Space Aliens - CircuitPython Game

Mr. Coxall

Jan 16, 2020

Contents

Install CircuitPython S
Your IDE 7
2.1 Hello, World! o e e 8
Image Banks 11
Game 13
4.1 Background. e e e e e 24
4.2 JungleJoe e e 25
Menu System 27
5.1 StartScene e e e e e e e 27
5.2 SplashScene e e e e 33
5.3 Game OVer SCeNe v v i e e e e e e e e e e e e e e e e e e e 34

Space Aliens - CircuitPython Game

In this project we will be making an old school style video game for the Adafruit PyBadge. We will be using Circuit-
Python and the stage library to create a Guitar Hero like game. The stage library makes it easy to make classic video
games, with helper libraries for sound, sprites and collision detection. The game will also work on other variants of
PyBadge hardware, like the PyGamer and the EdgeBadge. The full completed game code with all the assets can be
found here.

The full game can be found at this GitHub link. You can download the repository and just copy the code over to your
PyBadge. Please remember NOT to copy over the docs folder!

The guide assumes that you have prior coding experience, hopefully in Python. It is designed to use just introductory
concepts. No Object Oriented Programming (OOP) are used so that students in particular that have completed their
first course in coding and know just variables, if statements, loops and functions will be able to follow along.

Parts

You will need the following items:

Adafruit PyBadge for MakeCode Arcade, CircuitPython or Arduino
PRODUCT ID: 4200

Contents 1

https://www.adafruit.com/product/4200
https://circuitpython.org
https://circuitpython.org
https://learn.adafruit.com/circuitpython-stage-game-library
https://en.wikipedia.org/wiki/Guitar_Hero
https://www.adafruit.com/product/4242
https://www.adafruit.com/product/4400
https://github.com/MotherTeresaHS/ICS3U-2019-Group0
https://github.com/MotherTeresaHS/ICS3U-2019-Group7
https://www.adafruit.com/product/4200

Space Aliens - CircuitPython Game

Pink and Purple Braided USB A to Micro B Cable - 2 meter long
PRODUCT ID: 4148

So you can move your CircuitPython code onto the PyBadge.

You might also want:

Lithium Ion Polymer Battery Ideal For Feathers - 3.7V 400mAh
PRODUCT ID: 3898

So that you can play the game without having it attached to a computer with a USB cable.

2 Contents

https://www.adafruit.com/product/4148
https://www.adafruit.com/product/3898

Space Aliens - CircuitPython Game

Mini Oval Speaker - 8 Ohm 1 Watt
PRODUCT ID: 3923

If you want lots of sound. Be warned, the built in speaker is actually pretty loud.

3D Printed Case

I did not create this case. I altered Adafruit’s design. One of the screw posts was hitting the built in speaker and the

Contents 3

https://www.adafruit.com/product/4148
https://www.tinkercad.com/things/fHOWOY88j9A?utm_source=externalsite&utm_medium=embedver1&utm_campaign=embed
https://learn.adafruit.com/pybadge-case/

Space Aliens - CircuitPython Game

case was not closing properly. I also added a piece of plastic over the display ribbon cable, to keep it better protected.
You will need 4 x 3M screws to hold the case together.

4 Contents

CHAPTER 1

Install CircuitPython

Fig. 1: Clearing the PyBadge and loading the CircuitPython UF2 file

Before doing anything else, you should delete everything already on your PyBadge and install the latest version of
CircuitPython onto it. This ensures you have a clean build with all the latest updates and no leftover files floating
around. Adafruit has an excellent quick start guide here to step you through the process of getting the latest build
of CircuitPython onto your PyBadge. Adafruit also has a more detailed comprehensive version of all the steps with
complete explanations here you can use, if this is your first time loading CircuitPython onto your PyBadge.

Just a reminder, if you are having any problems loading CircuitPython onto your PyBadge, ensure that you are using
a USB cable that not only provides power, but also provides a data link. Many USB cables you buy are only for
charging, not transfering data as well. Once the CircuitPython is all loaded, come on back to continue the tutorial.

https://learn.adafruit.com/adafruit-pybadge/installing-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Space Aliens - CircuitPython Game

6 Chapter 1. Install CircuitPython

CHAPTER 2

Your IDE

One of the great things about CircuitPython hardware is that it just automatically shows up as a USB drive when you
attach it to your computer. This means that you can access and save your code using any text editor. This is particularly
helpful in schools, where computers are likely to be locked down so students can not load anything. Also students
might be using Chromebooks, where only “authorized” Chrome extensions can be loaded.

If you are working on a Chromebook, the easiest way to start coding is to just use the built in Text app. As soon as you
open or save a file with a . py extension, it will know it is Python code and automatically start syntax highlighting.

Fig. 1: Chromebook Text app

If you are using a non-Chromebook computer, your best beat for an IDE is Mu. You can get it for Windows, Mac,
Raspberry Pi and Linux. It works seamlessly with CircuitPython and the serial console will give you much needed
debugging information. You can download Mu here.

https://chrome.google.com/webstore/detail/text/mmfbcljfglbokpmkimbfghdkjmjhdgbg?hl=en
https://codewith.mu
https://codewith.mu/en/download

1

R N v

Space Aliens - CircuitPython Game

©

Code with Mu: a simple Python editor for beginner programmers.

Comre [

I +) LE) x i @M Q Q)G (B2

Mode Merw Load Save an‘ Debug REPL Plokter Ioom-in Tocmrout Theme heck Help Gt
hellopy 3
1 print{"Hello from Mul")
2
Runnireg: Fello. py
Hello from Mu!
33>
Saved file: Mome/ntollimu. codeelio.py Python 0}
[T
Fig. 2: Mu IDE

Since with CircuitPython devices you are just writing Python files to a USB drive, you are more than welcome to use
any IDE that you are familiar using.

2.1 Hello, World!

Yes, you know that first program you should always run when starting a new coding adventure, just to ensure everything
is running correctly! Once you have access to your IDE and you have CircuitPython loaded, you should make sure
everything is working before you move on. To do this we will do the traditional “Hello, World!” program. By default
CircuitPython looks for a file called code . py in the root directory of the PyBadge to start up. You will place the
following code in the code . py file:

print ("Hello, World!™")

As soon as you save the file onto the PyBadge, the screen should flash and you should see something like:

Although this code does work just as is, it is always nice to ensure we are following proper coding conventions,
including style and comments. Here is a better version of Hello, World! You will notice that have a calltoamain ()
function. This is common in Python code but not normally seen in CircuitPython. I am including it because by
breaking the code into different functions to match different scenes, eventually will be really helpful.

#!/usr/bin/env python3

Created by : Mr. Coxall
Created on : January 2020
This program prints out Hello, World! onto the PyBadge

(continues on next page)

8 Chapter 2. Your IDE

Space Aliens - CircuitPython Game

| =iCode done running. Waiti
ng for reload.
soft reboot
code.py output:
Hello, World!

Code done running.
ng for reload.

Fig. 3: Hello, World! program on PyBadge

(continued from previous page)

def main () :
this function prints out Hello, World! onto the PyBadge
print ("Hello, World!™")

if name == "_ _main_ ":
main ()

Congratulations, we are ready to start.

2.1. Hello, World! 9

Space Aliens - CircuitPython Game

10 Chapter 2. Your IDE

CHAPTER 3

Image Banks

Before we can start coding a video game, we need to have the artwork and other assets. The stage library from
CircuitPython we will be using is designed to import an “image bank”. These image banks are 16 sprites staked on top
of each other, each with a resolution of 16x16 pixels. This means the resulting image bank is 16x256 pixels in size.
Also the image bank must be saved as a 16-color BMP file, with a pallet of 16 colors. To get a sprite image to show
up on the screen, we will load an image bank into memory, select the image from the bank we want to use and then
tell CircuitPython where we would like it placed on the screen.

For sound, the stage library can play back . wav files in PCM 16-bit Mono Wave files at 22KHz sample rate. Adafruit
has a great learning guide on how to save your sound files to the correct format here.

If you do not want to get into creating your own assets, other people have already made assets available to use. All the
assets for this guide can be found in the GitHub repo here:

* jungle joe image bank

* backgrounds image bank

¢ elemental studios image bank
* coin sound

* boom sound

Please download the assets and place them on the PyBadge, in the root directory. Your previoud “Hello, World!”
program should restart and run again each time you load a new file onto the PyBadge, hopefully with no errors once
more.

Assets from other people can be found here.

