its own properties. Take for example the
concatenation of two lists. This operation has the property that the
resulting list’s length is the sum of the lengths of the two input
lists. We can therefore give the following type to the app
function, which concatenates vectors:

app : Vect n a -> Vect m a -> Vect (n + m) a





This tutorial introduces Idris, a general purpose functional
programming language with dependent types. The goal of the Idris
project is to build a dependently typed language suitable for
verifiable general purpose programming. To this end, Idris is a compiled
language which aims to generate efficient executable code. It also has
a lightweight foreign function interface which allows easy interaction
with external C libraries.


Intended Audience

This tutorial is intended as a brief introduction to the language, and
is aimed at readers already familiar with a functional language such
as Haskell [https://www.haskell.org] or OCaml [https://ocaml.org].
In particular, a certain amount of familiarity with Haskell syntax is
assumed, although most concepts will at least be explained
briefly. The reader is also assumed to have some interest in using
dependent types for writing and verifying systems software.

For a more in-depth introduction to Idris, which proceeds at a much slower
pace, covering interactive program development, with many more examples, see
Type-Driven Development with Idris [https://www.manning.com/books/type-driven-development-with-idris]
by Edwin Brady, available from Manning [https://www.manning.com].



Example Code

This tutorial includes some example code, which has been tested with
against Idris. These files are available with the Idris distribution,
so that you can try them out easily. They can be found under
samples. It is, however, strongly recommended that you type
them in yourself, rather than simply loading and reading them.


[1]
Typically, and perhaps confusingly, referred to in the dependently
typed programming literature as “vectors”
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Getting Started


Prerequisites

Before installing Idris, you will need to make sure you have all
of the necessary libraries and tools. You will need:


	A fairly recent version of GHC [https://www.haskell.org/ghc/]. The
earliest version we currently test with is 7.10.3.


	The GNU Multiple Precision Arithmetic Library (GMP) is available  from MacPorts/Homebrew and all major Linux distributions.






Downloading and Installing

The easiest way to install Idris, if you have all of the
prerequisites, is to type:

cabal update; cabal install idris





This will install the latest version released on Hackage, along with
any dependencies. If, however, you would like the most up to date
development version you can find it, as well as build instructions, on
GitHub at: https://github.com/idris-lang/Idris-dev.

If you haven’t previously installed anything using Cabal, then Idris
may not be on your path. Should the Idris executable not be found
please ensure that you have added ~/.cabal/bin to your $PATH
environment variable. Mac OS X users may find they need to add
~/Library/Haskell/bin instead, and Windows users will typically
find that Cabal installs programs in %HOME%\AppData\Roaming\cabal\bin.

To check that installation has succeeded, and to write your first
Idris program, create a file called hello.idr containing the
following text:

module Main

main : IO ()
main = putStrLn "Hello world"





If you are familiar with Haskell, it should be fairly clear what the
program is doing and how it works, but if not, we will explain the
details later. You can compile the program to an executable by
entering idris hello.idr -o hello at the shell prompt. This will
create an executable called hello, which you can run:

$ idris hello.idr -o hello
$ ./hello
Hello world





Please note that the dollar sign $ indicates the shell prompt!
Some useful options to the Idris command are:


	-o prog to compile to an executable called prog.


	--check type check the file and its dependencies without starting the interactive environment.


	--package pkg add package as dependency, e.g. --package contrib to make use of the contrib package.


	--help display usage summary and command line options.






The Interactive Environment

Entering idris at the shell prompt starts up the interactive
environment. You should see something like the following:

$ idris
    ____    __     _
   /  _/___/ /____(_)____
   / // __  / ___/ / ___/     Version 1.3.3
 _/ // /_/ / /  / (__  )      https://www.idris-lang.org/
/___/\__,_/_/  /_/____/       Type :? for help

Idris>





This gives a ghci style interface which allows evaluation of, as
well as type checking of, expressions; theorem proving, compilation;
editing; and various other operations. The command :? gives a list
of supported commands. Below, we see an example run in
which hello.idr is loaded, the type of main is checked and
then the program is compiled to the executable hello. Type
checking a file, if successful, creates a bytecode version of the file
(in this case hello.ibc) to speed up loading in future. The
bytecode is regenerated if the source file changes.

$ idris hello.idr
     ____    __     _
    /  _/___/ /____(_)____
    / // __  / ___/ / ___/     Version 1.3.3
  _/ // /_/ / /  / (__  )      https://www.idris-lang.org/
 /___/\__,_/_/  /_/____/       Type :? for help

Type checking ./hello.idr
*hello> :t main
Main.main : IO ()
*hello> :c hello
*hello> :q
Bye bye
$ ./hello
Hello world
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Types and Functions


Primitive Types

Idris defines several primitive types: Int, Integer and
Double for numeric operations, Char and String for text
manipulation, and Ptr which represents foreign pointers. There are
also several data types declared in the library, including Bool,
with values True and False. We can declare some constants with
these types. Enter the following into a file Prims.idr and load it
into the Idris interactive environment by typing idris Prims.idr:

module Prims

x : Int
x = 42

foo : String
foo = "Sausage machine"

bar : Char
bar = 'Z'

quux : Bool
quux = False





An Idris file consists of an optional module declaration (here
module Prims) followed by an optional list of imports and a
collection of declarations and definitions. In this example no imports
have been specified. However Idris programs can consist of several
modules and the definitions in each module each have their own
namespace. This is discussed further in Section
Modules and Namespaces. When writing Idris programs both the order in which
definitions are given and indentation are significant. Functions and
data types must be defined before use, incidentally each definition must
have a type declaration, for example see x : Int, foo :
String, from the above listing. New declarations must begin at the
same level of indentation as the preceding declaration.
Alternatively, a semicolon ; can be used to terminate declarations.

A library module prelude is automatically imported by every
Idris program, including facilities for IO, arithmetic, data
structures and various common functions. The prelude defines several
arithmetic and comparison operators, which we can use at the prompt.
Evaluating things at the prompt gives an answer, and the type of the
answer. For example:

*prims> 6*6+6
42 : Integer
*prims> x == 6*6+6
True : Bool





All of the usual arithmetic and comparison operators are defined for
the primitive types. They are overloaded using interfaces, as we
will discuss in Section Interfaces and can be extended to
work on user defined types. Boolean expressions can be tested with the
if...then...else construct, for example:

*prims> if x == 6 * 6 + 6 then "The answer!" else "Not the answer"
"The answer!" : String







Data Types

Data types are declared in a similar way and with similar syntax to
Haskell. Natural numbers and lists, for example, can be declared as
follows:

data Nat    = Z   | S Nat           -- Natural numbers
                                    -- (zero and successor)
data List a = Nil | (::) a (List a) -- Polymorphic lists





The above declarations are taken from the standard library. Unary
natural numbers can be either zero (Z), or the successor of
another natural number (S k). Lists can either be empty (Nil)
or a value added to the front of another list (x :: xs).

Data types may also be declared by giving just the types of the
constructors. These definitions are equivalent to those above:

data Nat : Type where
    Z : Nat
    S : Nat -> Nat

data List : Type -> Type where
    Nil : List a
    (::) : a -> List a -> List a





This syntax is more verbose, but more flexible, and is used for
types that can’t be described with the simpler syntax.

In the declaration for List, we used an infix operator ::.
New operators such as this can be added using a fixity declaration,
as follows:

infixr 10 ::





Functions, data constructors and type constructors may all be given
infix operators as names. They may be used in prefix form if enclosed
in brackets, e.g. (::). Infix operators can use any of the
symbols:

:+-*\/=.?|&><!@$%^~#





Some operators built from these symbols can’t be user defined. These are
:,  =>,  ->,  <-,  =,  ?=,  |,  **,
==>,  \,  %,  ~,  ?,  and !.



Functions

Functions are implemented by pattern matching, again using a similar
syntax to Haskell. The main difference is that Idris requires type
declarations for all functions, using a single colon : (rather
than Haskell’s double colon ::). Some natural number arithmetic
functions can be defined as follows, again taken from the standard
library:

-- Unary addition
plus : Nat -> Nat -> Nat
plus Z     y = y
plus (S k) y = S (plus k y)

-- Unary multiplication
mult : Nat -> Nat -> Nat
mult Z     y = Z
mult (S k) y = plus y (mult k y)





The standard arithmetic operators + and * are also overloaded
for use by Nat, and are implemented using the above functions.
Unlike Haskell, there is no restriction on whether types and function
names must begin with a capital letter or not. Function names
(plus and mult above), data constructors (Z, S,
Nil and ::) and type constructors (Nat and List) are
all part of the same namespace. By convention, however,
data types and constructor names typically begin with a capital letter.
We can test these functions at the Idris prompt:

Idris> plus (S (S Z)) (S (S Z))
4 : Nat
Idris> mult (S (S (S Z))) (plus (S (S Z)) (S (S Z)))
12 : Nat






Note

When displaying an element of Nat such as (S (S (S (S Z)))),
Idris displays it as 4.
The result of plus (S (S Z)) (S (S Z))
is actually (S (S (S (S Z))))
which is the natural number 4.
This can be checked at the Idris prompt:
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Interfaces

We often want to define functions which work across several different
data types. For example, we would like arithmetic operators to work on
Int, Integer and Double at the very least. We would like
== to work on the majority of data types. We would like to be able
to display different types in a uniform way.

To achieve this, we use interfaces, which are similar to type classes in
Haskell or traits in Rust. To define an interface, we provide a collection of
overloadable functions. A simple example is the Show
interface, which is defined in the prelude and provides an interface for
converting values to String:

interface Show a where
    show : a -> String





This generates a function of the following type (which we call a
method of the Show interface):

show : Show a => a -> String





We can read this as: “under the constraint that a has an implementation
of Show, take an input a and return a String.” An implementation
of an interface is defined by giving definitions of the methods of the interface.
For example, the Show implementation for Nat could be defined as:

Show Nat where
    show Z = "Z"
    show (S k) = "s" ++ show k





Idris> show (S (S (S Z)))
"sssZ" : String





Only one unnamed implementation of an interface can be given for a type, and implementations may
not overlap. But see Named Implementations below.

Implementation declarations can themselves have constraints.
To help with resolution, the arguments of an implementation must be
constructors (either data or type constructors) or variables
(i.e. you cannot give an implementation for a function). For
example, to define a Show implementation for vectors, we need to know
that there is a Show implementation for the element type, because we are
going to use it to convert each element to a String:

Show a => Show (Vect n a) where
    show xs = "[" ++ show' xs ++ "]" where
        show' : Vect n a -> String
        show' Nil        = ""
        show' (x :: Nil) = show x
        show' (x :: xs)  = show x ++ ", " ++ show' xs






Default Definitions

The library defines an Eq interface which provides methods for
comparing values for equality or inequality, with implementations for all of
the built-in types:

interface Eq a where
    (==) : a -> a -> Bool
    (/=) : a -> a -> Bool





To declare an implementation for a type, we have to give definitions of all
of the methods. For example, for an implementation of Eq for Nat:

Eq Nat where
    Z     == Z     = True
    (S x) == (S y) = x == y
    Z     == (S y) = False
    (S x) == Z     = False

    x /= y = not (x == y)





It is hard to imagine many cases where the /= method will be
anything other than the negation of the result of applying the ==
method. It is therefore convenient to give a default definition for
each method in the interface declaration, in terms of the other method:

interface Eq a where
    (==) : a -> a -> Bool
    (/=) : a -> a -> Bool

    x /= y = not (x == y)
    x == y = not (x /= y)





A minimal complete implementation of Eq requires either
== or /= to be defined, but does not require both. If a method
definition is missing, and there is a default definition for it, then
the default is used instead.



Extending Interfaces

Interfaces can also be extended. A logical next step from an equality
relation Eq is to define an ordering relation Ord. We can
define an Ord interface which inherits methods from Eq as well as
defining some of its own:

data Ordering = LT | EQ | GT





interface Eq a => Ord a where
    compare : a -> a -> Ordering

    (<) : a -> a -> Bool
    (>) : a -> a -> Bool
    (<=) : a -> a -> Bool
    (>=) : a -> a -> Bool
    max : a -> a -> a
    min : a -> a -> a





The Ord interface allows us to compare two values and determine their
ordering. Only the compare method is required; every other method
has a default definition. Using this we can write functions such as
sort, a function which sorts a list into increasing order,
provided that the element type of the list is in the Ord interface. We
give the constraints on the type variables left of the fat arrow
=>, and the function type to the right of the fat arrow:

sort : Ord a => List a -> List a





Functions, interfaces and implementations can have multiple
constraints. Multiple constraints are written in round brackets (parentheses)
in a comma separated list, for example:

sortAndShow : (Ord a, Show a) => List a -> String
sortAndShow xs = show (sort xs)






Note: Interfaces and mutual blocks

Idris is strictly “define before use”, except in mutual blocks.
In a mutual block, Idris elaborates in two passes: types on the first
pass and definitions on the second. When the mutual block contains an
interface declaration, it elaborates the interface header but none of the
method types on the first pass, and elaborates the method types and any
default definitions on the second pass.




Functors and Applicatives

So far, we have seen single parameter interfaces, where the parameter
is of type Type. In general, there can be any number of parameters
(even zero), and the parameters can have any type. If the type
of the parameter is not Type, we need to give an explicit type
declaration. For example, the Functor interface is defined in the
prelude:

interface Functor (f : Type -> Type) where
    map : (m : a -> b) -> f a -> f b





A functor allows a function to be applied across a structure, for
example to apply a function to every element in a List:

Functor List where
  map f []      = []
  map f (x::xs) = f x :: map f xs





Idris> map (*2) [1..10]
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20] : List Integer





Having defined Functor, we can define Applicative which
abstracts the notion of function application:

infixl 2 <*>

interface Functor f => Applicative (f : Type -> Type) where
    pure  : a -> f a
    (<*>) : f (a -> b) -> f a -> f b







Monads and do-notation

The Monad interface allows us to encapsulate binding and computation,
and is the basis of do-notation introduced in Section
“do” notation. It extends Applicative as defined above, and is
defined as follows:

interface Applicative m => Monad (m : Type -> Type) where
    (>>=)  : m a -> (a -> m b) -> m b





Inside a do block, the following syntactic transformations are
applied:


	x <- v; e becomes v >>= (\x => e)


	v; e becomes v >>= (\_ => e)


	let x = v; e becomes let x = v in e




IO has an implementation of Monad, defined using primitive functions.
We can also define an implementation for Maybe, as follows:

Monad Maybe where
    Nothing  >>= k = Nothing
    (Just x) >>= k = k x





Using this we can, for example, define a function which adds two
Maybe Int, using the monad to encapsulate the error handling:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = do x' <- x -- Extract value from x
               y' <- y -- Extract value from y
               pure (x' + y') -- Add them





This function will extract the values from x and y, if they
are both available, or return Nothing if one or both are not (“fail fast”). Managing the
Nothing cases is achieved by the >>= operator, hidden by the
do notation.

*Interfaces> m_add (Just 20) (Just 22)
Just 42 : Maybe Int
*Interfaces> m_add (Just 20) Nothing
Nothing : Maybe Int






Pattern Matching Bind

Sometimes we want to pattern match immediately on the result of a function
in do notation. For example, let’s say we have a function readNumber
which reads a number from the console, returning a value of the form
Just x if the number is valid, or Nothing otherwise:

readNumber : IO (Maybe Nat)
readNumber = do
  input <- getLine
  if all isDigit (unpack input)
     then pure (Just (cast input))
     else pure Nothing





If we then use it to write a function to read two numbers, returning
Nothing if neither are valid, then we would like to pattern match
on the result of readNumber:

readNumbers : IO (Maybe (Nat, Nat))
readNumbers =
  do x <- readNumber
     case x of
          Nothing => pure Nothing
          Just x_ok => do y <- readNumber
                          case y of
                               Nothing => pure Nothing
                               Just y_ok => pure (Just (x_ok, y_ok))





If there’s a lot of error handling, this could get deeply nested very quickly!
So instead, we can combine the bind and the pattern match in one line. For example,
we could try pattern matching on values of the form Just x_ok:

readNumbers : IO (Maybe (Nat, Nat))
readNumbers =
  do Just x_ok <- readNumber
     Just y_ok <- readNumber
     pure (Just (x_ok, y_ok))





There is still a problem, however, because we’ve now omitted the case for
Nothing so readNumbers is no longer total! We can add the Nothing
case back as follows:

readNumbers : IO (Maybe (Nat, Nat))
readNumbers =
  do Just x_ok <- readNumber | Nothing => pure Nothing
     Just y_ok <- readNumber | Nothing => pure Nothing
     pure (Just (x_ok, y_ok))





The effect of this version of readNumbers is identical to the first (in
fact, it is syntactic sugar for it and directly translated back into that form).
The first part of each statement (Just x_ok <- and Just y_ok <-) gives
the preferred binding - if this matches, execution will continue with the rest
of the do block. The second part gives the alternative bindings, of which
there may be more than one.



!-notation

In many cases, using do-notation can make programs unnecessarily
verbose, particularly in cases such as m_add above where the value
bound is used once, immediately. In these cases, we can use a
shorthand version, as follows:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = pure (!x + !y)





The notation !expr means that the expression expr should be
evaluated and then implicitly bound. Conceptually, we can think of
! as being a prefix function with the following type:

(!) : m a -> a





Note, however, that it is not really a function, merely syntax! In
practice, a subexpression !expr will lift expr as high as
possible within its current scope, bind it to a fresh name x, and
replace !expr with x. Expressions are lifted depth first, left
to right. In practice, !-notation allows us to program in a more
direct style, while still giving a notational clue as to which
expressions are monadic.

For example, the expression:

let y = 42 in f !(g !(print y) !x)





is lifted to:

let y = 42 in do y' <- print y
                 x' <- x
                 g' <- g y' x'
                 f g'







Monad comprehensions

The list comprehension notation we saw in Section
More Expressions is more general, and applies to anything which
has an implementation of both Monad and Alternative:

interface Applicative f => Alternative (f : Type -> Type) where
    empty : f a
    (<|>) : f a -> f a -> f a





In general, a comprehension takes the form [ exp | qual1, qual2, …,
qualn ] where quali can be one of:


	A generator x <- e


	A guard, which is an expression of type Bool


	A let binding let x = e




To translate a comprehension [exp | qual1, qual2, …, qualn], first
any qualifier qual which is a guard is translated to guard
qual, using the following function:

guard : Alternative f => Bool -> f ()





Then the comprehension is converted to do notation:

do { qual1; qual2; ...; qualn; pure exp; }





Using monad comprehensions, an alternative definition for m_add
would be:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = [ x' + y' | x' <- x, y' <- y ]








Idiom brackets

While do notation gives an alternative meaning to sequencing,
idioms give an alternative meaning to application. The notation and
larger example in this section is inspired by Conor McBride and Ross
Paterson’s paper “Applicative Programming with Effects” [1].

First, let us revisit m_add above. All it is really doing is
applying an operator to two values extracted from Maybe Int. We
could abstract out the application:

m_app : Maybe (a -> b) -> Maybe a -> Maybe b
m_app (Just f) (Just a) = Just (f a)
m_app _        _        = Nothing





Using this, we can write an alternative m_add which uses this
alternative notion of function application, with explicit calls to
m_app:

m_add' : Maybe Int -> Maybe Int -> Maybe Int
m_add' x y = m_app (m_app (Just (+)) x) y





Rather than having to insert m_app everywhere there is an
application, we can use idiom brackets to do the job for us.
To do this, we can give Maybe an implementation of Applicative
as follows, where <*> is defined in the same way as m_app
above (this is defined in the Idris library):

Applicative Maybe where
    pure = Just

    (Just f) <*> (Just a) = Just (f a)
    _        <*> _        = Nothing





Using <*> we can use this implementation as follows, where a function
application [| f a1 …an |] is translated into pure f <*> a1 <*>
… <*> an:

m_add' : Maybe Int -> Maybe Int -> Maybe Int
m_add' x y = [| x + y |]






An error-handling interpreter

Idiom notation is commonly useful when defining evaluators. McBride
and Paterson describe such an evaluator [1], for a language similar
to the following:

data Expr = Var String      -- variables
          | Val Int         -- values
          | Add Expr Expr   -- addition





Evaluation will take place relative to a context mapping variables
(represented as Strings) to Int values, and can possibly fail.
We define a data type Eval to wrap an evaluator:

data Eval : Type -> Type where
     MkEval : (List (String, Int) -> Maybe a) -> Eval a





Wrapping the evaluator in a data type means we will be able to provide
implementations of interfaces for it later. We begin by defining a function to
retrieve values from the context during evaluation:

fetch : String -> Eval Int
fetch x = MkEval (\e => fetchVal e) where
    fetchVal : List (String, Int) -> Maybe Int
    fetchVal [] = Nothing
    fetchVal ((v, val) :: xs) = if (x == v)
                                  then (Just val)
                                  else (fetchVal xs)





When defining an evaluator for the language, we will be applying functions in
the context of an Eval, so it is natural to give Eval an implementation
of Applicative. Before Eval can have an implementation of
Applicative it is necessary for Eval to have an implementation of
Functor:

Functor Eval where
    map f (MkEval g) = MkEval (\e => map f (g e))

Applicative Eval where
    pure x = MkEval (\e => Just x)

    (<*>) (MkEval f) (MkEval g) = MkEval (\x => app (f x) (g x)) where
        app : Maybe (a -> b) -> Maybe a -> Maybe b
        app (Just fx) (Just gx) = Just (fx gx)
        app _         _         = Nothing





Evaluating an expression can now make use of the idiomatic application
to handle errors:

eval : Expr -> Eval Int
eval (Var x)   = fetch x
eval (Val x)   = [| x |]
eval (Add x y) = [| eval x + eval y |]

runEval : List (String, Int) -> Expr -> Maybe Int
runEval env e = case eval e of
    MkEval envFn => envFn env








Named Implementations

It can be desirable to have multiple implementations of an interface for the
same type, for example to provide alternative methods for sorting or printing
values. To achieve this, implementations can be named as follows:

[myord] Ord Nat where
   compare Z (S n)     = GT
   compare (S n) Z     = LT
   compare Z Z         = EQ
   compare (S x) (S y) = compare @{myord} x y





This declares an implementation as normal, but with an explicit name,
myord. The syntax compare @{myord} gives an explicit implementation to
compare, otherwise it would use the default implementation for Nat. We
can use this, for example, to sort a list of Nat in reverse.
Given the following list:

testList : List Nat
testList = [3,4,1]





We can sort it using the default Ord implementation, then the named
implementation myord as follows, at the Idris prompt:

*named_impl> show (sort testList)
"[sO, sssO, ssssO]" : String
*named_impl> show (sort @{myord} testList)
"[ssssO, sssO, sO]" : String





Sometimes, we also need access to a named parent implementation. For example,
the prelude defines the following Semigroup interface:

interface Semigroup ty where
  (<+>) : ty -> ty -> ty





Then it defines Monoid, which extends Semigroup with a “neutral”
value:

interface Semigroup ty => Monoid ty where
  neutral : ty





We can define two different implementations of Semigroup and
Monoid for Nat, one based on addition and one on multiplication:

[PlusNatSemi] Semigroup Nat where
  (<+>) x y = x + y

[MultNatSemi] Semigroup Nat where
  (<+>) x y = x * y





The neutral value for addition is 0, but the neutral value for multiplication
is 1. It’s important, therefore, that when we define implementations
of Monoid they extend the correct Semigroup implementation. We can
do this with a using clause in the implementation as follows:

[PlusNatMonoid] Monoid Nat using PlusNatSemi where
  neutral = 0

[MultNatMonoid] Monoid Nat using MultNatSemi where
  neutral = 1





The using PlusNatSemi clause indicates that PlusNatMonoid should
extend PlusNatSemi specifically.



Determining Parameters

When an interface has more than one parameter, it can help resolution if the
parameters used to find an implementation are restricted. For example:

interface Monad m => MonadState s (m : Type -> Type) | m where
  get : m s
  put : s -> m ()





In this interface, only m needs to be known to find an implementation of
this interface, and s can then be determined from the implementation. This
is declared with the | m after the interface declaration. We call m a
determining parameter of the MonadState interface, because it is the
parameter used to find an implementation.


[1]
(1,2)
Conor McBride and Ross Paterson. 2008. Applicative programming
with effects. J. Funct. Program. 18, 1 (January 2008),
1-13. DOI=10.1017/S0956796807006326
http://dx.doi.org/10.1017/S0956796807006326
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Modules and Namespaces

An Idris program consists of a collection of modules. Each module
includes an optional module declaration giving the name of the
module, a list of import statements giving the other modules which
are to be imported, and a collection of declarations and definitions of
types, interfaces and functions. For example, the listing below gives a
module which defines a binary tree type BTree (in a file
Btree.idr):

module Btree

public export
data BTree a = Leaf
             | Node (BTree a) a (BTree a)

export
insert : Ord a => a -> BTree a -> BTree a
insert x Leaf = Node Leaf x Leaf
insert x (Node l v r) = if (x < v) then (Node (insert x l) v r)
                                   else (Node l v (insert x r))

export
toList : BTree a -> List a
toList Leaf = []
toList (Node l v r) = Btree.toList l ++ (v :: Btree.toList r)

export
toTree : Ord a => List a -> BTree a
toTree [] = Leaf
toTree (x :: xs) = insert x (toTree xs)





The modifiers export and public export say which names are visible
from other modules. These are explained further below.

Then, this gives a main program (in a file
bmain.idr) which uses the Btree module to sort a list:

module Main

import Btree

main : IO ()
main = do let t = toTree [1,8,2,7,9,3]
          print (Btree.toList t)





The same names can be defined in multiple modules: names are qualified with
the name of the module. The names defined in the Btree module are, in full:


	Btree.BTree


	Btree.Leaf


	Btree.Node


	Btree.insert


	Btree.toList


	Btree.toTree




If names are otherwise unambiguous, there is no need to give the fully
qualified name. Names can be disambiguated either by giving an explicit
qualification, or according to their type.

There is no formal link between the module name and its filename,
although it is generally advisable to use the same name for each. An
import statement refers to a filename, using dots to separate
directories. For example, import foo.bar would import the file
foo/bar.idr, which would conventionally have the module declaration
module foo.bar. The only requirement for module names is that the
main module, with the main function, must be called
Main — although its filename need not be Main.idr.


Export Modifiers

Idris allows for fine-grained control over the visibility of a
module’s contents. By default, all names defined in a module are kept
private.  This aides in specification of a minimal interface and for
internal details to be left hidden. Idris allows for functions,
types, and interfaces to be marked as: private, export, or
public export. Their general meaning is as follows:


	private meaning that it’s not exported at all. This is the default.


	export meaning that its top level type is exported.


	public export meaning that the entire definition is exported.




A further restriction in modifying the visibility is that definitions
must not refer to anything within a lower level of visibility. For
example, public export definitions cannot use private names, and
export types cannot use private names. This is to prevent private
names leaking into a module’s interface.


Meaning for Functions


	export the type is exported


	public export the type and definition are exported, and the
definition can be used after it is imported. In other words, the
definition itself is considered part of the module’s interface. The
long name public export is intended to make you think twice
about doing this.





Note

Type synonyms in Idris are created by writing a function. When
setting the visibility for a module, it might be a good idea to
public export all type synonyms if they are to be used outside
the module. Otherwise, Idris won’t know what the synonym is a
synonym for.
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Packages

Idris includes a simple build system for building packages and executables
from a named package description file. These files can be used with the
Idris compiler to manage the development process.


Package Descriptions

A package description includes the following:


	A header, consisting of the keyword package followed by a package
name. Package names can be any valid Idris identifier. The iPKG
format also takes a quoted version that accepts any valid filename.


	Fields describing package contents, <field> = <value>.




At least one field must be the modules field, where the value is a
comma separated list of modules. For example, given an idris package
maths that has modules Maths.idr, Maths.NumOps.idr,
Maths.BinOps.idr, and Maths.HexOps.idr, the corresponding
package file would be:

package maths

modules = Maths
        , Maths.NumOps
        , Maths.BinOps
        , Maths.HexOps





Other examples of package files can be found in the libs directory
of the main Idris repository, and in third-party libraries [https://github.com/idris-lang/Idris-dev/wiki/Libraries].



Using Package files

Idris itself is aware about packages, and special commands are
available to help with, for example, building packages, installing
packages, and cleaning packages.  For instance, given the maths
package from earlier we can use Idris as follows:


	idris --build maths.ipkg will build all modules in the package


	idris --install maths.ipkg will install the package, making it
accessible by other Idris libraries and programs.


	idris --clean maths.ipkg will delete all intermediate code and
executable files generated when building.




Once the maths package has been installed, the command line option
--package maths makes it accessible (abbreviated to -p maths).
For example:

idris -p maths Main.idr







Testing Idris Packages

The integrated build system includes a simple testing framework.
This framework collects functions listed in the ipkg file under tests.
All test functions must return IO ().

When you enter idris --testpkg yourmodule.ipkg,
the build system creates a temporary file in a fresh environment on your machine
by listing the tests functions under a single main function.
It compiles this temporary file to an executable and then executes it.

The tests themselves are responsible for reporting their success or failure.
Test functions commonly use putStrLn to report test results.
The test framework does not impose any standards for reporting and consequently
does not aggregate test results.

For example, lets take the following list of functions that are defined in a
module called NumOps for a sample package maths:

module Maths.NumOps

%access export -- to make functions under test visible

double : Num a => a -> a
double a = a + a

triple : Num a => a -> a
triple a = a + double a





A simple test module, with a qualified name of Test.NumOps can be declared as:

module Test.NumOps

import Maths.NumOps

%access export  -- to make the test functions visible

assertEq : Eq a => (given : a) -> (expected : a) -> IO ()
assertEq g e = if g == e
    then putStrLn "Test Passed"
    else putStrLn "Test Failed"

assertNotEq : Eq a => (given : a) -> (expected : a) -> IO ()
assertNotEq g e = if not (g == e)
    then putStrLn "Test Passed"
    else putStrLn "Test Failed"

testDouble : IO ()
testDouble = assertEq (double 2) 4

testTriple : IO ()
testTriple = assertNotEq (triple 2) 5





The functions assertEq and assertNotEq are used to run expected passing,
and failing, equality tests. The actual tests are testDouble and testTriple,
and are declared in the maths.ipkg file as follows:

package maths

modules = Maths.NumOps
        , Test.NumOps

tests = Test.NumOps.testDouble
      , Test.NumOps.testTriple





The testing framework can then be invoked using idris --testpkg maths.ipkg:

> idris --testpkg maths.ipkg
Type checking ./Maths/NumOps.idr
Type checking ./Test/NumOps.idr
Type checking /var/folders/63/np5g0d5j54x1s0z12rf41wxm0000gp/T/idristests144128232716531729.idr
Test Passed
Test Passed





Note how both tests have reported success by printing Test Passed
as we arranged for with the assertEq and assertNoEq functions.



Package Dependencies Using Atom

If you are using the Atom editor and have a dependency on another package,
corresponding to for instance import Lightyear or import Pruviloj,
you need to let Atom know that it should be loaded. The easiest way to
accomplish that is with a .ipkg file. The general contents of an ipkg file
will be described in the next section of the tutorial, but for now here is
a simple recipe for this trivial case:


	Create a folder myProject.


	Add a file myProject.ipkg containing just a couple of lines:




package myProject

pkgs = pruviloj, lightyear






	In Atom, use the File menu to Open Folder myProject.






More information

More details, including a complete listing of available fields, can be
found in the reference manual in Packages.
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Example: The Well-Typed Interpreter

In this section, we’ll use the features we’ve seen so far to write a
larger example, an interpreter for a simple functional programming
language, with variables, function application, binary operators and
an if...then...else construct. We will use the dependent type
system to ensure that any programs which can be represented are
well-typed.


Representing Languages

First, let us define the types in the language. We have integers,
booleans, and functions, represented by Ty:

data Ty = TyInt | TyBool | TyFun Ty Ty





We can write a function to translate these representations to a concrete
Idris type — remember that types are first class, so can be
calculated just like any other value:

interpTy : Ty -> Type
interpTy TyInt       = Integer
interpTy TyBool      = Bool
interpTy (TyFun a t) = interpTy a -> interpTy t





We’re going to define a representation of our language in such a way
that only well-typed programs can be represented. We’ll index the
representations of expressions by their type, and the types of
local variables (the context). The context can be represented using
the Vect data type, and as it will be used regularly it will be
represented as an implicit argument. To do so we define everything in
a using block (keep in mind that everything after this point needs
to be indented so as to be inside the using block):

using (G:Vect n Ty)





Expressions are indexed by the types of the local variables, and the type of
the expression itself:

data Expr : Vect n Ty -> Ty -> Type





The full representation of expressions is:

data HasType : (i : Fin n) -> Vect n Ty -> Ty -> Type where
    Stop : HasType FZ (t :: G) t
    Pop  : HasType k G t -> HasType (FS k) (u :: G) t

data Expr : Vect n Ty -> Ty -> Type where
    Var : HasType i G t -> Expr G t
    Val : (x : Integer) -> Expr G TyInt
    Lam : Expr (a :: G) t -> Expr G (TyFun a t)
    App : Expr G (TyFun a t) -> Expr G a -> Expr G t
    Op  : (interpTy a -> interpTy b -> interpTy c) ->
          Expr G a -> Expr G b -> Expr G c
    If  : Expr G TyBool ->
          Lazy (Expr G a) ->
          Lazy (Expr G a) -> Expr G a





The code above makes use of the Vect and Fin types from the
Idris standard library. We import them because they are not provided
in the prelude:

import Data.Vect
import Data.Fin





Since expressions are indexed by their type, we can read the typing
rules of the language from the definitions of the constructors. Let us
look at each constructor in turn.

