

A Blockchain Platform for the Enterprise

[image: _images/hyperledger_fabric_logo_color.png]
Enterprise grade permissioned distributed ledger platform that offers
modularity and versatility for a broad set of industry use cases.

 Introduction

Introduction

In general terms, a blockchain is an immutable transaction ledger, maintained
within a distributed network of peer nodes. These nodes each maintain a copy
of the ledger by applying transactions that have been validated by a consensus
protocol, grouped into blocks that include a hash that bind each block to the
preceding block.

The first and most widely recognized application of blockchain is the
Bitcoin [https://en.wikipedia.org/wiki/Bitcoin] cryptocurrency, though others
have followed in its footsteps. Ethereum, an alternative cryptocurrency, took a
different approach, integrating many of the same characteristics as Bitcoin but
adding smart contracts to create a platform for distributed applications.
Bitcoin and Ethereum fall into a class of blockchain that we would classify as
public permissionless blockchain technology. Basically, these are public
networks, open to anyone, where participants interact anonymously.

As the popularity of Bitcoin, Ethereum and a few other derivative technologies
grew, interest in applying the underlying technology of the blockchain,
distributed ledger and distributed application platform to more innovative
enterprise use cases also grew. However, many enterprise use cases require
performance characteristics that the permissionless blockchain technologies are
unable (presently) to deliver. In addition, in many use cases, the identity of
the participants is a hard requirement, such as in the case of financial
transactions where Know-Your-Customer (KYC) and Anti-Money Laundering (AML)
regulations must be followed.

For enterprise use, we need to consider the following requirements:

	Participants must be identified/identifiable

	Networks need to be permissioned

	High transaction throughput performance

	Low latency of transaction confirmation

	Privacy and confidentiality of transactions and data pertaining to business
transactions

While many early blockchain platforms are currently being adapted for
enterprise use, Hyperledger Fabric has been designed for enterprise use from
the outset. The following sections describe how Hyperledger Fabric (Fabric)
differentiates itself from other blockchain platforms and describes some of the
motivation for its architectural decisions.

Hyperledger Fabric

Hyperledger Fabric is an open source enterprise-grade permissioned distributed
ledger technology (DLT) platform, designed for use in enterprise contexts,
that delivers some key differentiating capabilities over other popular
distributed ledger or blockchain platforms.

One key point of differentiation is that Hyperledger was established under the
Linux Foundation, which itself has a long and very successful history of
nurturing open source projects under open governance that grow strong
sustaining communities and thriving ecosystems. Hyperledger is governed by a
diverse technical steering committee, and the Hyperledger Fabric project by a
diverse set of maintainers from multiple organizations. It has a development
community that has grown to over 35 organizations and nearly 200 developers
since its earliest commits.

Fabric has a highly modular and configurable architecture, enabling
innovation, versatility and optimization for a broad range of industry use cases
including banking, finance, insurance, healthcare, human resources, supply
chain and even digital music delivery.

Fabric is the first distributed ledger platform to support smart contracts
authored in general-purpose programming languages such as Java, Go and
Node.js, rather than constrained domain-specific languages (DSL). This means
that most enterprises already have the skill set needed to develop smart
contracts, and no additional training to learn a new language or DSL is needed.

The Fabric platform is also permissioned, meaning that, unlike with a public
permissionless network, the participants are known to each other, rather than
anonymous and therefore fully untrusted. This means that while the participants
may not fully trust one another (they may, for example, be competitors in the
same industry), a network can be operated under a governance model that is built
off of what trust does exist between participants, such as a legal agreement
or framework for handling disputes.

One of the most important of the platform’s differentiators is its support for
pluggable consensus protocols that enable the platform to be more
effectively customized to fit particular use cases and trust models. For
instance, when deployed within a single enterprise, or operated by a trusted
authority, fully byzantine fault tolerant consensus might be considered
unnecessary and an excessive drag on performance and throughput. In situations
such as that, a
crash fault-tolerant [https://en.wikipedia.org/wiki/Fault_tolerance] (CFT)
consensus protocol might be more than adequate whereas, in a multi-party,
decentralized use case, a more traditional
byzantine fault tolerant [https://en.wikipedia.org/wiki/Byzantine_fault_tolerance]
(BFT) consensus protocol might be required.