11

https://learn.adafruit.com/adafruit-wave-shield-audio-shield-for-arduino/convert-files
https://github.com/ben-whitten/ICS3U-2019-Group7/blob/master/jungle_joe.bmp
https://github.com/ben-whitten/ICS3U-2019-Group7/blob/master/Backgrounds.bmp
https://github.com/ben-whitten/ICS3U-2019-Group7/blob/master/elemental_studios.bmp
https://github.com/MotherTeresaHS/ICS3U-2019-Group0/blob/master/coin.wav
https://github.com/MotherTeresaHS/ICS3U-2019-Group0/blob/master/boom.wav
https://github.com/MotherTeresaHS/ICS3U-2019-Group0/tree/master/docs/image_bank

Space Aliens - CircuitPython Game

12 Chapter 3. Image Banks

CHAPTER 4

Game

The game scene is where you will build this game, there are many parts you must include but the most important will
be the collison between the buttons coming from the top of the screen and the buttons which indicate when to press
the designated button. The animation on the left of the screen will not be shown how to create here but in the jungle
joe animation section. After setting the background you must first we must make the button locations on the screen
show up to know when to press the designated button which is just putting a sprite at a specific location and is shown
in the code below. After the sprites are in place and your backgroud is set now we will get sprites to come from top
of screen. Since there are six unique sprites and they need to have the same X location as there stationary counterparts
that are on screen.

The most important part of this game is its collision, as any game of this genre has this as there main attraction. The
collision is like any other when the two sprites are touching and the designated button is pressed, the moving sprite
should be moved to the off screen location. The best part about this game is that there will never be two of the same
games as there is a random factor which determines how many more sprites come down and which sprites come down.
The code for the collision detection is apart of the game code which will be shown below:

Next we must make the lives and score system, In this game the user has 5 lives (unless playing on endless mode) and
the score they can reach is unlimited. Every time the user presses the designated button at the correct time, the user
will recieve a point. The code for this is your standard text code that is shown apart of the code below and the score
palette is a palette you can use. The lives system is very simple, if a moving sprite reaches the max Y screen size +
its sprite size the user will lose a life. The lives will be shown through the neopixels. Instead of putting lives on the
screen and making the screen feel cramped, we will be moving the lives count to the neopixals that are at the bottom
of the pybadge. The lights on the pybadge will be set to gren at the start of the game and when the user loses a life,
one of the lights will turn to red until all are red and user loses the game. The code for the lives system is also shown
in the finshed code for the game scene which is below.

Now we will be adding the finshing touches to the game scene, to get everything to load we must render all the sprites,
and call the opther functions while taking the final hieght, which is shown in the jungle joe animation section, and the
users final score. This is shown in the final code below.

After you have finished with the game scene you may add sounds if you desire, the sounds will mostly relate to jungle
joe animation and when you lose the game. .. toctree:

def game_scene (game_mode) :
this function is the game scene

(continues on next page)

13

Space Aliens - CircuitPython Game

(continued from previous page)

sprites = []

number_of_lives = 5

score = 0

button_speed = 1

height = 0

image_bank_5 stage.Bank.from_bmplé6 ("backgrounds.bmp")
image_bank_3 = stage.Bank.from bmpl6 (" jungle_ Jjoe.bmp")

a_button = constants.button_state["button_up"]
b_button = constants.button_state["button_up"]
up_button = constants.button_state["button_up"]
down_button = constants.button_state["button_up"]
left_button = constants.button_state["button_up"]
right_button = constants.button_state["button up"]

background = stage.Grid (image_lbank_5, constants.SCREEN_GRID_X, constants.SCREEN_GRID_
<Y)
for x_location in range (constants.SCREEN_GRID_2_X):
for y_location in range (constants.SCREEN_GRID_Y) :
tile_picked = random.randint (2, 3)
background.tile(x_location, y_location, tile_picked)
for x_location in range (constants.SCREEN_GRID_2_X, constants.SCREEN_GRID_X) :
for y_location in range (constants.SCREEN_GRID_Y) :
background.tile(x_location, y_location, 5)

Displays key sprites.

a_button_sprite = stage.Sprite(image_bank_3, 12, constants.A_BUTTON, constants.

< ,BUTTON_HEIGHT)

sprites.append(a_button_sprite)

b_button_sprite = stage.Sprite(image_bank_ 3, 11, constants.B_BUTTON, constants.

< ,BUTTON_HEIGHT)

sprites.append(b_button_sprite)

left_arrow = stage.Sprite(image_bank_3, 8, constants.LEFT_BUTTON, constants.BUTTON_
< HEIGHT)

sprites.append(left_arrow)

right_arrow = stage.Sprite(image_bank_3, 7, constants.RIGHT_BUTTON, constants.BUTTON_
 HEIGHT)

sprites.append (right_arrow)

up_arrow = stage.Sprite(image_bank_3, 10, constants.UP_BUTTON, constants.BUTTON_

_ HEIGHT)

sprites.append (up_arrow)

down_arrow = stage.Sprite (image_bank_3, 9, constants.DOWN_BUTTON, constants.BUTTON_
< HEIGHT)

sprites.append (down_arrow)

text = []

score_text = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_
—PALETTE, buffer=None)

score_text.clear ()

score_text.cursor (0, 0)

score_text.move (l, 1)

score_text.text ("Score: ".format (score))

text .append(score_text)

pixels = neopixel.NeoPixel (board.NEOPIXEL, 5, auto_write=False)
for pixel_number in range (0, 5):
pixels[pixel_number] = (0, 10, 0)

(continues on next page)

14 Chapter 4. Game

Space Aliens - CircuitPython Game

(continued from previous page)

pixels.show ()

def score_update() :
I know this is a function that is using variables outside of itself!
BUT this code is going to be used in multiple places
update the score when you correctly hit a button or when you hit a milestone
score = score + 1
Refreshes score text
score_text.clear ()
score_text.cursor (0, 0)
score_text .move(l, 1)
score_text.text ("Score: {0}".format (score))
game.render_block ()

def show_abutton () :
I know this is a function that is using variables outside of itself!
BUT this code is going to be used in 2 places :)
make a button show up on screen in the x-axis
for a_button_number in range (len (abutton)) :
if abutton[a_button_number].x < 0: # meaning it is off the screen, so_
—available to move on the screen
abutton[a_button_number] .move (constants.A_BUTTON, random.
—randint (constants.OFF_SCREEN_Y, 0O - constants.SPRITE_SIZE))
break

create buttons
abutton = []
for a_button_number in range (constants.TOTAL_NUMBER_OF_A_BUTTON) :
a_single_abutton = stage.Sprite(image_bank_3, 6, constants.OFF_SCREEN_X,
—constants.OFF_SCREEN_Y)
abutton.append (a_single_abutton)

current number of buttons that should be moving down screen, start with just 1
abutton_count = 1
show_abutton ()

def show_bbutton () :
I know this is a function that is using variables outside of itself!
BUT this code is going to be used in 2 places :)
make an button show up on screen in the x-axis
for b_button_number in range (len (bbutton)) :
if bbutton[b_button_number].x < 0: # meaning it is off the screen, so_
—available to move on the screen
bbutton [b_button_number] .move (constants.B_BUTTON, random.
—randint (constants.OFF_SCREEN_Y, 0O - constants.SPRITE_SIZE))
break

create buttons
bbutton = []
for b_button_number in range (constants.TOTAL_NUMBER_OF_B_BUTTON) :
a_single_bbutton = stage.Sprite(image_bank_3, 5, constants.OFF_SCREEN_X,
—constants.OFF_SCREEN_Y)
bbutton.append(a_single_bbutton)

current number of buttons that should be moving down screen, start with just 1
bbutton_count = 0
show_bbutton ()

(continues on next page)