We use a nameless representation for variables — they are de Bruijn
indexed. Variables are represented by a proof of their membership in
the context, HasType i G T, which is a proof that variable i
in context G has type T. This is defined as follows:

data HasType : (i : Fin n) -> Vect n Ty -> Ty -> Type where
    Stop : HasType FZ (t :: G) t
    Pop  : HasType k G t -> HasType (FS k) (u :: G) t





We can treat Stop as a proof that the most recently defined variable
is well-typed, and Pop n as a proof that, if the nth most
recently defined variable is well-typed, so is the n+1th. In
practice, this means we use Stop to refer to the most recently
defined variable, Pop Stop to refer to the next, and so on, via
the Var constructor:

Var : HasType i G t -> Expr G t





So, in an expression \x. \y. x y, the variable x would have a
de Bruijn index of 1, represented as Pop Stop, and y 0,
represented as Stop. We find these by counting the number of
lambdas between the definition and the use.

A value carries a concrete representation of an integer:

Val : (x : Integer) -> Expr G TyInt





A lambda creates a function. In the scope of a function of type a ->
t, there is a new local variable of type a, which is expressed
by the context index:

Lam : Expr (a :: G) t -> Expr G (TyFun a t)





Function application produces a value of type t given a function
from a to t and a value of type a:

App : Expr G (TyFun a t) -> Expr G a -> Expr G t





We allow arbitrary binary operators, where the type of the operator
informs what the types of the arguments must be:

Op : (interpTy a -> interpTy b -> interpTy c) ->
     Expr G a -> Expr G b -> Expr G c





Finally, If expressions make a choice given a boolean. Each branch
must have the same type, and we will evaluate the branches lazily so
that only the branch which is taken need be evaluated:

If : Expr G TyBool ->
     Lazy (Expr G a) ->
     Lazy (Expr G a) ->
     Expr G a







Writing the Interpreter

When we evaluate an Expr, we’ll need to know the values in scope,
as well as their types. Env is an environment, indexed over the
types in scope. Since an environment is just another form of list,
albeit with a strongly specified connection to the vector of local
variable types, we use the usual :: and Nil constructors so
that we can use the usual list syntax. Given a proof that a variable
is defined in the context, we can then produce a value from the
environment:

data Env : Vect n Ty -> Type where
    Nil  : Env Nil
    (::) : interpTy a -> Env G -> Env (a :: G)

lookup : HasType i G t -> Env G -> interpTy t
lookup Stop    (x :: xs) = x
lookup (Pop k) (x :: xs) = lookup k xs





Given this, an interpreter is a function which
translates an Expr into a concrete Idris value with respect to a
specific environment:

interp : Env G -> Expr G t -> interpTy t





The complete interpreter is defined as follows, for reference. For
each constructor, we translate it into the corresponding Idris value:

interp env (Var i)     = lookup i env
interp env (Val x)     = x
interp env (Lam sc)    = \x => interp (x :: env) sc
interp env (App f s)   = interp env f (interp env s)
interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e)  = if interp env x then interp env t
                                         else interp env e





Let us look at each case in turn. To translate a variable, we simply look it
up in the environment:

interp env (Var i) = lookup i env





To translate a value, we just return the concrete representation of the
value:

interp env (Val x) = x





Lambdas are more interesting. In this case, we construct a function
which interprets the scope of the lambda with a new value in the
environment. So, a function in the object language is translated to an
Idris function:

interp env (Lam sc) = \x => interp (x :: env) sc





For an application, we interpret the function and its argument and apply
it directly. We know that interpreting f must produce a function,
because of its type:

interp env (App f s) = interp env f (interp env s)





Operators and conditionals are, again, direct translations into the
equivalent Idris constructs. For operators, we apply the function to
its operands directly, and for If, we apply the Idris
if...then...else construct directly.

interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e)  = if interp env x then interp env t
                                         else interp env e







Testing

We can make some simple test functions. Firstly, adding two inputs
\x. \y. y + x is written as follows:

add : Expr G (TyFun TyInt (TyFun TyInt TyInt))
add = Lam (Lam (Op (+) (Var Stop) (Var (Pop Stop))))





More interestingly, a factorial function fact
(e.g. \x. if (x == 0) then 1 else (fact (x-1) * x)),
can be written as:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var Stop) (Val 0))
               (Val 1)
               (Op (*) (App fact (Op (-) (Var Stop) (Val 1)))
                       (Var Stop)))







Running

To finish, we write a main program which interprets the factorial
function on user input:

main : IO ()
main = do putStr "Enter a number: "
          x <- getLine
          printLn (interp [] fact (cast x))





Here, cast is an overloaded function which converts a value from
one type to another if possible. Here, it converts a string to an
integer, giving 0 if the input is invalid. An example run of this
program at the Idris interactive environment is:

$ idris interp.idr
     ____    __     _
    /  _/___/ /____(_)____
    / // __  / ___/ / ___/     Version 1.3.2
  _/ // /_/ / /  / (__  )      https://www.idris-lang.org/
 /___/\__,_/_/  /_/____/       Type :? for help

Type checking ./interp.idr
*interp> :exec
Enter a number: 6
720
*interp>






Aside: cast

The prelude defines an interface Cast which allows conversion
between types:

interface Cast from to where
    cast : from -> to





It is a multi-parameter interface, defining the source type and
object type of the cast. It must be possible for the type checker to
infer both parameters at the point where the cast is applied. There
are casts defined between all of the primitive types, as far as they
make sense.
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Views and the “with” rule


Dependent pattern matching

Since types can depend on values, the form of some arguments can be
determined by the value of others. For example, if we were to write
down the implicit length arguments to (++), we’d see that the form
of the length argument was determined by whether the vector was empty
or not:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) {n=Z}   []        ys = ys
(++) {n=S k} (x :: xs) ys = x :: xs ++ ys





If n was a successor in the [] case, or zero in the ::
case, the definition would not be well typed.



The with rule — matching intermediate values

Very often, we need to match on the result of an intermediate
computation. Idris provides a construct for this, the with
rule, inspired by views in Epigram [1], which takes account of
the fact that matching on a value in a dependently typed language can
affect what we know about the forms of other values. In its simplest
form, the with rule adds another argument to the function being
defined.

We have already seen a vector filter function. This time, we define it
using with as follows:

filter : (a -> Bool) -> Vect n a -> (p ** Vect p a)
filter p [] = ( _ ** [] )
filter p (x :: xs) with (filter p xs)
  filter p (x :: xs) | ( _ ** xs' ) = if (p x) then ( _ ** x :: xs' ) else ( _ ** xs' )





Here, the with clause allows us to deconstruct the result of
filter p xs. The view refined argument pattern filter p (x ::
xs) goes beneath the with clause, followed by a vertical bar
|, followed by the deconstructed intermediate result ( _ ** xs'
). If the view refined argument pattern is unchanged from the
original function argument pattern, then the left side of | is
extraneous and may be omitted:

filter p (x :: xs) with (filter p xs)
  | ( _ ** xs' ) = if (p x) then ( _ ** x :: xs' ) else ( _ ** xs' )





with clauses can also be nested:

foo : Int -> Int -> Bool
foo n m with (succ n)
  foo _ m | 2 with (succ m)
    foo _ _ | 2 | 3 = True
    foo _ _ | 2 | _ = False
  foo _ _ | _ = False





If the intermediate computation itself has a dependent type, then the
result can affect the forms of other arguments — we can learn the form
of one value by testing another. In these cases, view refined argument
patterns must be explicit. For example, a Nat is either even or
odd. If it is even it will be the sum of two equal Nat.
Otherwise, it is the sum of two equal Nat plus one:

data Parity : Nat -> Type where
   Even : Parity (n + n)
   Odd  : Parity (S (n + n))





We say Parity is a view of Nat. It has a covering function
which tests whether it is even or odd and constructs the predicate
accordingly.

parity : (n:Nat) -> Parity n





We’ll come back to the definition of parity shortly. We can use it
to write a function which converts a natural number to a list of
binary digits (least significant first) as follows, using the with
rule:

natToBin : Nat -> List Bool
natToBin Z = Nil
natToBin k with (parity k)
   natToBin (j + j)     | Even = False :: natToBin j
   natToBin (S (j + j)) | Odd  = True  :: natToBin j





The value of parity k affects the form of k, because the
result of parity k depends on k. So, as well as the patterns
for the result of the intermediate computation (Even and Odd)
right of the |, we also write how the results affect the other
patterns left of the |. That is:


	When parity k evaluates to Even, we can refine the original
argument k to a refined pattern (j + j) according to
Parity (n + n) from the Even constructor definition. So
(j + j) replaces k on the left side of |, and the
Even constructor appears on the right side. The natural number
j in the refined pattern can be used on the right side of the
= sign.


	Otherwise, when parity k evaluates to Odd, the original
argument k is refined to S (j + j) according to Parity (S
(n + n)) from the Odd constructor definition, and Odd now
appears on the right side of |, again with the natural number
j used on the right side of the = sign.




Note that there is a function in the patterns (+) and repeated
occurrences of j - this is allowed because another argument has
determined the form of these patterns.

We will return to this function in the next section Theorems in Practice to
complete the definition of parity.



With and proofs

To use a dependent pattern match for theorem proving, it is sometimes necessary
to explicitly construct the proof resulting from the pattern match.
To do this, you can postfix the with clause with proof p and the proof
generated by the pattern match will be in scope and named p. For example:

data Foo = FInt Int | FBool Bool

optional : Foo -> Maybe Int
optional (FInt x) = Just x
optional (FBool b) = Nothing

isFInt : (foo:Foo) -> Maybe (x : Int ** (optional foo = Just x))
isFInt foo with (optional foo) proof p
  isFInt foo | Nothing = Nothing           -- here, p : Nothing = optional foo
  isFInt foo | (Just x) = Just (x ** Refl) -- here, p : Just x = optional foo






[1]
Conor McBride and James McKinna. 2004. The view from the
left. J. Funct. Program. 14, 1 (January 2004),
69-111. https://doi.org/10.1017/S0956796803004829
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Theorem Proving


Equality

Idris allows propositional equalities to be declared, allowing theorems about
programs to be stated and proved. Equality is built in, but conceptually
has the following definition:

data (=) : a -> b -> Type where
   Refl : x = x





Equalities can be proposed between any values of any types, but the only
way to construct a proof of equality is if values actually are equal.
For example:

fiveIsFive : 5 = 5
fiveIsFive = Refl

twoPlusTwo : 2 + 2 = 4
twoPlusTwo = Refl







The Empty Type

There is an empty type, \(\bot\), which has no constructors. It is
therefore impossible to construct an element of the empty type, at least
without using a partially defined or general recursive function (see
Section Totality Checking for more details). We can therefore use the
empty type to prove that something is impossible, for example zero is
never equal to a successor:

disjoint : (n : Nat) -> Z = S n -> Void
disjoint n p = replace {P = disjointTy} p ()
  where
    disjointTy : Nat -> Type
    disjointTy Z = ()
    disjointTy (S k) = Void





There is no need to worry too much about how this function works —
essentially, it applies the library function replace, which uses an
equality proof to transform a predicate. Here we use it to transform a
value of a type which can exist, the empty tuple, to a value of a type
which can’t, by using a proof of something which can’t exist.

Once we have an element of the empty type, we can prove anything.
void is defined in the library, to assist with proofs by
contradiction.

void : Void -> a







Simple Theorems

When type checking dependent types, the type itself gets normalised.
So imagine we want to prove the following theorem about the reduction
behaviour of plus:

plusReduces : (n:Nat) -> plus Z n = n





We’ve written down the statement of the theorem as a type, in just the
same way as we would write the type of a program. In fact there is no
real distinction between proofs and programs. A proof, as far as we are
concerned here, is merely a program with a precise enough type to
guarantee a particular property of interest.

We won’t go into details here, but the Curry-Howard correspondence [1]
explains this relationship. The proof itself is trivial, because
plus Z n normalises to n by the definition of plus:

plusReduces n = Refl





It is slightly harder if we try the arguments the other way, because
plus is defined by recursion on its first argument. The proof also works
by recursion on the first argument to plus, namely n.

plusReducesZ : (n:Nat) -> n = plus n Z
plusReducesZ Z = Refl
plusReducesZ (S k) = cong (plusReducesZ k)





cong is a function defined in the library which states that equality
respects function application:

cong : {f : t -> u} -> a = b -> f a = f b





We can do the same for the reduction behaviour of plus on successors:

plusReducesS : (n:Nat) -> (m:Nat) -> S (plus n m) = plus n (S m)
plusReducesS Z m = Refl
plusReducesS (S k) m = cong (plusReducesS k m)





Even for trivial theorems like these, the proofs are a little tricky to
construct in one go. When things get even slightly more complicated, it
becomes too much to think about to construct proofs in this “batch
mode”.

Idris provides interactive editing capabilities, which can help with
building proofs. For more details on building proofs interactively in
an editor, see Theorem Proving.



Theorems in Practice

The need to prove theorems can arise naturally in practice. For example,
previously (Views and the “with” rule) we implemented natToBin using a function
parity:

parity : (n:Nat) -> Parity n





However, we didn’t provide a definition for parity. We might expect it
to look something like the following:

parity : (n:Nat) -> Parity n
parity Z     = Even {n=Z}
parity (S Z) = Odd {n=Z}
parity (S (S k)) with (parity k)
  parity (S (S (j + j)))     | Even = Even {n=S j}
  parity (S (S (S (j + j)))) | Odd  = Odd {n=S j}





Unfortunately, this fails with a type error:

When checking right hand side of with block in views.parity with expected type
        Parity (S (S (j + j)))

Type mismatch between
        Parity (S j + S j) (Type of Even)
and
        Parity (S (S (plus j j))) (Expected type)





The problem is that normalising S j + S j, in the type of Even
doesn’t result in what we need for the type of the right hand side of
Parity. We know that S (S (plus j j)) is going to be equal to
S j + S j, but we need to explain it to Idris with a proof. We can
begin by adding some holes (see Holes) to the definition:

parity : (n:Nat) -> Parity n
parity Z     = Even {n=Z}
parity (S Z) = Odd {n=Z}
parity (S (S k)) with (parity k)
  parity (S (S (j + j)))     | Even = let result = Even {n=S j} in
                                          ?helpEven
  parity (S (S (S (j + j)))) | Odd  = let result = Odd {n=S j} in
                                          ?helpOdd





Checking the type of helpEven shows us what we need to prove for the
Even case:

  j : Nat
  result : Parity (S (plus j (S j)))
--------------------------------------
helpEven : Parity (S (S (plus j j)))





We can therefore write a helper function to rewrite the type to the form
we need:

helpEven : (j : Nat) -> Parity (S j + S j) -> Parity (S (S (plus j j)))
helpEven j p = rewrite plusSuccRightSucc j j in p





The rewrite ... in syntax allows you to change the required type of an
expression by rewriting it according to an equality proof. Here, we have
used plusSuccRightSucc, which has the following type:

plusSuccRightSucc : (left : Nat) -> (right : Nat) -> S (left + right) = left + S right





We can see the effect of rewrite by replacing the right hand side of
helpEven with a hole, and working step by step. Beginning with the following:

helpEven : (j : Nat) -> Parity (S j + S j) -> Parity (S (S (plus j j)))
helpEven j p = ?helpEven_rhs





We can look at the type of helpEven_rhs:

  j : Nat
  p : Parity (S (plus j (S j)))
--------------------------------------
helpEven_rhs : Parity (S (S (plus j j)))





Then we can rewrite by applying plusSuccRightSucc j j, which gives
an equation S (j + j) = j + S j, thus replacing S (j + j) (or,
in this case, S (plus j j) since S (j + j) reduces to that) in the
type with j + S j:

helpEven : (j : Nat) -> Parity (S j + S j) -> Parity (S (S (plus j j)))
helpEven j p = rewrite plusSuccRightSucc j j in ?helpEven_rhs





Checking the type of helpEven_rhs now shows what has happened, including
the type of the equation we just used (as the type of _rewrite_rule):

  j : Nat
  p : Parity (S (plus j (S j)))
  _rewrite_rule : S (plus j j) = plus j (S j)
--------------------------------------
helpEven_rhs : Parity (S (plus j (S j)))





Using rewrite and another helper for the Odd case, we can complete
parity as follows:

helpEven : (j : Nat) -> Parity (S j + S j) -> Parity (S (S (plus j j)))
helpEven j p = rewrite plusSuccRightSucc j j in p

helpOdd : (j : Nat) -> Parity (S (S (j + S j))) -> Parity (S (S (S (j + j))))
helpOdd j p = rewrite plusSuccRightSucc j j in p

parity : (n:Nat) -> Parity n
parity Z     = Even {n=Z}
parity (S Z) = Odd {n=Z}
parity (S (S k)) with (parity k)
  parity (S (S (j + j)))     | Even = helpEven j (Even {n = S j})
  parity (S (S (S (j + j)))) | Odd  = helpOdd j (Odd {n = S j})





Full details of rewrite are beyond the scope of this introductory tutorial,
but it is covered in the theorem proving tutorial (see Theorem Proving).



Totality Checking

If we really want to trust our proofs, it is important that they are
defined by total functions — that is, a function which is defined for
all possible inputs and is guaranteed to terminate. Otherwise we could
construct an element of the empty type, from which we could prove
anything:

-- making use of 'hd' being partially defined
empty1 : Void
empty1 = hd [] where
    hd : List a -> a
    hd (x :: xs) = x

-- not terminating
empty2 : Void
empty2 = empty2





Internally, Idris checks every definition for totality, and we can check at
the prompt with the :total command. We see that neither of the above
definitions is total:

*Theorems> :total empty1
possibly not total due to: empty1#hd
    not total as there are missing cases
*Theorems> :total empty2
possibly not total due to recursive path empty2





Note the use of the word “possibly” — a totality check can, of course,
never be certain due to the undecidability of the halting problem. The
check is, therefore, conservative. It is also possible (and indeed
advisable, in the case of proofs) to mark functions as total so that it
will be a compile time error for the totality check to fail:

total empty2 : Void
empty2 = empty2





Type checking ./theorems.idr
theorems.idr:25:empty2 is possibly not total due to recursive path empty2





Reassuringly, our proof in Section The Empty Type that the zero and
successor constructors are disjoint is total:

*theorems> :total disjoint
Total





The totality check is, necessarily, conservative. To be recorded as
total, a function f must:


	Cover all possible inputs


	Be well-founded — i.e. by the time a sequence of (possibly
mutually) recursive calls reaches f again, it must be possible to
show that one of its arguments has decreased.


	Not use any data types which are not strictly positive


	Not call any non-total functions





Directives and Compiler Flags for Totality

By default, Idris allows all well-typed definitions, whether total or not.
However, it is desirable for functions to be total as far as possible, as this
provides a guarantee that they provide a result for all possible inputs, in
finite time. It is possible to make total functions a requirement, either:


	By using the --total compiler flag.


	By adding a %default total directive to a source file. All
definitions after this will be required to be total, unless
explicitly flagged as partial.




All functions after a %default total declaration are required to
be total. Correspondingly, after a %default partial declaration, the
requirement is relaxed.

Finally, the compiler flag --warnpartial causes to print a warning
for any undeclared partial function.



Totality checking issues

Please note that the totality checker is not perfect! Firstly, it is
necessarily conservative due to the undecidability of the halting
problem, so many programs which are total will not be detected as
such. Secondly, the current implementation has had limited effort put
into it so far, so there may still be cases where it believes a function
is total which is not. Do not rely on it for your proofs yet!



Hints for totality

In cases where you believe a program is total, but Idris does not agree, it is
possible to give hints to the checker to give more detail for a termination
argument. The checker works by ensuring that all chains of recursive calls
eventually lead to one of the arguments decreasing towards a base case, but
sometimes this is hard to spot. For example, the following definition cannot be
checked as total because the checker cannot decide that filter (< x) xs
will always be smaller than (x :: xs):

qsort : Ord a => List a -> List a
qsort [] = []
qsort (x :: xs)
   = qsort (filter (< x) xs) ++
      (x :: qsort (filter (>= x) xs))





The function assert_smaller, defined in the prelude, is intended to
address this problem:

assert_smaller : a -> a -> a
assert_smaller x y = y





It simply evaluates to its second argument, but also asserts to the
totality checker that y is structurally smaller than x. This can
be used to explain the reasoning for totality if the checker cannot work
it out itself. The above example can now be written as:

total
qsort : Ord a => List a -> List a
qsort [] = []
qsort (x :: xs)
   = qsort (assert_smaller (x :: xs) (filter (< x) xs)) ++
      (x :: qsort (assert_smaller (x :: xs) (filter (>= x) xs)))





The expression assert_smaller (x :: xs) (filter (<= x) xs) asserts
that the result of the filter will always be smaller than the pattern
(x :: xs).

In more extreme cases, the function assert_total marks a
subexpression as always being total:

assert_total : a -> a
assert_total x = x





In general, this function should be avoided, but it can be very useful
when reasoning about primitives or externally defined functions (for
example from a C library) where totality can be shown by an external
argument.


[1]
Timothy G. Griffin. 1989. A formulae-as-type notion of
control. In Proceedings of the 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL
‘90). ACM, New York, NY, USA, 47-58. DOI=10.1145/96709.96714
http://doi.acm.org/10.1145/96709.96714
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Provisional Definitions

Sometimes when programming with dependent types, the type required by
the type checker and the type of the program we have written will be
different (in that they do not have the same normal form), but
nevertheless provably equal. For example, recall the parity
function:

data Parity : Nat -> Type where
   Even : Parity (n + n)
   Odd  : Parity (S (n + n))





We’d like to implement this as follows:

parity : (n:Nat) -> Parity n
parity Z     = Even {n=Z}
parity (S Z) = Odd {n=Z}
parity (S (S k)) with (parity k)
  parity (S (S (j + j)))     | Even = Even {n=S j}
  parity (S (S (S (j + j)))) | Odd  = Odd {n=S j}





This simply states that zero is even, one is odd, and recursively, the
parity of k+2 is the same as the parity of k. Explicitly marking
the value of n is even and odd is necessary to help type inference.
Unfortunately, the type checker rejects this:

viewsbroken.idr:12:10:When elaborating right hand side of ViewsBroken.parity:
Type mismatch between
    Parity (plus (S j) (S j))
and
    Parity (S (S (plus j j)))

Specifically:
    Type mismatch between
        plus (S j) (S j)
    and
        S (S (plus j j))





The type checker is telling us that (j+1)+(j+1) and 2+j+j do not
normalise to the same value. This is because plus is defined by
recursion on its first argument, and in the second value, there is a
successor symbol on the second argument, so this will not help with
reduction. These values are obviously equal — how can we rewrite the
program to fix this problem?


Provisional definitions

Provisional definitions help with this problem by allowing us to defer
the proof details until a later point. There are two main reasons why
they are useful.


	When prototyping, it is useful to be able to test programs before
finishing all the details of proofs.


	When reading a program, it is often much clearer to defer the proof
details so that they do not distract the reader from the underlying
algorithm.




Provisional definitions are written in the same way as ordinary
definitions, except that they introduce the right hand side with a
?= rather than =. We define parity as follows:

parity : (n:Nat) -> Parity n
parity Z = Even {n=Z}
parity (S Z) = Odd {n=Z}
parity (S (S k)) with (parity k)
  parity (S (S (j + j))) | Even ?= Even {n=S j}
  parity (S (S (S (j + j)))) | Odd ?= Odd {n=S j}





When written in this form, instead of reporting a type error, Idris
will insert a hole standing for a theorem which will correct the
type error. Idris tells us we have two proof obligations, with names
generated from the module and function names:

*views> :m
Global holes:
        [views.parity_lemma_2,views.parity_lemma_1]





The first of these has the following type:

*views> :p views.parity_lemma_1

---------------------------------- (views.parity_lemma_1) --------
{hole0} : (j : Nat) -> (Parity (plus (S j) (S j))) -> Parity (S (S (plus j j)))

-views.parity_lemma_1>





The two arguments are j, the variable in scope from the pattern
match, and value, which is the value we gave in the right hand side
of the provisional definition. Our goal is to rewrite the type so that
we can use this value. We can achieve this using the following theorem
from the prelude:

plusSuccRightSucc : (left : Nat) -> (right : Nat) ->
  S (left + right) = left + (S right)





We need to use compute again to unfold the definition of plus:

-views.parity_lemma_1> compute


---------------------------------- (views.parity_lemma_1) --------
{hole0} : (j : Nat) -> (Parity (S (plus j (S j)))) -> Parity (S (S (plus j j)))





After applying intros we have:

-views.parity_lemma_1> intros

  j : Nat
  value : Parity (S (plus j (S j)))
---------------------------------- (views.parity_lemma_1) --------
{hole2} : Parity (S (S (plus j j)))





Then we apply the plusSuccRightSucc rewrite rule, symmetrically, to
j and j, giving:

-views.parity_lemma_1> rewrite sym (plusSuccRightSucc j j)

  j : Nat
  value : Parity (S (plus j (S j)))
---------------------------------- (views.parity_lemma_1) --------
{hole3} : Parity (S (plus j (S j)))





sym is a function, defined in the library, which reverses the order
of the rewrite:

sym : l = r -> r = l
sym Refl = Refl





We can complete this proof using the trivial tactic, which finds
value in the premises. The proof of the second lemma proceeds in
exactly the same way.

We can now test the natToBin function from Section The with rule — matching intermediate values
at the prompt. The number 42 is 101010 in binary. The binary digits are
reversed:

*views> show (natToBin 42)
"[False, True, False, True, False, True]" : String







Suspension of Disbelief

Idris requires that proofs be complete before compiling programs
(although evaluation at the prompt is possible without proof details).
Sometimes, especially when prototyping, it is easier not to have to do
this. It might even be beneficial to test programs before attempting to
prove things about them — if testing finds an error, you know you had
better not waste your time proving something!

Therefore, Idris provides a built-in coercion function, which allows
you to use a value of the incorrect types:

believe_me : a -> b





Obviously, this should be used with extreme caution. It is useful when
prototyping, and can also be appropriate when asserting properties of
external code (perhaps in an external C library). The “proof” of
views.parity_lemma_1 using this is:

views.parity_lemma_2 = proof {
    intro;
    intro;
    exact believe_me value;
}





The exact tactic allows us to provide an exact value for the proof.
In this case, we assert that the value we gave was correct.



Example: Binary numbers

Previously, we implemented conversion to binary numbers using the
Parity view. Here, we show how to use the same view to implement a
verified conversion to binary. We begin by indexing binary numbers over
their Nat equivalent. This is a common pattern, linking a
representation (in this case Binary) with a meaning (in this case
Nat):

data Binary : Nat -> Type where
   BEnd : Binary Z
   BO : Binary n -> Binary (n + n)
   BI : Binary n -> Binary (S (n + n))





BO and BI take a binary number as an argument and effectively
shift it one bit left, adding either a zero or one as the new least
significant bit. The index, n + n or S (n + n) states the result
that this left shift then add will have to the meaning of the number.
This will result in a representation with the least significant bit at
the front.

Now a function which converts a Nat to binary will state, in the type,
that the resulting binary number is a faithful representation of the
original Nat:

natToBin : (n:Nat) -> Binary n





The Parity view makes the definition fairly simple — halving the
number is effectively a right shift after all — although we need to use
a provisional definition in the Odd case:

natToBin : (n:Nat) -> Binary n
natToBin Z = BEnd
natToBin (S k) with (parity k)
   natToBin (S (j + j))     | Even  = BI (natToBin j)
   natToBin (S (S (j + j))) | Odd  ?= BO (natToBin (S j))





The problem with the Odd case is the same as in the definition of
parity, and the proof proceeds in the same way:

natToBin_lemma_1 = proof {
    intro;
    intro;
    rewrite sym (plusSuccRightSucc j j);
    trivial;
}





To finish, we’ll implement a main program which reads an integer from
the user and outputs it in binary.

main : IO ()
main = do putStr "Enter a number: "
          x <- getLine
          print (natToBin (fromInteger (cast x)))





For this to work, of course, we need a Show implementation for
Binary n:

Show (Binary n) where
    show (BO x) = show x ++ "0"
    show (BI x) = show x ++ "1"
    show BEnd = ""









          

      

      

    

  

  
    

    Interactive Editing
    

    

    
 
  

    
      
          
            
  
Interactive Editing

By now, we have seen several examples of how Idris’ dependent type
system can give extra confidence in a function’s correctness by giving
a more precise description of its intended behaviour in its type. We
have also seen an example of how the type system can help with EDSL
development by allowing a programmer to describe the type system of an
object language. However, precise types give us more than verification
of programs — we can also exploit types to help write programs which
are correct by construction.

The Idris REPL provides several commands for inspecting and
modifying parts of programs, based on their types, such as case
splitting on a pattern variable, inspecting the type of a
hole, and even a basic proof search mechanism. In this
section, we explain how these features can be exploited by a text
editor, and specifically how to do so in Vim [https://github.com/idris-hackers/idris-vim]. An interactive mode
for Emacs [https://github.com/idris-hackers/idris-mode] is also
available.


Editing at the REPL

The REPL provides a number of commands, which we will describe
shortly, which generate new program fragments based on the currently
loaded module. These take the general form:

:command [line number] [name]





That is, each command acts on a specific source line, at a specific
name, and outputs a new program fragment. Each command has an
alternative form, which updates the source file in-place:

:command! [line number] [name]





When the REPL is loaded, it also starts a background process which
accepts and responds to REPL commands, using idris --client. For
example, if we have a REPL running elsewhere, we can execute commands
such as:

$ idris --client ':t plus'
Prelude.Nat.plus : Nat -> Nat -> Nat
$ idris --client '2+2'
4 : Integer





A text editor can take advantage of this, along with the editing
commands, in order to provide interactive editing support.



Editing Commands


:addclause

The :addclause n f command, abbreviated :ac n f, creates a
template definition for the function named f declared on line
n. For example, if the code beginning on line 94 contains:

vzipWith : (a -> b -> c) ->
           Vect n a -> Vect n b -> Vect n c





then :ac 94 vzipWith will give:

vzipWith f xs ys = ?vzipWith_rhs





The names are chosen according to hints which may be given by a
programmer, and then made unique by the machine by adding a digit if
necessary. Hints can be given as follows:

%name Vect xs, ys, zs, ws





This declares that any names generated for types in the Vect family
should be chosen in the order xs, ys, zs, ws.



:casesplit

The :casesplit n x command, abbreviated :cs n x, splits the
pattern variable x on line n into the various pattern forms it
may take, removing any cases which are impossible due to unification
errors. For example, if the code beginning on line 94 is:

vzipWith : (a -> b -> c) ->
           Vect n a -> Vect n b -> Vect n c
vzipWith f xs ys = ?vzipWith_rhs





then :cs 96 xs will give:

vzipWith f [] ys = ?vzipWith_rhs_1
vzipWith f (x :: xs) ys = ?vzipWith_rhs_2





That is, the pattern variable xs has been split into the two
possible cases [] and x :: xs. Again, the names are chosen
according to the same heuristic. If we update the file (using
:cs!) then case split on ys on the same line, we get:

vzipWith f [] [] = ?vzipWith_rhs_3





That is, the pattern variable ys has been split into one case
[], Idris having noticed that the other possible case y ::
ys would lead to a unification error.



:addmissing

The :addmissing n f command, abbreviated :am n f, adds the
clauses which are required to make the function f on line n
cover all inputs. For example, if the code beginning on line 94 is:

vzipWith : (a -> b -> c) ->
           Vect n a -> Vect n b -> Vect n c
vzipWith f [] [] = ?vzipWith_rhs_1





then :am 96 vzipWith gives:

vzipWith f (x :: xs) (y :: ys) = ?vzipWith_rhs_2





That is, it notices that there are no cases for empty vectors,
generates the required clauses, and eliminates the clauses which would
lead to unification errors.



:proofsearch

The :proofsearch n f command, abbreviated :ps n f, attempts to
find a value for the hole f on line n by proof search,
trying values of local variables, recursive calls and constructors of
the required family. Optionally, it can take a list of hints, which
are functions it can try applying to solve the hole. For
example, if the code beginning on line 94 is:

vzipWith : (a -> b -> c) ->
           Vect n a -> Vect n b -> Vect n c
vzipWith f [] [] = ?vzipWith_rhs_1
vzipWith f (x :: xs) (y :: ys) = ?vzipWith_rhs_2





then :ps 96 vzipWith_rhs_1 will give

[]





This works because it is searching for a Vect of length 0, of
which the empty vector is the only possibility. Similarly, and perhaps
surprisingly, there is only one possibility if we try to solve :ps
97 vzipWith_rhs_2:

f x y :: (vzipWith f xs ys)





This works because vzipWith has a precise enough type: The
resulting vector has to be non-empty (a ::); the first element
must have type c and the only way to get this is to apply f to
x and y; finally, the tail of the vector can only be built
recursively.



:makewith

The :makewith n f command, abbreviated :mw n f, adds a
with to a pattern clause. For example, recall parity. If line
10 is:

parity (S k) = ?parity_rhs





then :mw 10 parity will give:

parity (S k) with (_)
  parity (S k) | with_pat = ?parity_rhs





If we then fill in the placeholder _ with parity k and case
split on with_pat using :cs 11 with_pat we get the following
patterns:

parity (S (plus n n)) | even = ?parity_rhs_1
parity (S (S (plus n n))) | odd = ?parity_rhs_2





Note that case splitting has normalised the patterns here (giving
plus rather than +). In any case, we see that using
interactive editing significantly simplifies the implementation of
dependent pattern matching by showing a programmer exactly what the
valid patterns are.