Fabric can leverage consensus protocols that do not require a native
cryptocurrency to incent costly mining or to fuel smart contract execution.
Avoidance of a cryptocurrency reduces some significant risk/attack vectors,
and absence of cryptographic mining operations means that the platform can be
deployed with roughly the same operational cost as any other distributed system.

The combination of these differentiating design features makes Fabric one of
the better performing platforms available today both in terms of transaction
processing and transaction confirmation latency, and it enables privacy and confidentiality of transactions and the smart contracts (what Fabric calls
“chaincode”) that implement them.

Let’s explore these differentiating features in more detail.

Modularity

Hyperledger Fabric has been specifically architected to have a modular
architecture. Whether it is pluggable consensus, pluggable identity management
protocols such as LDAP or OpenID Connect, key management protocols or
cryptographic libraries, the platform has been designed at its core to be
configured to meet the diversity of enterprise use case requirements.

At a high level, Fabric is comprised of the following modular components:

	A pluggable ordering service establishes consensus on the order of
transactions and then broadcasts blocks to peers.

	A pluggable membership service provider is responsible for associating
entities in the network with cryptographic identities.

	An optional peer-to-peer gossip service disseminates the blocks output by
ordering service to other peers.

	Smart contracts (“chaincode”) run within a container environment (e.g. Docker)
for isolation. They can be written in standard programming languages but do not
have direct access to the ledger state.

	The ledger can be configured to support a variety of DBMSs.

	A pluggable endorsement and validation policy enforcement that can be
independently configured per application.

There is fair agreement in the industry that there is no “one blockchain to
rule them all”. Hyperledger Fabric can be configured in multiple ways to
satisfy the diverse solution requirements for multiple industry use cases.

Permissioned vs Permissionless Blockchains

In a permissionless blockchain, virtually anyone can participate, and every
participant is anonymous. In such a context, there can be no trust other than
that the state of the blockchain, prior to a certain depth, is immutable. In
order to mitigate this absence of trust, permissionless blockchains typically
employ a “mined” native cryptocurrency or transaction fees to provide economic
incentive to offset the extraordinary costs of participating in a form of
byzantine fault tolerant consensus based on “proof of work” (PoW).

Permissioned blockchains, on the other hand, operate a blockchain amongst
a set of known, identified and often vetted participants operating under a
governance model that yields a certain degree of trust. A permissioned
blockchain provides a way to secure the interactions among a group of entities
that have a common goal but which may not fully trust each other. By relying on
the identities of the participants, a permissioned blockchain can use more
traditional crash fault tolerant (CFT) or byzantine fault tolerant (BFT)
consensus protocols that do not require costly mining.

Additionally, in such a permissioned context, the risk of a participant
intentionally introducing malicious code through a smart contract is diminished.
First, the participants are known to one another and all actions, whether
submitting application transactions, modifying the configuration of the network
or deploying a smart contract are recorded on the blockchain following an
endorsement policy that was established for the network and relevant transaction
type. Rather than being completely anonymous, the guilty party can be easily
identified and the incident handled in accordance with the terms of the
governance model.

Smart Contracts

A smart contract, or what Fabric calls “chaincode”, functions as a trusted
distributed application that gains its security/trust from the blockchain and
the underlying consensus among the peers. It is the business logic of a
blockchain application.

There are three key points that apply to smart contracts, especially when
applied to a platform:

	many smart contracts run concurrently in the network,

	they may be deployed dynamically (in many cases by anyone), and

	application code should be treated as untrusted, potentially even
malicious.

Most existing smart-contract capable blockchain platforms follow an
order-execute architecture in which the consensus protocol:

	validates and orders transactions then propagates them to all peer nodes,

	each peer then executes the transactions sequentially.