15

Space Aliens - CircuitPython Game

(continued from previous page)

def show_upbutton() :
I know this is a function that is using variables outside of itself!
BUT this code is going to be used in 2 places :)
make an button show up on screen in the x-axis
for up_button_number in range (len (upbutton)):
if upbutton[up_button_number].x < 0: # meaning it is off the screen, so
—available to move on the screen
upbutton [up_button_number] .move (constants.UP_BUTTON, random.
—randint (constants.OFF_SCREEN_Y, 0 - constants.SPRITE_SIZE))
break

create buttons
upbutton = []
for up_button_number in range (constants.TOTAL_NUMBER_OF_UP_BUTTON) :
a_single_upbutton = stage.Sprite (image_bank_3, 4, constants.OFF_SCREEN_X,
—constants.OFF_SCREEN_Y)
upbutton.append (a_single_upbutton)

current number of buttons that should be moving down screen, start with just 1
upbutton_count = 0
show_upbutton ()

def show_downbutton () :
I know this is a function that is using variables outside of itself!
BUT this code is going to be used in 2 places :)
make an button show up on screen in the x-axis
for down_button_number in range (len (downbutton)) :
if downbutton[down_button_number].x < 0: # meaning it is off the screen, so_
—available to move on the screen
downbutton[down_button_number] .move (constants.DOWN_BUTTON, random.
—randint (constants.OFF_SCREEN_Y, 0O - constants.SPRITE_SIZE))
break

create buttons
downbutton = []
for down_button_number in range (constants.TOTAL_NUMBER_OF_DOWN_BUTTON) :
a_single_downbutton = stage.Sprite (image_bank_ 3, 3, constants.OFF_SCREEN_X,
—constants.OFF_SCREEN_Y)
downbutton.append (a_single_downbutton)

current number of buttons that should be moving down screen, start with just 1
downbutton_count = 0
show_downbutton ()

def show_leftbutton () :
I know this is a function that is using variables outside of itself!
BUT this code is going to be used in 2 places :)
make an button show up on screen in the x—-axis
for left_button_number in range (len(leftbutton)):
if leftbutton[left_button_number].x < 0: # meaning it is off the screen, so
—available to move on the screen
leftbutton[left_button_number] .move (constants.LEFT_BUTTON, random.
—randint (constants.OFF_SCREEN_Y, 0 - constants.SPRITE_SIZE))
break

create buttons

(continues on next page)

16 Chapter 4. Game

Space Aliens - CircuitPython Game

(continued from previous page)

leftbutton = []
for left_button_number in range (constants.TOTAL_NUMBER_OF_LEFT_BUTTON) :
a_single_leftbutton = stage.Sprite (image_bank_3, 2, constants.OFF_SCREEN_X,
—constants.OFF_SCREEN_Y)
leftbutton.append(a_single_leftbutton)

current number of buttons that should be moving down screen, start with just 1
leftbutton_count = 0
show_leftbutton ()

def show_rightbutton() :
I know this is a function that is using variables outside of itself!
BUT this code is going to be used in 2 places :)
make an button show up on screen in the x-axis
for right_button_number in range (len(rightbutton)):
if rightbutton[right_button_number].x < 0: # meaning it is off the screen,
—so available to move on the screen
rightbutton[right_button_number] .move (constants.RIGHT_BUTTON, random.
—randint (constants.OFF_SCREEN_Y, 0O - constants.SPRITE_SIZE))
break

create buttons
rightbutton = []
for right_button_number in range (constants.TOTAL_NUMBER_OF_RIGHT_BUTTON) :
a_single_rightbutton = stage.Sprite(image_bank_3, 1, constants.OFF_SCREEN_X,
—constants.OFF_SCREEN_Y)
rightbutton.append(a_single_rightbutton)

current number of button that should be moving down screen, start with just 1
rightbutton_count = 0
show_rightbutton ()

game = stage.Stage (ugame.display, constants.FPS)
game.layers = text + jungle_joe + logs + border + abutton + bbutton + upbutton +_
—downbutton + leftbutton + rightbutton + sprites + [background]

game.render_block ()
repeat forever, game loop

while True:
get user input

keys = ugame.buttons.get_pressed()
update game logic
if keys & ugame.K_X != O:
if a_button == constants.button_state["button_up"]:
a_button = constants.button_state["button_just_pressed"]
elif a_button == constants.button_state["button_ just_pressed"]:
a_button = constants.button_state["button_still pressed"]
else:
if a_button == constants.button_state["button_still pressed"]:
a_button = constants.button_state["button released"]
else:

a_button = constants.button_state["button_up"]

if keys & ugame.K_O != 0:
if b_button == constants.button_state["button_up"]:
b_button = constants.button_state["button_ just_pressed"]

(continues on next page)

17

Space Aliens - CircuitPython Game

(continued from previous page)

elif b_button == constants.button_state["button_just_pressed"]:
b_button = constants.button_state["button_still pressed"]
else:
if b_button == constants.button_state["button_still_ pressed"]:
b_button = constants.button_state["button_released"]
else:
b_button = constants.button_state["button_up"]
if keys & ugame.K _UP != 0:
if up_button == constants.button_state["button_up"]:
up_button = constants.button_state["button_just_pressed"]
elif up_button == constants.button_state["button_just_pressed"]:
up_button = constants.button_state["button_ still pressed"]
else:
if up_button == constants.button_state["button_still pressed"]:
up_button = constants.button_state["button_released"]
else:
up_button = constants.button_state["button_up"]
if keys & ugame.K_DOWN != O:
if down_button == constants.button_state["button_up"]:
down_button = constants.button_state["button_just_pressed"]
elif down_button == constants.button_state["button_just_pressed"]:
down_button = constants.button_state["button still pressed"]
else:
if down_button == constants.button_state["button_still pressed"]:
down_button = constants.button_state["button_released"]
else:
down_button = constants.button_state["button_up"]
if keys & ugame.K_LEFT != 0:
if left_button == constants.button_state["button_up"]:
left_button = constants.button_state["button_ Jjust_pressed"]
elif left_button == constants.button_state["button_just_pressed"]:
left_button = constants.button_state["button_still_pressed"]
else:
if left_button == constants.button_state["button_still pressed"]:
left_button = constants.button_state["button_ released"]
else:
left_button = constants.button_state["button_up"]
if keys & ugame.K_RIGHT != 0:
if right_button == constants.button_state["button_up"]:
right_button = constants.button_state["button_ just_pressed"]
elif right_button == constants.button_state["button_ Jjust_pressed"]:
right_button = constants.button_state["button_still_pressed"]
else:
if right_button == constants.button_state["button_ still pressed"]:
right_button = constants.button_state["button_released"]
else:

right_button = constants.button_state["button_ up"]

for a_button_number in range (len (abutton)):
if abutton_count > 0:
if abutton[a_button_number].x > 0: # meaning it is on the screen
abutton[a_button_number] .move (abutton[a_button_number] .x, abutton[a_
—button_number].y + button_speed)

(continues on next page)

18 Chapter 4. Game

Space Aliens - CircuitPython Game

(continued from previous page)

if abutton[a_button_number].y > constants.SCREEN_Y:
abutton[a_button_number] .move (constants.OFF_SCREEN_X, constants.
<>OFF_SCREEN_Y)

show_abutton () # make it randomly show up at top again
if game_mode == 0:
number_of_lives = number_of_lives - 1

for b_button_number in range (len (bbutton)) :
if bbutton_count > 0:
if bbutton[b_button_number].x > 0: # meaning it is on the screen

bbutton[b_button_number] .move (bbutton[b_button_number].x, bbutton[b_
—button_number].y + button_speed)

if bbutton[b_button_number].y > constants.SCREEN_Y:

bbutton[b_button_number] .move (constants.OFF_SCREEN_X, constants.

—OFF_SCREEN_Y)

show_bbutton () # make it randomly show up at top again
if game_mode == 0:
number_of_lives = number_of_ lives - 1

for up_button_number in range (len (upbutton)) :
if upbutton_count > 0:
if upbutton[up_button_number].x > 0: # meaning it is on the screen

upbutton [up_button_number] .move (upbutton [up_button_number].x,
—upbutton[up_button_number].y + button_speed)

if upbutton[up_button_number].y > constants.SCREEN_Y:

upbutton [up_button_number] .move (constants.OFF_SCREEN_X,

—sconstants.OFF_SCREEN_Y)

show_upbutton () # make it randomly show up at top again
if game_mode == 0:
number_of lives = number_of lives - 1

for down_button_number in range (len (downbutton)) :
if downbutton_count > 0O:
if downbutton[down_button_number].x > 0: # meaning it is on the screen

downbutton [down_button_number] .move (downbutton [down_button_number] .x,
— downbutton[down_button_number].y + button_speed)

if downbutton[down_button_number].y > constants.SCREEN_Y:

downbutton [down_button_number] .move (constants.OFF_SCREEN_X,

—constants.OFF_SCREEN_Y)

show_downbutton () # make it randomly show up at top again
if game_mode == 0:
number_of_ lives = number_of lives - 1

for left_button_number in range (len(leftbutton)):
if leftbutton_count > 0:
if leftbutton[left_button_number].x > 0: # meaning it is on the screen
leftbutton[left_button_number] .move (leftbutton[left_button_number].x,
— leftbutton[left_button_number].y + button_speed)
if leftbutton[left_button_number].y > constants.SCREEN_Y:
leftbutton[left_button_number] .move (constants.OFF_SCREEN_X,
—constants.OFF_SCREEN_Y)
show_leftbutton () # make it randomly show up at top again
if game_mode == 0:
number_of_lives = number_of lives - 1

for right_button_number in range (len(rightbutton)):
if rightbutton_count > O:

(continues on next page)

19

Space Aliens - CircuitPython Game

(continued from previous page)

if rightbutton[right_button_number].x > 0: # meaning it is on the screen
rightbutton[right_button_number] .move (rightbutton[right_button_
—number] .x, rightbutton[right_button_number].y + button_speed)
if rightbutton[right_button_number].y > constants.SCREEN_Y:
rightbutton[right_button_number] .move (constants.OFF_SCREEN_X,
—constants.OFF_SCREEN_Y)
show_rightbutton () # make it randomly show up at top again
if game_mode == 0:
number_of_lives = number_of_ lives - 1

for a_button_number in range (len (abutton)):
if abutton[a_button_number].x > 0 and a_button == constants.button_state]
—"button_Jjust_pressed"]:
if stage.collide (abutton[a_button_number].x, abutton[a_button_number].y,
abutton[a_button_number] .x, abutton[a_button_
—number].y + 7,
a_button_sprite.x, a_button_sprite.y,
a_button_sprite.x, a_button_sprite.y + 7):
when you press designated button when it is on top of sprite
abutton[a_button_number] .move (constants.OFF_SCREEN_X, constants.OFF_

—.SCREEN_Y)
score_update ()
abutton_count = 0
rand_amount_number = random.randint (1, 2)
for loop_counter in range (rand_amount_number) :
random_selection = random.randint (1, 6)
if random_selection == 1:
abutton_count = 1
loop_counter = loop_counter + 1

elif random_selection ==
bbutton_count = 1
loop_counter = loop_counter + 1
elif random_selection ==
upbutton_count = 1
loop_counter = loop_counter + 1
elif random_selection ==
downbutton_count = 1
loop_counter = loop_counter + 1
elif random_selection ==
leftbutton_count = 1
loop_counter = loop_counter + 1
elif random_selection == 6:
rightbutton_count = 1
loop_counter = loop_counter + 1
show_abutton ()

for b_button_number in range (len (bbutton)):
if bbutton[b_button_number].x > 0 and b_button == constants.button_state]
—"button_Jjust_pressed"]:
if stage.collide (bbutton[b_button_number].x, bbutton[b_button_number].y,
bbutton[b_button_number] .x, bbutton[b_button_
—number] .y + 7,
b_button_sprite.x, b_button_sprite.y,
b_button_sprite.x, b_button_sprite.y + 7):
when you press designated button when it is on top of sprite
bbutton [b_button_number] .move (constants.OFF_SCREEN_X, constants.OFF_
—SCREEN_Y)

(continues on next page)

20 Chapter 4. Game

Space Aliens - CircuitPython Game

(continued from previous page)

score_update ()

bbutton_count = 0
rand_amount_number = random.randint (1,
for loop_counter in range (rand_amount_number) :

2)

random_selection = random.randint (1, 6)
if random_selection == 1:

abutton_count = 1

loop_counter = loop_counter 1

elif random_selection ==
bbutton_count = 1

loop_counter = loop_counter 1
elif random_selection == 3:
upbutton_count = 1
loop_counter = loop_counter 1
elif random_selection == 4:
downbutton_count = 1
loop_counter = loop_counter 1
elif random_selection == 5:
leftbutton_count = 1
loop_counter = loop_counter 1
elif random_selection == 6:
rightbutton_count = 1
loop_counter = loop_counter 1
show_bbutton ()
for up_button_number in range (len (upbutton)) :
if upbutton[up_button_number].x > 0 and up_button == constants.button_state|

—"button_Jjust_pressed"]:
if stage.collide (upbutton[up_button_number] .x, upbutton[up_button_

—number] .y,

—number].y + 7,

< OFF_SCREEN_Y)

upbutton [up_button_number] .x, upbutton[up_button_

up_arrow.x, up_arrow.y,

up_arrow.x, up_arrow.y + 7):
when you press designated button when it is on top of sprite

score_update ()

upbutton_count = 0
rand_amount_number = random.randint (1,
for loop_counter in range (rand_amount_number) :

upbutton[up_button_number] .move (constants.OFF_SCREEN_X, constants.

2)

random_selection = random.randint (1, 6)
if random_selection == 1:
abutton_count = 1
loop_counter = loop_counter 1
elif random_selection ==
bbutton_count = 1
loop_counter = loop_counter 1
elif random_selection == 3:
upbutton_count = 1
loop_counter = loop_counter 1
elif random_selection == 4:
downbutton_count = 1
loop_counter = loop_counter 1
elif random_selection == 5:
leftbutton_count = 1
loop_counter = loop_counter 1

(continues on next page)

21

Space Aliens - CircuitPython Game

(continued from previous page)

elif random_selection == 6:
rightbutton_count = 1
loop_counter = loop_counter + 1

show_upbutton ()

for down_button_number in range (len (downbutton)) :
if downbutton[down_button_number].x > 0 and down_button == constants.button_
—state["button_just_pressed"]:
if stage.collide (downbutton[down_button_number].x, downbutton[down_
—button_number] .y,
downbutton [down_button_number] .x, downbutton[down_
—button_number].y + 7,
down_arrow.x, down_arrow.y,
down_arrow.x, down_arrow.y + 7):
when you press designated button when it is on top of sprite
downbutton[down_button_number] .move (constants.OFF_SCREEN_X,
—constants.OFF_SCREEN_Y)
score_update ()

downbutton_count = 0
rand_amount_number = random.randint (1, 2)
for loop_counter in range (rand_amount_number) :
random_selection = random.randint (1, 6)
if random_selection == 1:
abutton_count = 1
loop_counter = loop_counter + 1

elif random_selection ==
bbutton_count = 1

loop_counter = loop_counter + 1
elif random_selection == 3:
upbutton_count = 1
loop_counter = loop_counter + 1
elif random_selection == 4:
downbutton_count = 1
loop_counter = loop_counter + 1
elif random_selection == 5:
leftbutton_count = 1
loop_counter = loop_counter + 1
elif random_selection == 6:
rightbutton_count = 1
loop_counter = loop_counter + 1

show_downbutton ()

for left_button_number in range (len(leftbutton)):
if leftbutton[left_button_number].x > 0 and left_button == constants.button_
—state["button_just_pressed"]:
if stage.collide(leftbutton[left_button_number].x, leftbutton[left_
—button_number] .y,
leftbutton[left_button_number] .x, leftbutton[left_
—button_number].y + 7,
left_arrow.x, left_arrow.y,
left_arrow.x, left_arrow.y + 7):
when you press designated button when it is on top of sprite
leftbutton[left_button_number] .move (constants.OFF_SCREEN_X,
—constants.OFF_SCREEN_Y)
score_update ()
leftbutton_count = 0
rand_amount_number = random.randint (1, 2)

(continues on next page)

22 Chapter 4. Game

Space Aliens - CircuitPython Game

(continued from previous page)

for loop_counter in range (rand_amount_number) :

random_selection = random.randint (1, 6)
if random_selection == 1:

abutton_count = 1

loop_counter = loop_counter + 1

elif random_selection ==
bbutton_count = 1

loop_counter = loop_counter + 1
elif random_selection == 3:
upbutton_count = 1
loop_counter = loop_counter + 1
elif random_selection == 4:
downbutton_count = 1
loop_counter = loop_counter + 1
elif random_selection == 5:
leftbutton_count = 1
loop_counter = loop_counter + 1
elif random_selection == 6:
rightbutton_count = 1
loop_counter = loop_counter + 1

show_leftbutton ()

for right_button_number in range (len(rightbutton)) :
if rightbutton[right_button_number].x > 0 and right_button == constants.
—button_state["button_Jjust_pressed"]:
if stage.collide (rightbutton[right_button_number].x, rightbutton[right_
—button_number] .y,
rightbutton[right_button_number].x, rightbutton[right_
—button_number].y + 7,
right_arrow.x, right_arrow.y,
right_arrow.x, right_arrow.y + 7):
when you press designated button when it is on top of sprite
rightbutton[right_button_number] .move (constants.OFF_SCREEN_X, |
—constants.OFF_SCREEN_Y)
score_update ()
rightbutton_count = 0
rand_amount_number = random.randint (1, 2)
for loop_counter in range (rand_amount_number) :
random_selection = random.randint (1, 6)
if random_selection == 1:
abutton_count = 1
loop_counter = loop_counter + 1
elif random_selection ==
bbutton_count = 1

loop_counter = loop_counter + 1
elif random_selection ==
upbutton_count = 1
loop_counter = loop_counter + 1
elif random_selection == 4:
downbutton_count = 1
loop_counter = loop_counter + 1
elif random_selection == 5:
leftbutton_count = 1
loop_counter = loop_counter + 1
elif random_selection == 6:
rightbutton_count = 1
loop_counter = loop_counter + 1