Interactive Editing in Vim

The editor mode for Vim provides syntax highlighting, indentation and
interactive editing support using the commands described above.
Interactive editing is achieved using the following editor commands,
each of which update the buffer directly:


	
	\d adds a template definition for the name declared on the

	current line (using :addclause).







	
	\c case splits the variable at the cursor (using

	:casesplit).







	
	\m adds the missing cases for the name at the cursor (using

	:addmissing).







	\w adds a with clause (using :makewith).


	
	\o invokes a proof search to solve the hole under the

	cursor (using :proofsearch).







	
	\p invokes a proof search with additional hints to solve the

	hole under the cursor (using :proofsearch).









There are also commands to invoke the type checker and evaluator:


	
	\t displays the type of the (globally visible) name under the

	cursor. In the case of a hole, this displays the context
and the expected type.







	\e prompts for an expression to evaluate.


	\r reloads and type checks the buffer.




Corresponding commands are also available in the Emacs mode. Support
for other editors can be added in a relatively straightforward manner
by using idris –client.
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Syntax Extensions

Idris supports the implementation of Embedded Domain Specific
Languages (EDSLs) in several ways [1]. One way, as we have already
seen, is through extending do notation. Another important way is
to allow extension of the core syntax. In this section we describe two
ways of extending the syntax: syntax rules and dsl notation.


syntax rules

We have seen if...then...else expressions, but these are not built
in. Instead, we can define a function in the prelude as follows (we
have already seen this function in Section Laziness):

ifThenElse : (x:Bool) -> Lazy a -> Lazy a -> a;
ifThenElse True  t e = t;
ifThenElse False t e = e;





and then extend the core syntax with a syntax declaration:

syntax if [test] then [t] else [e] = ifThenElse test t e;





The left hand side of a syntax declaration describes the syntax
rule, and the right hand side describes its expansion. The syntax rule
itself consists of:


	Keywords — here, if, then and else, which must be
valid identifiers.


	Non-terminals — included in square brackets, [test], [t]
and [e] here, which stand for arbitrary expressions. To avoid
parsing ambiguities, these expressions cannot use syntax extensions
at the top level (though they can be used in parentheses).


	Names — included in braces, which stand for names which may be
bound on the right hand side.


	Symbols — included in quotations marks, e.g. ":=". This can
also be used to include reserved words in syntax rules, such as
"let" or "in".




The limitations on the form of a syntax rule are that it must include
at least one symbol or keyword, and there must be no repeated
variables standing for non-terminals. Any expression can be used, but
if there are two non-terminals in a row in a rule, only simple
expressions may be used (that is, variables, constants, or bracketed
expressions). Rules can use previously defined rules, but may not be
recursive. The following syntax extensions would therefore be valid:

syntax [var] ":=" [val]                = Assign var val;
syntax [test] "?" [t] ":" [e]          = if test then t else e;
syntax select [x] from [t] "where" [w] = SelectWhere x t w;
syntax select [x] from [t]             = Select x t;





Syntax macros can be further restricted to apply only in patterns (i.e.
only on the left hand side of a pattern match clause) or only in terms
(i.e. everywhere but the left hand side of a pattern match clause) by
being marked as pattern or term syntax rules. For example, we
might define an interval as follows, with a static check that the lower
bound is below the upper bound using so:

data Interval : Type where
   MkInterval : (lower : Double) -> (upper : Double) ->
                So (lower < upper) -> Interval





We can define a syntax which, in patterns, always matches Oh for
the proof argument, and in terms requires a proof term to be provided:

pattern syntax "[" [x] "..." [y] "]" = MkInterval x y Oh
term    syntax "[" [x] "..." [y] "]" = MkInterval x y ?bounds_lemma





In terms, the syntax [x...y] will generate a proof obligation
bounds_lemma (possibly renamed).

Finally, syntax rules may be used to introduce alternative binding
forms. For example, a for loop binds a variable on each iteration:

syntax for {x} "in" [xs] ":" [body] = forLoop xs (\x => body)

main : IO ()
main = do for x in [1..10]:
              putStrLn ("Number " ++ show x)
          putStrLn "Done!"





Note that we have used the {x} form to state that x represents
a bound variable, substituted on the right hand side. We have also put
in in quotation marks since it is already a reserved word.



dsl notation

The well-typed interpreter in Section Example: The Well-Typed Interpreter is a simple
example of a common programming pattern with dependent types. Namely:
describe an object language and its type system with dependent types
to guarantee that only well-typed programs can be represented, then
program using that representation. Using this approach we can, for
example, write programs for serialising binary data [2] or running
concurrent processes safely [3].

Unfortunately, the form of object language programs makes it rather
hard to program this way in practice. Recall the factorial program in
Expr for example:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var Stop) (Val 0))
               (Val 1) (Op (*) (App fact (Op (-) (Var Stop) (Val 1)))
                               (Var Stop)))





Since this is a particularly useful pattern, Idris provides syntax
overloading [1] to make it easier to program in such object
languages:

mkLam : TTName -> Expr (t::g) t' -> Expr g (TyFun t t')
mkLam _ body = Lam body

dsl expr
    variable    = Var
    index_first = Stop
    index_next  = Pop
    lambda      = mkLam





A dsl block describes how each syntactic construct is represented
in an object language. Here, in the expr language, any variable is
translated to the Var constructor, using Pop and Stop to
construct the de Bruijn index (i.e., to count how many bindings since
the variable itself was bound); and any lambda is translated to a
Lam constructor. The mkLam function simply ignores its first
argument, which is the name that the user chose for the variable. It
is also possible to overload let and dependent function syntax
(pi) in this way. We can now write fact as follows:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))
                      (Val 1) (Op (*) (app fact (Op (-) x (Val 1))) x))





In this new version, expr declares that the next expression will
be overloaded. We can take this further, using idiom brackets, by
declaring:

(<*>) : (f : Lazy (Expr G (TyFun a t))) -> Expr G a -> Expr G t
(<*>) f a = App f a

pure : Expr G a -> Expr G a
pure = id





Note that there is no need for these to be part of an implementation of
Applicative, since idiom bracket notation translates directly to
the names <*> and pure, and ad-hoc type-directed overloading
is allowed. We can now say:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))
                      (Val 1) (Op (*) [| fact (Op (-) x (Val 1)) |] x))





With some more ad-hoc overloading and use of interfaces, and a new
syntax rule, we can even go as far as:

syntax "IF" [x] "THEN" [t] "ELSE" [e] = If x t e

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => IF x == 0 THEN 1 ELSE [| fact (x - 1) |] * x)






[1]
(1,2)
Edwin Brady and Kevin Hammond. 2012. Resource-Safe systems
programming with embedded domain specific languages. In
Proceedings of the 14th international conference on Practical
Aspects of Declarative Languages (PADL’12), Claudio Russo and
Neng-Fa Zhou (Eds.). Springer-Verlag, Berlin, Heidelberg,
242-257. DOI=10.1007/978-3-642-27694-1_18
https://dx.doi.org/10.1007/978-3-642-27694-1_18



[2]
Edwin C. Brady. 2011. IDRIS —: systems programming meets full
dependent types. In Proceedings of the 5th ACM workshop on
Programming languages meets program verification (PLPV
‘11). ACM, New York, NY, USA,
43-54. DOI=10.1145/1929529.1929536
https://doi.acm.org/10.1145/1929529.1929536



[3]
Edwin Brady and Kevin Hammond. 2010. Correct-by-Construction
Concurrency: Using Dependent Types to Verify Implementations of
Effectful Resource Usage Protocols. Fundam. Inf. 102, 2 (April
2010), 145-176. https://dl.acm.org/citation.cfm?id=1883636
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Miscellany

In this section we discuss a variety of additional features:


	auto, implicit, and default arguments;


	literate programming;


	interfacing with external libraries through the foreign function;


	interface;


	type providers;


	code generation; and


	the universe hierarchy.





Implicit arguments

We have already seen implicit arguments, which allows arguments to be
omitted when they can be inferred by the type checker, e.g.

index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a






Auto implicit arguments

In other situations, it may be possible to infer arguments not by type
checking but by searching the context for an appropriate value, or
constructing a proof. For example, the following definition of head
which requires a proof that the list is non-empty:

isCons : List a -> Bool
isCons [] = False
isCons (x :: xs) = True

head : (xs : List a) -> (isCons xs = True) -> a
head (x :: xs) _ = x





If the list is statically known to be non-empty, either because its
value is known or because a proof already exists in the context, the
proof can be constructed automatically. Auto implicit arguments allow
this to happen silently. We define head as follows:

head : (xs : List a) -> {auto p : isCons xs = True} -> a
head (x :: xs) = x





The auto annotation on the implicit argument means that Idris
will attempt to fill in the implicit argument by searching for a value
of the appropriate type. It will try the following, in order:


	Local variables, i.e. names bound in pattern matches or let bindings,
with exactly the right type.


	The constructors of the required type. If they have arguments, it will
search recursively up to a maximum depth of 100.


	Local variables with function types, searching recursively for the
arguments.


	Any function with the appropriate return type which is marked with the
%hint annotation.




In the case that a proof is not found, it can be provided explicitly as normal:

head xs {p = ?headProof}







Default implicit arguments

Besides having Idris automatically find a value of a given type, sometimes we
want to have an implicit argument with a specific default value. In Idris, we can
do this using the default annotation. While this is primarily intended to assist
in automatically constructing a proof where auto fails, or finds an unhelpful value,
it might be easier to first consider a simpler case, not involving proofs.

If we want to compute the n’th fibonacci number (and defining the 0th fibonacci
number as 0), we could write:

fibonacci : {default 0 lag : Nat} -> {default 1 lead : Nat} -> (n : Nat) -> Nat
fibonacci {lag} Z = lag
fibonacci {lag} {lead} (S n) = fibonacci {lag=lead} {lead=lag+lead} n





After this definition, fibonacci 5 is equivalent to fibonacci {lag=0} {lead=1} 5,
and will return the 5th fibonacci number. Note that while this works, this is not the
intended use of the default annotation. It is included here for illustrative purposes
only. Usually, default is used to provide things like a custom proof search script.




Implicit conversions

Idris supports the creation of implicit conversions, which allow
automatic conversion of values from one type to another when required to
make a term type correct. This is intended to increase convenience and
reduce verbosity. A contrived but simple example is the following:

implicit intString : Int -> String
intString = show

test : Int -> String
test x = "Number " ++ x





In general, we cannot append an Int to a String, but the
implicit conversion function intString can convert x to a
String, so the definition of test is type correct. An implicit
conversion is implemented just like any other function, but given the
implicit modifier, and restricted to one explicit argument.

Only one implicit conversion will be applied at a time. That is,
implicit conversions cannot be chained. Implicit conversions of simple
types, as above, are however discouraged! More commonly, an implicit
conversion would be used to reduce verbosity in an embedded domain
specific language, or to hide details of a proof. Such examples are
beyond the scope of this tutorial.



Literate programming

Like Haskell, Idris supports literate programming. If a file has
an extension of .lidr then it is assumed to be a literate file. In
literate programs, everything is assumed to be a comment unless the line
begins with a greater than sign >, for example:

> module literate

This is a comment. The main program is below

> main : IO ()
> main = putStrLn "Hello literate world!\n"





An additional restriction is that there must be a blank line between a
program line (beginning with >) and a comment line (beginning with
any other character).



Foreign function calls

For practical programming, it is often necessary to be able to use
external libraries, particularly for interfacing with the operating
system, file system, networking, et cetera. Idris provides a
lightweight foreign function interface for achieving this, as part of
the prelude. For this, we assume a certain amount of knowledge of C and
the gcc compiler. First, we define a datatype which describes the
external types we can handle:

data FTy = FInt | FFloat | FChar | FString | FPtr | FUnit





Each of these corresponds directly to a C type. Respectively: int,
double, char, char*, void* and void. There is also a
translation to a concrete Idris type, described by the following
function:

interpFTy : FTy -> Type
interpFTy FInt    = Int
interpFTy FFloat  = Double
interpFTy FChar   = Char
interpFTy FString = String
interpFTy FPtr    = Ptr
interpFTy FUnit   = ()





A foreign function is described by a list of input types and a return
type, which can then be converted to an Idris type:

ForeignTy : (xs:List FTy) -> (t:FTy) -> Type





A foreign function is assumed to be impure, so ForeignTy builds an
IO type, for example:

Idris> ForeignTy [FInt, FString] FString
Int -> String -> IO String : Type

Idris> ForeignTy [FInt, FString] FUnit
Int -> String -> IO () : Type





We build a call to a foreign function by giving the name of the
function, a list of argument types and the return type. The built in
construct mkForeign converts this description to a function callable
by Idris:

data Foreign : Type -> Type where
    FFun : String -> (xs:List FTy) -> (t:FTy) ->
           Foreign (ForeignTy xs t)

mkForeign : Foreign x -> x





Note that the compiler expects mkForeign to be fully applied to
build a complete foreign function call. For example, the putStr
function is implemented as follows, as a call to an external function
putStr defined in the run-time system:

putStr : String -> IO ()
putStr x = mkForeign (FFun "putStr" [FString] FUnit) x






Include and linker directives

Foreign function calls are translated directly to calls to C functions,
with appropriate conversion between the Idris representation of a
value and the C representation. Often this will require extra libraries
to be linked in, or extra header and object files. This is made possible
through the following directives:


	%lib target x — include the libx library. If the target is
C this is equivalent to passing the -lx option to gcc. If
the target is Java the library will be interpreted as a
groupId:artifactId:packaging:version dependency coordinate for
maven.


	%include target x — use the header file or import x for the
given back end target.


	%link target x.o — link with the object file x.o when using
the given back end target.


	%dynamic x.so — dynamically link the interpreter with the shared
object x.so.






Testing foreign function calls

Normally, the Idris interpreter (used for typechecking and as the REPL)
will not perform IO actions. Additionally, as it neither generates C
code nor compiles to machine code, the %lib, %include and
%link directives have no effect. IO actions and FFI calls can be
tested using the special REPL command :x EXPR, and C libraries can
be dynamically loaded in the interpreter by using the :dynamic
command or the %dynamic directive. For example:

Idris> :dynamic libm.so
Idris> :x unsafePerformIO ((mkForeign (FFun "sin" [FFloat] FFloat)) 1.6)
0.9995736030415051 : Double








Type Providers

Idris type providers, inspired by F#’s type providers, are a means of
making our types be “about” something in the world outside of Idris. For
example, given a type that represents a database schema and a query that
is checked against it, a type provider could read the schema of a real
database during type checking.

Idris type providers use the ordinary execution semantics of Idris to
run an IO action and extract the result. This result is then saved as a
constant in the compiled code. It can be a type, in which case it is
used like any other type, or it can be a value, in which case it can be
used as any other value, including as an index in types.

Type providers are still an experimental extension. To enable the
extension, use the %language directive:

%language TypeProviders





A provider p for some type t is simply an expression of type
IO (Provider t). The %provide directive causes the type checker
to execute the action and bind the result to a name. This is perhaps
best illustrated with a simple example. The type provider fromFile
reads a text file. If the file consists of the string Int, then the
type Int will be provided. Otherwise, it will provide the type
Nat.

strToType : String -> Type
strToType "Int" = Int
strToType _ = Nat

fromFile : String -> IO (Provider Type)
fromFile fname = do Right str <- readFile fname
                      | Left err => pure (Provide Void)
                    pure (Provide (strToType (trim str)))





We then use the %provide directive:

%provide (T1 : Type) with fromFile "theType"

foo : T1
foo = 2





If the file named theType consists of the word Int, then foo
will be an Int. Otherwise, it will be a Nat. When Idris
encounters the directive, it first checks that the provider expression
fromFile theType has type IO (Provider Type). Next, it executes
the provider. If the result is Provide t, then T1 is defined as
t. Otherwise, the result is an error.

Our datatype Provider t has the following definition:

data Provider a = Error String
                | Provide a





We have already seen the Provide constructor. The Error
constructor allows type providers to return useful error messages. The
example in this section was purposefully simple. More complex type
provider implementations, including a statically-checked SQLite binding,
are available in an external collection [1].



C Target

The default target of Idris is C. Compiling via:

$ idris hello.idr -o hello





is equivalent to:

$ idris --codegen C hello.idr -o hello





When the command above is used, a temporary C source is generated, which
is then compiled into an executable named hello.

In order to view the generated C code, compile via:

$ idris hello.idr -S -o hello.c





To turn optimisations on, use the %flag C pragma within the code, as
is shown below:

module Main
%flag C "-O3"

factorial : Int -> Int
factorial 0 = 1
factorial n = n * (factorial (n-1))

main : IO ()
main = do
     putStrLn $ show $ factorial 3





To compile the generated C with debugging information e.g. to use
gdb to debug segmentation faults in Idris programs, use the
%flag C pragma to include debugging symbols, as is shown below:

%flag C "-g"







JavaScript Target

Idris is capable of producing JavaScript code that can be run in a
browser as well as in the NodeJS environment or alike. One can use the
FFI to communicate with the JavaScript ecosystem.


Code Generation

Code generation is split into two separate targets. To generate code
that is tailored for running in the browser issue the following command:

$ idris --codegen javascript hello.idr -o hello.js





The resulting file can be embedded into your HTML just like any other
JavaScript code.

Generating code for NodeJS is slightly different. Idris outputs a
JavaScript file that can be directly executed via node.

$ idris --codegen node hello.idr -o hello
$ ./hello
Hello world





Take into consideration that the JavaScript code generator is using
console.log to write text to stdout, this means that it will
automatically add a newline to the end of each string. This behaviour
does not show up in the NodeJS code generator.



Using the FFI

To write a useful application we need to communicate with the outside
world. Maybe we want to manipulate the DOM or send an Ajax request. For
this task we can use the FFI. Since most JavaScript APIs demand
callbacks we need to extend the FFI so we can pass functions as
arguments.

The JavaScript FFI works a little bit differently than the regular
FFI. It uses positional arguments to directly insert our arguments into
a piece of JavaScript code.

One could use the primitive addition of JavaScript like so:

module Main

primPlus : Int -> Int -> IO Int
primPlus a b = mkForeign (FFun "%0 + %1" [FInt, FInt] FInt) a b

main : IO ()
main = do
  a <- primPlus 1 1
  b <- primPlus 1 2
  print (a, b)





Notice that the %n notation qualifies the position of the n-th
argument given to our foreign function starting from 0. When you need a
percent sign rather than a position simply use %% instead.

Passing functions to a foreign function is very similar. Let’s assume
that we want to call the following function from the JavaScript world:

function twice(f, x) {
  return f(f(x));
}





We obviously need to pass a function f here (we can infer it from
the way we use f in twice, it would be more obvious if
JavaScript had types).

The JavaScript FFI is able to understand functions as arguments when
you give it something of type FFunction. The following example code
calls twice in JavaScript and returns the result to our Idris
program:

module Main

twice : (Int -> Int) -> Int -> IO Int
twice f x = mkForeign (
  FFun "twice(%0,%1)" [FFunction FInt FInt, FInt] FInt
) f x

main : IO ()
main = do
  a <- twice (+1) 1
  print a





The program outputs 3, just like we expected.



Including external JavaScript files

Whenever one is working with JavaScript one might want to include
external libraries or just some functions that she or he wants to call
via FFI which are stored in external files. The JavaScript and
NodeJS code generators understand the %include directive. Keep in
mind that JavaScript and NodeJS are handled as different code
generators, therefore you will have to state which one you want to
target. This means that you can include different files for JavaScript
and NodeJS in the same Idris source file.

So whenever you want to add an external JavaScript file you can do
this like so:

For NodeJS:

%include Node "path/to/external.js"





And for use in the browser:

%include JavaScript "path/to/external.js"





The given files will be added to the top of the generated code.
For library packages you can also use the ipkg objs option to include the
js file in the installation, and use:

%include Node "package/external.js"





The JavaScript and NodeJS backends of Idris will also lookup for the file
on that location.



Including NodeJS modules

The NodeJS code generator can also include modules with the %lib
directive.

%lib Node "fs"





This directive compiles into the following JavaScript

var fs = require("fs");







Shrinking down generated JavaScript

Idris can produce very big chunks of JavaScript code. However, the
generated code can be minified using the closure-compiler from
Google. Any other minifier is also suitable but closure-compiler
offers advanced compilation that does some aggressive inlining and code
elimination. Idris can take full advantage of this compilation mode
and it’s highly recommended to use it when shipping a JavaScript
application written in Idris.




Cumulativity

Since values can appear in types and vice versa, it is natural that
types themselves have types. For example:

*universe> :t Nat
Nat : Type
*universe> :t Vect
Vect : Nat -> Type -> Type





But what about the type of Type? If we ask Idris it reports:

*universe> :t Type
Type : Type 1





If Type were its own type, it would lead to an inconsistency due to
Girard’s paradox [https://www.cs.cmu.edu/afs/cs.cmu.edu/user/kw/www/scans/girard72thesis.pdf],
so internally there is a hierarchy of types (or universes):

Type : Type 1 : Type 2 : Type 3 : ...





Universes are cumulative, that is, if x : Type n we can also have
that x : Type m, as long as n < m. The typechecker generates
such universe constraints and reports an error if any inconsistencies
are found. Ordinarily, a programmer does not need to worry about this,
but it does prevent (contrived) programs such as the following:

myid : (a : Type) -> a -> a
myid _ x = x

idid :  (a : Type) -> a -> a
idid = myid _ myid





The application of myid to itself leads to a cycle in the universe
hierarchy — myid’s first argument is a Type, which cannot be
at a lower level than required if it is applied to itself.


[1]
https://github.com/david-christiansen/idris-type-providers
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Further Reading

Further information about Idris programming, and programming with
dependent types in general, can be obtained from various sources:


	The Idris web site (https://www.idris-lang.org/) and by asking
questions on the mailing list.


	The IRC channel #idris, on
webchat.freenode.net [https://webchat.freenode.net/].


	
	The wiki (https://github.com/idris-lang/Idris-dev/wiki/) has further

	user provided information, in particular:


	https://github.com/idris-lang/Idris-dev/wiki/Manual


	https://github.com/idris-lang/Idris-dev/wiki/Language-Features










	
	Examining the prelude and exploring the samples in the

	distribution. The Idris source can be found online at:
https://github.com/idris-lang/Idris-dev.







	Existing projects on the Idris Hackers web space:
https://idris-hackers.github.io.


	
	Various papers (e.g. [1], [2], and [3]).  Although these mostly

	describe older versions of Idris.










[1]
Edwin Brady and Kevin Hammond. 2012. Resource-Safe systems
programming with embedded domain specific languages. In
Proceedings of the 14th international conference on Practical
Aspects of Declarative Languages (PADL’12), Claudio Russo and
Neng-Fa Zhou (Eds.). Springer-Verlag, Berlin, Heidelberg,
242-257. DOI=10.1007/978-3-642-27694-1_18
https://dx.doi.org/10.1007/978-3-642-27694-1_18



[2]
Edwin C. Brady. 2011. IDRIS —: systems programming meets full
dependent types. In Proceedings of the 5th ACM workshop on
Programming languages meets program verification (PLPV
‘11). ACM, New York, NY, USA,
43-54. DOI=10.1145/1929529.1929536
https://doi.acm.org/10.1145/1929529.1929536



[3]
Edwin C. Brady and Kevin Hammond. 2010. Scrapping your
inefficient engine: using partial evaluation to improve
domain-specific language implementation. In Proceedings of the
15th ACM SIGPLAN international conference on Functional
programming (ICFP ‘10). ACM, New York, NY, USA,
297-308. DOI=10.1145/1863543.1863587
https://doi.acm.org/10.1145/1863543.1863587
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Frequently Asked Questions


What are the differences between Agda and Idris?

Like Idris, Agda is a functional language with dependent types, supporting
dependent pattern matching. Both can be used for writing programs and proofs.
However, Idris has been designed from the start to emphasise general purpose
programming rather than theorem proving. As such, it supports interoperability
with systems libraries and C programs, and language constructs for
domain-specific language implementation. It also includes higher level
programming constructs such as interfaces (similar to type classes) and do notation.

Idris supports multiple back ends (C and JavaScript by default, with the
ability to add more via plugins) and has a reference run time system, written
in C, with a garbage collector and built-in message passing concurrency.



Is Idris production ready?

Idris is primarily a research tool for exploring the possibilities of software
development with dependent types, meaning that the primary goal is not (yet) to
make a system which could be used in production. As such, there are a few rough
corners, and lots of missing libraries. Nobody is working on Idris full time,
and we don’t have the resources at the moment to polish the system on our own.
Therefore, we don’t recommend building your business around it!

Having said that, contributions which help towards making Idris suitable
for use in production would be very welcome - this includes (but is not
limited to) extra library support, polishing the run-time system (and ensuring
it is robust), providing and maintaining a JVM back end, etc.



Is there some documentation for the standard lib? List of functions?

API documentation for the shipped packages is listed on the
documentation page [https://www.idris-lang.org/pages/documentation.html].

Unfortunately, the default prelude and shipped packages for Idris
are not necessarily complete with regards to documentation.  Other
ways to find functions include:


	REPL commands:


	Use :apropos to search for text in documentation and function names.


	Use :search to search for functions of a given type.


	Use :browse to list the contents of a given namespace.






	Use the REPL’s auto-complete functionality.


	Grep through the source code in libs/




If you find that the shipped packages are lacking in documentation,
please feel free to write some. Or bug someone to do so.  Idris has
syntax for providing rich documentation, which is then viewable using
the :doc command and listed in generated HTML API documentation.



Why does Idris use eager evaluation rather than lazy?

Idris uses eager evaluation for more predictable performance, in particular
because one of the longer term goals is to be able to write efficient and
verified low level code such as device drivers and network infrastructure.
Furthermore, the Idris type system allows us to state precisely the type
of each value, and therefore the run-time form of each value. In a lazy
language, consider a value of type Int:

thing : Int





What is the representation of thing at run-time? Is it a bit pattern
representing an integer, or is it a pointer to some code which will compute
an integer? In Idris, we have decided that we would like to make this
distinction precise, in the type:

thing_val : Int
thing_comp : Lazy Int





Here, it is clear from the type that thing_val is guaranteed to be a
concrete Int, whereas thing_comp is a computation which will produce an
Int.



How can I make lazy control structures?

You can make control structures using the special Lazy type. For
example, if...then...else... in Idris expands to an application of
a function named ifThenElse. The default implementation for
Booleans is defined as follows in the library:

ifThenElse : Bool -> (t : Lazy a) -> (e : Lazy a) -> a
ifThenElse True  t e = t
ifThenElse False t e = e





The type Lazy a for t and e indicates that those arguments will
only be evaluated if they are used, that is, they are evaluated lazily.



Evaluation at the REPL doesn’t behave as I expect. What’s going on?

Being a fully dependently typed language, Idris has two phases where it
evaluates things, compile-time and run-time. At compile-time it will only
evaluate things which it knows to be total (i.e. terminating and covering all
possible inputs) in order to keep type checking decidable. The compile-time
evaluator is part of the Idris kernel, and is implemented in Haskell using a
HOAS (higher order abstract syntax) style representation of values. Since
everything is known to have a normal form here, the evaluation strategy doesn’t
actually matter because either way it will get the same answer, and in practice
it will do whatever the Haskell run-time system chooses to do.

The REPL, for convenience, uses the compile-time notion of evaluation. As well
as being easier to implement (because we have the evaluator available) this can
be very useful to show how terms evaluate in the type checker. So you can see
the difference between:

Idris> \n, m => (S n) + m
\n => \m => S (plus n m) : Nat -> Nat -> Nat

Idris> \n, m => n + (S m)
\n => \m => plus n (S m) : Nat -> Nat -> Nat







Why can’t I use a function with no arguments in a type?

If you use a name in a type which begins with a lower case letter, and which is
not applied to any arguments, then Idris will treat it as an implicitly
bound argument. For example:

append : Vect n ty -> Vect m ty -> Vect (n + m) ty





Here, n, m, and ty are implicitly bound. This rule applies even
if there are functions defined elsewhere with any of these names. For example,
you may also have:

ty : Type
ty = String





Even in this case, ty is still considered implicitly bound in the definition
of append, rather than making the type of append equivalent to…

append : Vect n String -> Vect m String -> Vect (n + m) String





…which is probably not what was intended!  The reason for this rule is so
that it is clear just from looking at the type of append, and no other
context, what the implicitly bound names are.

If you want to use an unapplied name in a type, you have two options. You
can either explicitly qualify it, for example, if ty is defined in the
namespace Main you can do the following:

append : Vect n Main.ty -> Vect m Main.ty -> Vect (n + m) Main.ty





Alternatively, you can use a name which does not begin with a lower case
letter, which will never be implicitly bound:

Ty : Type
Ty = String

append : Vect n Ty -> Vect m Ty -> Vect (n + m) Ty





As a convention, if a name is intended to be used as a type synonym, it is
best for it to begin with a capital letter to avoid this restriction.



I have an obviously terminating program, but Idris says it possibly isn’t total. Why is that?

Idris can’t decide in general whether a program is terminating due to
the undecidability of the Halting Problem [https://en.wikipedia.org/wiki/Halting_problem]. It is possible, however,
to identify some programs which are definitely terminating. Idris does this
using “size change termination” which looks for recursive paths from a
function back to itself. On such a path, there must be at least one
argument which converges to a base case.


	Mutually recursive functions are supported


	However, all functions on the path must be fully applied. In particular,
higher order applications are not supported


	Idris identifies arguments which converge to a base case by looking for
recursive calls to syntactically smaller arguments of inputs. e.g.
k is syntactically smaller than S (S k) because k is a
subterm of S (S k), but (k, k) is
not syntactically smaller than (S k, S k).




If you have a function which you believe to be terminating, but Idris does
not, you can either restructure the program, or use the assert_total
function.



When will Idris be self-hosting?

It’s not a priority, though not a bad idea in the long run. It would
be a worthwhile effort in the short term to implement libraries in
Idris to support self-hosting, such as argument parsing and a
POSIX-compliant library for system interaction.



Does Idris have universe polymorphism? What is the type of Type?

Rather than universe polymorphism, Idris has a cumulative hierarchy of
universes; Type : Type 1, Type 1 : Type 2, etc.
Cumulativity means that if x : Type n and n <= m, then
x : Type m. Universe levels are always inferred by Idris, and
cannot be specified explicitly. The REPL command :type Type 1 will
result in an error, as will attempting to specify the universe level
of any type.



Why does Idris use Double instead of Float64?

Historically the C language and many other languages have used the
names Float and Double to represent floating point numbers of
size 32 and 64 respectively.  Newer languages such as Rust and Julia
have begun to follow the naming scheme described in IEEE Standard for
Floating-Point Arithmetic (IEEE 754) [https://en.wikipedia.org/wiki/IEEE_floating_point]. This describes
single and double precision numbers as Float32 and Float64;
the size is described in the type name.

Due to developer familiarity with the older naming convention, and
choice by the developers of Idris, Idris uses the C style convention.
That is, the name Double is used to describe double precision
numbers, and Idris does not support 32 bit floats at present.



What is -ffreestanding?

The freestanding flag is used to build Idris binaries which have their
libs and compiler in a relative path. This is useful for building binaries
where the install directory is unknown at build time. When passing this
flag, the IDRIS_LIB_DIR environment variable needs to be set to the path
where the Idris libs reside relative to the idris executable. The
IDRIS_TOOLCHAIN_DIR environment variable is optional, if that is set,
Idris will use that path to find the C compiler. For example:

IDRIS_LIB_DIR="./libs" \
IDRIS_TOOLCHAIN_DIR="./mingw/bin" \
CABALFLAGS="-fffi -ffreestanding -frelease" \
make







What does the name “Idris” mean?

British people of a certain age may be familiar with this
singing dragon [https://www.youtube.com/watch?v=G5ZMNyscPcg]. If
that doesn’t help, maybe you can invent a suitable acronym :-) .



Will there be support for Unicode characters for operators?

There are several reasons why we should not support Unicode operators:


	It’s hard to type (this is important if you’re using someone else’s code, for
example). Various editors have their own input methods, but you have to know
what they are.


	Not every piece of software easily supports it. Rendering issues have been
noted on some mobile email clients, terminal-based IRC clients, web browsers,
etc. There are ways to resolve these rendering issues but they provide a
barrier to entry to using Idris.


	Even if we leave it out of the standard library (which we will in any case!)
as soon as people start using it in their library code, others have to deal
with it.


	Too many characters look too similar. We had enough trouble with confusion
between 0 and O without worrying about all the different kinds of colons and
brackets.


	There seems to be a tendency to go over the top with use of Unicode. For
example, using sharp and flat for delay and force (or is it the other way
around?) in Agda seems gratuitous. We don’t want to encourage this sort of
thing, when words are often better.




With care, Unicode operators can make things look pretty but so can lhs2TeX.
Perhaps in a few years time things will be different and software will cope
better and it will make sense to revisit this. For now, however, Idris will not
be offering arbitrary Unicode symbols in operators.

This seems like an instance of Wadler’s
Law [https://www.haskell.org/haskellwiki/Wadler%27s_Law] in action.

This answer is based on Edwin Brady’s response in the following
pull request [https://github.com/idris-lang/Idris-dev/pull/694#issuecomment-29559291].



Where can I find the community standards for the Idris community?

The Idris Community Standards are stated here [https://www.idris-lang.org/documentation/community-standards/] .



Where can I find more answers?