The order-execute architecture can be found in virtually all existing blockchain
systems, ranging from public/permissionless platforms such as
Ethereum [https://ethereum.org/] (with PoW-based consensus) to permissioned
platforms such as Tendermint [http://tendermint.com/],
Chain [http://chain.com/], and Quorum [http://www.jpmorgan.com/global/Quorum].

Smart contracts executing in a blockchain that operates with the order-execute
architecture must be deterministic; otherwise, consensus might never be reached.
To address the non-determinism issue, many platforms require that the smart
contracts be written in a non-standard, or domain-specific language
(such as Solidity [https://solidity.readthedocs.io/en/v0.4.23/]) so that
non-deterministic operations can be eliminated. This hinders wide-spread
adoption because it requires developers writing smart contracts to learn a new
language and may lead to programming errors.

Further, since all transactions are executed sequentially by all nodes,
performance and scale is limited. The fact that the smart contract code executes
on every node in the system demands that complex measures be taken to protect
the overall system from potentially malicious contracts in order to ensure
resiliency of the overall system.

A New Approach

Fabric introduces a new architecture for transactions that we call
execute-order-validate. It addresses the resiliency, flexibility,
scalability, performance and confidentiality challenges faced by the
order-execute model by separating the transaction flow into three steps:

	execute a transaction and check its correctness, thereby endorsing it,

	order transactions via a (pluggable) consensus protocol, and

	validate transactions against an application-specific endorsement policy
before committing them to the ledger

This design departs radically from the order-execute paradigm in that Fabric
executes transactions before reaching final agreement on their order.

In Fabric, an application-specific endorsement policy specifies which peer
nodes, or how many of them, need to vouch for the correct execution of a given
smart contract. Thus, each transaction need only be executed (endorsed) by the
subset of the peer nodes necessary to satisfy the transaction’s endorsement
policy. This allows for parallel execution increasing overall performance and
scale of the system. This first phase also eliminates any non-determinism,
as inconsistent results can be filtered out before ordering.

Because we have eliminated non-determinism, Fabric is the first blockchain
technology that enables use of standard programming languages. In the 1.1.0
release, smart contracts can be written in either Go or Node.js, while there are
plans to support other popular languages including Java in subsequent releases.

Privacy and Confidentiality

As we have discussed, in a public, permissionless blockchain network that
leverages PoW for its consensus model, transactions are executed on every node.
This means that neither can there be confidentiality of the contracts
themselves, nor of the transaction data that they process. Every transaction,
and the code that implements it, is visible to every node in the network. In
this case, we have traded confidentiality of contract and data for byzantine
fault tolerant consensus delivered by PoW.

This lack of confidentiality can be problematic for many business/enterprise use
cases. For example, in a network of supply-chain partners, some consumers might
be given preferred rates as a means of either solidifying a relationship, or
promoting additional sales. If every participant can see every contract and
transaction, it becomes impossible to maintain such business relationships in a
completely transparent network – everyone will want the preferred rates!

As a second example, consider the securities industry, where a trader building
a position (or disposing of one) would not want her competitors to know of this,
or else they will seek to get in on the game, weakening the trader’s gambit.

In order to address the lack of privacy and confidentiality for purposes of
delivering on enterprise use case requirements, blockchain platforms have
adopted a variety of approaches. All have their trade-offs.

Encrypting data is one approach to providing confidentiality; however, in a
permissionless network leveraging PoW for its consensus, the encrypted data is
sitting on every node. Given enough time and computational resource, the
encryption could be broken. For many enterprise use cases, the risk that their
information could become compromised is unacceptable.

Zero knowledge proofs (ZKP) are another area of research being explored to
address this problem, the trade-off here being that, presently, computing a ZKP
requires considerable time and computational resources. Hence, the trade-off in
this case is performance for confidentiality.

In a permissioned context that can leverage alternate forms of consensus, one
might explore approaches that restrict the distribution of confidential
information exclusively to authorized nodes.

Hyperledger Fabric, being a permissioned platform, enables confidentiality
through its channel architecture. Basically, participants on a Fabric network
can establish a “channel” between the subset of participants that should be
granted visibility to a particular set of transactions. Think of this as a
network overlay. Thus, only those nodes that participate in a channel have
access to the smart contract (chaincode) and data transacted, preserving the
privacy and confidentiality of both.