(continues on next page)

23

Space Aliens - CircuitPython Game

(continued from previous page)

show_rightbutton ()

if number_of_lives == 5:
for pixel_number in range (0, 5):
pixels[pixel_number] = (0, 10, 0)

pixels.show ()
if number_ of_lives ==
for pixel_number in range(1l):
pixels[pixel_number] = (25, 0, 0)
pixels.show ()
if number_of_ lives ==
for pixel_number in range(2):
pixels[pixel_number] = (25, 0, 0)
pixels.show ()
if number_of_lives ==
for pixel_number in range (3):
pixels[pixel_number] = (25, 0, 0)
pixels.show ()
if number_ of_lives ==
for pixel_number in range (4):
pixels[pixel_number] = (25, 0, 0)
pixels.show ()
if number_of_lives ==
for pixel_number in range(5):
pixels[pixel_number] = (25, 0, 0)
pixels.show ()
game_over_scene (score, height)

redraw sprite 1list

game.render_sprites(logs + sprites + jungle_joe + abutton + bbutton + upbutton +
—downbutton + leftbutton + rightbutton)

game.tick () # wait until refresh rate finishes

4.1 Background

The game scene’s background is split up into two different portions. These being the jungle side, which takes up
roughly 2/5ths of the screen, and the game portion, which takes up roughlt 3/5ths of the screen. To do this, your going
to need to paint the first 2/5ths of the screen (x grid = 0-4) with the tree sprite (sprites 2 and 3 of backgrounds) and the
other 3/5ths (5-10) with the grey background sprite (sprite 5 of backgrounds) using the code below. Finally, these last
steps are optional, but if you want you can randomize the tree sprites on the left hand of the screen using the lines of
the code below. Another thing you can do is generate a border between the two backgrounds. You can make this by
using the border sprite (sprite 6 of backgrounds) and the code below. .. toctree:

code.py:
image_bank_5 = stage.Bank.from_bmpl6 ("backgrounds.bmp")

background = stage.Grid(image_bank_5, constants.SCREEN_GRID_X, constants.SCREEN_GRID_
:_)Y)
for x_location in range (constants.SCREEN_GRID_2_X):
for y_location in range (constants.SCREEN_GRID_Y) :
tile_picked = random.randint (2, 3)
background.tile (x_location, y_location, tile_picked)
for x_location in range (constants.SCREEN_GRID_2_X, constants.SCREEN_GRID_X) :
for y_location in range (constants.SCREEN_GRID_Y) :

(continues on next page)

24 Chapter 4. Game

Space Aliens - CircuitPython Game

(continued from previous page)

background.tile(x_location, y_location, 5)

Displays the border.

border_1 = stage.Sprite(image_bank_5, 6, constants.BORDER_LOCATION, O0)
border.append (border_1)

border_2 = stage.Sprite(image_bank_5, 6, constants.BORDER_LOCATION, 16)
border.append (border_2)

border_3 = stage.Sprite(image_bank_5, 6, constants.BORDER_LOCATION, 32)
border.append (border_3)

border_4 = stage.Sprite(image_bank_5, 6, constants.BORDER_LOCATION, 48)
border.append (border_4)

border_5 = stage.Sprite(image_bank_5, 6, constants.BORDER_LOCATION, 64)
border.append (border_5)

border_6 = stage.Sprite (image_bank_5, 6, constants.BORDER_LOCATION, 80)
border.append (border_6)

border_7 = stage.Sprite (image_bank_5, 6, constants.BORDER_LOCATION, 96)
border.append (border_7)

border_8 = stage.Sprite(image_bank_5, 6, constants.BORDER_LOCATION, 112)
border.append (border_8)

constants.py:
SCREEN_GRID_X = 16
SCREEN_GRID_Y = 8
SCREEN_GRID_2_X = 4

4.2 Jungle Joe

Jungle Joe is completely optional to the actual game, but he adds alot to it with his animations. To start, you need to
make two sprites using sprites 14 and 15 of the image bank, jungle_joe. To make his animations, you are going to
want to make a new function called score_update to save space and so you wont need to write the code six times. A
quick sumary of how the code works is that the game checks to see where jungle joe is, then moves him accordingly
so that he is above the next log up. Finally, it moves everything downwards and spawns a new log. .. toctree:

code.py:

Displays Jungle Joe and logs

jungle_joe_standing = stage.Sprite(image_bank_3, 15, constants.OFF_SCREEN_X,
—constants.OFF_SCREEN_Y)

jungle_joe.append(jungle_joe_standing)

jungle_joe_jumping = stage.Sprite (image_bank_3, 14, constants.JUNGLE_JOE_START_X,
—constants.OFF_TOP_SCREEN)

jungle_joe.append (jungle_joe_jumping)

logs = []
for log_number in range (constants.TOTAL_NUMBER_OF_A_LOGS) :
a_single_log = stage.Sprite(image_bank_3, 13, constants.OFF_SCREEN_X, constants.
—OFF_SCREEN_Y)
logs.append(a_single_log)

logs[0] .move (constants.LOG_1_START_X, constants.LOG_1_START_Y)
logs[1l] .move (constants.RIGHT_LOG, constants.LOG_2_START_Y)

def score_update():
I know this is a function that is using variables outside of itself!
BUT this code is going to be used in multiple places

(continues on next page)

4.2. Jungle Joe 25

Space Aliens - CircuitPython Game

(continued from previous page)

update the score when you correctly hit a button or when you hit a milestone
score = score + 1

Refreshes score text

score_text.clear ()

score_text.cursor (0, 0)

score_text.move (l, 1)

score_text.text ("Score: ".format (score))
game.render_block ()
if score % 10 == O0:

sound.play (coin_sound)
height height + 24
button_speed += constants.SPEED_INCREASE
jungle_joe[1] .move (jungle_joe[0] .x, Jjungle_joe[0].y)
jungle_joe[0] .move (constants.OFF_SCREEN_X, constants.OFF_SCREEN_Y)
while True:

if logs[0].y < 50:

if jungle_joe[l].x > logs[0].x:
jungle_joe[l] .move (jungle_joe[l].x - constants.JUNGLE_JOE_X_SPEED,

— Jjungle_joe[l].vy)
if jungle_joe[l]l.y > logs[0].y - constants.SPRITE_SIZE:
jungle_joe[l] .move (jungle_joe[l].x, jungle_joe[l].y - constants.
—~JUNGLE_JOE_Y_SPEED)
if jungle_joe[l].x == logs[0].x and jungle_joe[l].y == logs[0].y -
—constants.SPRITE_SIZE and jungle_joe[l].y < 50:
jungle_joe[0] .move (jungle_joe[1l].x, Jjungle_joel[l].y)
jungle_joe[l] .move (constants.OFF_SCREEN_X, constants.OFF_SCREEN_Y)
break

constants.py
JUNGLE_JOE_START_X = 0
JUNGLE_JOE_NORMAL_Y = 97
TOTAL_NUMBER_OF_A_LOGS = 2
SCROLL_SPEED = 4
LOG_1_START_X = 0
LOG_1_START_Y = 112
RIGHT_LOG = 40
LOG_2_START_Y = 48
INCOMING_LOG_HEIGHT = 0
LEFT_LOG = 0
JUNGLE_JOE_X_SPEED = 0.5
JUNGLE_JOE_Y_SPEED = 1
SCROLL_SPEED = 1
SPEED_INCREASE

0.5

26 Chapter 4. Game

CHAPTER B

Menu System

This section splits off into the trhee menu scenes in the game, click the links to go to each one.