There is an Unofficial FAQ [https://github.com/idris-lang/Idris-dev/wiki/Unofficial-FAQ] on the wiki on
GitHub which answers more technical questions and may be updated more often.
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Implementing State-aware Systems in Idris: The ST Tutorial

A tutorial on implementing state-aware systems using
the Control.ST library in Idris.


Note

The documentation for Idris has been published under the Creative
Commons CC0 License. As such to the extent possible under law, The
Idris Community has waived all copyright and related or neighbouring
rights to Documentation for Idris.

More information concerning the CC0 can be found online at: https://creativecommons.org/publicdomain/zero/1.0/
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Overview

Pure functional languages with dependent types such as Idris [https://www.idris-lang.org/] support reasoning about programs directly
in the type system, promising that we can know a program will run
correctly (i.e. according to the specification in its type) simply
because it compiles.

Realistically, though,  software relies on state, and many components rely on state machines. For
example, they describe network transport protocols like TCP, and
implement event-driven systems and regular expression matching. Furthermore,
many fundamental resources like network sockets and files are, implicitly,
managed by state machines, in that certain operations are only valid on
resources in certain states, and those operations can change the states of the
underlying resource. For example, it only makes sense to send a message on a
connected network socket, and closing a socket changes its state from “open” to
“closed”. State machines can also encode important security properties. For
example, in the software which implements an ATM, it’s important that the ATM
dispenses cash only when the machine is in a state where a card has been
inserted and the PIN verified.

In this tutorial we will introduce the Control.ST library, which is included
with the Idris distribution (currently as part of the contrib package)
and supports programming and reasoning with state and side effects.  This
tutorial assumes familiarity with pure programming in Idris, as described in
The Idris Tutorial.
For further background information, the ST library is based on ideas
discussed in Chapter 13 (available as a free sample chapter) and Chapter 14
of Type-Driven Development with Idris [https://www.manning.com/books/type-driven-development-with-idris].

The ST library allows us to write programs which are composed of multiple
state transition systems. It supports composition in two ways: firstly, we can
use several independently implemented state transition systems at once;
secondly, we can implement one state transition system in terms of others.


Introductory example: a data store requiring a login

Many software components rely on some form of state, and there may be
operations which are only valid in specific states. For example, consider
a secure data store in which a user must log in before getting access to
some secret data. This system can be in one of two states:


	LoggedIn, in which the user is allowed to read the secret


	LoggedOut, in which the user has no access to the secret




We can provide commands to log in, log out, and read the data, as illustrated
in the following diagram:

[image: login]

The login command, if it succeeds, moves the overall system state from
LoggedOut to LoggedIn. The logout command moves the state from
LoggedIn to LoggedOut. Most importantly, the readSecret command
is only valid when the system is in the LoggedIn state.

We routinely use type checkers to ensure that variables and arguments are used
consistently. However, statically checking that operations are performed only
on resources in an appropriate state is not well supported by mainstream type
systems. In the data store example, for example, it’s important to check that
the user is successfully logged in before using readSecret. The
ST library allows us to represent this kind of protocol in the type
system, and ensure at compile-time that the secret is only read when the
user is logged in.



Outline

This tutorial starts (Introducing ST: Working with State) by describing how to manipulate
individual states, introduces a data type STrans for describing stateful
functions, and ST which describes top level state transitions.
Next (State Machines in Types) it describes how to represent state machines in
types, and how to define interfaces for describing stateful systems.
Then (Composing State Machines) it describes how to compose systems of multiple
state machines. It explains how to implement systems which use several
state machines at once, and how to implement a high level stateful system
in terms of lower level systems.
Finally (Example: Network Socket Programming) we’ll see a specific example of a stateful
API in practice, implementing the POSIX network sockets API.

The Control.ST library is also described in a draft paper by
Edwin Brady [https://edwinb.wordpress.com/], “State Machines All The Way
Down”, available here [https://www.idris-lang.org/drafts/sms.pdf].
This paper presents many of the examples from this tutorial, and describes
the motivation, design and implementation of the library in more depth.
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Introducing ST: Working with State

The Control.ST library provides facilities for creating, reading, writing
and destroying state in Idris functions, and tracking changes of state in
a function’s type. It is based around the concept of resources, which are,
essentially, mutable variables, and a dependent type, STrans which tracks
how those resources change when a function runs:

STrans : (m : Type -> Type) ->
         (resultType : Type) ->
         (in_res : Resources) ->
         (out_res : resultType -> Resources) ->
         Type





A value of type STrans m resultType in_res out_res_fn represents a sequence
of actions which can manipulate state. The arguments are:


	m, which is an underlying computation context in which the actions will be executed.
Usually, this will be a generic type with a Monad implementation, but
it isn’t necessarily so. In particular, there is no need to understand monads
to be able to use ST effectively!


	resultType, which is the type of the value the sequence will produce


	in_res, which is a list of resources available before executing the actions.


	out_res, which is a list of resources available after executing the actions,
and may differ depending on the result of the actions.




We can use STrans to describe state transition systems in a function’s
type. We’ll come to the definition of Resources shortly, but for the moment
you can consider it an abstract representation of the “state of the world”.
By giving the input resources (in_res) and the output resources
(out_res) we are describing the preconditions under which a function
is allowed to execute, and postconditions which describe how a function
affects the overall state of the world.

We’ll begin in this section by looking at some small examples of STrans
functions, and see how to execute them. We’ll also introduce ST,
a type-level function which allows us to describe the state transitions of
a stateful function concisely.


Type checking the examples

For the examples in this section, and throughout this tutorial,
you’ll need to import Control.ST and add the contrib package by
passing the -p contrib flag to idris.



Introductory examples: manipulating State

An STrans function explains, in its type, how it affects a collection of
Resources. A resource has a label (of type Var), which we use to
refer to the resource throughout the function, and we write the state of a
resource, in the Resources list, in the form label ::: type.

For example, the following function
has a resource x available on input, of type State Integer, and that
resource is still a State Integer on output:

increment : (x : Var) -> STrans m () [x ::: State Integer]
                                     (const [x ::: State Integer])
increment x = do num <- read x
                 write x (num + 1)






Verbosity of the type of increment

The type of increment may seem somewhat verbose, in that the
input and output resources are repeated, even though they are the
same. We’ll introduce a much more concise way of writing this type at the
end of this section (ST: Representing state transitions directly), when we describe the ST type
itself.


This function reads the value stored at the resource x with read,
increments it then writes the result back into the resource x with
write. We’ll see the types of read and write shortly
(see STrans Primitive operations). We can also create and delete resources:

makeAndIncrement : Integer -> STrans m Integer [] (const [])
makeAndIncrement init = do var <- new init
                           increment var
                           x <- read var
                           delete var
                           pure x





The type of makeAndIncrement states that it has no resources available on
entry ([]) or exit (const []). It creates a new State resource with
new (which takes an initial value for the resource), increments the value,
reads it back, then deletes it using delete, returning the final value
of the resource. Again, we’ll see the types of new and delete
shortly.

The m argument to STrans (of type Type -> Type) is the computation context in
which the function can be run. Here, the type level variable indicates that we
can run it in any context. We can run it in the identity context with
runPure. For example, try entering the above definitions in a file
Intro.idr then running the following at the REPL:

*Intro> runPure (makeAndIncrement 93)
94 : Integer





It’s a good idea to take an interactive, type-driven approach to implementing
STrans programs. For example, after creating the resource with new init,
you can leave a hole for the rest of the program to see how creating the
resource has affected the type:

makeAndIncrement : Integer -> STrans m Integer [] (const [])
makeAndIncrement init = do var <- new init
                           ?whatNext





If you check the type of ?whatNext, you’ll see that there is now
a resource available, var, and that by the end of the function there
should be no resource available:

  init : Integer
  m : Type -> Type
  var : Var
--------------------------------------
whatNext : STrans m Integer [var ::: State Integer] (\value => [])





These small examples work in any computation context m. However, usually,
we are working in a more restricted context. For example, we might want to
write programs which only work in a context that supports interactive
programs. For this, we’ll need to see how to lift operations from the
underlying context.



Lifting: Using the computation context

Let’s say that, instead of passing an initial integer to makeAndIncrement,
we want to read it in from the console. Then, instead of working in a generic
context m, we can work in the specific context IO:

ioMakeAndIncrement : STrans IO () [] (const [])





This gives us access to IO operations, via the lift function. We
can define ioMakeAndIncrement as follows:

ioMakeAndIncrement : STrans IO () [] (const [])
ioMakeAndIncrement
   = do lift $ putStr "Enter a number: "
        init <- lift $ getLine
        var <- new (cast init)
        lift $ putStrLn ("var = " ++ show !(read var))
        increment var
        lift $ putStrLn ("var = " ++ show !(read var))
        delete var





The lift function allows us to use functions from the underlying
computation context (IO here) directly. Again, we’ll see the exact type
of lift shortly.


!-notation

In ioMakeAndIncrement we’ve used !(read var) to read from the
resource. You can read about this !-notation in the main Idris tutorial
(see Monads and do-notation). In short, it allows us to use an STrans
function inline, rather than having to bind the result to a variable
first.

Conceptually, at least, you can think of it as having the following type:

(!) : STrans m a state_in state_out -> a





It is syntactic sugar for binding a variable immediately before the
current action in a do block, then using that variable in place of
the !-expression.


In general, though, it’s bad practice to use a specific context like
IO. Firstly, it requires us to sprinkle lift liberally throughout
our code, which hinders readability. Secondly, and more importantly, it will
limit the safety of our functions, as we’ll see in the next section
(State Machines in Types).

So, instead, we define interfaces to restrict the computation context.
For example, Control.ST defines a ConsoleIO interface which
provides the necessary methods for performing basic console interaction:

interface ConsoleIO (m : Type -> Type) where
  putStr : String -> STrans m () res (const res)
  getStr : STrans m String res (const res)





That is, we can write to and read from the console with any available
resources res, and neither will affect the available resources.
This has the following implementation for IO:

ConsoleIO IO where
  putStr str = lift (Interactive.putStr str)
  getStr = lift Interactive.getLine





Now, we can define ioMakeAndIncrement as follows:

ioMakeAndIncrement : ConsoleIO io => STrans io () [] (const [])
ioMakeAndIncrement
   = do putStr "Enter a number: "
        init <- getStr
        var <- new (cast init)
        putStrLn ("var = " ++ show !(read var))
        increment var
        putStrLn ("var = " ++ show !(read var))
        delete var





Instead of working in IO specifically, this works in a generic context
io, provided that there is an implementation of ConsoleIO for that
context. This has several advantages over the first version:


	All of the calls to lift are in the implementation of the interface,
rather than ioMakeAndIncrement


	We can provide alternative implementations of ConsoleIO, perhaps
supporting exceptions or logging in addition to basic I/O.


	As we’ll see in the next section (State Machines in Types), it will allow us to
define safe APIs for manipulating specific resources more precisely.




Earlier, we used runPure to run makeAndIncrement in the identity
context. Here, we use run, which allows us to execute an STrans program
in any context (as long as it has an implementation of Applicative) and we
can execute ioMakeAndIncrement at the REPL as follows:

*Intro> :exec run ioMakeAndIncrement
Enter a number: 93
var = 93
var = 94







Manipulating State with dependent types

In our first example of State, when we incremented the value its
type remained the same. However, when we’re working with
dependent types, updating a state may also involve updating its type.
For example, if we’re adding an element to a vector stored in a state,
its length will change:

addElement : (vec : Var) -> (item : a) ->
             STrans m () [vec ::: State (Vect n a)]
                  (const [vec ::: State (Vect (S n) a)])
addElement vec item = do xs <- read vec
                         write vec (item :: xs)





Note that you’ll need to import Data.Vect to try this example.


Updating a state directly with update

Rather than using read and write separately, you can also
use update which reads from a State, applies a function to it,
then writes the result. Using update you could write addElement
as follows:

addElement : (vec : Var) -> (item : a) ->
             STrans m () [vec ::: State (Vect n a)]
                  (const [vec ::: State (Vect (S n) a)])
addElement vec item = update vec (item ::)






We don’t always know how exactly the type will change in the course of a
sequence actions, however. For example, if we have a state containing a
vector of integers, we might read an input from the console and only add it
to the vector if the input is a valid integer. Somehow, we need a different
type for the output state depending on whether reading the integer was
successful, so neither of the following types is quite right:

readAndAdd_OK : ConsoleIO io => (vec : Var) ->
                STrans m ()  -- Returns an empty tuple
                            [vec ::: State (Vect n Integer)]
                     (const [vec ::: State (Vect (S n) Integer)])
readAndAdd_Fail : ConsoleIO io => (vec : Var) ->
                  STrans m ()  -- Returns an empty tuple
                              [vec ::: State (Vect n Integer)]
                       (const [vec ::: State (Vect n Integer)])





Remember, though, that the output resource types can be computed from
the result of a function. So far, we’ve used const to note that the
output resources are always the same, but here, instead, we can use a type
level function to calculate the output resources. We start by returning
a Bool instead of an empty tuple, which is True if reading the input
was successful, and leave a hole for the output resources:

readAndAdd : ConsoleIO io => (vec : Var) ->
             STrans m Bool [vec ::: State (Vect n Integer)]
                           ?output_res





If you check the type of ?output_res, you’ll see that Idris expects
a function of type Bool -> Resources, meaning that the output resource
type can be different depending on the result of readAndAdd:

  n : Nat
  m : Type -> Type
  io : Type -> Type
  constraint : ConsoleIO io
  vec : Var
--------------------------------------
output_res : Bool -> Resources





So, the output resource is either a Vect n Integer if the input is
invalid (i.e. readAndAdd returns False) or a Vect (S n) Integer
if the input is valid. We can express this in the type as follows:

readAndAdd : ConsoleIO io => (vec : Var) ->
             STrans io Bool [vec ::: State (Vect n Integer)]
                   (\res => [vec ::: State (if res then Vect (S n) Integer
                                                   else Vect n Integer)])





Then, when we implement readAndAdd we need to return the appropriate
value for the output state. If we’ve added an item to the vector, we need to
return True, otherwise we need to return False:

readAndAdd : ConsoleIO io => (vec : Var) ->
             STrans io Bool [vec ::: State (Vect n Integer)]
                   (\res => [vec ::: State (if res then Vect (S n) Integer
                                                   else Vect n Integer)])
readAndAdd vec = do putStr "Enter a number: "
                    num <- getStr
                    if all isDigit (unpack num)
                       then do
                         update vec ((cast num) ::)
                         pure True     -- added an item, so return True
                       else pure False -- didn't add, so return False





There is a slight difficulty if we’re developing interactively, which is
that if we leave a hole, the required output state isn’t easily visible
until we know the value that’s being returned. For example. in the following
incomplete definition of readAndAdd we’ve left a hole for the
successful case:

readAndAdd vec = do putStr "Enter a number: "
                    num <- getStr
                    if all isDigit (unpack num)
                       then ?whatNow
                       else pure False





We can look at the type of ?whatNow, but it is unfortunately rather less
than informative:

  vec : Var
  n : Nat
  io : Type -> Type
  constraint : ConsoleIO io
  num : String
--------------------------------------
whatNow : STrans io Bool [vec ::: State (Vect (S n) Integer)]
                 (\res =>
                    [vec :::
                     State (ifThenElse res
                                       (Delay (Vect (S n) Integer))
                                       (Delay (Vect n Integer)))])





The problem is that we’ll only know the required output state when we know
the value we’re returning. To help with interactive development, Control.ST
provides a function returning which allows us to specify the return
value up front, and to update the state accordingly. For example, we can
write an incomplete readAndAdd as follows:

readAndAdd vec = do putStr "Enter a number: "
                    num <- getStr
                    if all isDigit (unpack num)
                       then returning True ?whatNow
                       else pure False





This states that, in the successful branch, we’ll be returning True, and
?whatNow should explain how to update the states appropriately so that
they are correct for a return value of True. We can see this by checking
the type of ?whatNow, which is now a little more informative:

  vec : Var
  n : Nat
  io : Type -> Type
  constraint : ConsoleIO io
  num : String
--------------------------------------
whatnow : STrans io () [vec ::: State (Vect n Integer)]
                 (\value => [vec ::: State (Vect (S n) Integer)])





This type now shows, in the output resource list of STrans,
that we can complete the definition by adding an item to vec, which
we can do as follows:

readAndAdd vec = do putStr "Enter a number: "
                    num <- getStr
                    if all isDigit (unpack num)
                       then returning True (update vec ((cast num) ::))
                       else returning False (pure ()) -- returning False, so no state update required







STrans Primitive operations

Now that we’ve written a few small examples of STrans functions, it’s
a good time to look more closely at the types of the state manipulation
functions we’ve used. First, to read and write states, we’ve used
read and write:

read : (lbl : Var) -> {auto prf : InState lbl (State ty) res} ->
       STrans m ty res (const res)
write : (lbl : Var) -> {auto prf : InState lbl ty res} ->
        (val : ty') ->
        STrans m () res (const (updateRes res prf (State ty')))





These types may look a little daunting at first, particularly due to the
implicit prf argument, which has the following type:

prf : InState lbl (State ty) res





This relies on a predicate InState. A value of type InState x ty res
means that the reference x must have type ty in the list of
resources res. So, in practice, all this type means is that we can
only read or write a resource if a reference to it exists in the list of
resources.

Given a resource label res, and a proof that res exists in a list
of resources, updateRes will update the type of that resource. So,
the type of write states that the type of the resource will be updated
to the type of the given value.

The type of update is similar to that for read and write, requiring
that the resource has the input type of the given function, and updating it to
have the output type of the function:

update : (lbl : Var) -> {auto prf : InState lbl (State ty) res} ->
         (ty -> ty') ->
         STrans m () res (const (updateRes res prf (State ty')))





The type of new states that it returns a Var, and given an initial
value of type state, the output resources contains a new resource
of type State state:

new : (val : state) ->
      STrans m Var res (\lbl => (lbl ::: State state) :: res)





It’s important that the new resource has type State state, rather than
merely state, because this will allow us to hide implementation details
of APIs. We’ll see more about what this means in the next section,
State Machines in Types.

The type of delete states that the given label will be removed from
the list of resources, given an implicit proof that the label exists in
the input resources:

delete : (lbl : Var) -> {auto prf : InState lbl (State st) res} ->
         STrans m () res (const (drop res prf))





Here, drop is a type level function which updates the resource list,
removing the given resource lbl from the list.

We’ve used lift to run functions in the underlying context. It has the
following type:

lift : Monad m => m t -> STrans m t res (const res)





Given a result value, pure is an STrans program which produces
that value, provided that the current list of resources is correct when
producing that value:

pure : (result : ty) -> STrans m ty (out_fn result) out_fn





We can use returning to break down returning a value from an
STrans functions into two parts: providing the value itself, and updating
the resource list so that it is appropriate for returning that value:

returning : (result : ty) ->
            STrans m () res (const (out_fn result)) ->
            STrans m ty res out_fn





Finally, we’ve used run and runPure to execute STrans functions
in a specific context. run will execute a function in any context,
provided that there is an Applicative implementation for that context,
and runPure will execute a function in the identity context:

run : Applicative m => STrans m a [] (const []) -> m a
runPure : STrans Basics.id a [] (const []) -> a





Note that in each case, the input and output resource list must be empty.
There’s no way to provide an initial resource list, or extract the final
resources. This is deliberate: it ensures that all resource management is
carried out in the controlled STrans environment and, as we’ll see, this
allows us to implement safe APIs with precise types explaining exactly how
resources are tracked throughout a program.

These functions provide the core of the ST library; there are some
others which we’ll encounter later, for more advanced situations, but the
functions we have seen so far already allow quite sophisticated state-aware
programming and reasoning in Idris.



ST: Representing state transitions directly

We’ve seen a few examples of small STrans functions now, and
their types can become quite verbose given that we need to provide explicit
input and output resource lists. This is convenient for giving types for
the primitive operations, but for more general use it’s much more convenient
to be able to express transitions on individual resources, rather than
giving input and output resource lists in full. We can do this with
ST:

ST : (m : Type -> Type) ->
     (resultType : Type) ->
     List (Action resultType) -> Type





ST is a type level function which computes an appropriate STrans
type given a list of actions, which describe transitions on resources.
An Action in a function type can take one of the following forms (plus
some others which we’ll see later in the tutorial):


	lbl ::: ty expresses that the resource lbl begins and ends in
the state ty


	lbl ::: ty_in :-> ty_out expresses that the resource lbl begins
in state ty_in and ends in state ty_out


	lbl ::: ty_in :-> (\res -> ty_out) expresses that the resource lbl
begins in state ty_in and ends in a state ty_out, where ty_out
is computed from the result of the function res.




So, we can write some of the function types we’ve seen so far as follows:

increment : (x : Var) -> ST m () [x ::: State Integer]





That is, increment begins and ends with x in state State Integer.

makeAndIncrement : Integer -> ST m Integer []





That is, makeAndIncrement begins and ends with no resources.

addElement : (vec : Var) -> (item : a) ->
             ST m () [vec ::: State (Vect n a) :-> State (Vect (S n) a)]





That is, addElement changes vec from State (Vect n a) to
State (Vect (S n) a).

readAndAdd : ConsoleIO io => (vec : Var) ->
             ST io Bool
                   [vec ::: State (Vect n Integer) :->
                    \res => State (if res then Vect (S n) Integer
                                          else Vect n Integer)]





By writing the types in this way, we express the minimum necessary to explain
how each function affects the overall resource state. If there is a resource
update depending on a result, as with readAndAdd, then we need to describe
it in full. Otherwise, as with increment and makeAndIncrement, we can
write the input and output resource lists without repetition.

An Action can also describe adding and removing states:


	add ty, assuming the operation returns a Var, adds a new resource
of type ty.


	remove lbl ty expresses that the operation removes the resource named
lbl, beginning in state ty from the resource list.




So, for example, we can write:

newState : ST m Var [add (State Int)]
removeState : (lbl : Var) -> ST m () [remove lbl (State Int)]





The first of these, newState, returns a new resource label, and adds that
resource to the list with type State Int. The second, removeState,
given a label lbl, removes the resource from the list. These types are
equivalent to the following:

newState : STrans m Var [] (\lbl => [lbl ::: State Int])
removeState : (lbl : Var) -> STrans m () [lbl ::: State Int] (const [])





These are the primitive methods of constructing an Action.  Later, we will
encounter some other ways using type level functions to help with readability.

In the remainder of this tutorial, we will generally use ST except on
the rare occasions we need the full precision of STrans. In the next
section, we’ll see how to use the facilities provided by ST to write
a precise API for a system with security properties: a data store requiring
a login.
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State Machines in Types

In the introduction, we saw the following state transition diagram representing
the (abstract) states of a data store, and the actions we can perform on the
store:

[image: login]

We say that these are the abstract states of the store, because the concrete
state will contain a lot more information: for example, it might contain
user names, hashed passwords, the store contents, and so on. However, as far
as we are concerned for the actions login, logout and readSecret,
it’s whether we are logged in or not which affects which are valid.

We’ve seen how to manipulate states using ST, and some small examples
of dependent types in states. In this section, we’ll see how to use
ST to provide a safe API for the data store. In the API, we’ll encode
the above diagram in the types, in such a way that we can only execute the
operations login, logout and readSecret when the state is
valid.

So far, we’ve used State and the primitive operations, new, read,
write and delete to manipulate states. For the data store API,
however, we’ll begin by defining an interface (see Interfaces in
the Idris tutorial) which describes the operations on the store, and explains
in their types exactly when each operation is valid, and how it affects
the store’s state. By using an interface, we can be sure that
this is the only way to access the store.


Defining an interface for the data store

We’ll begin by defining a data type, in a file Login.idr, which represents
the two abstract states of the store, either LoggedOut or LoggedIn:

data Access = LoggedOut | LoggedIn





We can define a data type for representing the current state of a store,
holding all of the necessary information (this might be user names, hashed
passwords, store contents and so on) and parameterise it by the logged in
status of the store:

Store : Access -> Type





Rather than defining a concrete type now, however, we’ll include this in
a data store interface and define a concrete type later:

interface DataStore (m : Type -> Type) where
  Store : Access -> Type





We can continue to populate this interface with operations on the store.  Among
other advantages, by separating the interface from its implementation we
can provide different concrete implementations for different contexts.
Furthermore, we can write programs which work with a store without needing
to know any details of how the store is implemented.

We’ll need to be able to connect to a store, and disconnect when
we’re done. Add the following methods to the DataStore interface:

connect : ST m Var [add (Store LoggedOut)]
disconnect : (store : Var) -> ST m () [remove store (Store LoggedOut)]





The type of connect says that it returns a new resource which has the
initial type Store LoggedOut. Conversely, disconnect, given a
resource in the state Store LoggedOut, removes that resource.
We can see more clearly what connect does by trying the following
(incomplete) definition:

doConnect : DataStore m => ST m () []
doConnect = do st <- connect
               ?whatNow





Note that we’re working in a generic context m, constrained so that
there must be an implementation of DataStore for m to be able to
execute doConnect.
If we check the type of ?whatNow, we’ll see that the remaining
operations begin with a resource st in the state Store LoggedOut,
and we need to finish with no resources.

  m : Type -> Type
  constraint : DataStore m
  st : Var
--------------------------------------
whatNow : STrans m () [st ::: Store LoggedOut] (\result => [])





Then, we can remove the resource using disconnect:

doConnect : DataStore m => ST m () []
doConnect = do st <- connect
               disconnect st
               ?whatNow





Now checking the type of ?whatNow shows that we have no resources
available:

  m : Type -> Type
  constraint : DataStore m
  st : Var
--------------------------------------
whatNow : STrans m () [] (\result => [])





To continue our implementation of the DataStore interface, next we’ll add a
method for reading the secret data. This requires that the store is in the
state Store LoggedIn:

readSecret : (store : Var) -> ST m String [store ::: Store LoggedIn]





At this point we can try writing a function which connects to a store,
reads the secret, then disconnects. However, it will be unsuccessful, because
readSecret requires us to be logged in:

badGet : DataStore m => ST m () []
badGet = do st <- connect
            secret <- readSecret st
            disconnect st





This results in the following error, because connect creates a new
store in the LoggedOut state, and readSecret requires the store
to be in the LoggedIn state:

When checking an application of function Control.ST.>>=:
    Error in state transition:
            Operation has preconditions: [st ::: Store LoggedOut]
            States here are: [st ::: Store LoggedIn]
            Operation has postconditions: \result => []
            Required result states here are: \result => []





The error message explains how the required input states (the preconditions)
and the required output states (the postconditions) differ from the states
in the operation. In order to use readSecret, we’ll need a way to get
from a Store LoggedOut to a Store LoggedIn. As a first attempt,
we can try the following type for login:

login : (store : Var) -> ST m () [store ::: Store LoggedOut :-> Store LoggedIn] -- Incorrect type!





Note that in the interface we say nothing about how login works;
merely how it affects the overall state. Even so, there is a problem with
the type of login, because it makes the assumption that it will always
succeed. If it fails - for example because the implementation prompts for
a password and the user enters the password incorrectly - then it must not
result in a LoggedIn store.

Instead, therefore, login will return whether logging in was successful,
via the following type;

data LoginResult = OK | BadPassword





Then, we can calculate the result state (see Manipulating State with dependent types) from the
result. Add the following method to the DataStore interface:

login : (store : Var) ->
        ST m LoginResult [store ::: Store LoggedOut :->
                           (\res => Store (case res of
                                                OK => LoggedIn
                                                BadPassword => LoggedOut))]





If login was successful, then the state after login is
Store LoggedIn. Otherwise, the state is Store LoggedOut.

To complete the interface, we’ll add a method for logging out of the store.
We’ll assume that logging out is always successful, and moves the store
from the Store LoggedIn state to the Store LoggedOut state.

logout : (store : Var) -> ST m () [store ::: Store LoggedIn :-> Store LoggedOut]





This completes the interface, repeated in full for reference below:

interface DataStore (m : Type -> Type) where
  Store : Access -> Type

  connect : ST m Var [add (Store LoggedOut)]
  disconnect : (store : Var) -> ST m () [remove store (Store LoggedOut)]

  readSecret : (store : Var) -> ST m String [store ::: Store LoggedIn]
  login : (store : Var) ->
          ST m LoginResult [store ::: Store LoggedOut :->
                             (\res => Store (case res of
                                                  OK => LoggedIn
                                                  BadPassword => LoggedOut))]
  logout : (store : Var) -> ST m () [store ::: Store LoggedIn :-> Store LoggedOut]





Before we try creating any implementations of this interface, let’s see how
we can write a function with it, to log into a data store, read the secret
if login is successful, then log out again.



Writing a function with the data store

As an example of working with the DataStore interface, we’ll write a
function getData, which connects to a store in order to read some data from
it. We’ll write this function interactively, step by step, using the types of
the operations to guide its development. It has the following type:

getData : (ConsoleIO m, DataStore m) => ST m () []





This type means that there are no resources available on entry or exit.
That is, the overall list of actions is [], meaning that at least
externally, the function has no overall effect on the resources. In other
words, for every resource we create during getData, we’ll also need to
delete it before exit.

Since we want to use methods of the DataStore interface, we’ll
constraint the computation context m so that there must be an
implementation of DataStore. We also have a constraint ConsoleIO m
so that we can display any data we read from the store, or any error
messages.

We start by connecting to the store, creating a new resource st, then
trying to login:

getData : (ConsoleIO m, DataStore m) => ST m () []
getData = do st <- connect
             ok <- login st
             ?whatNow





Logging in will either succeed or fail, as reflected by the value of
ok. If we check the type of ?whatNow, we’ll see what state the
store currently has:

  m : Type -> Type
  constraint : ConsoleIO m
  constraint1 : DataStore m
  st : Var
  ok : LoginResult
--------------------------------------
whatNow : STrans m () [st ::: Store (case ok of
                                          OK => LoggedIn
                                          BadPassword => LoggedOut)]
                      (\result => [])





The current state of st therefore depends on the value of ok,
meaning that we can make progress by case splitting on ok:

getData : (ConsoleIO m, DataStore m) => ST m () []
getData = do st <- connect
             ok <- login st
             case ok of
                  OK => ?whatNow_1
                  BadPassword => ?whatNow_2





The types of the holes in each branch, ?whatNow_1 and ?whatNow_2,
show how the state changes depending on whether logging in was successful.
If it succeeded, the store is LoggedIn:

--------------------------------------
whatNow_1 : STrans m () [st ::: Store LoggedIn] (\result => [])





On the other hand, if it failed, the store is LoggedOut:

--------------------------------------
whatNow_2 : STrans m () [st ::: Store LoggedOut] (\result => [])





In ?whatNow_1, since we’ve successfully logged in, we can now read
the secret and display it to the console:

getData : (ConsoleIO m, DataStore m) => ST m () []
getData = do st <- connect
             ok <- login st
             case ok of
                  OK => do secret <- readSecret st
                           putStrLn ("Secret is: " ++ show secret)
                           ?whatNow_1
                  BadPassword => ?whatNow_2





We need to finish the OK branch with no resources available. We can
do this by logging out of the store then disconnecting:

getData : (ConsoleIO m, DataStore m) => ST m () []
getData = do st <- connect
             ok <- login st
             case ok of
                  OK => do secret <- readSecret st
                           putStrLn ("Secret is: " ++ show secret)
                           logout st
                           disconnect st
                  BadPassword => ?whatNow_2





Note that we must logout of st before calling disconnect,
because disconnect requires that the store is in the LoggedOut
state.

Furthermore, we can’t simply use delete to remove the resource, as
we did with the State examples in the previous section, because
delete only works when the resource has type State ty, for some
type ty. If we try to use delete instead of disconnect, we’ll
see an error message like the following:

When checking argument prf to function Control.ST.delete:
        Can't find a value of type
                InState st (State st) [st ::: Store LoggedOut]





In other words, the type checker can’t find a proof that the resource
st has a type of the form State st, because its type is
Store LoggedOut. Since Store is part of the DataStore interface,
we can’t yet know the concrete representation of the Store, so we
need to remove the resource via the interface, with disconnect, rather
than directly with delete.

We can complete getData as follows, using a pattern matching bind
alternative (see the Idris tutorial, Monads and do-notation) rather than a
case statement to catch the possibility of an error with login:

getData : (ConsoleIO m, DataStore m) => ST m () []
getData = do st <- connect
             OK <- login st
                | BadPassword => do putStrLn "Failure"
                                    disconnect st
             secret <- readSecret st
             putStrLn ("Secret is: " ++ show secret)
             logout st
             disconnect st





We can’t yet try this out, however, because we don’t have any implementations
of DataStore! If we try to execute it in an IO context, for example,
we’ll get an error saying that there’s no implementation of DataStore IO:

*Login> :exec run {m = IO} getData
When checking an application of function Control.ST.run:
        Can't find implementation for DataStore IO





The final step in implementing a data store which correctly follows the
state transition diagram, therefore, is to provide an implementation
of DataStore.



Implementing the interface

To execute getData in IO, we’ll need to provide an implementation
of DataStore which works in the IO context. We can begin as
follows:

implementation DataStore IO where





Then, we can ask Idris to populate the interface with skeleton definitions
for the necessary methods (press Ctrl-Alt-A in Atom for “add definition”
or the corresponding shortcut for this in the Idris mode in your favourite
editor):

implementation DataStore IO where
  Store x = ?DataStore_rhs_1
  connect = ?DataStore_rhs_2
  disconnect store = ?DataStore_rhs_3
  readSecret store = ?DataStore_rhs_4
  login store = ?DataStore_rhs_5
  logout store = ?DataStore_rhs_6





The first decision we’ll need to make is how to represent the data store.
We’ll keep this simple, and store the data as a single String, using
a hard coded password to gain access. So, we can define Store as
follows, using a String to represent the data no matter whether we
are LoggedOut or LoggedIn:

Store x = State String





Now that we’ve given a concrete type for Store, we can implement operations
for connecting, disconnecting, and accessing the data. And, since we used
State, we can use new, delete, read and write to
manipulate the store.