To improve upon its privacy and confidentiality capabilities, Fabric has
added support for private data and is working
on zero knowledge proofs (ZKP) available in the future. More on this as it
becomes available.

Pluggable Consensus

The ordering of transactions is delegated to a modular component for consensus
that is logically decoupled from the peers that execute transactions and
maintain the ledger. Specifically, the ordering service. Since consensus is
modular, its implementation can be tailored to the trust assumption of a
particular deployment or solution. This modular architecture allows the platform
to rely on well-established toolkits for CFT (crash fault-tolerant) or BFT
(byzantine fault-tolerant) ordering.

In the currently available releases, Fabric offers a CFT ordering service
implemented with Kafka [https://kafka.apache.org/] and
Zookeeper [https://zookeeper.apache.org/]. In subsequent releases, Fabric will
deliver a Raft consensus ordering service [https://raft.github.io/] implemented
with etcd/Raft and a fully decentralized BFT ordering service.

Note also that these are not mutually exclusive. A Fabric network can have
multiple ordering services supporting different applications or application
requirements.

Performance and Scalability

Performance of a blockchain platform can be affected by many variables such as
transaction size, block size, network size, as well as limits of the hardware,
etc. The Hyperledger community is currently developing a draft set of measures [https://docs.google.com/document/d/1DQ6PqoeIH0pCNJSEYiw7JVbExDvWh_ZRVhWkuioG4k0/edit#heading=h.t3gztry2ja8i] within the Performance and Scale working group, along
with a corresponding implementation of a benchmarking framework called
Hyperledger Caliper [https://wiki.hyperledger.org/projects/caliper].

While that work continues to be developed and should be seen as a definitive
measure of blockchain platform performance and scale characteristics, a team
from IBM Research has published a
peer reviewed paper [https://arxiv.org/abs/1801.10228v1] that evaluated the
architecture and performance of Hyperledger Fabric. The paper offers an in-depth
discussion of the architecture of Fabric and then reports on the team’s
performance evaluation of the platform using a preliminary release of
Hyperledger Fabric v1.1.

The benchmarking efforts that the research team did yielded a significant
number of performance improvements for the Fabric v1.1.0 release that more than
doubled the overall performance of the platform from the v1.0.0 release levels.

Conclusion

Any serious evaluation of blockchain platforms should include Hyperledger Fabric
in its short list.

Combined, the differentiating capabilities of Fabric make it a highly scalable
system for permissioned blockchains supporting flexible trust assumptions that
enable the platform to support a wide range of industry use cases ranging from
government, to finance, to supply-chain logistics, to healthcare and so much
more.

More importantly, Hyperledger Fabric is the most active of the (currently) ten
Hyperledger projects. The community building around the platform is growing
steadily, and the innovation delivered with each successive release far
out-paces any of the other enterprise blockchain platforms.

Acknowledgement

The preceding is derived from the peer reviewed
“Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains” [https://arxiv.org/abs/1801.10228v2] - Elli Androulaki, Artem
Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo De
Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh,
Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic,
Sharon Weed Cocco, Jason Yellick

 What’s new in v1.4

What’s new in v1.4

Hyperledger Fabric has matured since the initial v1.0 release, and so has the
community of Fabric operators and developers. The Fabric developers have been
working with network operators and application developers to deliver v1.4 with
a focus on production operations and developer ease of use. The two major
release themes for Hyperledger Fabric v1.4 revolve around these two areas:

	Serviceability and Operations: As more Hyperledger Fabric networks get
deployed and enter a production state, serviceability and operational aspects
are critical. Fabric v1.4 takes a giant leap forward with logging improvements,
health checks, and operational metrics. Along with a focus on stability
and fixes, Fabric v1.4 is the recommended release for production operations.
Future fixes will be delivered on the v1.4.x stream, while new features are
being developed in the v2.0 stream.