5.1 Start Scene

[IMPORTANTT] Most of the menu scene here is COMPLETELY optional. You can easily make a good menu where
you press start to go to gaem scene. as such, I will not explain how I turned it into a menu that you would find in any
other modern game but I will give you a quick summary. Basically, this program only changes the text to give off the
appearance that the option is selected, while in actuality I just have the buttons change the option number (to change
the text/start game) and the game mode(to change game mode). Other than that, the rest is very simple. i simply
painted the top 6/8ths of the screen with blue, the bottom 2/8ths of the screen black and placed the tree top sprites just
over it. Also, I decided to spawn clouds by choosing a randon Y value to spawn at (off screen) and then having their x
value increase by 1 each time the game goes through the while true loop. Fianlly, I placed jungle joe and the sun just
like any other sprites and placed text on the screen where I wanted. I did all this using the code below. .. toctree:

code.py

this function is the main menu scene
text = []

sprites = []

sun = []

game_mode_text = []

game_mode = 0

option = 1

image_bank_5 = stage.Bank.from_bmpl6 ("Backgrounds.bmp")
image_bank_5 stage.Bank. from_bmpl6 ("backgrounds.bmp")
image_bank_3 stage.Bank.from bmpl6 (" jungle_joe.bmp")

sets the background to image 0 in the bank
background = stage.Grid(image_bank_5, constants.SCREEN_GRID_X, constants.SCREEN_GRID_
—Y)

(continues on next page)

27

Space Aliens - CircuitPython Game

(continued from previous page)

for x_location in range (constants.SCREEN_GRID_X) :
for y_location in range (constants.TREE_TOP_GRID_Y, constants.TREE_TOP_GRID_2_Y):
background.tile(x_location, y_location, 1)
for x_location in range (constants.SCREEN_GRID_X) :
for y_location in range (constants.BLACK_BACK_GRID_Y, constants.BLACK_BACK_GRID_2_
<—>Y)!
background.tile(x_location, y_location, 7)

coin_sound = open("coin.wav", 'rb'")
sound = ugame.audio

sound.stop ()

sound.mute (False)

text_1 = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_PALETTE,
—buffer=None)

text_1.move (40, 20)

text_1.text ("JUNGLE JOE")

text.append (text_1)

text_2 = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_PALETTE,
—buffer=None)

text_2.move (40, 30)

text_2.text ("& SNAKOB'S")

text.append (text_2)

text_3 = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_PALETTE,
—buffer=None)

text_3.move (25, 40)

text_3.text ("BONGO BANANZA!™)

text.append (text_3)

text_3 = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_PALETTE,
—buffer=None)

text_3.move (0, 0)

text_3.text ("Version: {0}".format (constants.VERSION_NUMBER))

text.append (text_3)

start_text = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_
—PALETTE, buffer=None)

start_text.clear ()

start_text.cursor (0, 0)

start_text.move (constants.START_X, constants.START_Y)

start_text.text (" START ")

text.append(start_text)

game_mode_text = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_
—PALETTE, buffer=None)

game_mode_text.clear ()

game_mode_text.cursor (0, 0)

game_mode_text .move (constants.GAME_MODE_1_X, constants.GAME_MODE_Y)
game_mode_text.text ("<< NORMAL MODE >>'")

text.append (game_mode_text)

a_button = constants.button_state["button_up"]
b_button = constants.button_state["button_up"]
up_button = constants.button_state["button_up"]
down_button = constants.button_state["button_up"]

(continues on next page)

28 Chapter 5. Menu System

Space Aliens - CircuitPython Game

(continued from previous page)

start_button = constants.button_state["button_up"]
select_button = constants.button_state["button_up"]

Displays the sun

sun_top_left = stage.Sprite(image_bank_5, 11, 128, 0)
sun.append (sun_top_left)

sun_top_right = stage.Sprite(image_bank_5, 10, 144, 0)
sun.append (sun_top_right)

sun_bottom_left = stage.Sprite (image_bank_5, 8, 128, 16)
sun.append (sun_bottom_left)

sun_bottom_right = stage.Sprite(image_bank_5, 9, 144, 16)
sun.append (sun_bottom_right)

Displays Jungle Joe

jungle_joe = stage.Sprite(image_bank_3, 15, 71, 66)
sprites.append (jungle_joe)

jungle_joe_Jjumping = stage.Sprite(image_bank_3, 14, constants.OFF_SCREEN_X, constants.
—,OFF_SCREEN_Y)

sprites.append (jungle_joe_jumping)

clouds = []
for cloud_number in range (constants.TOTAL_CLOUDS) :

a_single_cloud = stage.Sprite (image_bank_5, 4, constants.OFF_SCREEN_X, constants.
<+ OFF_SCREEN_Y)

clouds.append(a_single_cloud)

def Show_clouds():
for cloud_number in range(len(clouds)):
if clouds[cloud_number].y < 0:
clouds [cloud_number] .move (constants.OFF_LEFT_SCREEN, random.randint (0 -
—constants.SPRITE_SIZE, constants.CLOUD_SPAWN_Y - constants.SPRITE_SIZE))
break

cloud_count = 6
Show_clouds ()
Show_clouds ()

game = stage.Stage (ugame.display, constants.FPS)

set the layers, items show up in order

game.layers = sprites + text + clouds + sun + [background]

render the background and inital location of sprite 1list

most likely you will only render background once per scene
wait until refresh rate finishes

game.render_block ()

repeat forever, game loop

while True:
get user input

keys = ugame.buttons.get_pressed()

#print (keys)

if keys & ugame.K_UP != 0:
if up_button == constants.button_state["button_up"]:
up_button = constants.button_state["button_just_pressed"]
elif up_button == constants.button_state["button_ just_pressed"]:
up_button = constants.button_state["button_still_pressed"]
else:
if up_button == constants.button_state["button still pressed"]:

(continues on next page)

5.1. Start Scene 29

Space Aliens - CircuitPython Game

(continued from previous page)

up_button = constants.button_state["button_released"]
else:
up_button = constants.button_state["button_up"]

if keys & ugame.K_DOWN != 0:
if down_button == constants.button_state["button_up"]:
down_button = constants.button_state["button_just_pressed"]
elif down_button == constants.button_state["button_just_pressed"]:
down_button = constants.button_state["button_still pressed"]
else:
if down_button == constants.button_state["button_still_ pressed"]:
down_button = constants.button_state["button_released"]
else:
down_button = constants.button_state["button_up"]

if keys & ugame.K X != 0O:
if a_button == constants.button_state["button_up"]:
a_button = constants.button_state["button_just_pressed"]
elif a_button == constants.button_state["button_just_pressed"]:
a_button = constants.button_state["button_still pressed"]
else:
if a_button == constants.button_state["button_still_pressed"]:
a_button = constants.button_state["button_released"]
else:
a_button = constants.button_state["button_up"]

if keys & ugame.K_O != 0:
if b_button == constants.button_state["button_up"]:
b_button = constants.button_state["button_just_pressed"]
elif b_button == constants.button_state["button_ just_pressed"]:
b_button = constants.button_state["button_still pressed"]
else:
if b_button == constants.button_state["button still_pressed"]:
b_button = constants.button_state["button_released"]
else:
b_button = constants.button_state["button_up"]

if keys & ugame.K_SELECT != O:
if select_button == constants.button_state["button_up"]:
select_button = constants.button_state["button_just_pressed"]
elif select_button == constants.button_state["button_just_pressed"]:
select_button = constants.button_state["button_still pressed"]
else:
if select_button == constants.button_state["button_still pressed"]:
select_button = constants.button_state["button_released"]
else:
select_button = constants.button_state["button_up"]

if keys & ugame.K_START != 0:
if start_button == constants.button_state["button_up"]:
start_button = constants.button_state["button_ just_pressed"]
elif start_button == constants.button_state["button_just_pressed"]:
start_button = constants.button_state["button_still pressed"]

else:
if start_button == constants.button_state["button_still_pressed"]:
start_button = constants.button_state["button_released"]
else:

(continues on next page)

30

Chapter 5. Menu System

Space Aliens - CircuitPython Game

(continued from previous page)

start_button = constants.button_state["button_up"]

if down_button == constants.button_state["button_ just_pressed"] or up_button ==_
—constants.button_state["button_just_pressed"]:
if option == 0:

option =1

start_text.clear ()

start_text.cursor (0, 0)

start_text.move (constants.START_X, constants.START_Y)

start_text.text (" START ™)

game.render_block ()

if game_mode == 0:
game_mode_text.clear ()
game_mode_text.cursor (0, 0)
game_mode_text .move (constants.GAME_MODE_1_X, constants.GAME_MODE_Y)
game_mode_text.text ("<< NORMAL MODE >>")
game.render_block ()

elif game_mode == 1:
game_mode_text.clear ()
game_mode_text.cursor (0, 0)
game_mode_text .move (constants.GAME_MODE_2_X, constants.GAME_MODE_Y)
game_mode_text.text ("<< ENDLESS MODE >>")
game.render_block ()

elif option == 1:

option = 0

start_text.clear ()

start_text.cursor (0, 0)

start_text .move (constants.START_X, constants.START_Y)

start_text.text ("<< START >>")

game.render_block ()

if game_mode == 0:
game_mode_text.clear ()
game_mode_text.cursor (0, 0)
game_mode_text .move (constants.GAME_MODE_1_X, constants.GAME_MODE_Y)
game_mode_text.text (" NORMAL MODE ")
game.render_block ()

elif game_mode == 1:
game_mode_text.clear ()
game_mode_text.cursor (0, 0)
game_mode_text .move (constants.GAME_MODE_2_X, constants.GAME_MODE_Y)
game_mode_text.text (" ENDLESS MODE ")
game.render_block ()

if (start_button == constants.button_state["button_just_pressed"] or select_
—button == constants.button_state["button_just_pressed"]
or a_putton == constants.button_state["button_Jjust_pressed"] or b_button ==