Looking at the types of the holes tells us how we need to manipulate the
state. For example, the ?DataStore_rhs_2 hole tells us what we need
to do to implement connect. We need to return a new Var which
represents a resource of type State String:

--------------------------------------
DataStore_rhs_2 : STrans IO Var [] (\result => [result ::: State String])





We can implement this by creating a new variable with some data for the
content of the store (we can use any String for this) and returning
that variable:

connect = do store <- new "Secret Data"
             pure store





For disconnect, we only need to delete the resource:

disconnect store = delete store





For readSecret, we need to read the secret data and return the
String. Since we now know the concrete representation of the data is
a State String, we can use read to access the data directly:

readSecret store = read store





We’ll do logout next and return to login. Checking the hole
reveals the following:

  store : Var
--------------------------------------
DataStore_rhs_6 : STrans IO () [store ::: State String] (\result => [store ::: State String])





So, in this minimal implementation, we don’t actually have to do anything!

logout store = pure ()





For login, we need to return whether logging in was successful. We’ll
do this by prompting for a password, and returning OK if it matches
a hard coded password, or BadPassword otherwise:

login store = do putStr "Enter password: "
                 p <- getStr
                 if p == "Mornington Crescent"
                    then pure OK
                    else pure BadPassword





For reference, here is the complete implementation which allows us to
execute a DataStore program at the REPL:

implementation DataStore IO where
  Store x = State String
  connect = do store <- new "Secret Data"
               pure store
  disconnect store = delete store
  readSecret store = read store
  login store = do putStr "Enter password: "
                   p <- getStr
                   if p == "Mornington Crescent"
                      then pure OK
                      else pure BadPassword
  logout store = pure ()





Finally, we can try this at the REPL as follows (Idris defaults to the
IO context at the REPL if there is an implementation available, so no
need to give the m argument explicitly here):

*Login> :exec run getData
Enter password: Mornington Crescent
Secret is: "Secret Data"

*Login> :exec run getData
Enter password: Dollis Hill
Failure





We can only use read, write, new and delete on a resource
with a State type. So, within the implementation of DataStore,
or anywhere where we know the context is IO, we can access the data store
however we like: this is where the internal details of DataStore are
implemented. However, if we merely have a constraint DataStore m, we can’t
know how the store is implemented, so we can only access via the API given
by the DataStore interface.

It is therefore good practice to use a generic context m for functions
like getData, and constrain by only the interfaces we need, rather than
using a concrete context IO.

We’ve now seen how to manipulate states, and how to encapsulate state
transitions for a specific system like the data store in an interface.
However, realistic systems will need to compose state machines. We’ll
either need to use more than one state machine at a time, or implement one
state machine in terms of one or more others. We’ll see how to achieve this
in the next section.
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Composing State Machines

In the previous section, we defined a DataStore interface and used it
to implement the following small program which allows a user to log in to
the store then display the store’s contents;

getData : (ConsoleIO m, DataStore m) => ST m () []
getData = do st <- connect
             OK <- login st
                | BadPassword => do putStrLn "Failure"
                                    disconnect st
             secret <- readSecret st
             putStrLn ("Secret is: " ++ show secret)
             logout st
             disconnect st





This function only uses one state, the store itself. Usually, though,
larger programs have lots of states, and might add, delete and update
states over the course of its execution. Here, for example, a useful
extension might be to loop forever, keeping count of the number of times
there was a login failure in a state.

Furthermore, we may have hierarchies of state machines, in that one
state machine could be implemented by composing several others. For
example, we can have a state machine representing the state of a
graphics system, and use this to implement a higher level graphics API
such as turtle graphics, which uses the graphics system plus some additional
state for the turtle.

In this section, we’ll see how to work with multiple states, and how to
compose state machines to make higher level state machines. We’ll begin by
seeing how to add a login failure counter to getData.


Working with multiple resources

To see how to work with multiple resources, we’ll modify getData so
that it loops, and counts the total number of times the user fails to
log in. For example, if we write a main program which initialises the
count to zero, a session might run as follows:

*LoginCount> :exec main
Enter password: Mornington Crescent
Secret is: "Secret Data"
Enter password: Dollis Hill
Failure
Number of failures: 1
Enter password: Mornington Crescent
Secret is: "Secret Data"
Enter password: Codfanglers
Failure
Number of failures: 2
...





We’ll start by adding a state resource to getData to keep track of the
number of failures:

getData : (ConsoleIO m, DataStore m) =>
          (failcount : Var) -> ST m () [failcount ::: State Integer]






Type checking getData

If you’re following along in the code, you’ll find that getData
no longer compiles when you update this type. That is to be expected!
For the moment, comment out the definition of getData. We’ll come back
to it shortly.


Then, we can create a main program which initialises the state to 0
and invokes getData, as follows:

main : IO ()
main = run (do fc <- new 0
               getData fc
               delete fc)





We’ll start our implementation of getData just by adding the new
argument for the failure count:

getData : (ConsoleIO m, DataStore m) =>
          (failcount : Var) -> ST m () [failcount ::: State Integer]
getData failcount
        = do st <- connect
             OK <- login st
                | BadPassword => do putStrLn "Failure"
                                    disconnect st
             secret <- readSecret st
             putStrLn ("Secret is: " ++ show secret)
             logout st
             disconnect st





Unfortunately, this doesn’t type check, because we have the wrong resources
for calling connect. The error messages shows how the resources don’t
match:

When checking an application of function Control.ST.>>=:
    Error in state transition:
            Operation has preconditions: []
            States here are: [failcount ::: State Integer]
            Operation has postconditions: \result => [result ::: Store LoggedOut] ++ []
            Required result states here are: st2_fn





In other words, connect requires that there are no resources on
entry, but we have one, the failure count!
This shouldn’t be a problem, though: the required resources are a subset of
the resources we have, after all, and the additional resources (here, the
failure count) are not relevant to connect. What we need, therefore,
is a way to temporarily hide the additional resource.

We can achieve this with the call function:

getData : (ConsoleIO m, DataStore m) =>
          (failcount : Var) -> ST m () [failcount ::: State Integer]
getData failcount
   = do st <- call connect
        ?whatNow





Here we’ve left a hole for the rest of getData so that you can see the
effect of call. It has removed the unnecessary parts of the resource
list for calling connect, then reinstated them on return. The type of
whatNow therefore shows that we’ve added a new resource st, and still
have failcount available:

  failcount : Var
  m : Type -> Type
  constraint : ConsoleIO m
  constraint1 : DataStore m
  st : Var
--------------------------------------
whatNow : STrans m () [failcount ::: State Integer, st ::: Store LoggedOut]
                      (\result => [failcount ::: State Integer])





By the end of the function, whatNow says that we need to have finished with
st, but still have failcount available. We can complete getData
so that it works with an additional state resource by adding call whenever
we invoke one of the operations on the data store, to reduce the list of
resources:

getData : (ConsoleIO m, DataStore m) =>
          (failcount : Var) -> ST m () [failcount ::: State Integer]
getData failcount
        = do st <- call connect
             OK <- call $ login st
                | BadPassword => do putStrLn "Failure"
                                    call $ disconnect st
             secret <- call $ readSecret st
             putStrLn ("Secret is: " ++ show secret)
             call $ logout st
             call $ disconnect st





This is a little noisy, and in fact we can remove the need for it by
making call implicit. By default, you need to add the call explicitly,
but if you import Control.ST.ImplicitCall, Idris will insert call
where it is necessary.

import Control.ST.ImplicitCall





It’s now possible to write getData exactly as before:

getData : (ConsoleIO m, DataStore m) =>
          (failcount : Var) -> ST m () [failcount ::: State Integer]
getData failcount
        = do st <- connect
             OK <- login st
                | BadPassword => do putStrLn "Failure"
                                    disconnect st
             secret <- readSecret st
             putStrLn ("Secret is: " ++ show secret)
             logout st
             disconnect st





There is a trade off here: if you import Control.ST.ImplicitCall then
functions which use multiple resources are much easier to read, because the
noise of call has gone. On the other hand, Idris has to work a little
harder to type check your functions, and as a result it can take slightly
longer, and the error messages can be less helpful.

It is instructive to see the type of call:

call : STrans m t sub new_f -> {auto res_prf : SubRes sub old} ->
       STrans m t old (\res => updateWith (new_f res) old res_prf)





The function being called has a list of resources sub, and
there is an implicit proof, SubRes sub old that the resource list in
the function being called is a subset of the overall resource list. The
ordering of resources is allowed to change, although resources which
appear in old can’t appear in the sub list more than once (you will
get a type error if you try this).

The function updateWith takes the output resources of the
called function, and updates them in the current resource list. It makes
an effort to preserve ordering as far as possible, although this isn’t
always possible if the called function does some complicated resource
manipulation.


Newly created resources in called functions

If the called function creates any new resources, these will typically
appear at the end of the resource list, due to the way updateWith
works. You can see this in the type of whatNow in our incomplete
definition of getData above.


Finally, we can update getData so that it loops, and keeps
failCount updated as necessary:

getData : (ConsoleIO m, DataStore m) =>
          (failcount : Var) -> ST m () [failcount ::: State Integer]
getData failcount
   = do st <- call connect
        OK <- login st
           | BadPassword => do putStrLn "Failure"
                               fc <- read failcount
                               write failcount (fc + 1)
                               putStrLn ("Number of failures: " ++ show (fc + 1))
                               disconnect st
                               getData failcount
        secret <- readSecret st
        putStrLn ("Secret is: " ++ show secret)
        logout st
        disconnect st
        getData failcount





Note that here, we’re connecting and disconnecting on every iteration.
Another way to implement this would be to connect first, then call
getData, and implement getData as follows:

getData : (ConsoleIO m, DataStore m) =>
          (st, failcount : Var) -> ST m () [st ::: Store {m} LoggedOut, failcount ::: State Integer]
getData st failcount
   = do OK <- login st
           | BadPassword => do putStrLn "Failure"
                               fc <- read failcount
                               write failcount (fc + 1)
                               putStrLn ("Number of failures: " ++ show (fc + 1))
                               getData st failcount
        secret <- readSecret st
        putStrLn ("Secret is: " ++ show secret)
        logout st
        getData st failcount





It is important to add the explicit {m} in the type of Store {m}
LoggedOut for st, because this gives Idris enough information to know
which implementation of DataStore to use to find the appropriate
implementation for Store. Otherwise, if we only write Store LoggedOut,
there’s no way to know that the Store is linked with the computation
context m.

We can then connect and disconnect only once, in main:

main : IO ()
main = run (do fc <- new 0
               st <- connect
               getData st fc
               disconnect st
               delete fc)





By using call, and importing Control.ST.ImplicitCall, we can
write programs which use multiple resources, and reduce the list of
resources as necessary when calling functions which only use a subset of
the overall resources.



Composite resources: Hierarchies of state machines

We’ve now seen how to use multiple resources in one function, which is
necessary for any realistic program which manipulates state. We can think
of this as “horizontal” composition: using multiple resources at once.
We’ll often also need “vertical” composition: implementing one resource
in terms of one or more other resources.

We’ll see an example of this in this section. First, we’ll implement a
small API for graphics, in an interface Draw, supporting:


	Opening a window, creating a double-buffered surface to draw on


	Drawing lines and rectangles onto a surface


	“Flipping” buffers, displaying the surface we’ve just drawn onto in
the window


	Closing a window




Then, we’ll use this API to implement a higher level API for turtle graphics,
in an interface.
This will require not only the Draw interface, but also a representation
of the turtle state (location, direction and pen colour).


SDL bindings

For the examples in this section, you’ll need to install the
(very basic!) SDL bindings for Idris, available from
https://github.com/edwinb/SDL-idris. These bindings implement a small
subset of the SDL API, and are for illustrative purposes only.
Nevertheless, they are enough to implement small graphical programs
and demonstrate the concepts of this section.

Once you’ve installed this package, you can start Idris with the
-p sdl flag, for the SDL bindings, and the -p contrib flag,
for the Control.ST library.



The Draw interface

We’re going to use the Idris SDL bindings for this API, so you’ll need
to import Graphics.SDL once you’ve installed the bindings.
We’ll start by defining the Draw interface, which includes a data type
representing a surface on which we’ll draw lines and rectangles:

interface Draw (m : Type -> Type) where
    Surface : Type





We’ll need to be able to create a new Surface by opening a window:

initWindow : Int -> Int -> ST m Var [add Surface]





However, this isn’t quite right. It’s possible that opening a window
will fail, for example if our program is running in a terminal without
a windowing system available. So, somehow, initWindow needs to cope
with the possibility of failure. We can do this by returning a
Maybe Var, rather than a Var, and only adding the Surface
on success:

initWindow : Int -> Int -> ST m (Maybe Var) [addIfJust Surface]





This uses a type level function addIfJust, defined in Control.ST
which returns an Action that only adds a resource if the operation
succeeds (that is, returns a result of the form Just val.


addIfJust and addIfRight

Control.ST defines functions for constructing new resources if an
operation succeeds. As well as addIfJust, which adds a resource if
an operation returns Just ty, there’s also addIfRight:

addIfJust : Type -> Action (Maybe Var)
addIfRight : Type -> Action (Either a Var)





Each of these is implemented in terms of the following primitive action
Add, which takes a function to construct a resource list from the result
of an operation:

Add : (ty -> Resources) -> Action ty





Using this, you can create your own actions to add resources
based on the result of an operation, if required. For example,
addIfJust is implemented as follows:

addIfJust : Type -> Action (Maybe Var)
addIfJust ty = Add (maybe [] (\var => [var ::: ty]))






If we create windows, we’ll also need to be able to delete them:

closeWindow : (win : Var) -> ST m () [remove win Surface]





We’ll also need to respond to events such as keypresses and mouse clicks.
The Graphics.SDL library provides an Event type for this, and
we can poll for events which returns the last event which occurred,
if any:

poll : ST m (Maybe Event) []





The remaining methods of Draw are flip, which flips the buffers
displaying everything that we’ve drawn since the previous flip, and
two methods for drawing: filledRectangle and drawLine.

flip : (win : Var) -> ST m () [win ::: Surface]
filledRectangle : (win : Var) -> (Int, Int) -> (Int, Int) -> Col -> ST m () [win ::: Surface]
drawLine : (win : Var) -> (Int, Int) -> (Int, Int) -> Col -> ST m () [win ::: Surface]





We define colours as follows, as four components (red, green, blue, alpha):

data Col = MkCol Int Int Int Int

black : Col
black = MkCol 0 0 0 255

red : Col
red = MkCol 255 0 0 255

green : Col
green = MkCol 0 255 0 255

-- Also blue, yellow, magenta, cyan, white, similarly...





If you import Graphics.SDL, you can implement the Draw interface
using the SDL bindings as follows:

implementation Draw IO where
  Surface = State SDLSurface

  initWindow x y = do Just srf <- lift (startSDL x y)
                           | pure Nothing
                      var <- new srf
                      pure (Just var)

  closeWindow win = do lift endSDL
                       delete win

  flip win = do srf <- read win
                lift (flipBuffers srf)
  poll = lift pollEvent

  filledRectangle win (x, y) (ex, ey) (MkCol r g b a)
       = do srf <- read win
            lift $ filledRect srf x y ex ey r g b a
  drawLine win (x, y) (ex, ey) (MkCol r g b a)
       = do srf <- read win
            lift $ drawLine srf x y ex ey r g b a





In this implementation, we’ve used startSDL to initialise a window, which,
returns Nothing if it fails. Since the type of initWindow states that
it adds a resource when it returns a value of the form Just val, we
add the surface returned by startSDL on success, and nothing on
failure.  We can only successfully initialise if startDSL succeeds.

Now that we have an implementation of Draw, we can try writing some
functions for drawing into a window and execute them via the SDL bindings.
For example, assuming we have a surface win to draw onto, we can write a
render function as follows which draws a line onto a black background:

render : Draw m => (win : Var) -> ST m () [win ::: Surface {m}]
render win = do filledRectangle win (0,0) (640,480) black
                drawLine win (100,100) (200,200) red
                flip win





The flip win at the end is necessary because the drawing primitives
are double buffered, to prevent flicker. We draw onto one buffer, off-screen,
and display the other.  When we call flip, it displays the off-screen
buffer, and creates a new off-screen buffer for drawing the next frame.

To include this in a program, we’ll write a main loop which renders our
image and waits for an event to indicate the user wants to close the
application:

loop : Draw m => (win : Var) -> ST m () [win ::: Surface {m}]
loop win = do render win
              Just AppQuit <- poll
                   | _ => loop win
              pure ()





Finally, we can create a main program which initialises a window, if
possible, then runs the main loop:

drawMain : (ConsoleIO m, Draw m) => ST m () []
drawMain = do Just win <- initWindow 640 480
                 | Nothing => putStrLn "Can't open window"
              loop win
              closeWindow win





We can try this at the REPL using run:

*Draw> :exec run drawMain







A higher level interface: TurtleGraphics

Turtle graphics involves a “turtle” moving around the screen, drawing a line as
it moves with a “pen”. A turtle has attributes describing its location, the
direction it’s facing, and the current pen colour. There are commands for
moving the turtle forwards, turning through an angle, and changing the
pen colour, among other things. One possible interface would be the
following:

interface TurtleGraphics (m : Type -> Type) where
  Turtle : Type

  start : Int -> Int -> ST m (Maybe Var) [addIfJust Turtle]
  end : (t : Var) -> ST m () [Remove t Turtle]

  fd : (t : Var) -> Int -> ST m () [t ::: Turtle]
  rt : (t : Var) -> Int -> ST m () [t ::: Turtle]

  penup : (t : Var) -> ST m () [t ::: Turtle]
  pendown : (t : Var) -> ST m () [t ::: Turtle]
  col : (t : Var) -> Col -> ST m () [t ::: Turtle]

  render : (t : Var) -> ST m () [t ::: Turtle]





Like Draw, we have a command for initialising the turtle (here called
start) which might fail if it can’t create a surface for the turtle to
draw on. There is also a render method, which is intended to render the
picture drawn so far in a window.  One possible program with this interface
is the following, with draws a colourful square:

turtle : (ConsoleIO m, TurtleGraphics m) => ST m () []
turtle = with ST do
            Just t <- start 640 480
                 | Nothing => putStr "Can't make turtle\n"
            col t yellow
            fd t 100; rt t 90
            col t green
            fd t 100; rt t 90
            col t red
            fd t 100; rt t 90
            col t blue
            fd t 100; rt t 90
            render t
            end t






with ST do

The purpose of with ST do in turtle is to disambiguate (>>=),
which could be either the version from the Monad interface, or the
version from ST. Idris can work this out itself, but it takes time to
try all of the possibilities, so the with clause can
speed up type checking.


To implement the interface, we could try using Surface to represent
the surface for the turtle to draw on:

implementation Draw m => TurtleGraphics m where
  Turtle = Surface {m}





Knowing that a Turtle is represented as a Surface, we can use the
methods provided by Draw to implement the turtle.  Unfortunately, though,
this isn’t quite enough. We need to store more information: in particular, the
turtle has several attributes which we need to store somewhere.
So, not only do we need to represent the turtle as a Surface, we need
to store some additional state. We can achieve this using a composite
resource.



Introducing composite resources

A composite resource is built up from a list of other resources, and
is implemented using the following type, defined by Control.ST:

data Composite : List Type -> Type





If we have a composite resource, we can split it into its constituent
resources, and create new variables for each of those resources, using
the split function. For example:

splitComp : (comp : Var) -> ST m () [comp ::: Composite [State Int, State String]]
splitComp comp = do [int, str] <- split comp
                    ?whatNow





The call split comp extracts the State Int and State String from
the composite resource comp, and stores them in the variables int
and str respectively. If we check the type of whatNow, we’ll see
how this has affected the resource list:

  int : Var
  str : Var
  comp : Var
  m : Type -> Type
--------------------------------------
whatNow : STrans m () [int ::: State Int, str ::: State String, comp ::: State ()]
                      (\result => [comp ::: Composite [State Int, State String]])





So, we have two new resources int and str, and the type of
comp has been updated to the unit type, so currently holds no data.
This is to be expected: we’ve just extracted the data into individual
resources after all.

Now that we’ve extracted the individual resources, we can manipulate them
directly (say, incrementing the Int and adding a newline to the
String) then rebuild the composite resource using combine:

splitComp : (comp : Var) ->
            ST m () [comp ::: Composite [State Int, State String]]
splitComp comp = do [int, str] <- split comp
                    update int (+ 1)
                    update str (++ "\n")
                    combine comp [int, str]
                    ?whatNow





As ever, we can check the type of whatNow to see the effect of
combine:

  comp : Var
  int : Var
  str : Var
  m : Type -> Type
--------------------------------------
whatNow : STrans m () [comp ::: Composite [State Int, State String]]
                 (\result => [comp ::: Composite [State Int, State String]])





The effect of combine, therefore, is to take existing
resources and merge them into one composite resource. Before we run
combine, the target resource must exist (comp here) and must be
of type State ().

It is instructive to look at the types of split and combine to see
the requirements on resource lists they work with. The type of split
is the following:

split : (lbl : Var) -> {auto prf : InState lbl (Composite vars) res} ->
        STrans m (VarList vars) res (\vs => mkRes vs ++ updateRes res prf (State ()))





The implicit prf argument says that the lbl being split must be
a composite resource. It returns a variable list, built from the composite
resource, and the mkRes function makes a list of resources of the
appropriate types. Finally, updateRes updates the composite resource to
have the type State ().

The combine function does the inverse:

combine : (comp : Var) -> (vs : List Var) ->
          {auto prf : InState comp (State ()) res} ->
          {auto var_prf : VarsIn (comp :: vs) res} ->
          STrans m () res (const (combineVarsIn res var_prf))





The implicit prf argument here ensures that the target resource comp
has type State (). That is, we’re not overwriting any other data.
The implicit var_prf argument is similar to SubRes in call, and
ensures that every variable we’re using to build the composite resource
really does exist in the current resource list.

We can use composite resources to implement our higher level TurtleGraphics
API in terms of Draw, and any additional resources we need.



Implementing Turtle

Now that we’ve seen how to build a new resource from an existing collection,
we can implement Turtle using a composite resource, containing the
Surface to draw on, and individual states for the pen colour and the
pen location and direction. We also have a list of lines, which describes
what we’ll draw onto the Surface when we call render:

Turtle = Composite [Surface {m}, -- surface to draw on
                    State Col,  -- pen colour
                    State (Int, Int, Int, Bool), -- pen location/direction/d
                    State (List Line)] -- lines to draw on render





A Line is defined as a start location, and end location, and a colour:

Line : Type
Line = ((Int, Int), (Int, Int), Col)





To implement start, which creates a new Turtle (or returns Nothing
if this is impossible), we begin by initialising the drawing surface then
all of the components of the state. Finally, we combine all of these
into a composite resource for the turtle:

start x y = do Just srf <- initWindow x y
                    | Nothing => pure Nothing
               col <- new white
               pos <- new (320, 200, 0, True)
               lines <- new []
               turtle <- new ()
               combine turtle [srf, col, pos, lines]
               pure (Just turtle)





To implement end, which needs to dispose of the turtle,
we deconstruct the composite resource, close the window,
then remove each individual resource. Remember that we can only delete
a State, so we need to split the composite resource, close the
drawing surface cleanly with closeWindow, then delete the states:

end t = do [srf, col, pos, lines] <- split t
           closeWindow srf; delete col; delete pos; delete lines; delete t





For the other methods, we need to split the resource to get each
component, and combine into a composite resource when we’re done.
As an example, here’s penup:

penup t = do [srf, col, pos, lines] <- split t -- Split the composite resource
             (x, y, d, _) <- read pos          -- Deconstruct the pen position
             write pos (x, y, d, False)        -- Set the pen down flag to False
             combine t [srf, col, pos, lines]  -- Recombine the components





The remaining operations on the turtle follow a similar pattern. See
samples/ST/Graphics/Turtle.idr in the Idris distribution for the full
details. It remains to render the image created by the turtle:

render t = do [srf, col, pos, lines] <- split t -- Split the composite resource
              filledRectangle srf (0, 0) (640, 480) black -- Draw a background
              drawAll srf !(read lines)         -- Render the lines drawn by the turtle
              flip srf                          -- Flip the buffers to display the image
              combine t [srf, col, pos, lines]
              Just ev <- poll
                | Nothing => render t           -- Keep going until a key is pressed
              case ev of
                   KeyUp _ => pure ()           -- Key pressed, so quit
                   _ => render t
 where drawAll : (srf : Var) -> List Line -> ST m () [srf ::: Surface {m}]
       drawAll srf [] = pure ()
       drawAll srf ((start, end, col) :: xs)
          = do drawLine srf start end col       -- Draw a line in the appropriate colour
               drawAll srf xs
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Example: Network Socket Programming

The POSIX sockets API supports communication between processes across a
network. A socket represents an endpoint of a network communication, and can be
in one of several states:


	Ready, the initial state


	Bound, meaning that it has been bound to an address ready for incoming
connections


	Listening, meaning that it is listening for incoming connections


	Open, meaning that it is ready for sending and receiving data;


	Closed, meaning that it is no longer active.




The following diagram shows how the operations provided by the API modify the
state, where Ready is the initial state:

[image: netstate]

If a connection is Open, then we can also send messages to the
other end of the connection, and recv messages from it.

The contrib package provides a module Network.Socket which
provides primitives for creating sockets and sending and receiving
messages. It includes the following functions:

bind : (sock : Socket) -> (addr : Maybe SocketAddress) -> (port : Port) -> IO Int
connect : (sock : Socket) -> (addr : SocketAddress) -> (port : Port) -> IO ResultCode
listen : (sock : Socket) -> IO Int
accept : (sock : Socket) -> IO (Either SocketError (Socket, SocketAddress))
send : (sock : Socket) -> (msg  : String) -> IO (Either SocketError ResultCode)
recv : (sock : Socket) -> (len : ByteLength) -> IO (Either SocketError (String, ResultCode))
close : Socket -> IO ()





These functions cover the state transitions in the diagram above, but
none of them explain how the operations affect the state! It’s perfectly
possible, for example, to try to send a message on a socket which is
not yet ready, or to try to receive a message after the socket is closed.

Using ST, we can provide a better API which explains exactly how
each operation affects the state of a connection. In this section, we’ll
define a sockets API, then use it to implement an “echo” server which
responds to requests from a client by echoing back a single message sent
by the client.


Defining a Sockets interface

Rather than using IO for low level socket programming, we’ll implement
an interface using ST which describes precisely how each operation
affects the states of sockets, and describes when sockets are created
and removed. We’ll begin by creating a type to describe the abstract state
of a socket:

data SocketState = Ready | Bound | Listening | Open | Closed





Then, we’ll begin defining an interface, starting with a Sock type
for representing sockets, parameterised by their current state:

interface Sockets (m : Type -> Type) where
  Sock : SocketState -> Type





We create sockets using the socket method. The SocketType is defined
by the sockets library, and describes whether the socket is TCP, UDP,
or some other form. We’ll use Stream for this throughout, which indicates a
TCP socket.

socket : SocketType -> ST m (Either () Var) [addIfRight (Sock Ready)]





Remember that addIfRight adds a resource if the result of the operation
is of the form Right val. By convention in this interface, we’ll use
Either for operations which might fail, whether or not they might carry
any additional information about the error, so that we can consistently
use addIfRight and some other type level functions.

To define a server, once we’ve created a socket, we need to bind it
to a port. We can do this with the bind method:

bind : (sock : Var) -> (addr : Maybe SocketAddress) -> (port : Port) ->
       ST m (Either () ()) [sock ::: Sock Ready :-> (Sock Closed `or` Sock Bound)]





Binding a socket might fail, for example if there is already a socket
bound to the given port, so again it returns a value of type Either.
The action here uses a type level function or, and says that:


	If bind fails, the socket moves to the Sock Closed state


	If bind succeeds, the socket moves to the Sock Bound state, as
shown in the diagram above




or is implemented as follows:

or : a -> a -> Either b c -> a
or x y = either (const x) (const y)





So, the type of bind could equivalently be written as:

bind : (sock : Var) -> (addr : Maybe SocketAddress) -> (port : Port) ->
       STrans m (Either () ()) [sock ::: Sock Ready]
                    (either [sock ::: Sock Closed] [sock ::: Sock Bound])





However, using or is much more concise than this, and attempts to
reflect the state transition diagram as directly as possible while still
capturing the possibility of failure.

Once we’ve bound a socket to a port, we can start listening for connections
from clients:

listen : (sock : Var) ->
         ST m (Either () ()) [sock ::: Sock Bound :-> (Sock Closed `or` Sock Listening)]





A socket in the Listening state is ready to accept connections from
individual clients:

accept : (sock : Var) ->
         ST m (Either () Var)
              [sock ::: Sock Listening, addIfRight (Sock Open)]





If there is an incoming connection from a client, accept adds a new
resource to the end of the resource list (by convention, it’s a good idea
to add resources to the end of the list, because this works more tidily
with updateWith, as discussed in the previous section). So, we now
have two sockets: one continuing to listen for incoming connections,
and one ready for communication with the client.

We also need methods for sending and receiving data on a socket:

send : (sock : Var) -> String ->
       ST m (Either () ()) [sock ::: Sock Open :-> (Sock Closed `or` Sock Open)]
recv : (sock : Var) ->
       ST m (Either () String) [sock ::: Sock Open :-> (Sock Closed `or` Sock Open)]





Once we’ve finished communicating with another machine via a socket, we’ll
want to close the connection and remove the socket:

close : (sock : Var) ->
        {auto prf : CloseOK st} -> ST m () [sock ::: Sock st :-> Sock Closed]
remove : (sock : Var) ->
         ST m () [Remove sock (Sock Closed)]





We have a predicate CloseOK, used by close in an implicit proof
argument, which describes when it is okay to close a socket:

data CloseOK : SocketState -> Type where
     CloseOpen : CloseOK Open
     CloseListening : CloseOK Listening





That is, we can close a socket which is Open, talking to another machine,
which causes the communication to terminate.  We can also close a socket which
is Listening for incoming connections, which causes the server to stop
accepting requests.

In this section, we’re implementing a server, but for completeness we may
also want a client to connect to a server on another machine. We can do
this with connect:

connect : (sock : Var) -> SocketAddress -> Port ->
          ST m (Either () ()) [sock ::: Sock Ready :-> (Sock Closed `or` Sock Open)]





For reference, here is the complete interface:

interface Sockets (m : Type -> Type) where
  Sock : SocketState -> Type
  socket : SocketType -> ST m (Either () Var) [addIfRight (Sock Ready)]
  bind : (sock : Var) -> (addr : Maybe SocketAddress) -> (port : Port) ->
         ST m (Either () ()) [sock ::: Sock Ready :-> (Sock Closed `or` Sock Bound)]
  listen : (sock : Var) ->
           ST m (Either () ()) [sock ::: Sock Bound :-> (Sock Closed `or` Sock Listening)]
  accept : (sock : Var) ->
           ST m (Either () Var) [sock ::: Sock Listening, addIfRight (Sock Open)]
  connect : (sock : Var) -> SocketAddress -> Port ->
            ST m (Either () ()) [sock ::: Sock Ready :-> (Sock Closed `or` Sock Open)]
  close : (sock : Var) -> {auto prf : CloseOK st} ->
          ST m () [sock ::: Sock st :-> Sock Closed]
  remove : (sock : Var) -> ST m () [Remove sock (Sock Closed)]
  send : (sock : Var) -> String ->
         ST m (Either () ()) [sock ::: Sock Open :-> (Sock Closed `or` Sock Open)]
  recv : (sock : Var) ->
         ST m (Either () String) [sock ::: Sock Open :-> (Sock Closed `or` Sock Open)]





We’ll see how to implement this shortly; mostly, the methods can be implemented
in IO by using the raw sockets API directly. First, though, we’ll see
how to use the API to implement an “echo” server.



Implementing an “Echo” server with Sockets

At the top level, our echo server begins and ends with no resources available,
and uses the ConsoleIO and Sockets interfaces:

startServer : (ConsoleIO m, Sockets m) => ST m () []





The first thing we need to do is create a socket for binding to a port
and listening for incoming connections, using socket. This might fail,
so we’ll need to deal with the case where it returns Right sock, where
sock is the new socket variable, or where it returns Left err:

startServer : (ConsoleIO m, Sockets m) => ST m () []
startServer =
  do Right sock <- socket Stream
           | Left err => pure ()
     ?whatNow





It’s a good idea to implement this kind of function interactively, step by
step, using holes to see what state the overall system is in after each
step. Here, we can see that after a successful call to socket, we
have a socket available in the Ready state:

  sock : Var
  m : Type -> Type
  constraint : ConsoleIO m
  constraint1 : Sockets m
--------------------------------------
whatNow : STrans m () [sock ::: Sock Ready] (\result1 => [])





Next, we need to bind the socket to a port, and start listening for
connections. Again, each of these could fail. If they do, we’ll remove
the socket. Failure always results in a socket in the Closed state,
so all we can do is remove it:

startServer : (ConsoleIO m, Sockets m) => ST m () []
startServer =
  do Right sock <- socket Stream        | Left err => pure ()
     Right ok <- bind sock Nothing 9442 | Left err => remove sock
     Right ok <- listen sock            | Left err => remove sock
     ?runServer





Finally, we have a socket which is listening for incoming connections:

  ok : ()
  sock : Var
  ok1 : ()
  m : Type -> Type
  constraint : ConsoleIO m
  constraint1 : Sockets m
--------------------------------------
runServer : STrans m () [sock ::: Sock Listening]
                   (\result1 => [])





We’ll implement this in a separate function. The type of runServer
tells us what the type of echoServer must be (noting that we need
to give the m argument to Sock explicitly):

echoServer : (ConsoleIO m, Sockets m) => (sock : Var) ->
             ST m () [remove sock (Sock {m} Listening)]





We can complete the definition of startServer as follows:

startServer : (ConsoleIO m, Sockets m) => ST m () []
startServer =
  do Right sock <- socket Stream        | Left err => pure ()
     Right ok <- bind sock Nothing 9442 | Left err => remove sock
     Right ok <- listen sock            | Left err => remove sock
     echoServer sock





In echoServer, we’ll keep accepting requests and responding to them
until something fails, at which point we’ll close the sockets and
return. We begin by trying to accept an incoming connection:

echoServer : (ConsoleIO m, Sockets m) => (sock : Var) ->
             ST m () [remove sock (Sock {m} Listening)]
echoServer sock =
  do Right new <- accept sock | Left err => do close sock; remove sock
     ?whatNow





If accept fails, we need to close the Listening socket and
remove it before returning, because the type of echoServer requires
this.