	Improved programming model for developing applications: Writing
decentralized applications has just gotten easier. Programming model
improvements in the Node.js SDK and Node.js chaincode makes the development
of decentralized applications more intuitive, allowing you to focus
on your application logic. The existing npm packages are still available for
use, while the new npm packages provide a layer of abstraction to improve
developer productivity and ease of use.

Serviceability and operations improvements

	The Operations Service:
The new RESTful operations service provides operators with three
services to monitor and manage peer and orderer node operations:
	The logging /logspec endpoint allows operators to dynamically get and set
logging levels for the peer and orderer nodes.

	The /healthz endpoint allows operators and container orchestration services to
check peer and orderer node liveness and health.

	The /metrics endpoint allows operators to utilize Prometheus to pull operational
metrics from peer and orderer nodes. Metrics can also be pushed to StatsD.

Improved programming model for developing applications

The new Node.js SDK and chaincode programming model makes developing decentralized
applications easier and improves developer productivity. New documentation helps you
understand the various aspects of creating a decentralized application for
Hyperledger Fabric, using a commercial paper business network scenario.

	The scenario:
Describes a hypothetical business network involving six organizations who want
to build an application to transact together that will serve as a use case
to describe the programming model.

	Analysis:
Describes the structure of a commercial paper and how transactions affect it
over time. Demonstrates that modeling using states and transactions
provides a precise way to understand and model the decentralized business process.

	Process and Data Design:
Shows how to design the commercial paper processes and their related data
structures.

	Smart Contract Processing:
Shows how a smart contract governing the decentralized business process of
issuing, buying and redeeming commercial paper should be designed.

	Application
Conceptually describes a client application that would leverage the smart contract
described in Smart Contract Processing.

	Application design elements:
Describes the details around contract namespaces, transaction context,
transaction handlers, connection profiles, connection options, wallets, and
gateways.

And finally, a tutorial and sample that brings the commercial paper scenario to life:

	Commercial paper tutorial

New tutorials

	Writing Your First Application:
This tutorial has been updated to leverage the improved Node.js SDK and chaincode
programming model. The tutorial has both JavaScript and Typescript examples of
the client application and chaincode.

	Commercial paper tutorial
As mentioned above, this is the tutorial that accompanies the new Developing
Applications documentation.

	Upgrading to the Newest Version of Fabric:
Leverages the network from Building Your First Network to demonstrate an upgrade from
v1.3 to v1.4. Includes both a script (which can serve as a template for upgrades),
as well as the individual commands so that you can understand every step of an
upgrade.

Private data enhancements

	Private Data:
The Private data feature has been a part of Fabric since v1.2, and this release
debuts two new enhancements:
	Reconciliation, which allows peers for organizations that are added
to private data collections to retrieve the private data for prior
transactions to which they now are entitled.

	Client access control to automatically enforce access control within
chaincode based on the client organization collection membership without having
to write specific chaincode logic.

Release notes

The release notes provide more details for users moving to the new release, along
with a link to the full release change log.

	Fabric release notes [https://github.com/hyperledger/fabric/releases/tag/v1.4.0].

	Fabric CA release notes [https://github.com/hyperledger/fabric-ca/releases/tag/v1.4.0].

 Key Concepts

Key Concepts

	Introduction

	Hyperledger Fabric Functionalities

	Hyperledger Fabric Model

	Blockchain network

	Identity

	Membership

	Peers

	Private data

	Ledger

	Use Cases

 Introduction

Introduction

Hyperledger Fabric is a platform for distributed ledger solutions underpinned
by a modular architecture delivering high degrees of confidentiality,
resiliency, flexibility, and scalability. It is designed to support pluggable
implementations of different components and accommodate the complexity and
intricacies that exist across the economic ecosystem.

We recommend first-time users begin by going through the rest of the
introduction below in order to gain familiarity with how blockchains work
and with the specific features and components of Hyperledger Fabric.

Once comfortable — or if you’re already familiar with blockchain and
Hyperledger Fabric — go to Getting Started and from there explore the
demos, technical specifications, APIs, etc.