—constants.button_state["button_just_pressed"]):
if option == 0:
sound.play (coin_sound)
jungle_joe_jumping.move (jungle_joe.x, jungle_joe.y)
jungle_joe.move (constants.OFF_SCREEN_X, constants.OFF_SCREEN_Y)
while True:
if jungle_joe_jumping.y > 50:
jungle_joe_jumping.move (jungle_joe_jumping.x, Jjungle_joe_jumping.
—y — constants.JUNGLE_JOE_Y_SPEED)
game.render_sprites (sprites)
game.tick ()

(continues on next page)

5.1. Start Scene 31

Space Aliens - CircuitPython Game

(continued from previous page)

else:
break
while True:
jungle_joe_Jjumping.move (jungle_joe_jumping.x, jungle_joe_jumping.y +_
—constants.JUNGLE_JOE_Y_SPEED)
game .render_sprites (sprites)
game.tick ()
if jungle_joe_jumping.y > constants.SCREEN_Y:
game_scene (game_mode)

elif option == 1:
if game_mode == 1:
game_mode = 0

game_mode_text.clear ()
game_mode_text.cursor (0, 0)
game_mode_text .move (constants.GAME_MODE_1_X, constants.GAME_MODE_Y)
game_mode_text.text ("<< NORMAL MODE >>")
game.render_block ()

elif game_mode == 0:
game_mode = 1
game_mode_text.clear ()
game_mode_text.cursor (0, 0)
game_mode_text .move (constants.GAME_MODE_2_X, constants.GAME_MODE_Y)
game_mode_text.text ("<< ENDLESS MODE >>'")
game.render_block ()

update game logic
for cloud_number in range (len(clouds)):
if clouds[cloud_number].y > 0:
clouds[cloud_number] .move (clouds [cloud_number] .x
+ constants.CLOUD_SPEED,
clouds[cloud_number].y)
if clouds[cloud_number].x > constants.SCREEN_X + constants.SPRITE_SIZE:
clouds[cloud_number] .move (constants.OFF_SCREEN_X,
constants.OFF_SCREEN_Y)
Show_clouds ()
if clouds[cloud_number].x > constants.SCREEN_X / 2:
Show_clouds ()
redraw sprite list
pass # just a placeholder until you write the code

game.render_sprites (clouds)
game.tick ()

constants.py
VERSION_NUMBER = "1.0.1"
TREE_TOP_GRID_Y = 5
TREE_TOP_GRID_2_Y
BLACK_BACK_GRID_Y
BLACK_BACK_GRID_2_
SPRITE_SIZE = 16
TOTAL_CLOUDS = 5
CLOUD_SPEED = 0.25
CLOUD_SPAWN_Y = 80
GAME_MODE_1_X = 10
GAME_MODE_2_X 8
GAME_MODE_Y = 100
START_X = 35

([
[N

<
Il
(6]

(continues on next page)

32 Chapter 5. Menu System

Space Aliens - CircuitPython Game

(continued from previous page)

’START_Y = 118

5.2 Splash Scene

in our version of the game, we have a splash screen with our company logo, Elemental Studios. However, this step
will most likely vary from person to person as you may want to use your own company logo. To do this, we used two
seperate image banks so we can have more sprites on the screen for the elements in the corners. This, hwoever, meant
that we needed to render each part of the elements in the corners as seperate sprites. You can do something similar
with the following code. .. toctree:

code.py

def game_splash_scene () :

this function is the game scene

text = []

sprites = []

image_bank_3 = stage.Bank.from_bmpl6 (" jungle_Jjoe.bmp")

image_bank_4 = stage.Bank.from_bmpl6 ("elemental studios.bmp")

sets the background to image 0 in the bank

background = stage.Grid(image_bank_3, constants.SCREEN_GRID_X, constants.SCREEN_GRID_
<—>Y)

text_1 = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_PALETTE,
—buffer=None)

text_1.move (13, 60)

text_1.text ("ELEMENTAL STUDIOS")

text .append (text_1)

text_2 = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_PALETTE,
—buffer=None)

text_2.move (40, 80)

text_2.text ("PRESENTS...")

text .append (text_2)

fire_upper_right = stage.Sprite(image_bank_4, 0, 16, 0)
sprites.append(fire_upper_right)

fire_bottom_right = stage.Sprite(image_bank_4, 1, 16, 16)
sprites.append(fire_bottom_right)

fire_upper_left = stage.Sprite(image_bank_4, 2, 0, 0)
sprites.append(fire_upper_left)

fire_bottom_left = stage.Sprite(image_bank_4, 3, 0, 16)
sprites.append(fire_bottom_left)

water_upper_right = stage.Sprite(image_bank_4, 6, 144, 0)
sprites.append (water_upper_right)

water_bottom_right = stage.Sprite(image_bank_4, 7, 144, 16)
sprites.append(water_bottom_right)

water_upper_left = stage.Sprite(image_bank_4, 4, 128, 0)
sprites.append(water_upper_left)

water_bottom_left = stage.Sprite(image_bank_4, 5, 128, 16)
sprites.append(water_bottom_left)

earth_upper_right = stage.Sprite(image_bank_4, 10, 16, 98)
sprites.append(earth_upper_right)

earth_bottom_right = stage.Sprite(image_bank_4, 11, 16, 112)
sprites.append(earth_bottom_right)

earth_upper_left = stage.Sprite(image_bank_4, 8, 0, 98)
sprites.append(earth_upper_left)

(continues on next page)

5.2. Splash Scene 33

Space Aliens - CircuitPython Game

(continued from previous page)

earth_bottom_left = stage.Sprite(image_bank_4, 9, 0, 112)
sprites.append(earth_bottom_left)
wind_upper_right = stage.Sprite (image_bank_4, 14, 144, 98)
sprites.append(wind_upper_right)
wind_bottom_right = stage.Sprite(image_bank_4, 15, 144, 112)
sprites.append (wind_bottom_right)
wind_upper_left = stage.Sprite(image_bank_4, 12, 128, 98)
sprites.append(wind_upper_left)
wind_bottom_left = stage.Sprite (image_bank_4, 13, 128, 112)
sprites.append(wind_bottom_left)
game = stage.Stage (ugame.display, 60)
set the layers, items show up in order
game.layers = sprites + text + [background]
render the background and inital location of sprite list
most likely you will only render background once per scene
wait until refresh rate finishes
game.render_block ()
repeat forever, game loop
while True:

get user input

update game logic

time.sleep(1.0)

main_menu_scene ()

redraw sprite list

pass # just a placeholder until you write the code

constants.py
SCREEN_GRID_X = 16
SCREEN_GRID_Y =

|
[oe]

5.3 Game Over Scene

The game over scene does not take a lot of work, firstly make sure you set score and height as parameters when you
call this function as you will need to use them here.

The only image bank you will need is the jungle joe image bank as it will act as the background for this scene. You
will need both score and mt game studio palette to make this scene.

Now set the background like we have done in all the other scenes, after the background is set we must create the text
for this scene. The text will display your final score, your final height, GAME OVER, and if you would like to retry
or return to menu scene.