As always, implementing echoServer incrementally means that we can check
the state we’re in as we develop. If accept succeeds, we have the
existing sock which is still listening for connections, and a new
socket, which is open for communication:

  new : Var
  sock : Var
  m : Type -> Type
  constraint : ConsoleIO m
  constraint1 : Sockets m
--------------------------------------
whatNow : STrans m () [sock ::: Sock Listening, new ::: Sock Open]
                      (\result1 => [])





To complete echoServer, we’ll receive a message on the new
socket, and echo it back. When we’re done, we close the new socket,
and go back to the beginning of echoServer to handle the next
connection:

echoServer : (ConsoleIO m, Sockets m) => (sock : Var) ->
             ST m () [remove sock (Sock {m} Listening)]
echoServer sock =
  do Right new <- accept sock | Left err => do close sock; remove sock
     Right msg <- recv new | Left err => do close sock; remove sock; remove new
     Right ok <- send new ("You said " ++ msg)
           | Left err => do remove new; close sock; remove sock
     close new; remove new; echoServer sock







Implementing Sockets

To implement Sockets in IO, we’ll begin by giving a concrete type
for Sock. We can use the raw sockets API (implemented in
Network.Socket) for this, and use a Socket stored in a State, no
matter what abstract state the socket is in:

implementation Sockets IO where
  Sock _ = State Socket





Most of the methods can be implemented by using the raw socket API
directly, returning Left or Right as appropriate. For example,
we can implement socket, bind and listen as follows:

socket ty = do Right sock <- lift $ Socket.socket AF_INET ty 0
                    | Left err => pure (Left ())
               lbl <- new sock
               pure (Right lbl)
bind sock addr port = do ok <- lift $ bind !(read sock) addr port
                         if ok /= 0
                            then pure (Left ())
                            else pure (Right ())
listen sock = do ok <- lift $ listen !(read sock)
                 if ok /= 0
                    then pure (Left ())
                    else pure (Right ())





There is a small difficulty with accept, however, because when we
use new to create a new resource for the open connection, it appears
at the start of the resource list, not the end. We can see this by
writing an incomplete definition, using returning to see what the
resources need to be if we return Right lbl:

accept sock = do Right (conn, addr) <- lift $ accept !(read sock)
                       | Left err => pure (Left ())
                 lbl <- new conn
                 returning (Right lbl) ?fixResources





It’s convenient for new to add the resource to the beginning of the
list because, in general, this makes automatic proof construction with
an auto-implicit easier for Idris. On the other hand, when we use
call to make a smaller set of resources, updateWith puts newly
created resources at the end of the list, because in general that reduces
the amount of re-ordering of resources.

If we look at the type of
fixResources, we can see what we need to do to finish accept:

  _bindApp0 : Socket
  conn : Socket
  addr : SocketAddress
  sock : Var
  lbl : Var
--------------------------------------
fixResources : STrans IO () [lbl ::: State Socket, sock ::: State Socket]
                      (\value => [sock ::: State Socket, lbl ::: State Socket])





The current list of resources is ordered lbl, sock, and we need them
to be in the order sock, lbl. To help with this situation,
Control.ST provides a primitive toEnd which moves a resource to the
end of the list. We can therefore complete accept as follows:

accept sock = do Right (conn, addr) <- lift $ accept !(read sock)
                       | Left err => pure (Left ())
                 lbl <- new conn
                 returning (Right lbl) (toEnd lbl)





For the complete implementation of Sockets, take a look at
samples/ST/Net/Network.idr in the Idris distribution. You can also
find the complete echo server there, EchoServer.idr. There is also
a higher level network protocol, RandServer.idr, using a hierarchy of
state machines to implement a high level network communication protocol
in terms of the lower level sockets API. This also uses threading, to
handle incoming requests asynchronously. You can find some more detail
on threading and the random number server in the draft paper
State Machines All The Way Down [https://www.idris-lang.org/drafts/sms.pdf]
by Edwin Brady.
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The Effects Tutorial

A tutorial on the Effects package in Idris.


Effects and the Control.ST module

There is a new module in the contrib package, Control.ST, which
provides the resource tracking facilities of Effects but with
better support for creating and deleting resources, and implementing
resources in terms of other resources.

Unless you have a particular reason to use Effects you are strongly
recommended to use Control.ST instead. There is a tutorial available
on this site for Control.ST with several examples
(Implementing State-aware Systems in Idris: The ST Tutorial).



Note

The documentation for Idris has been published under the Creative
Commons CC0 License. As such to the extent possible under law, The
Idris Community has waived all copyright and related or neighbouring
rights to Documentation for Idris.

More information concerning the CC0 can be found online at: https://creativecommons.org/publicdomain/zero/1.0/
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Introduction

Pure functional languages with dependent types such as Idris [https://www.idris-lang.org/] support reasoning about programs directly
in the type system, promising that we can know a program will run
correctly (i.e. according to the specification in its type) simply
because it compiles. Realistically, though, things are not so simple:
programs have to interact with the outside world, with user input,
input from a network, mutable state, and so on. In this tutorial I
will introduce the library, which is included with the distribution
and supports programming and reasoning with side-effecting programs,
supporting mutable state, interaction with the outside world,
exceptions, and verified resource management.

This tutorial assumes familiarity with pure programming in Idris,
as described in Sections 1–6 of the main tutorial [1]. The examples
presented are tested with Idris and can be found in the
examples directory of the Idris repository. The -p effects flag
is needed when starting Idris.

Consider, for example, the following introductory function which
illustrates the kind of properties which can be expressed in the type
system:

vadd : Vect n Int -> Vect n Int -> Vect n Int
vadd []        []        = []
vadd (x :: xs) (y :: ys) = x + y :: vadd xs ys





This function adds corresponding elements in a pair of vectors. The type
guarantees that the vectors will contain only elements of type Int,
and that the input lengths and the output length all correspond. A
natural question to ask here, which is typically neglected by
introductory tutorials, is “How do I turn this into a program?” That is,
given some lists entered by a user, how do we get into a position to be
able to apply the vadd function? Before doing so, we will have to:


	Read user input, either from the keyboard, a file, or some other input device.


	Check that the user inputs are valid, i.e. contain only Int and are the same length, and report an error if not.


	Write output




The complete program will include side-effects for I/O and error
handling, before we can get to the pure core functionality. In this
tutorial, we will see how Idris supports side-effects.
Furthermore, we will see how we can use the dependent type system to
reason about stateful and side-effecting programs. We will return to
this specific example later.


Hello world

To give an idea of how programs with effects look, here is the
ubiquitous “Hello world” program, written using the Effects
library:

module Main

import Effects
import Effect.StdIO

hello : Eff () [STDIO]
hello = putStrLn "Hello world!"

main : IO ()
main = run hello





As usual, the entry point is main. All main has to do is invoke the
hello function which supports the STDIO effect for console I/O, and
returns the unit value.  All programs using the Effects library must
import Effects.  The details of the Eff type will be presented in the
remainder of this tutorial.

To compile and run this program, Idris needs to be told to include
the Effects package, using the -p effects flag (this flag is
required for all examples in this tutorial):

idris hello.idr -o hello -p effects
./hello Hello world!







Outline

The tutorial is structured as follows: first, in Section
State, we will discuss state management, describing why it
is important and introducing the effects library to show how it
can be used to manage state. This section also gives an overview of
the syntax of effectful programs. Section Simple Effects then
introduces a number of other effects a program may have: I/O;
Exceptions; Random Numbers; and Non-determinism, giving examples for
each, and an extended example combining several effects in one
complete program. Section Dependent Effects introduces dependent
effects, showing how states and resources can be managed in
types. Section Creating New Effects shows how new effects can be
implemented.  Section Example: A “Mystery Word” Guessing Game gives an extended example
showing how to implement a “mystery word” guessing game, using effects
to describe the rules of the game and ensure they are implemented
accurately. References to further reading are given in Section
Further Reading.


[1]
You do not, however, need to know what a monad is!
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State

Many programs, even pure programs, can benefit from locally mutable
state. For example, consider a program which tags binary tree nodes
with a counter, by an inorder traversal (i.e. counting depth first,
left to right). This would perform something like the following:

[image: image]

We can describe binary trees with the following data type BTree
and testTree to represent the example input above:

data BTree a = Leaf
             | Node (BTree a) a (BTree a)

testTree : BTree String
testTree = Node (Node Leaf "Jim" Leaf)
                "Fred"
                (Node (Node Leaf "Alice" Leaf)
                      "Sheila"
                      (Node Leaf "Bob" Leaf))





Then our function to implement tagging, beginning to tag with a
specific value i, has the following type:

treeTag : (i : Int) -> BTree a -> BTree (Int, a)






First attempt

Naïvely, we can implement treeTag by implementing a helper
function which propagates a counter, returning the result of the count
for each subtree:

treeTagAux : (i : Int) -> BTree a -> (Int, BTree (Int, a))
treeTagAux i Leaf = (i, Leaf)
treeTagAux i (Node l x r)
       = let (i', l') = treeTagAux i l in
         let x' = (i', x) in
         let (i'', r') = treeTagAux (i' + 1) r in
             (i'', Node l' x' r')

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = snd (treeTagAux i x)





This gives the expected result when run at the REPL prompt:

*TreeTag> treeTag 1 testTree
Node (Node Leaf (1, "Jim") Leaf)
     (2, "Fred")
     (Node (Node Leaf (3, "Alice") Leaf)
           (4, "Sheila")
           (Node Leaf (5, "Bob") Leaf)) : BTree (Int, String)





This works as required, but there are several problems when we try to
scale this to larger programs. It is error prone, because we need to
ensure that state is propagated correctly to the recursive calls (i.e.
passing the appropriate i or i’). It is hard to read, because
the functional details are obscured by the state propagation. Perhaps
most importantly, there is a common programming pattern here which
should be abstracted but instead has been implemented by hand. There
is local mutable state (the counter) which we have had to make
explicit.



Introducing Effects

Idris provides a library, Effects [3], which captures this
pattern and many others involving effectful computation [1]. An
effectful program f has a type of the following form:

f : (x1 : a1) -> (x2 : a2) -> ... -> Eff t effs





That is, the return type gives the effects that f supports
(effs, of type List EFFECT) and the type the computation
returns t. So, our treeTagAux helper could be written with the
following type:

treeTagAux : BTree a -> Eff (BTree (Int, a)) [STATE Int]





That is, treeTagAux has access to an integer state, because the
list of available effects includes STATE Int. STATE is
declared as follows in the module Effect.State (that is, we must
import Effect.State to be able to use it):

STATE : Type -> EFFECT





It is an effect parameterised by a type (by convention, we write
effects in all capitals). The treeTagAux function is an effectful
program which builds a new tree tagged with Ints, and is
implemented as follows:

treeTagAux Leaf = pure Leaf
treeTagAux (Node l x r)
    = do l' <- treeTagAux l
         i <- get
         put (i + 1)
         r' <- treeTagAux r
         pure (Node l' (i, x) r')





There are several remarks to be made about this implementation.
Essentially, it hides the state, which can be accessed using get
and updated using put, but it introduces several new features.
Specifically, it uses do-notation, binding variables with <-,
and a pure function. There is much to be said about these
features, but for our purposes, it suffices to know the following:


	do blocks allow effectful operations to be sequenced.


	
	x <- e binds the result of an effectful operation e to a

	variable x. For example, in the above code, treeTagAux l is
an effectful operation returning BTree (Int, a), so l’ has
type BTree (Int, a).







	
	pure e turns a pure value e into the result of an effectful

	operation.









The get and put functions read and write a state t,
assuming that the STATE t effect is available. They have the
following types, polymorphic in the state t they manage:

get :      Eff t [STATE t]
put : t -> Eff () [STATE t]





A program in Eff can call any other function in Eff provided
that the calling function supports at least the effects required by
the called function. In this case, it is valid for treeTagAux to
call both get and put because all three functions support the
STATE Int effect.

Programs in Eff are run in some underlying computation context,
using the run or runPure function. Using runPure, which
runs an effectful program in the identity context, we can write the
treeTag function as follows, using put to initialise the
state:

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = runPure (do put i
                          treeTagAux x)





We could also run the program in an impure context such as IO,
without changing the definition of treeTagAux, by using run
instead of runPure:

treeTagAux : BTree a -> Eff (BTree (Int, a)) [STATE Int]
...

treeTag : (i : Int) -> BTree a -> IO (BTree (Int, a))
treeTag i x = run (do put i
                      treeTagAux x)





Note that the definition of treeTagAux is exactly as before. For
reference, this complete program (including a main to run it) is
shown in Listing [introprog].

module Main

import Effects
import Effect.State

data BTree a = Leaf
             | Node (BTree a) a (BTree a)

Show a => Show (BTree a) where
    show Leaf = "[]"
    show (Node l x r) = "[" ++ show l ++ " "
                            ++ show x ++ " "
                            ++ show r ++ "]"

testTree : BTree String
testTree = Node (Node Leaf "Jim" Leaf)
              "Fred"
              (Node (Node Leaf "Alice" Leaf)
                    "Sheila"
                    (Node Leaf "Bob" Leaf))

treeTagAux : BTree a -> Eff (BTree (Int, a)) [STATE Int]
treeTagAux Leaf = pure Leaf
treeTagAux (Node l x r) = do l' <- treeTagAux l
                             i <- get
                             put (i + 1)
                             r' <- treeTagAux r
                             pure (Node l' (i, x) r')

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = runPure (do put i; treeTagAux x)

main : IO ()
main = print (treeTag 1 testTree)







Effects and Resources

Each effect is associated with a resource, which is initialised
before an effectful program can be run. For example, in the case of
STATE Int the corresponding resource is the integer state itself.
The types of runPure and run show this (slightly simplified
here for illustrative purposes):

runPure : {env : Env id xs} -> Eff a xs -> a
run : Applicative m => {env : Env m xs} -> Eff a xs -> m a





The env argument is implicit, and initialised automatically where
possible using default values given by implementations of the following
interface:

interface Default a where
    default : a





Implementations of Default are defined for all primitive types, and many
library types such as List, Vect, Maybe, pairs, etc.
However, where no default value exists for a resource type (for
example, you may want a STATE type for which there is no
Default implementation) the resource environment can be given explicitly
using one of the following functions:

runPureInit : Env id xs -> Eff a xs -> a
runInit : Applicative m => Env m xs -> Eff a xs -> m a





To be well-typed, the environment must contain resources corresponding
exactly to the effects in xs. For example, we could also have
implemented treeTag by initialising the state as follows:

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = runPureInit [i] (treeTagAux x)







Labelled Effects

What if we have more than one state, especially more than one state of
the same type? How would get and put know which state they
should be referring to? For example, how could we extend the tree
tagging example such that it additionally counts the number of leaves
in the tree? One possibility would be to change the state so that it
captured both of these values, e.g.:

treeTagAux : BTree a -> Eff (BTree (Int, a)) [STATE (Int, Int)]





Doing this, however, ties the two states together throughout (as well
as not indicating which integer is which). It would be nice to be able
to call effectful programs which guaranteed only to access one of the
states, for example. In a larger application, this becomes
particularly important.

The library therefore allows effects in general to be labelled so
that they can be referred to explicitly by a particular name. This
allows multiple effects of the same type to be included. We can count
leaves and update the tag separately, by labelling them as follows:

treeTagAux : BTree a ->  Eff (BTree (Int, a))
                               ['Tag ::: STATE Int,
                                'Leaves ::: STATE Int]





The ::: operator allows an arbitrary label to be given to an
effect.  This label can be any type—it is simply used to identify an
effect uniquely. Here, we have used a symbol type. In general
’name introduces a new symbol, the only purpose of which is to
disambiguate values [2].

When an effect is labelled, its operations are also labelled using the
:- operator. In this way, we can say explicitly which state we
mean when using get and put. The tree tagging program which
also counts leaves can be written as follows:

treeTagAux Leaf = do
    'Leaves :- update (+1)
    pure Leaf
treeTagAux (Node l x r) = do
    l' <- treeTagAux l
    i <- 'Tag :- get
    'Tag :- put (i + 1)
    r' <- treeTagAux r
    pure (Node l' (i, x) r')





The update function here is a combination of get and put,
applying a function to the current state.

update : (x -> x) -> Eff () [STATE x]





Finally, our top level treeTag function now returns a pair of the
number of leaves, and the new tree. Resources for labelled effects are
initialised using the := operator (reminiscent of assignment in an
imperative language):

treeTag : (i : Int) -> BTree a -> (Int, BTree (Int, a))
treeTag i x = runPureInit ['Tag := i, 'Leaves := 0]
                    (do x' <- treeTagAux x
                        leaves <- 'Leaves :- get
                        pure (leaves, x'))





To summarise, we have:


	::: to convert an effect to a labelled effect.


	:- to convert an effectful operation to a labelled effectful operation.


	:= to initialise a resource for a labelled effect.




Or, more formally with their types (slightly simplified to account
only for the situation where available effects are not updated):

(:::) : lbl -> EFFECT -> EFFECT
(:-)  : (l : lbl) -> Eff a [x] -> Eff a [l ::: x]
(:=)  : (l : lbl) -> res -> LRes l res





Here, LRes is simply the resource type associated with a labelled
effect. Note that labels are polymorphic in the label type lbl.
Hence, a label can be anything—a string, an integer, a type, etc.



!-notation

In many cases, using do-notation can make programs unnecessarily
verbose, particularly in cases where the value bound is used once,
immediately. The following program returns the length of the
String stored in the state, for example:

stateLength : Eff Nat [STATE String]
stateLength = do x <- get
                 pure (length x)





This seems unnecessarily verbose, and it would be nice to program in a
more direct style in these cases. provides !-notation to help with
this. The above program can be written instead as:

stateLength : Eff Nat [STATE String]
stateLength = pure (length !get)





The notation !expr means that the expression expr should be
evaluated and then implicitly bound. Conceptually, we can think of
! as being a prefix function with the following type:

(!) : Eff a xs -> a





Note, however, that it is not really a function, merely syntax! In
practice, a subexpression !expr will lift expr as high as
possible within its current scope, bind it to a fresh name x, and
replace !expr with x. Expressions are lifted depth first, left
to right. In practice, !-notation allows us to program in a more
direct style, while still giving a notational clue as to which
expressions are effectful.

For example, the expression:

let y = 42 in f !(g !(print y) !x)





is lifted to:

let y = 42 in do y' <- print y
                 x' <- x
                 g' <- g y' x'
                 f g'







The Type Eff

Underneath, Eff is an overloaded function which translates to an
underlying type EffM:

EffM : (m : Type -> Type) -> (t : Type)
        -> (List EFFECT)
        -> (t -> List EFFECT) -> Type





This is more general than the types we have been writing so far. It is
parameterised over an underlying computation context m, a
result type t as we have already seen, as well as a List EFFECT and a
function type t -> List EFFECT.

These additional parameters are the list of input effects, and a
list of output effects, computed from the result of an effectful
operation.  That is: running an effectful program can change the set
of effects available! This is a particularly powerful idea, and we
will see its consequences in more detail later. Some examples of
operations which can change the set of available effects are:


	Updating a state containing a dependent type (for example adding an element to a vector).


	Opening a file for reading is an effect, but whether the file really
is open afterwards depends on whether the file was successfully
opened.


	Closing a file means that reading from the file should no longer be
possible.




While powerful, this can make uses of the EffM type hard to read.
Therefore the library provides an overloaded function Eff
There are the following three versions:

SimpleEff.Eff : (t : Type) -> (input_effs : List EFFECT) -> Type
TransEff.Eff  : (t : Type) -> (input_effs : List EFFECT) ->
                              (output_effs : List EFFECT) -> Type
DepEff.Eff    : (t : Type) -> (input_effs : List EFFECT) ->
                              (output_effs_fn : t -> List EFFECT) -> Type





So far, we have used only the first version, SimpleEff.Eff, which
is defined as follows:

Eff : (x : Type) -> (es : List EFFECT) -> Type
Eff x es = {m : Type -> Type} -> EffM m x es (\v => es)





i.e. the set of effects remains the same on output. This suffices for
the STATE example we have seen so far, and for many useful
side-effecting programs. We could also have written treeTagAux
with the expanded type:

treeTagAux : BTree a ->
             EffM m (BTree (Int, a)) [STATE Int] (\x => [STATE Int])





Later, we will see programs which update effects:

Eff a xs xs'





which is expanded to

EffM m a xs (\_ => xs')





i.e. the set of effects is updated to xs’ (think of a transition
in a state machine). There is, for example, a version of put which
updates the type of the state:

putM : y -> Eff () [STATE x] [STATE y]





Also, we have:

Eff t xs (\res => xs')





which is expanded to

EffM m t xs (\res => xs')





i.e. the set of effects is updated according to the result of the
operation res, of type t.

Parameterising EffM over an underlying computation context allows us
to write effectful programs which are specific to one context, and in some
cases to write programs which extend the list of effects available using
the new function, though this is beyond the scope of this tutorial.


[1]
The earlier paper [3] describes the essential implementation
details, although the library presented there is an earlier version
which is less powerful than that presented in this tutorial.



[2]
In practice, ’name simply introduces a new empty type



[3]
(1,2)
Edwin Brady. 2013. Programming and reasoning with algebraic
effects and dependent types. SIGPLAN Not. 48, 9 (September
2013), 133-144. DOI=10.1145/2544174.2500581
http://dl.acm.org/citation.cfm?doid=2544174.2500581
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Simple Effects

So far we have seen how to write programs with locally mutable state
using the STATE effect. To recap, we have the definitions below
in a module Effect.State

module Effect.State

STATE : Type -> EFFECT

get    :             Eff x  [STATE x]
put    : x ->        Eff () [STATE x]
putM   : y ->        Eff () [STATE x] [STATE y]
update : (x -> x) -> Eff () [STATE x]

Handler State m where { ... }





The last line, Handler State m where { ... }, means that the STATE
effect is usable in any computation context m. That is, a program
which uses this effect and returns something of type a can be
evaluated to something of type m a using run, for any
m. The lower case State is a data type describing the
operations which make up the STATE effect itself—we will go into
more detail about this in Section Creating New Effects.

In this section, we will introduce some other supported effects,
allowing console I/O, exceptions, random number generation and
non-deterministic programming. For each effect we introduce, we will
begin with a summary of the effect, its supported operations, and the
contexts in which it may be used, like that above for STATE, and
go on to present some simple examples. At the end, we will see some
examples of programs which combine multiple effects.

All of the effects in the library, including those described in this
section, are summarised in Appendix Effects Summary.


Console I/O

Console I/O is supported with the STDIO
effect, which allows reading and writing characters and strings to and
from standard input and standard output. Notice that there is a
constraint here on the computation context m, because it only
makes sense to support console I/O operations in a context where we
can perform (or at the very least simulate) console I/O:

module Effect.StdIO

STDIO : EFFECT

putChar  : Char ->   Eff () [STDIO]
putStr   : String -> Eff () [STDIO]
putStrLn : String -> Eff () [STDIO]

getStr   :           Eff String [STDIO]
getChar  :           Eff Char [STDIO]

Handler StdIO IO where { ... }
Handler StdIO (IOExcept a) where { ... }






Examples

A program which reads the user’s name, then says hello, can be written
as follows:

hello : Eff () [STDIO]
hello = do putStr "Name? "
           x <- getStr
           putStrLn ("Hello " ++ trim x ++ "!")





We use trim here to remove the trailing newline from the
input. The resource associated with STDIO is simply the empty
tuple, which has a default value (), so we can run this as
follows:

main : IO ()
main = run hello





In hello we could also use !-notation instead of x <-
getStr, since we only use the string that is read once:

hello : Eff () [STDIO]
hello = do putStr "Name? "
           putStrLn ("Hello " ++ trim !getStr ++ "!")





More interestingly, we can combine multiple effects in one
program. For example, we can loop, counting the number of people we’ve
said hello to:

hello : Eff () [STATE Int, STDIO]
hello = do putStr "Name? "
           putStrLn ("Hello " ++ trim !getStr ++ "!")
           update (+1)
           putStrLn ("I've said hello to: " ++ show !get ++ " people")
           hello





The list of effects given in hello means that the function can
call get and put on an integer state, and any functions which
read and write from the console. To run this, main does not need
to be changed.



Aside: Resource Types

To find out the resource type of an effect, if necessary (for example
if we want to initialise a resource explicitly with runInit rather
than using a default value with run) we can run the
resourceType function at the REPL:

*ConsoleIO> resourceType STDIO
() : Type
*ConsoleIO> resourceType (STATE Int)
Int : Type








Exceptions

The EXCEPTION
effect is declared in module Effect.Exception. This allows programs
to exit immediately with an error, or errors to be handled more
generally:

module Effect.Exception

EXCEPTION : Type -> EFFECT

raise : a -> Eff b [EXCEPTION a]

Handler (Exception a) Maybe where { ... }
Handler (Exception a) List where { ... }
Handler (Exception a) (Either a) where { ... }
Handler (Exception a) (IOExcept a) where { ... }
Show a => Handler (Exception a) IO where { ... }






Example

Suppose we have a String which is expected to represent an integer
in the range 0 to n. We can write a function parseNumber
which returns an Int if parsing the string returns a number in the
appropriate range, or throws an exception otherwise. Exceptions are
parameterised by an error type:

data Error = NotANumber | OutOfRange

parseNumber : Int -> String -> Eff Int [EXCEPTION Error]
parseNumber num str
   = if all isDigit (unpack str)
        then let x = cast str in
             if (x >=0 && x <= num)
                then pure x
                else raise OutOfRange
        else raise NotANumber





Programs which support the EXCEPTION effect can be run in any
context which has some way of throwing errors, for example, we can run
parseNumber in the Either Error context. It returns a value of
the form Right x if successful:

*Exception> the (Either Error Int) $ run (parseNumber 42 "20")
Right 20 : Either Error Int





Or Left e on failure, carrying the appropriate exception:

*Exception> the (Either Error Int) $ run (parseNumber 42 "50")
Left OutOfRange : Either Error Int

*Exception> the (Either Error Int) $ run (parseNumber 42 "twenty")
Left NotANumber : Either Error Int





In fact, we can do a little bit better with parseNumber, and have
it return a proof that the integer is in the required range along
with the integer itself. One way to do this is define a type of
bounded integers, Bounded:

Bounded : Int -> Type
Bounded x = (n : Int ** So (n >= 0 && n <= x))





Recall that So is parameterised by a Bool, and only So
True is inhabited. We can use choose to construct such a value
from the result of a dynamic check:

data So : Bool -> Type where
  Oh : So True

choose : (b : Bool) -> Either (So b) (So (not b))





We then write parseNumber using choose rather than an
if/then/else construct, passing the proof it returns on success as
the boundedness proof:

parseNumber : (x : Int) -> String -> Eff (Bounded x) [EXCEPTION Error]
parseNumber x str
   = if all isDigit (unpack str)
        then let num = cast str in
             case choose (num >=0 && num <= x) of
                  Left p => pure (num ** p)
                  Right p => raise OutOfRange
        else raise NotANumber








Random Numbers

Random number generation is also implemented by the library, in module
Effect.Random:

module Effect.Random

RND : EFFECT

srand  : Integer ->            Eff () [RND]
rndInt : Integer -> Integer -> Eff Integer [RND]
rndFin : (k : Nat) ->          Eff (Fin (S k)) [RND]

Handler Random m where { ... }





Random number generation is considered side-effecting because its
implementation generally relies on some external source of randomness.
The default implementation here relies on an integer seed, which can
be set with srand. A specific seed will lead to a predictable,
repeatable sequence of random numbers. There are two functions which
produce a random number:


	
	rndInt, which returns a random integer between the given lower

	and upper bounds.







	
	rndFin, which returns a random element of a finite set

	(essentially a number with an upper bound given in its type).










Example

We can use the RND effect to implement a simple guessing game. The
guess function, given a target number, will repeatedly ask the
user for a guess, and state whether the guess is too high, too low, or
correct:

guess : Int -> Eff () [STDIO]





For reference, the code for guess is given below:

guess : Int -> Eff () [STDIO]
guess target
    = do putStr "Guess: "
         case run {m=Maybe} (parseNumber 100 (trim !getStr)) of
              Nothing => do putStrLn "Invalid input"
                            guess target
              Just (v ** _) =>
                         case compare v target of
                             LT => do putStrLn "Too low"
                                      guess target
                             EQ => putStrLn "You win!"
                             GT => do putStrLn "Too high"
                                      guess target





Note that we use parseNumber as defined previously to read user input, but
we don’t need to list the EXCEPTION effect because we use a nested run
to invoke parseNumber, independently of the calling effectful program.

To invoke this, we pick a random number within the range 0–100,
having set up the random number generator with a seed, then run
guess:

game : Eff () [RND, STDIO]
game = do srand 123456789
          guess (fromInteger !(rndInt 0 100))

main : IO ()
main = run game





If no seed is given, it is set to the default value. For a less
predictable game, some better source of randomness would be required,
for example taking an initial seed from the system time. To see how to
do this, see the SYSTEM effect described in Effects Summary.




Non-determinism

The listing below gives the definition of the non-determinism
effect, which allows a program to choose a value non-deterministically
from a list of possibilities in such a way that the entire computation
succeeds:

import Effects
import Effect.Select

SELECT : EFFECT

select : List a -> Eff a [SELECT]

Handler Selection Maybe where { ... }
Handler Selection List where { ... }






Example

The SELECT effect can be used to solve constraint problems, such
as finding Pythagorean triples. The idea is to use select to give
a set of candidate values, then throw an exception for any combination
of values which does not satisfy the constraint:

triple : Int -> Eff (Int, Int, Int) [SELECT, EXCEPTION String]
triple max = do z <- select [1..max]
                y <- select [1..z]
                x <- select [1..y]
                if (x * x + y * y == z * z)
                   then pure (x, y, z)
                   else raise "No triple"





This program chooses a value for z between 1 and max, then
values for y and x. In operation, after a select, the
program executes the rest of the do-block for every possible
assignment, effectively searching depth-first. If the list is empty
(or an exception is thrown) execution fails.

There are handlers defined for Maybe and List contexts, i.e.
contexts which can capture failure. Depending on the context m,
triple will either return the first triple it finds (if in
Maybe context) or all triples in the range (if in List
context). We can try this as follows:

main : IO ()
main = do print $ the (Maybe _) $ run (triple 100)
          print $ the (List _) $ run (triple 100)








vadd revisited

We now return to the vadd program from the introduction. Recall the
definition:

vadd : Vect n Int -> Vect n Int -> Vect n Int
vadd []        []        = []
vadd (x :: xs) (y :: ys) = x + y :: vadd xs ys





Using , we can set up a program so that it reads input from a user,
checks that the input is valid (i.e both vectors contain integers, and
are the same length) and if so, pass it on to vadd. First, we
write a wrapper for vadd which checks the lengths and throw an
exception if they are not equal. We can do this for input vectors of
length n and m by matching on the implicit arguments n and
m and using decEq to produce a proof of their equality, if
they are equal:

vadd_check : Vect n Int -> Vect m Int ->
             Eff (Vect m Int) [EXCEPTION String]
vadd_check {n} {m} xs ys with (decEq n m)
  vadd_check {n} {m=n} xs ys | (Yes Refl) = pure (vadd xs ys)
  vadd_check {n} {m}   xs ys | (No contra) = raise "Length mismatch"





To read a vector from the console, we implement a function of the
following type:

read_vec : Eff (p ** Vect p Int) [STDIO]





This returns a dependent pair of a length, and a vector of that
length, because we cannot know in advance how many integers the user
is going to input. We can use -1 to indicate the end of input:

read_vec : Eff (p ** Vect p Int) [STDIO]
read_vec = do putStr "Number (-1 when done): "
              case run (parseNumber (trim !getStr)) of
                   Nothing => do putStrLn "Input error"
                                 read_vec
                   Just v => if (v /= -1)
                                then do (_ ** xs) <- read_vec
                                        pure (_ ** v :: xs)
                                else pure (_ ** [])
  where
    parseNumber : String -> Eff Int [EXCEPTION String]
    parseNumber str
      = if all (\x => isDigit x || x == '-') (unpack str)
           then pure (cast str)
           else raise "Not a number"





This uses a variation on parseNumber which does not require a
number to be within range.

Finally, we write a program which reads two vectors and prints the
result of pairwise addition of them, throwing an exception if the
inputs are of differing lengths:

do_vadd : Eff () [STDIO, EXCEPTION String]
do_vadd = do putStrLn "Vector 1"
             (_ ** xs) <- read_vec
             putStrLn "Vector 2"
             (_ ** ys) <- read_vec
             putStrLn (show !(vadd_check xs ys))





By having explicit lengths in the type, we can be sure that vadd
is only being used where the lengths of inputs are guaranteed to be
equal.  This does not stop us reading vectors from user input, but it
does require that the lengths are checked and any discrepancy is dealt
with gracefully.



Example: An Expression Calculator

To show how these effects can fit together, let us consider an
evaluator for a simple expression language, with addition and integer
values.

data Expr = Val Integer
          | Add Expr Expr





An evaluator for this language always returns an Integer, and
there are no situations in which it can fail!

eval : Expr -> Integer
eval (Val x) = x
eval (Add l r) = eval l + eval r





If we add variables, however, things get more interesting. The
evaluator will need to be able to access the values stored in
variables, and variables may be undefined.

data Expr = Val Integer
          | Var String
          | Add Expr Expr





To start, we will change the type of eval so that it is effectful,
and supports an exception effect for throwing errors, and a state
containing a mapping from variable names (as String) to their
values:

Env : Type
Env = List (String, Integer)

eval : Expr -> Eff Integer [EXCEPTION String, STATE Env]
eval (Val x)   = pure x
eval (Add l r) = pure $ !(eval l) + !(eval r)





Note that we are using !-notation to avoid having to bind
subexpressions in a do block. Next, we add a case for evaluating
Var:

eval (Var x) = case lookup x !get of
                    Nothing => raise $ "No such variable " ++ x
                    Just val => pure val





This retrieves the state (with get, supported by the STATE Env
effect) and raises an exception if the variable is not in the
environment (with raise, supported by the EXCEPTION String
effect).

To run the evaluator on a particular expression in a particular
environment of names and their values, we can write a function which
sets the state then invokes eval:

runEval : List (String, Integer) -> Expr -> Maybe Integer
runEval args expr = run (eval' expr)
  where eval' : Expr -> Eff Integer [EXCEPTION String, STATE Env]
        eval' e = do put args
                     eval e





We have picked Maybe as a computation context here; it needs to be
a context which is available for every effect supported by
eval. In particular, because we have exceptions, it needs to be a
context which supports exceptions. Alternatively, Either String or
IO would be fine, for example.

What if we want to extend the evaluator further, with random number
generation? To achieve this, we add a new constructor to Expr,
which gives a random number up to a maximum value:

data Expr = Val Integer
          | Var String
          | Add Expr Expr
          | Random Integer





Then, we need to deal with the new case, making sure that we extend
the list of events to include RND. It doesn’t matter where RND
appears in the list, as long as it is present:

eval : Expr -> Eff Integer [EXCEPTION String, RND, STATE Env]

eval (Random upper) = rndInt 0 upper





For test purposes, we might also want to print the random number which
has been generated:

eval (Random upper) = do val <- rndInt 0 upper
                         putStrLn (show val)
                         pure val





If we try this without extending the effects list, we would see an
error something like the following:

Expr.idr:28:6:When elaborating right hand side of eval:
Can't solve goal
   SubList [STDIO]
           [(EXCEPTION String), RND, (STATE (List (String, Integer)))]





In other words, the STDIO effect is not available. We can correct
this simply by updating the type of eval to include STDIO.

eval : Expr -> Eff Integer [STDIO, EXCEPTION String, RND, STATE Env]






Note

Using STDIO will restrict the number of contexts in
which eval can be run to those which support
STDIO, such as IO. Once effect lists get longer, it
can be a good idea instead to encapsulate sets of effects in
a type synonym. This is achieved as follows, simply by
defining a function which computes a type, since types are
first class in Idris:

EvalEff : Type -> Type
EvalEff t = Eff t [STDIO, EXCEPTION String, RND, STATE Env]

eval : Expr -> EvalEff Integer
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Dependent Effects

In the programs we have seen so far, the available effects have remained
constant. Sometimes, however, an operation can change the available
effects. The simplest example occurs when we have a state with a
dependent type—adding an element to a vector also changes its type, for
example, since its length is explicit in the type. In this section, we
will see how the library supports this. Firstly, we will see how states
with dependent types can be implemented. Secondly, we will see how the
effects can depend on the result of an effectful operation. Finally,
we will see how this can be used to implement a type-safe and
resource-safe protocol for file management.


Dependent States

Suppose we have a function which reads input from the console, converts
it to an integer, and adds it to a list which is stored in a STATE.
It might look something like the following:

readInt : Eff () [STATE (List Int), STDIO]
readInt = do let x = trim !getStr
             put (cast x :: !get)





But what if, instead of a list of integers, we would like to store a
Vect, maintaining the length in the type?

readInt : Eff () [STATE (Vect n Int), STDIO]
readInt = do let x = trim !getStr
             put (cast x :: !get)





This will not type check! Although the vector has length n on entry
to readInt, it has length S n on exit. The library allows us to
express this as follows:

readInt : Eff () [STATE (Vect n Int), STDIO]
                 [STATE (Vect (S n) Int), STDIO]
readInt = do let x = trim !getStr
             putM (cast x :: !get)





The type Eff a xs xs' means that the operation
begins with effects xs available, and ends with effects xs’
available. We have used putM to update the state, where the M
suffix indicates that the type is being updated as well as the value.
It has the following type:

putM : y -> Eff () [STATE x] [STATE y]







Result-dependent Effects

Often, whether a state is updated could depend on the success or
otherwise of an operation. In our readInt example, we might wish to
update the vector only if the input is a valid integer (i.e. all
digits). As a first attempt, we could try the following, returning a
Bool which indicates success:

readInt : Eff Bool [STATE (Vect n Int), STDIO]
                   [STATE (Vect (S n) Int), STDIO]
readInt = do let x = trim !getStr
             case all isDigit (unpack x) of
                  False => pure False
                  True => do putM (cast x :: !get)
                             pure True





Unfortunately, this will not type check because the vector does not get
extended in both branches of the case!

MutState.idr:18:19:When elaborating right hand side of Main.case
block in readInt:
Unifying n and S n would lead to infinite value





Clearly, the size of the resulting vector depends on whether or not the
value read from the user was valid. We can express this in the type:

readInt : Eff Bool [STATE (Vect n Int), STDIO]
            (\ok => if ok then [STATE (Vect (S n) Int), STDIO]
                          else [STATE (Vect n Int), STDIO])
readInt = do let x = trim !getStr
             case all isDigit (unpack x) of
                  False => pureM False
                  True => do putM (cast x :: !get)
                             pureM True





Using pureM rather than pure allows the output effects to be
calculated from the value given. Its type is:

pureM : (val : a) -> EffM m a (xs val) xs





When using readInt, we will have to check its return
value in order to know what the new set of effects is. For example, to
read a set number of values into a vector, we could write the following:

readN : (n : Nat) ->
        Eff () [STATE (Vect m Int), STDIO]
               [STATE (Vect (n + m) Int), STDIO]
readN Z = pure ()
readN {m} (S k) = case !readInt of
                      True => rewrite plusSuccRightSucc k m in readN k
                      False => readN (S k)





The case analysis on the result of readInt means that we know in
each branch whether reading the integer succeeded, and therefore how
many values still need to be read into the vector. What this means in
practice is that the type system has verified that a necessary dynamic
check (i.e. whether reading a value succeeded) has indeed been done.


Note

Only case will work here. We cannot use if/then/else
because the then and else branches must have the same
type. The case construct, however, abstracts over the value
being inspected in the type of each branch.
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Creating New Effects

We have now seen several side-effecting operations provided by the
Effects library, and examples of their use in Section
Simple Effects. We have also seen how operations may modify
the available effects by changing state in Section
Dependent Effects. We have not, however, yet seen how these
operations are implemented. In this section, we describe how a
selection of the available effects are implemented, and show how new
effectful operations may be provided.


State

Effects are described by algebraic data types, where the
constructors describe the operations provided when the effect is
available. Stateful operations are described as follows:

data State : Effect where
     Get :      State a  a (\x => a)
     Put : b -> State () a (\x => b)





Effect itself is a type synonym, giving the required type for an
effect signature:

Effect : Type
Effect = (result : Type) ->
         (input_resource : Type) ->
         (output_resource : result -> Type) -> Type





Each effect is associated with a resource. The second argument to
an effect signature is the resource type on input to an operation,
and the third is a function which computes the resource type on
output. Here, it means:


	Get takes no arguments. It has a resource of type a, which is not updated, and running the Get operation returns something of type a.


	Put takes a b as an argument. It has a resource of type a on input, which is updated to a resource of type b. Running the Put operation returns the element of the unit type.




The effects library provides an overloaded function sig
which can make effect signatures more concise, particularly when the
result has no effect on the resource type. For State, we can
write:

data State : Effect where
     Get :      sig State a  a
     Put : b -> sig State () a b





There are four versions of sig, depending on whether we
are interested in the resource type, and whether we are updating the
resource. Idris will infer the appropriate version from usage.

NoResourceEffect.sig : Effect -> Type -> Type
NoUpdateEffect.sig   : Effect -> (ret : Type) ->
                                 (resource : Type) -> Type
UpdateEffect.sig     : Effect -> (ret : Type) ->
                                 (resource_in : Type) ->
                                 (resource_out : Type) -> Type
DepUpdateEffect.sig  : Effect -> (ret : Type) ->
                                 (resource_in : Type) ->
                                 (resource_out : ret -> Type) -> Type





In order to convert State (of type Effect) into something
usable in an effects list, of type EFFECT, we write the following:

STATE : Type -> EFFECT
STATE t = MkEff t State





MkEff constructs an EFFECT by taking the resource type (here,
the t which parameterises STATE) and the effect signature
(here, State). For reference, EFFECT is declared as follows:

data EFFECT : Type where
     MkEff : Type -> Effect -> EFFECT





Recall that to run an effectful program in Eff, we use one of the
run family of functions to run the program in a particular
computation context m. For each effect, therefore, we must explain
how it is executed in a particular computation context for run to
work in that context. This is achieved with the following interface:

interface Handler (e : Effect) (m : Type -> Type) where
      handle : resource -> (eff : e t resource resource') ->
               ((x : t) -> resource' x -> m a) -> m a





We have already seen some implementation declarations in the effect
summaries in Section Simple Effects. An implementation of Handler e
m means that the effect declared with signature e can be run in
computation context m. The handle function takes:


	The resource on input (so, the current value of the state for State)


	The effectful operation (either Get or Put x for State)


	A continuation, which we conventionally call k, and should be passed the result value of the operation, and an updated resource.




There are two reasons for taking a continuation here: firstly, this is
neater because there are multiple return values (a new resource and
the result of the operation); secondly, and more importantly, the
continuation can be called zero or more times.

A Handler for State simply passes on the value of the state,
in the case of Get, or passes on a new state, in the case of
Put.  It is defined the same way for all computation contexts:

Handler State m where
     handle st Get     k = k st st
     handle st (Put n) k = k () n





This gives enough information for Get and Put to be used
directly in Eff programs. It is tidy, however, to define top level
functions in Eff, as follows:

get : Eff x [STATE x]
get = call Get

put : x -> Eff () [STATE x]
put val = call (Put val)

putM : y -> Eff () [STATE x] [STATE y]
putM val = call (Put val)





An implementation detail (aside): The call function converts
an Effect to a function in Eff, given a proof that the effect
is available. This proof can be constructed automatically, since
it is essentially an index into a statically known list of effects:

call : {e : Effect} ->
       (eff : e t a b) -> {auto prf : EffElem e a xs} ->
       Eff t xs (\v => updateResTy v xs prf eff)





This is the reason for the Can’t solve goal error when an effect
is not available: the implicit proof prf has not been solved
automatically because the required effect is not in the list of
effects xs.

Such details are not important for using the library, or even writing
new effects, however.


Summary

The following listing summarises what is required to define the
STATE effect:

data State : Effect where
     Get :      sig State a  a
     Put : b -> sig State () a b

STATE : Type -> EFFECT
STATE t = MkEff t State

Handler State m where
     handle st Get     k = k st st
     handle st (Put n) k = k () n

get : Eff x [STATE x]
get = call Get

put : x -> Eff () [STATE x]
put val = call (Put val)

putM : y -> Eff () [STATE x] [STATE y]
putM val = call (Put val)








Console I/O

Then listing below gives the definition of the STDIO
effect, including handlers for IO and IOExcept. We omit the
definition of the top level Eff functions, as this merely invoke
the effects PutStr, GetStr, PutCh and GetCh directly.

Note that in this case, the resource is the unit type in every case,
since the handlers merely apply the IO equivalents of the effects
directly.

data StdIO : Effect where
     PutStr : String -> sig StdIO ()
     GetStr : sig StdIO String
     PutCh : Char -> sig StdIO ()
     GetCh : sig StdIO Char

Handler StdIO IO where
    handle () (PutStr s) k = do putStr s; k () ()
    handle () GetStr     k = do x <- getLine; k x ()
    handle () (PutCh c)  k = do putChar c; k () ()
    handle () GetCh      k = do x <- getChar; k x ()

Handler StdIO (IOExcept a) where
    handle () (PutStr s) k = do ioe_lift $ putStr s; k () ()
    handle () GetStr     k = do x <- ioe_lift $ getLine; k x ()
    handle () (PutCh c)  k = do ioe_lift $ putChar c; k () ()
    handle () GetCh      k = do x <- ioe_lift $ getChar; k x ()

STDIO : EFFECT
STDIO = MkEff () StdIO







Exceptions

The listing below gives the definition of the Exception
effect, including two of its handlers for Maybe and List. The
only operation provided is Raise. The key point to note in the
definitions of these handlers is that the continuation k is not
used. Running Raise therefore means that computation stops with an
error.

data Exception : Type -> Effect where
     Raise : a -> sig (Exception a) b

Handler (Exception a) Maybe where
     handle _ (Raise e) k = Nothing

Handler (Exception a) List where
     handle _ (Raise e) k = []

EXCEPTION : Type -> EFFECT
EXCEPTION t = MkEff () (Exception t)







Non-determinism

The following listing gives the definition of the Select
effect for writing non-deterministic programs, including a handler for
List context which returns all possible successful values, and a
handler for Maybe context which returns the first successful
value.

data Selection : Effect where
     Select : List a -> sig Selection a

Handler Selection Maybe where
     handle _ (Select xs) k = tryAll xs where
         tryAll [] = Nothing
         tryAll (x :: xs) = case k x () of
                                 Nothing => tryAll xs
                                 Just v => Just v

Handler Selection List where
     handle r (Select xs) k = concatMap (\x => k x r) xs

SELECT : EFFECT
SELECT = MkEff () Selection





Here, the continuation is called multiple times in each handler, for
each value in the list of possible values. In the List handler, we
accumulate all successful results, and in the Maybe handler we try
the first value in the list, and try later values only if that fails.



File Management

Result-dependent effects are no different from non-dependent effects
in the way they are implemented. The listing below
illustrates this for the FILE_IO effect. The syntax for state
transitions { x ==> {res} x’ }, where the result state x’ is
computed from the result of the operation res, follows that for
the equivalent Eff programs.

data FileIO : Effect where
     Open : (fname: String)
            -> (m : Mode)
            -> sig FileIO Bool () (\res => case res of
                                                True => OpenFile m
                                                False => ())
     Close : sig FileIO () (OpenFile m)

     ReadLine  :           sig FileIO String (OpenFile Read)
     WriteLine : String -> sig FileIO ()     (OpenFile Write)
     EOF       :           sig FileIO Bool   (OpenFile Read)

Handler FileIO IO where
    handle () (Open fname m) k = do h <- openFile fname m
                                    if !(validFile h)
                                             then k True (FH h)
                                             else k False ()
    handle (FH h) Close      k = do closeFile h
                                    k () ()

    handle (FH h) ReadLine        k = do str <- fread h
                                         k str (FH h)
    handle (FH h) (WriteLine str) k = do fwrite h str
                                         k () (FH h)
    handle (FH h) EOF             k = do e <- feof h
                                         k e (FH h)

FILE_IO : Type -> EFFECT
FILE_IO t = MkEff t FileIO





Note that in the handler for Open, the types passed to the
continuation k are different depending on whether the result is
True (opening succeeded) or False (opening failed). This uses
validFile, defined in the Prelude, to test whether a file
handler refers to an open file or not.





          

      

      

    

  

  
    

    Example: A “Mystery Word” Guessing Game
    

    

    
 
  

    
      
          
            
  
Example: A “Mystery Word” Guessing Game

In this section, we will use the techniques and specific effects
discussed in the tutorial so far to implement a larger example, a simple
text-based word-guessing game. In the game, the computer chooses a word,
which the player must guess letter by letter. After a limited number of
wrong guesses, the player loses [1].

We will implement the game by following these steps:


	Define the game state, in enough detail to express the rules


	Define the rules of the game (i.e. what actions the player may take,
and how these actions affect the game state)


	Implement the rules of the game (i.e. implement state updates for
each action)


	Implement a user interface which allows a player to direct actions




Step 2 may be achieved by defining an effect which depends on the state
defined in step 1. Then step 3 involves implementing a Handler for
this effect. Finally, step 4 involves implementing a program in Eff
using the newly defined effect (and any others required to implement the
interface).


Step 1: Game State

First, we categorise the game states as running games (where there are a
number of guesses available, and a number of letters still to guess), or
non-running games (i.e. games which have not been started, or games
which have been won or lost).

data GState = Running Nat Nat | NotRunning





Notice that at this stage, we say nothing about what it means to make a
guess, what the word to be guessed is, how to guess letters, or any
other implementation detail. We are only interested in what is necessary
to describe the game rules.

We will, however, parameterise a concrete game state Mystery over
this data:

data Mystery : GState -> Type







Step 2: Game Rules

We describe the game rules as a dependent effect, where each action has
a precondition (i.e. what the game state must be before carrying out
the action) and a postcondition (i.e. how the action affects the game
state). Informally, these actions with the pre- and postconditions are:


	Guess

	Guess a letter in the word.


	Precondition: The game must be running, and there must be both
guesses still available, and letters still to be guessed.


	Postcondition: If the guessed letter is in the word and not yet
guessed, reduce the number of letters, otherwise reduce the
number of guesses.






	Won

	Declare victory


	Precondition: The game must be running, and there must be no
letters still to be guessed.


	Postcondition: The game is no longer running.






	Lost

	Accept defeat


	Precondition: The game must be running, and there must be no
guesses left.


	Postcondition: The game is no longer running.






	NewWord

	Set a new word to be guessed


	Precondition: The game must not be running.


	Postcondition: The game is running, with 6 guesses available (the
choice of 6 is somewhat arbitrary here) and the number of unique
letters in the word still to be guessed.






	Get

	Get a string representation of the game state. This is for display
purposes; there are no pre- or postconditions.





We can make these rules precise by declaring them more formally in an
effect signature:

data MysteryRules : Effect where
     Guess : (x : Char) ->
             sig MysteryRules Bool
                 (Mystery (Running (S g) (S w)))
                 (\inword => if inword
                             then Mystery (Running (S g) w)
                             else Mystery (Running g (S w)))
     Won  : sig MysteryRules () (Mystery (Running g 0))
                                (Mystery NotRunning)
     Lost : sig MysteryRules () (Mystery (Running 0 g))
                                (Mystery NotRunning)
     NewWord : (w : String) ->
               sig MysteryRules () (Mystery NotRunning) (Mystery (Running 6 (length (letters w))))
     Get : sig MysteryRules String (Mystery h)





This description says nothing about how the rules are implemented. In
particular, it does not specify how to tell whether a guessed letter
was in a word, just that the result of Guess depends on it.

Nevertheless, we can still create an EFFECT from this, and use it in
an Eff program. Implementing a Handler for MysteryRules will
then allow us to play the game.

MYSTERY : GState -> EFFECT
MYSTERY h = MkEff (Mystery h) MysteryRules







Step 3: Implement Rules

To implement the rules, we begin by giving a concrete definition of
game state:

data Mystery : GState -> Type where
     Init     : Mystery NotRunning
     GameWon  : (word : String) -> Mystery NotRunning
     GameLost : (word : String) -> Mystery NotRunning
     MkG      : (word : String) ->
                (guesses : Nat) ->
                (got : List Char) ->
                (missing : Vect m Char) ->
                Mystery (Running guesses m)





If a game is NotRunning, that is either because it has not yet
started (Init) or because it is won or lost (GameWon and
GameLost, each of which carry the word so that showing the game
state will reveal the word to the player). Finally, MkG captures a
running game’s state, including the target word, the letters
successfully guessed, and the missing letters. Using a Vect for the
missing letters is convenient since its length is used in the type.

To initialise the state, we implement the following functions:
letters, which returns a list of unique letters in a String
(ignoring spaces) and initState which sets up an initial state
considered valid as a postcondition for NewWord.

letters : String -> List Char
initState : (x : String) -> Mystery (Running 6 (length (letters x)))





When checking if a guess is in the vector of missing letters, it is
convenient to return a proof that the guess is in the vector, using
isElem below, rather than merely a Bool:

data IsElem : a -> Vect n a -> Type where
     First : IsElem x (x :: xs)
     Later : IsElem x xs -> IsElem x (y :: xs)

isElem : DecEq a => (x : a) -> (xs : Vect n a) -> Maybe (IsElem x xs)





The reason for returning a proof is that we can use it to remove an
element from the correct position in a vector:

shrink : (xs : Vect (S n) a) -> IsElem x xs -> Vect n a





We leave the definitions of letters, init, isElem and
shrink as exercises. Having implemented these, the Handler
implementation for MysteryRules is surprisingly straightforward:

Handler MysteryRules m where
    handle (MkG w g got []) Won k = k () (GameWon w)
    handle (MkG w Z got m) Lost k = k () (GameLost w)

    handle st Get k = k (show st) st
    handle st (NewWord w) k = k () (initState w)

    handle (MkG w (S g) got m) (Guess x) k =
        case isElem x m of
             Nothing => k False (MkG w _ got m)
             (Just p) => k True (MkG w _ (x :: got) (shrink m p))





Each case simply involves directly updating the game state in a way
which is consistent with the declared rules. In particular, in
Guess, if the handler claims that the guessed letter is in the word
(by passing True to k), there is no way to update the state in
such a way that the number of missing letters or number of guesses does
not follow the rules.



Step 4: Implement Interface

Having described the rules, and implemented state transitions which
follow those rules as an effect handler, we can now write an interface
for the game which uses the MYSTERY effect:

game : Eff () [MYSTERY (Running (S g) w), STDIO]
              [MYSTERY NotRunning, STDIO]





The type indicates that the game must start in a running state, with
some guesses available, and eventually reach a not-running state (i.e.
won or lost). The only way to achieve this is by correctly following the
stated rules.

Note that the type of game makes no assumption that there are
letters to be guessed in the given word (i.e. it is w rather than
S w). This is because we will be choosing a word at random from a
vector of String, and at no point have we made it explicit that
those String are non-empty.

Finally, we need to initialise the game by picking a word at random from
a list of candidates, setting it as the target using NewWord, then
running game:

runGame : Eff () [MYSTERY NotRunning, RND, SYSTEM, STDIO]
runGame = do srand !time
             let w = index !(rndFin _) words
             call $ NewWord w
             game
             putStrLn !(call Get)





We use the system time (time from the SYSTEM effect; see
Appendix Effects Summary) to initialise the random number
generator, then pick a random Fin to index into a list of
words. For example, we could initialise a word list as follows:

words : ?wtype
words = with Vect ["idris","agda","haskell","miranda",
         "java","javascript","fortran","basic",
         "coffeescript","rust"]

wtype = proof search






Note

Rather than have to explicitly declare a type with the vector’s
length, it is convenient to give a hole ?wtype and let
Idris’s proof search mechanism find the type. This is a
limited form of type inference, but very useful in practice.
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Further Reading

This tutorial has given an introduction to writing and reasoning about
side-effecting programs in Idris, using the Effects library.
More details about the implementation of the library, such as how
run works, how handlers are invoked, etc, are given in a separate
paper [1].

Some libraries and programs which use Effects can be found in the
following places:


	https://github.com/edwinb/SDL-idris — some bindings for the SDL media
library, supporting graphics in particular.


	https://github.com/edwinb/idris-demos — various demonstration
programs, including several examples from this tutorial, and a “Space
Invaders” game.


	https://github.com/SimonJF/IdrisNet2 — networking and socket
libraries.


	https://github.com/edwinb/Protocols — a high level communication
protocol description language.




The inspiration for the Effects library was Bauer and Pretnar’s
Eff language [2], which describes a language based on algebraic
effects and handlers.  Other recent languages and libraries have also
been built on this ideas, for example [3] and [4]. The theoretical
foundations are also well-studied see [5], [6], [7], [8].


[1]
Edwin Brady. 2013. Programming and reasoning with algebraic
effects and dependent types. SIGPLAN Not. 48, 9 (September
2013), 133-144. DOI=10.1145/2544174.2500581
https://dl.acm.org/citation.cfm?doid=2544174.2500581



[2]
Andrej Bauer, Matija Pretnar, Programming with algebraic
effects and handlers, Journal of Logical and Algebraic Methods
in Programming, Volume 84, Issue 1, January 2015, Pages
108-123, ISSN 2352-2208,
http://math.andrej.com/wp-content/uploads/2012/03/eff.pdf



[3]
Ben Lippmeier. 2009. Witnessing Purity, Constancy and
Mutability. In Proceedings of the 7th Asian Symposium on
Programming Languages and Systems (APLAS ‘09), Zhenjiang Hu
(Ed.). Springer-Verlag, Berlin, Heidelberg,
95-110. DOI=10.1007/978-3-642-10672-9_9
https://link.springer.com/chapter/10.1007%2F978-3-642-10672-9_9
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action. SIGPLAN Not. 48, 9 (September 2013),
145-158. DOI=10.1145/2544174.2500590
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[5]
Martin Hyland, Gordon Plotkin, John Power, Combining effects:
Sum and tensor, Theoretical Computer Science, Volume 357,
Issues 1–3, 25 July 2006, Pages 70-99, ISSN 0304-3975,
(https://www.sciencedirect.com/science/article/pii/S0304397506002659)



[6]
Paul Blain Levy. 2004. Call-By-Push-Value: A
Functional/Imperative Synthesis (Semantics Structures in
Computation, V. 2). Kluwer Academic Publishers, Norwell, MA,
USA.
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Heidelberg, 2009. 80-94.



[8]
Pretnar, Matija. “Logic and handling of algebraic effects.” (2010).





          

      

      

    

  

  
    

    Effects Summary
    

    

    
 
  

    
      
          
            
  
Effects Summary

This appendix gives interfaces for the core effects provided by the
library.


EXCEPTION

module Effect.Exception

import Effects
import System
import Control.IOExcept

EXCEPTION : Type -> EFFECT

raise : a -> Eff b [EXCEPTION a]

Handler (Exception a) Maybe where { ... }
Handler (Exception a) List where { ... }
Handler (Exception a) (Either a) where { ... }
Handler (Exception a) (IOExcept a) where { ... }
Show a => Handler (Exception a) IO where { ... }







FILE_IO

module Effect.File

import Effects
import Control.IOExcept

FILE_IO : Type -> EFFECT

data OpenFile : Mode -> Type

open : (fname : String)
    -> (m : Mode)
    -> Eff Bool [FILE_IO ()]
                (\res => [FILE_IO (case res of
                                        True => OpenFile m
                                        False => ())])
close : Eff () [FILE_IO (OpenFile m)] [FILE_IO ()]

readLine  :           Eff String [FILE_IO (OpenFile Read)]
writeLine : String -> Eff () [FILE_IO (OpenFile Write)]
eof       :           Eff Bool [FILE_IO (OpenFile Read)]

Handler FileIO IO where { ... }







RND

module Effect.Random

import Effects
import Data.Vect
import Data.Fin

RND : EFFECT

srand  : Integer ->            Eff () [RND]
rndInt : Integer -> Integer -> Eff Integer [RND]
rndFin : (k : Nat) ->          Eff (Fin (S k)) [RND]

Handler Random m where { ... }







SELECT

module Effect.Select

import Effects

SELECT : EFFECT

select : List a -> Eff a [SELECT]

Handler Selection Maybe where { ... }
Handler Selection List where { ... }







STATE

module Effect.State

import Effects

STATE : Type -> EFFECT

get    :             Eff x [STATE x]
put    : x ->        Eff () [STATE x]
putM   : y ->        Eff () [STATE x] [STATE y]
update : (x -> x) -> Eff () [STATE x]

Handler State m where { ... }







STDIO

module Effect.StdIO

import Effects
import Control.IOExcept

STDIO : EFFECT

putChar  : Char   -> Eff () [STDIO]
putStr   : String -> Eff () [STDIO]
putStrLn : String -> Eff () [STDIO]

getStr   :           Eff String [STDIO]
getChar  :           Eff Char [STDIO]

Handler StdIO IO where { ... }
Handler StdIO (IOExcept a) where { ... }







SYSTEM

module Effect.System

import Effects
import System
import Control.IOExcept

SYSTEM : EFFECT

getArgs :           Eff (List String) [SYSTEM]
time    :           Eff Int [SYSTEM]
getEnv  : String -> Eff (Maybe String) [SYSTEM]

Handler System IO where { ... }
Handler System (IOExcept a) where { ... }
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Theorem Proving

A tutorial on theorem proving in Idris.


Note

The documentation for Idris has been published under the Creative
Commons CC0 License. As such to the extent possible under law, The
Idris Community has waived all copyright and related or neighboring
rights to Documentation for Idris.

More information concerning the CC0 can be found online at: https://creativecommons.org/publicdomain/zero/1.0/
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Background Material

In order to understand how to write proofs in Idris I think its worth clarifying some fundamentals, such as,


	Propositions and judgments


	Boolean and constructive logic


	Curry-Howard correspondence


	Definitional and propositional equalities


	Axiomatic and constructive approaches





Propositions and Judgments

Propositions are the subject of our proofs, before the proof then we can’t formally say if they are true or not. If the proof is successful then the result is a ‘judgment’.
For instance, if the proposition is,



	1+1=2






When we prove it, the judgment is,



	1+1=2 true






Or if the proposition is,



	1+1=3






Obviously  we can’t prove it is true, but it is still a valid proposition and perhaps we can prove it is false so the judgment is,



	1+1=3 false






This may seem a bit pedantic but it is important to be careful,  in mathematics not every proposition is true or false for instance, a proposition may be unproven or even unprovable.

So the logic here is different from the logic that comes from boolean algebra. In that case what is not true is false and what is not false is true. The logic we are using here does not have this ‘law of excluded middle’ so we have to be careful not to use it.

A false proposition is taken to be a contradiction and if we have a contradiction then we can prove anything, so we need to avoid this. Some languages, used in proof assistants, prevent contradictions but such languages cannot be Turing complete, so Idris does not prevent contradictions.

The logic we are using  is called constructive (or sometimes intuitional) because we are constructing a ‘database’ of judgments.

There are also many other types of logic, another important type of logic for Idris programmers is ‘linear logic’ but that’s not discussed on this page.



Curry-Howard correspondence

So how to we relate these proofs to Idris programs? It turns out that there is a correspondence between constructive logic and type theory. They are the same structure and we can switch backward and forward between the two notations because they are the same thing.

The way that this works is that a  proposition is a type so this,

Idris> 1+1=2
2 = 2 : Type





is a proposition and it is also a type. This is built into Idris so when an ‘=’ equals sign appears in a function type an equality type is generated. The following will also produce an equality type:

Idris> 1+1=3
2 = 3 : Type





Both of these are valid propositions so both are valid equality types. But how do we represent true judgment, that is, how do we denote 1+1=2 is true but not 1+1=3.
A type that is true is inhabited, that is, it can be constructed. An equality type has only one constructor ‘Refl’ so a proof of 1+1=2 is

onePlusOne : 1+1=2
onePlusOne = Refl





So how can Refl, which is a constructor without any parameters, construct an equality type? If we type it on its own then it can’t:

Idris> Refl
(input):Can't infer argument A to Refl, Can't infer argument x to Refl





So it must pattern match on its return type:

Idris> the (1=1) Refl
Refl : 1 = 1





So now that we can represent propositions as types other aspects of propositional logic can also be translated to types as follows:



	
	propositions

	example of possible type



	A

	x=y

	


	B

	y=z

	


	and

	A /\ B

	Pair(x=y,y=z)



	or

	A \/ B

	Either(x=y,y=z)



	implies

	A -> B

	(x=y) -> (y=x)



	for all

	y=z

	


	exists

	y=z

	






And (conjunction)

We can have a type which corresponds to conjunction:

AndIntro : a -> b -> A a b





There is a built in type called ‘Pair’.



Or (disjunction)

We can have a type which corresponds to disjunction:

data Or : Type -> Type -> Type where
  OrIntroLeft  : a -> A a b
  OrIntroRight : b -> A a b





There is a built in type called ‘Either’.




Definitional and Propositional Equalities

We have seen that  we can ‘prove’ a type by finding a way to construct a term. In the case of equality types there is only one constructor which is ‘Refl’.
We have also seen that each side of the equation does not have to be identical like ‘2=2’. It is enough that both sides are definitionaly equal like this:

onePlusOne : 1+1=2
onePlusOne = Refl





So both sides of this equation nomalise to 2 and so Refl will type match and the proposition is proved.

We don’t have to stick to terms, can also use symbolic parameters so the following  will compile:

varIdentity : m = m
varIdentity = Refl





If a proposition/equality type is not definitionaly equal but is still true then it is propositionaly equal. In this case we may still be able to prove it but some steps in the proof may require us to add something into the terms or at least to take some sideways steps to get to a proof.