The code to display the text is: .. toctree:

text = []

text0 = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_PALETTE,
—buffer=None)

text0.move (22, 20)

text0.text ("Final Score: ".format (final_score))

text .append (text0)

text2 = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_PALETTE,
—buffer=None)
text2.move (37, 30)

(continues on next page)

34 Chapter 5. Menu System

Space Aliens - CircuitPython Game

(continued from previous page)

text2.text ("Height: ft".format (final_height))
text .append (text2)

textl = stage.Text (width=29, height=14, font=None, palette=constants.MT_GAME_STUDIO_
—PALETTE, buffer=None)

textl.move (43, 60)

textl.text ("GAME OVER")

text.append (textl)

menu_text = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_
—PALETTE, buffer=None)

menu_text.clear ()

menu_text.cursor (0, 0)

menu_text .move (constants.MENU_LOCATION_X, constants.MENU_LOCATION_Y)
menu_text.text (" MENU ")

text.append (menu_text)

retry_text = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_
—PALETTE, buffer=None)

retry_text.clear ()

retry_text.cursor (0, 0)

retry_text.move (constants.RETRY_LOCATION_X, constants.RETRY_LOCATION_Y)
retry_text.text ("<< RETRY >>")

text.append(retry_text)

Next we need to set up the option to go back to menu or retry the game. To do this we have to set up the buttons to
accept inputs and to change which screen you go to depending on which option the user presses. To do this you will
need this code which codes for the user selecting the option they desire and them using their up and down arrow keys
to go to the option. .. toctree:

while True:
get user input
keys = ugame.buttons.get_pressed()

if keys & ugame.K_UP != O:
if up_button == constants.button_state["button_up"]:
up_button = constants.button_state["button_just_pressed"]
elif up_button == constants.button_state["button_ just_pressed"]:
up_button = constants.button_state["button_still_pressed"]
else:
if up_button == constants.button_state["button_still pressed"]:
up_button = constants.button_state["button_released"]
else:
up_button = constants.button_state["button_up"]
if keys & ugame.K_DOWN != 0:
if down_button == constants.button_state["button_up"]:
down_button = constants.button_state["button_just_pressed"]
elif down_button == constants.button_state["button_just_pressed"]:
down_button = constants.button_state["button_still pressed"]
else:
if down_button == constants.button_state["button_still pressed"]:
down_button = constants.button_state["button_ released"]
else:
down_button = constants.button_state["button_up"]

(continues on next page)

5.3. Game Over Scene 35

Space Aliens - CircuitPython Game

(continued from previous page)

update game logic

#print (keys)
if down_button == constants.button_state["button Jjust_pressed"] or up_button ==
—constants.button_state["button_just_pressed"]:

if option == 0:
option =1

menu_text.
menu_text.
menu_text
menu_text.

clear ()
cursor (0, 0)

.move (constants.MENU_LOCATION_X, constants.MENU_LOCATION_Y)

text ("<< MENU >>")

game.render_block ()
retry_text.clear ()
retry_text.cursor (0, 0)
retry_text.move (constants.RETRY_LOCATION_X, constants.RETRY_LOCATION_Y)
retry_text.text (" RETRY ")
game.render_block ()
elif option == 1:
option = 0
retry_text.clear ()
retry_text.cursor (0, 0)
retry_text.move (constants.RETRY_LOCATION_X, constants.RETRY_LOCATION_Y)
retry_text.text ("<< RETRY >>")
game.render_block ()
menu_text.clear ()
menu_text.cursor (0, 0)
menu_text.move (constants.MENU_LOCATION_X, constants.MENU_LOCATION_Y)
menu_text.text (" MENU ")
game.render_block ()

if keys & ugame.K X != 0 or keys & ugame.K_O != 0 or keys & ugame.K_START != 0 or
—keys & ugame.K_SELECT != 0: # A, B, start or select
if option == 0:
sound.play (coin_sound)
This is so they can hear the full sound
time.sleep(1.0)
game_scene (game_mode)
elif option == 1:
sound.play (coin_sound)
This is so they can hear the full sound
time.sleep(1.0)
main_menu_scene ()

After you input all this code you must add the render text option and add in all variables you need. After all this is
done your code should look like this: .. toctree:

def game_over_scene(final_score, final_height):

this function is the game over scene

option = 0

This is so it can get into the game scene. Only one option as you cant get here on_
—endless

game_mode = 0

an image bank for CircuitPython

image_bank_3 = stage.Bank.from_bmpl6 ("jungle_ joe.bmp")

sets the background to image 0 in the bank

(continues on next page)

36 Chapter 5. Menu System

Space Aliens - CircuitPython Game

(continued from previous page)

background = stage.Grid(image_bank_3, constants.SCREEN_GRID_X, constants.SCREEN_GRID_
:_,Y)

coin_sound = open("coin.wav", 'rb'")
sound = ugame.audio

sound.stop ()

sound.mute (False)

text = []

text0 = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_PALETTE,
—buffer=None)

text0.move (22, 20)

text0.text ("Final Score: {:0>2d}".format (final_score))

text.append (text0)

text2 = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_PALETTE,
—buffer=None)

text2.move (37, 30)

text2.text ("Height: [:0>2d}ft".format (final_height))

text.append (text2)

textl = stage.Text (width=29, height=14, font=None, palette=constants.MT_GAME_STUDIO_
—PALETTE, buffer=None)

textl.move (43, 60)

textl.text ("GAME OVER")

text.append (textl)

menu_text = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_
—PALETTE, buffer=None)

menu_text.clear ()

menu_text.cursor (0, 0)

menu_text .move (constants.MENU_LOCATION_X, constants.MENU_LOCATION_Y)
menu_text.text (" MENU ")

text .append (menu_text)

retry_text = stage.Text (width=29, height=14, font=None, palette=constants.SCORE_
—PALETTE, buffer=None)

retry_text.clear ()

retry_text.cursor (0, 0)

retry_text.move (constants.RETRY_LOCATION_X, constants.RETRY_LOCATION_Y)
retry_text.text ("<< RETRY >>")

text.append (retry_text)

up_button = constants.button_state["button_up"]
down_button constants.button_state["button_up"]

create a stage for the background to show up on

and set the frame rate to 60fps

game = stage.Stage (ugame.display, 60)

set the layers, items show up in order

game.layers = text + [background]

render the background and inital location of sprite list

most likely you will only render background once per scene

game.render_block ()

repeat forever, game loop

(continues on next page)

5.3. Game Over Scene 37

Space Aliens - CircuitPython Game

(continued from previous page)

while True:

get user input
keys = ugame.buttons.get_pressed()

if keys & ugame.K_UP != O:
if up_button == constants.button_state["button_up"]:
up_button = constants.button_state["button_ just_pressed"]
elif up_button == constants.button_state["button_just_pressed"]:
up_button = constants.button_state["button_still pressed"]
else:
if up_button == constants.button_state["button_still_ pressed"]:
up_button = constants.button_state["button_released"]
else:

up_button = constants.button_state["button_up"]

if keys & ugame.K_DOWN != 0O:
if down_button == constants.button_state["button_up"]:
down_button = constants.button_state["button_just_pressed"]
elif down_button == constants.button_state["button_just_pressed"]:
down_button = constants.button_state["button_still_ pressed"]
else:
if down_button == constants.button_state["button_still_pressed"]:
down_button = constants.button_state["button_released"]
else:

down_button constants.button_state["button_up"]
update game logic

#print (keys)
if down_button == constants.button_state["button_just_pressed"] or up_button ==

—constants.button_state["button_just_pressed"]:

if option == 0:
option =1
menu_text.clear ()
menu_text.cursor (0, 0)
menu_text .move (constants.MENU_LOCATION_X, constants.MENU_LOCATION_Y)
menu_text.text ("<< MENU >>")
game.render_block ()
retry_text.clear ()
retry_text.cursor (0, 0)
retry_text.move (constants.RETRY_LOCATION_X, constants.RETRY_LOCATION_Y)
retry_text.text (" RETRY ")
game.render_block ()

elif option == 1:
option = 0
retry_text.clear ()
retry_text.cursor (0, 0)
retry_text.move (constants.RETRY_LOCATION_X, constants.RETRY_LOCATION_Y)
retry_text.text ("<< RETRY >>")
game.render_block ()
menu_text.clear ()
menu_text.cursor (0, 0)
menu_text.move (constants.MENU_LOCATION_X, constants.MENU_LOCATION_Y)
menu_text.text (" MENU ")
game.render_block ()

(continues on next page)

38

Chapter 5. Menu System

Space Aliens - CircuitPython Game

(continued from previous page)

if keys & ugame.K_X != 0 or keys & ugame.K_O != 0 or keys & ugame.K_START != 0 or,
—keys & ugame.K_SELECT != 0: # A, B, start or select
if option ==
sound.play (coin_sound)
This is so they can hear the full sound
time.sleep(1.0)
game_scene (game_mode)
elif option ==
sound.play (coin_sound)
This is so they can hear the full sound
time.sleep(1.0)
main_menu_scene ()
5.3. Game Over Scene 39

	Install CircuitPython
	Your IDE
	Hello, World!

	Image Banks
	Game
	Background
	Jungle Joe

	Menu System
	Start Scene
	Splash Scene
	Game Over Scene