Especially when working with equalities containing variable terms (inside functions) it can be hard to know which equality types are definitially equal, in this example plusReducesL is ‘definitially equal’ but plusReducesR is not (although it is ‘propositionaly equal’). The only difference between them is the order of the operands.

plusReducesL : (n:Nat) -> plus Z n = n
plusReducesL n = Refl

plusReducesR : (n:Nat) -> plus n Z = n
plusReducesR n = Refl





plusReducesR gives the following error:

- + Errors (1)
`-- proof.idr line 6 col 17:
  When checking right hand side of plusReducesR with expected type
          plus n 0 = n

  Type mismatch between
          n = n (Type of Refl)
  and
          plus n 0 = n (Expected type)

  Specifically:
          Type mismatch between
                  n
          and
                  plus n 0





So why is ‘Refl’ able to prove some equality types but not others?

The first answer is that ‘plus’ is defined in such a way that it splits on its first argument so it is simple to prove when 0 is the first argument but not the second. So what is the general way to know if Refl will work?

If an equality type can be proved/constructed by using Refl alone it is known as a definitional equality. In order to be definitinally equal both sides of the equation must normalise to unique values. That is, each step in the proof must reduce the term so each step is effectively forced.

So when we type 1+1 in Idris it is immediately converted to 2 because definitional equality is built in.

Idris> 1+1
2 : Integer





In the following pages we discuss how to resolve propositionaly equalies.



Axiomatic and Constructive Approaches

How should we define types so that  we can do proofs on them? In the natural numbers with the plus example we could have started by treating it as a group based on the plus operator. So we have axioms:


	for all x,y : x+y=y+x


	for all x: x + 0 = x = 0 + x


	for all x,y,z: (x + y) + z = x + (x + z)




Then we can implement ‘+’ so that it respects these axioms (presumably implemented in hardware).

These are axioms, that is a propositions/types that are asserted to be true without proof. In Idris we can use the ‘postulate’ keyword

postulate commutePlus: (x:Nat) -> (y:Nat) -> plus x y = plus y x





Alternatively we could define the natural numbers based on Zero and Successor. The axioms above then become derived rules and we also gain the ability to do inductive proofs.

As we know, Idris uses both of these approaches with automatic coercion between them which gives the best of both worlds.

So what can we learn from this to implement our own types:


	Should we try to implement both approaches?


	Should we define our types by constructing up from primitive types?




Proof theory affects these design decisions.
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Running example: Addition of Natural Numbers

Throughout this tutorial, we will be working with the following
function, defined in the Idris prelude, which defines addition on
natural numbers:

plus : Nat -> Nat -> Nat
plus Z     m = m
plus (S k) m = S (plus k m)





It is defined by the above equations, meaning that we have for free the
properties that adding m to zero always results in m, and that
adding m to any non-zero number S k always results in
S (plus k m). We can see this by evaluation at the Idris REPL (i.e.
the prompt, the read-eval-print loop):

Idris> \m => plus Z m
\m => m : Nat -> Nat

Idris> \k,m => plus (S k) m
\k => \m => S (plus k m) : Nat -> Nat -> Nat





Note that unlike many other language REPLs, the Idris REPL performs
evaluation on open terms, meaning that it can reduce terms which
appear inside lambda bindings, like those above. Therefore, we can
introduce unknowns k and m as lambda bindings and see how
plus reduces.

The plus function has a number of other useful properties, for
example:


	It is commutative, that is for all Nat inputs n and m,
we know that plus n m = plus m n.


	It is associative, that is for all Nat inputs n, m and
p, we know that plus n (plus m p) = plus (plus m n) p.




We can use these properties in an Idris program, but in order to do so
we must prove them.


Equality Proofs

Idris has a built-in propositional equality type, conceptually defined
as follows:

data (=) : a -> b -> Type where
   Refl : x = x





Note that this must be built-in, rather than defined in the library,
because = is a reserved operator — you cannot define this directly
in your own code.

It is propositional equality, where the type states that any two
values in different types a and b may be proposed to be equal.
There is only one way to prove equality, however, which is by
reflexivity (Refl).

We have a type for propositional equality here, and correspondingly a
program inhabiting an instance of this type can be seen as a proof of
the corresponding proposition [1]. So, trivially, we can prove that
4 equals 4:

four_eq : 4 = 4
four_eq = Refl





However, trying to prove that 4 = 5 results in failure:

four_eq_five : 4 = 5
four_eq_five = Refl





The type 4 = 5 is a perfectly valid type, but is uninhabited, so
when trying to type check this definition, Idris gives the following
error:

When elaborating right hand side of four_eq_five:
Type mismatch between
        x = x (Type of Refl)
and
        4 = 5 (Expected type)






Type checking equality proofs

An important step in type checking Idris programs is unification,
which attempts to resolve implicit arguments such as the implicit
argument x in Refl. As far as our understanding of type checking
proofs is concerned, it suffices to know that unifying two terms
involves reducing both to normal form then trying to find an assignment
to implicit arguments which will make those normal forms equal.

When type checking Refl, Idris requires that the type is of the form
x = x, as we see from the type of Refl. In the case of
four_eq_five, Idris will try to unify the expected type 4 = 5
with the type of Refl, x = x, notice that a solution requires
that x be both 4 and 5, and therefore fail.

Since type checking involves reduction to normal form, we can write the
following equalities directly:

twoplustwo_eq_four : 2 + 2 = 4
twoplustwo_eq_four = Refl

plus_reduces_Z : (m : Nat) -> plus Z m = m
plus_reduces_Z m = Refl

plus_reduces_Sk : (k, m : Nat) -> plus (S k) m = S (plus k m)
plus_reduces_Sk k m = Refl








Heterogeneous Equality

Equality in Idris is heterogeneous, meaning that we can even propose
equalities between values in different types:

idris_not_php : 2 = "2"





Obviously, in Idris the type 2 = "2" is uninhabited, and one might
wonder why it is useful to be able to propose equalities between values
in different types. However, with dependent types, such equalities can
arise naturally. For example, if two vectors are equal, their lengths
must be equal:

vect_eq_length : (xs : Vect n a) -> (ys : Vect m a) ->
                 (xs = ys) -> n = m





In the above declaration, xs and ys have different types because
their lengths are different, but we would still like to draw a
conclusion about the lengths if they happen to be equal. We can define
vect_eq_length as follows:

vect_eq_length xs xs Refl = Refl





By matching on Refl for the third argument, we know that the only
valid value for ys is xs, because they must be equal, and
therefore their types must be equal, so the lengths must be equal.

Alternatively, we can put an underscore for the second xs, since
there is only one value which will type check:

vect_eq_length xs _ Refl = Refl







Properties of plus

Using the (=) type, we can now state the properties of plus
given above as Idris type declarations:

plus_commutes : (n, m : Nat) -> plus n m = plus m n
plus_assoc : (n, m, p : Nat) -> plus n (plus m p) = plus (plus n m) p





Both of these properties (and many others) are proved for natural number
addition in the Idris standard library, using (+) from the Num
interface rather than using plus directly. They have the names
plusCommutative and plusAssociative respectively.

In the remainder of this tutorial, we will explore several different
ways of proving plus_commutes (or, to put it another way, writing
the function). We will also discuss how to use such equality proofs, and
see where the need for them arises in practice.


[1]
This is known as the Curry-Howard correspondence.
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Inductive Proofs

Before embarking on proving plus_commutes in Idris itself, let us
consider the overall structure of a proof of some property of natural
numbers. Recall that they are defined recursively, as follows:

data Nat : Type where
     Z : Nat
     S : Nat -> Nat





A total function over natural numbers must both terminate, and cover
all possible inputs. Idris checks functions for totality by checking that
all inputs are covered, and that all recursive calls are on
structurally smaller values (so recursion will always reach a base
case). Recalling plus:

plus : Nat -> Nat -> Nat
plus Z     m = m
plus (S k) m = S (plus k m)





This is total because it covers all possible inputs (the first argument
can only be Z or S k for some k, and the second argument
m covers all possible Nat) and in the recursive call, k
is structurally smaller than S k so the first argument will always
reach the base case Z in any sequence of recursive calls.

In some sense, this resembles a mathematical proof by induction (and
this is no coincidence!). For some property P of a natural number
x, we can show that P holds for all x if:


	P holds for zero (the base case).


	Assuming that P holds for k, we can show P also holds for
S k (the inductive step).




In plus, the property we are trying to show is somewhat trivial (for
all natural numbers x, there is a Nat which need not have any
relation to x). However, it still takes the form of a base case and
an inductive step. In the base case, we show that there is a Nat
arising from plus n m when n = Z, and in the inductive step we
show that there is a Nat arising when n = S k and we know we can
get a Nat inductively from plus k m. We could even write a
function capturing all such inductive definitions:

nat_induction : (P : Nat -> Type) ->             -- Property to show
                (P Z) ->                         -- Base case
                ((k : Nat) -> P k -> P (S k)) -> -- Inductive step
                (x : Nat) ->                     -- Show for all x
                P x
nat_induction P p_Z p_S Z = p_Z
nat_induction P p_Z p_S (S k) = p_S k (nat_induction P p_Z p_S k)





Using nat_induction, we can implement an equivalent inductive
version of plus:

plus_ind : Nat -> Nat -> Nat
plus_ind n m
   = nat_induction (\x => Nat)
                   m                      -- Base case, plus_ind Z m
                   (\k, k_rec => S k_rec) -- Inductive step plus_ind (S k) m
                                          -- where k_rec = plus_ind k m
                   n





To prove that plus n m = plus m n for all natural numbers n and
m, we can also use induction. Either we can fix m and perform
induction on n, or vice versa. We can sketch an outline of a proof;
performing induction on n, we have:


	Property P is \x => plus x m = plus m x.


	Show that P holds in the base case and inductive step:


	
Base case: P Z, i.e.

plus Z m = plus m Z, which reduces to

m = plus m Z due to the definition of plus.





	
Inductive step: Inductively, we know that P k holds for a specific, fixed k, i.e.

plus k m = plus m k (the induction hypothesis). Given this, show P (S k), i.e.

plus (S k) m = plus m (S k), which reduces to

S (plus k m) = plus m (S k). From the induction hypothesis, we can rewrite this to

S (plus m k) = plus m (S k).











To complete the proof we therefore need to show that m = plus m Z
for all natural numbers m, and that S (plus m k) = plus m (S k)
for all natural numbers m and k. Each of these can also be
proved by induction, this time on m.

We are now ready to embark on a proof of commutativity of plus
formally in Idris.
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Pattern Matching Proofs

In this section, we will provide a proof of plus_commutes directly,
by writing a pattern matching definition. We will use interactive
editing features extensively, since it is significantly easier to
produce a proof when the machine can give the types of intermediate
values and construct components of the proof itself. The commands we
will use are summarised below. Where we refer to commands
directly, we will use the Vim version, but these commands have a direct
mapping to Emacs commands.



	Command

	Vim binding

	Emacs binding

	Explanation



	Check type

	\t

	C-c C-t

	Show type of identifier or hole under the cursor.



	Proof search

	\o

	C-c C-a

	Attempt to solve hole under the cursor by applying simple proof search.



	Make new definition

	\d

	C-c C-s

	Add a template definition for the type defined under the cursor.



	Make lemma

	\l

	C-c C-e

	Add a top level function with a type which solves the hole under the cursor.



	Split cases

	\c

	C-c C-c

	Create new constructor patterns for each possible case of the variable under the cursor.







Creating a Definition

To begin, create a file pluscomm.idr containing the following type
declaration:

plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n





To create a template definition for the proof, press \d (or the
equivalent in your editor of choice) on the line with the type
declaration. You should see:

plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n
plus_commutes n m = ?plus_commutes_rhs





To prove this by induction on n, as we sketched in Section
Inductive Proofs, we begin with a case split on n (press
\c with the cursor over the n in the definition.) You
should see:

plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n
plus_commutes Z m = ?plus_commutes_rhs_1
plus_commutes (S k) m = ?plus_commutes_rhs_2





If we inspect the types of the newly created holes,
plus_commutes_rhs_1 and plus_commutes_rhs_2, we see that the
type of each reflects that n has been refined to Z and S k
in each respective case. Pressing \t over
plus_commutes_rhs_1 shows:

  m : Nat
--------------------------------------
plus_commutes_rhs_1 : m = plus m 0





Note that Z renders as 0 because the pretty printer renders
natural numbers as integer literals for readability. Similarly, for
plus_commutes_rhs_2:

  k : Nat
  m : Nat
--------------------------------------
plus_commutes_rhs_2 : S (plus k m) = plus m (S k)





It is a good idea to give these slightly more meaningful names:

plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n
plus_commutes Z m = ?plus_commutes_Z
plus_commutes (S k) m = ?plus_commutes_S







Base Case

We can create a separate lemma for the base case interactively, by
pressing \l with the cursor over plus_commutes_Z. This
yields:

plus_commutes_Z : m = plus m 0

plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n
plus_commutes Z m = plus_commutes_Z
plus_commutes (S k) m = ?plus_commutes_S





That is, the hole has been filled with a call to a top level
function plus_commutes_Z. The argument m has been made implicit
because it can be inferred from context when it is applied.

Unfortunately, we cannot prove this lemma directly, since plus is
defined by matching on its first argument, and here plus m 0 has a
specific value for its second argument (in fact, the left hand side of
the equality has been reduced from plus 0 m.) Again, we can prove
this by induction, this time on m.

First, create a template definition with \d:

plus_commutes_Z : m = plus m 0
plus_commutes_Z = ?plus_commutes_Z_rhs





Since we are going to write this by induction on m, which is
implicit, we will need to bring m into scope manually:

plus_commutes_Z : m = plus m 0
plus_commutes_Z {m} = ?plus_commutes_Z_rhs





Now, case split on m with \c:

plus_commutes_Z : m = plus m 0
plus_commutes_Z {m = Z} = ?plus_commutes_Z_rhs_1
plus_commutes_Z {m = (S k)} = ?plus_commutes_Z_rhs_2





Checking the type of plus_commutes_Z_rhs_1 shows the following,
which is easily proved by reflection:

--------------------------------------
plus_commutes_Z_rhs_1 : 0 = 0





For such trivial proofs, we can let write the proof automatically by
pressing \o with the cursor over plus_commutes_Z_rhs_1.
This yields:

plus_commutes_Z : m = plus m 0
plus_commutes_Z {m = Z} = Refl
plus_commutes_Z {m = (S k)} = ?plus_commutes_Z_rhs_2





For plus_commutes_Z_rhs_2, we are not so lucky:

  k : Nat
--------------------------------------
plus_commutes_Z_rhs_2 : S k = S (plus k 0)





Inductively, we should know that k = plus k 0, and we can get access
to this inductive hypothesis by making a recursive call on k, as
follows:

plus_commutes_Z : m = plus m 0
plus_commutes_Z {m = Z} = Refl
plus_commutes_Z {m = (S k)} = let rec = plus_commutes_Z {m=k} in
                                  ?plus_commutes_Z_rhs_2





For plus_commutes_Z_rhs_2, we now see:

  k : Nat
  rec : k = plus k (fromInteger 0)
--------------------------------------
plus_commutes_Z_rhs_2 : S k = S (plus k 0)





Again, the fromInteger 0 is merely due to Nat having an implementation
of the Num interface. So we know that k = plus k 0, but how do
we use this to update the goal to S k = S k?

To achieve this, Idris provides a replace function as part of the
prelude:

*pluscomm> :t replace
replace : (x = y) -> P x -> P y





Given a proof that x = y, and a property P which holds for
x, we can get a proof of the same property for y, because we
know x and y must be the same. In practice, this function can be
a little tricky to use because in general the implicit argument P
can be hard to infer by unification, so Idris provides a high level
syntax which calculates the property and applies replace:

rewrite prf in expr





If we have prf : x = y, and the required type for expr is some
property of x, the rewrite ... in syntax will search for x
in the required type of expr and replace it with y. Concretely,
in our example, we can say:

plus_commutes_Z {m = (S k)} = let rec = plus_commutes_Z {m=k} in
                                  rewrite rec in ?plus_commutes_Z_rhs_2





Checking the type of plus_commutes_Z_rhs_2 now gives:

  k : Nat
  rec : k = plus k (fromInteger 0)
  _rewrite_rule : plus k 0 = k
--------------------------------------
plus_commutes_Z_rhs_2 : S (plus k 0) = S (plus k 0)





Using the rewrite rule rec (which we can see in the context here as
_rewrite_rule [1], the goal type has been updated with k
replaced by plus k 0.

Alternatively, we could have applied the rewrite in the other direction
using the sym function:

*pluscomm> :t sym
sym : (l = r) -> r = l





plus_commutes_Z {m = (S k)} = let rec = plus_commutes_Z {m=k} in
                                  rewrite sym rec in ?plus_commutes_Z_rhs_2





In this case, inspecting the type of the hole gives:

  k : Nat
  rec : k = plus k (fromInteger 0)
  _rewrite_rule : k = plus k 0
--------------------------------------
plus_commutes_Z_rhs_2 : S k = S k





Either way, we can use proof search (\o) to complete the
proof, giving:

plus_commutes_Z : m = plus m 0
plus_commutes_Z {m = Z} = Refl
plus_commutes_Z {m = (S k)} = let rec = plus_commutes_Z {m=k} in
                                  rewrite rec in Refl





The base case is now complete.



Inductive Step

Our main theorem, plus_commutes should currently be in the following
state:

plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n
plus_commutes Z m = plus_commutes_Z
plus_commutes (S k) m = ?plus_commutes_S





Looking again at the type of plus_commutes_S, we have:

  k : Nat
  m : Nat
--------------------------------------
plus_commutes_S : S (plus k m) = plus m (S k)





Conveniently, by induction we can immediately tell that
plus k m = plus m k, so let us rewrite directly by making a
recursive call to plus_commutes. We add this directly, by hand, as
follows:

plus_commutes : (n : Nat) -> (m : Nat) -> n + m = m + n
plus_commutes Z m = plus_commutes_Z
plus_commutes (S k) m = rewrite plus_commutes k m in ?plus_commutes_S





Checking the type of plus_commutes_S now gives:

  k : Nat
  m : Nat
  _rewrite_rule : plus m k = plus k m
--------------------------------------
plus_commutes_S : S (plus m k) = plus m (S k)





The good news is that m and k now appear in the correct order.
However, we still have to show that the successor symbol S can be
moved to the front in the right hand side of this equality. This
remaining lemma takes a similar form to the plus_commutes_Z; we
begin by making a new top level lemma with \l. This gives:

plus_commutes_S : (k : Nat) -> (m : Nat) -> S (plus m k) = plus m (S k)





Unlike the previous case, k and m are not made implicit because
we cannot in general infer arguments to a function from its result.
Again, we make a template definition with \d:

plus_commutes_S : (k : Nat) -> (m : Nat) -> S (plus m k) = plus m (S k)
plus_commutes_S k m = ?plus_commutes_S_rhs





Again, this is defined by induction over m, since plus is
defined by matching on its first argument. The complete definition is:

total
plus_commutes_S : (k : Nat) -> (m : Nat) -> S (plus m k) = plus m (S k)
plus_commutes_S k Z = Refl
plus_commutes_S k (S j) = rewrite plus_commutes_S k j in Refl





All holes have now been solved.

The total annotation means that we require the final function to
pass the totality checker; i.e. it will terminate on all possible
well-typed inputs. This is important for proofs, since it provides a
guarantee that the proof is valid in all cases, not just those for
which it happens to be well-defined.

Now that plus_commutes has a total annotation, we have completed the
proof of commutativity of addition on natural numbers.


[1]
Note that the left and right hand sides of the equality have been
swapped, because replace takes a proof of x=y and the
property for x, not y.
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Proving Propositional Equality

This page attempts to explain some of the techniques used in Idris to prove propositional equalities.

We have seen that definitional equalities can be proved using Refl since they always normalise to unique values that can be compared directly.

However with propositional equalities we are using symbolic variables they do not always normalise.

So to take the previous example:

plusReducesR : (n:Nat) -> plus n Z = n





In this case plus n Z does not normalise to n. Even though both sides are equal we cannot pattern match Refl.

If the pattern match cannot match for all n then the way around this is to separately match all possible values of n. In the case of natural numbers we do this by induction.

So here:

plusReducesR : n = plus n 0
plusReducesR {n = Z} = Refl
plusReducesR {n = (S k)} = let rec = plus_commutes_Z {n=k} in
                               rewrite rec in Refl





we don’t call Refl to match on n = plus n 0 forall n we call it for every number separately. So, in the second line, the pattern matcher knows to substitute Z for n in the type being matched. This uses rewrite which is explained below.


Replace

This implements the indiscernability of identicals principle, if two terms are equal then they have the same properties. In other words, if x=y, then we can substitute y for x in any expression. In our proofs we can express this as:

if x=y
then P x = P y





where P is a pure function representing the property. In the examples below P is an expression in some variable with a type like this: P: n -> Type.

So if n is a natural number variable then P could be something like 2*n + 3.

To use this in our proofs there is the following function in the prelude:

||| Perform substitution in a term according to some equality.
replace : {a:_} -> {x:_} -> {y:_} -> {P : a -> Type} -> x = y -> P x -> P y
replace Refl prf = prf





Removing the implicits, if we supply an equality x=y and a proof of a property of x (i.e. P x) then we get a proof of a property of y (i.e. P y)

> :t replace
replace : (x = y) -> P x -> P y





So, in the following example, if we supply p1 x which is a proof that x=2 and the equality x=y then we get a proof that y=2.

p1: Nat -> Type
p1 n = (n=2)

testReplace: (x=y) -> (p1 x) -> (p1 y)
testReplace a b = replace a b







Rewrite

Similar to replace above but Idris provides a nicer syntax which makes rewrite easier to use in examples like plusReducesR above.

rewrite__impl : (P : a -> Type) -> x = y -> P y -> P x
rewrite__impl p Refl prf = prf





The difference from replace above is nicer syntax and the property p1 is explicitly supplied and it goes in the opposite direction (input and output reversed).

Example: again we supply p1 which is a proof that x=2 and the equality x=y then we get a proof that y=2.

p1: Nat -> Type
p1 x = (x=2)

testRewrite2: (x=y) -> (p1 y) -> (p1 x)
testRewrite2 a b = rewrite a in b





We can think of rewrite doing this:



	start with a equation x=y and a property P: x -> Type;


	search y in P;


	replace all occurrences of y with x in P.







That is, we are doing a substitution.



Symmetry and Transitivity

In addition to reflexivity equality also obeys symmetry and transitivity and these are also included in the prelude:

||| Symmetry of propositional equality
sym : {left:a} -> {right:b} -> left = right -> right = left
sym Refl = Refl

||| Transitivity of propositional equality
trans : {a:x} -> {b:y} -> {c:z} -> a = b -> b = c -> a = c
trans Refl Refl = Refl







Heterogeneous Equality

Also included in the prelude:

||| Explicit heterogeneous ("John Major") equality. Use this when Idris
||| incorrectly chooses homogeneous equality for `(=)`.
||| @ a the type of the left side
||| @ b the type of the right side
||| @ x the left side
||| @ y the right side
(~=~) : (x : a) -> (y : b) -> Type
(~=~) x y = (x = y)









          

      

      

    

  

  
    

    Interactive Theorem Proving
    

    

    
 
  

    
      
          
            
  
Interactive Theorem Proving

Idris supports interactive theorem proving via elaborator reflection.

Elaborator Reflection Introduction is also used to convert high-level Idris code into
the core language and for customising the language. Here we show how to use it
to interactively construct proofs.

The primary purpose of the elaboration mechanism is to elaborate Idris and so it
is not optimised to work as a proof assistant, however it can interactively
construct proofs as described on this page.


Elab and Pruviloj Libraries

Elaborator reflection is defined in prelude/Language/Reflection/Elab.idr
and pruviloj is defined in Idris-dev/libs/pruviloj/.

Elab defines the basics such as: solve, attack, intro, compute,
rewriteWith and others.
pruviloj defines some more advanced derived commands such as:
reflexivity and others.

To use pruviloj call Idris with the -p pruviloj option and add:

import Pruviloj
import Pruviloj.Induction





to the top of your file.

It is useful to get the docs at the REPL by using the :doc command, and
search the docstrings using :apropos. So to introduce the functions from
Elab and Pruviloj, that we will need for the following example, here are
their docstrings:

*plusReducesZ> :doc solve
Language.Reflection.Elab.Tactics.solve : Elab ()
    Substitute a guess into a hole.





*plusReducesZ> :doc attack
Language.Reflection.Elab.Tactics.attack : Elab ()
    Convert a hole to make it suitable for bindings - that is, transform
    it such that it has the form ?h : t . h as opposed to ?h : t . f h.

    The binding tactics require that a hole be directly under its binding,
    or else the scopes of the generated terms won't make sense. This
    tactic creates a new hole of the proper form, and points the old hole
    at it.





*plusReducesZ> :doc intro
Language.Reflection.Elab.Tactics.intro : (n : TTName) -> Elab ()
    Introduce a lambda binding around the current hole and focus on the
    body. Requires that the hole be in binding form (use attack).
    Arguments:
        n : TTName  -- the name to use for the argument





*plusReducesZ> :doc compute
Language.Reflection.Elab.Tactics.compute : Elab ()
    Normalise the goal.





*plusReducesZ> :doc rewriteWith
Language.Reflection.Elab.Tactics.rewriteWith : Raw -> Elab ()
    Attempt to rewrite the goal using an equality.

    The tactic searches the goal for applicable subterms, and constructs a
    context for replace using them. In some cases, this is not possible,
    and replace must be called manually with an appropriate context.

    Because this tactic internally introduces a let binding, it requires
    that the hole be immediately under its binder (use attack if it might
    not be).





Here is the command from pruviloj that we will need for the example on
this page:

*plusReducesZ> :doc reflexivity
Pruviloj.Core.reflexivity : Elab ()
    A special-purpose tactic that attempts to solve a goal using Refl.
    This is useful for ensuring that goals in fact are trivial when
    developing or testing other tactics; otherwise, consider using search.







Interactive Example: plusReduces

One way to write proofs interactively is to write the general structure of
the proof, and use the interactive mode to complete the details.
Consider the following definition, proved in Theorem Proving:

plusReduces : (n:Nat) -> plus Z n = n





We’ll be constructing the proof by induction, so we write the cases for Z
and S, with a recursive call in the S case giving the inductive
hypothesis, and insert holes for the rest of the definition:

import Pruviloj
import Pruviloj.Induction

plusReducesZ' : (n:Nat) -> n = plus n Z
plusReducesZ' Z     = ?plusredZ_Z
plusReducesZ' (S k) = let ih = plusReducesZ' k in
                      ?plusredZ_S





On running , two global names are created, plusredZ_Z and
plusredZ_S, with no definition.

*theorems> : idris plusReducesZ.idr -p pruviloj

.  /  _/___/ /____(_)____
   / // __  / ___/ / ___/     Version 1.2.0
 _/ // /_/ / /  / (__  )      https://www.idris-lang.org/
/___/\__,_/_/  /_/____/       Type :? for help

Idris is free software with ABSOLUTELY NO WARRANTY.
For details type :warranty.
Holes: Main.plusredZ_S, Main.plusredZ_Z





This tells us that we have two holes Main.plusredZ_S and Main.plusredZ_Z. We can solve
these separately, plusredZ_Z is the simplest so we will do that first.

The :elab plusredZ_Z command enters interactive elaboration mode, which can be used to
complete the missing definition for plusredZ_Z.

*plusReducesZ> :elab plusredZ_Z

----------                 Goal:                  ----------
{hole_0} : 0 = 0





This has been normalised to 0 = 0 so now we have to prove that 0 equals 0, which
is easy to prove by reflexivity from the pruviloj library:

-Main.plusredZ_Z> reflexivity
plusredZ_Z: No more goals.





This tells us that the proof is complete. We can now leave the interactive mode which
we entered with the :elab command. We do this with the :qed command:

-Main.plusredZ_Z> :qed
Proof completed!
Main.plusredZ_Z = %runElab (do reflexivity)
Holes: Main.plusredZ_S





This gives us a trace of the proof which is plusredZ_Z = %runElab (do reflexivity). We
can cut & paste this into the hole in the original file. This also tells us that we
have another hole Main.plusredZ_S remaining.

This remaining proof is bit more complicated, the following diagram gives an overview:

[image: image]

We approach this remaining proof in the same way by using the :elab command:

*plusReducesZ> :elab plusredZ_S


----------                 Goal:                  ----------
{hole_0} : (k : Nat) -> (k = plus k 0) -> S k = S (plus k 0)





In this case, the goal is a function type, using k (the argument
accessible by pattern matching) and ih — the local variable
containing the result of the recursive call. We can introduce these as
assumptions using the intro tactic twice. The parameter is entered as
a constant of type TTName which is entered as a backtick with double
braces `{{ih}}. This gives:

-Main.plusredZ_S> intro `{{k}}

----------              Assumptions:              ----------
 k : Nat
----------                 Goal:                  ----------
{hole_0} : (k = plus k 0) -> S k = S (plus k 0)
-Main.plusredZ_S> intro `{{ih}}

----------              Assumptions:              ----------
 k : Nat
 ih : k = plus k 0
----------                 Goal:                  ----------
{hole_0} : S k = S (plus k 0)





We know, from the type of ih, that k = plus k 0, so we would
like to use this knowledge to replace plus k 0 in the goal with
k. We can achieve this with the rewriteWith tactic:

-Main.plusredZ_S> rewriteWith (Var `{{ih}})

----------              Assumptions:              ----------
 k : Nat
 ih : k = plus k 0
----------                 Goal:                  ----------
{hole_0} : S k = S k





The rewriteWith tactic takes an equality proof as an argument, and tries
to rewrite the goal using that proof. The ih value is entered as a constant
of type TTName which is entered as a backtick with double braces `{{ih}} but
rewriteWith requires an expression of type Raw, rather than just a name,
so the Var constructor is used to make a variable. Here, it results in an equality
which is trivially provable using reflexivity:

-Main.plusredZ_S> reflexivity
plusredZ_S: No more goals.
-Main.plusredZ_S> :qed
Proof completed!
Main.plusredZ_S = %runElab (do intro `{{k}}
                               intro `{{ih}}
                               rewriteWith (Var `{{ih}})
                               reflexivity)





We can’t just cut & paste this into the hole in the original file like this:

import Pruviloj
import Pruviloj.Induction

%language ElabReflection

plusReducesZ' : (n:Nat) -> n = plus n Z
plusReducesZ' Z     = %runElab (do reflexivity)
plusReducesZ' (S k) = let ih = plusReducesZ' k in
                    (%runElab (do intro `{{k}}
                             intro `{{ih}}
                             rewriteWith (Var `{{ih}})
                             reflexivity)
                    )





because this gives the following error:

Idris> :load elabInteractiveEx2.idr
elabInteractiveEx2.idr:10:32:
   |
10 |                                intro `{{ih}}
   |                                ^
unexpected "in"
expecting dependent type signature





However if we put the proof into a separate function like this:

import Pruviloj
import Pruviloj.Induction

%language ElabReflection

plusredZ_S : (k : Nat) -> (ih:(k = plus k Z)) -> (S k = S (plus k Z))
plusredZ_S = %runElab (do intro `{{k}}
                          intro `{{ih}}
                          rewriteWith (Var `{{ih}})
                          reflexivity)

plusReducesZ' : (n:Nat) -> n = plus n Z
plusReducesZ' Z     = %runElab (do reflexivity)
plusReducesZ' (S k) = let ih = plusReducesZ' k in plusredZ_S k ih





This then loads [1] .


[1]
https://github.com/idris-lang/Idris-dev/issues/4556
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DEPRECATED: Interactive Theorem Proving Using Old Tactics Code


Warning

The interactive theorem-proving interface documented here has been
deprecated in favor of Elaborator Reflection Introduction.
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Elaborator Reflection

A tutorial on theorem proving in Idris.


Note

The documentation for Idris has been published under the Creative
Commons CC0 License. As such to the extent possible under law, The
Idris Community has waived all copyright and related or neighboring
rights to Documentation for Idris.

More information concerning the CC0 can be found online at: http://creativecommons.org/publicdomain/zero/1.0/
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Elaborator Reflection Introduction

The Idris elaborator is responsible for converting high-level Idris code into the core language.
It is implemented as a kind of embedded tactic language in Haskell, where tactic scripts are written in an elaboration monad that provides error handling and a proof state.
For details, see Edwin Brady’s 2013 paper in the Journal of Functional
Programming [https://eb.host.cs.st-andrews.ac.uk/drafts/impldtp.pdf].

Elaborator reflection makes the elaboration type as well as a selection of its tactics available to Idris code.
This means that metaprograms written in Idris can have complete control over the elaboration process, generating arbitrary code, and they have access to all of the facilities available in the elaborator, such as higher-order unification, type checking, and emitting auxiliary definitions.


The Elaborator State

The elaborator state contains information about the ongoing elaboration process.
In particular, it contains a goal type, which is to be filled by an under-construction proof term.
The proof term can contain holes, each of which has a scope in which it is valid and a type.
Some holes may additionally contain guesses, which can be substituted in the scope of the hole.
The holes are tracked in a hole queue, and one of them is focused.
In addition to the goal type, proof term, and holes, the elaborator state contains a collection of unsolved unification problems that can affect elaboration.

The elaborator state is not directly available to Idris programs.
Instead, it is modified through the use of tactics, which are operations that affect the elaborator state.
A tacti