What is a Blockchain?

A Distributed Ledger

At the heart of a blockchain network is a distributed ledger that records all
the transactions that take place on the network.

A blockchain ledger is often described as decentralized because it is replicated
across many network participants, each of whom collaborate in its maintenance.
We’ll see that decentralization and collaboration are powerful attributes that
mirror the way businesses exchange goods and services in the real world.

[image: _images/basic_network.png]
In addition to being decentralized and collaborative, the information recorded
to a blockchain is append-only, using cryptographic techniques that guarantee
that once a transaction has been added to the ledger it cannot be modified.
This property of “immutability” makes it simple to determine the provenance of
information because participants can be sure information has not been changed
after the fact. It’s why blockchains are sometimes described as systems of proof.

Smart Contracts

To support the consistent update of information — and to enable a whole host of
ledger functions (transacting, querying, etc) — a blockchain network uses smart
contracts to provide controlled access to the ledger.

[image: _images/Smart_Contract.png]
Smart contracts are not only a key mechanism for encapsulating information
and keeping it simple across the network, they can also be written to allow
participants to execute certain aspects of transactions automatically.

A smart contract can, for example, be written to stipulate the cost of shipping
an item where the shipping charge changes depending on how quickly the item arrives.
With the terms agreed to by both parties and written to the ledger,
the appropriate funds change hands automatically when the item is received.

Consensus

The process of keeping the ledger transactions synchronized across the network —
to ensure that ledgers update only when transactions are approved by the appropriate
participants, and that when ledgers do update, they update with the
same transactions in the same order — is called consensus.

[image: _images/consensus.png]
You’ll learn a lot more about ledgers, smart contracts and consensus later. For
now, it’s enough to think of a blockchain as a shared, replicated transaction
system which is updated via smart contracts and kept consistently
synchronized through a collaborative process called consensus.

Why is a Blockchain useful?

Today’s Systems of Record

The transactional networks of today are little more than slightly updated
versions of networks that have existed since business records have been kept.
The members of a business network transact with each other, but they maintain
separate records of their transactions. And the things they’re transacting —
whether it’s Flemish tapestries in the 16th century or the securities of today
— must have their provenance established each time they’re sold to ensure that
the business selling an item possesses a chain of title verifying their
ownership of it.

What you’re left with is a business network that looks like this:

[image: _images/current_network.png]
Modern technology has taken this process from stone tablets and paper folders
to hard drives and cloud platforms, but the underlying structure is the same.
Unified systems for managing the identity of network participants do not exist,
establishing provenance is so laborious it takes days to clear securities
transactions (the world volume of which is numbered in the many trillions of
dollars), contracts must be signed and executed manually, and every database in
the system contains unique information and therefore represents a single point
of failure.

It’s impossible with today’s fractured approach to information and
process sharing to build a system of record that spans a business network, even
though the needs of visibility and trust are clear.

The Blockchain Difference

What if, instead of the rat’s nest of inefficiencies represented by the “modern”
system of transactions, business networks had standard methods for establishing
identity on the network, executing transactions, and storing data? What
if establishing the provenance of an asset could be determined by looking
through a list of transactions that, once written, cannot be changed, and can
therefore be trusted?

That business network would look more like this:

[image: _images/future_net.png]
This is a blockchain network, wherein every participant has their own replicated
copy of the ledger. In addition to ledger information being shared, the processes
which update the ledger are also shared. Unlike today’s systems, where a
participant’s private programs are used to update their private ledgers,
a blockchain system has shared programs to update shared ledgers.

With the ability to coordinate their business network through a shared ledger,
blockchain networks can reduce the time, cost, and risk associated with private
information and processing while improving trust and visibility.

You now know what blockchain is and why it’s useful. There are a lot of other
details that are important, but they all relate to these fundamental ideas of
the sharing of information and processes.

What is Hyperledger Fabric?

The Linux Foundation founded the Hyperledger project in 2015 to advance
cross-industry blockchain technologies. Rather than declaring a single
blockchain standard, it encourages a collaborative approach to developing
blockchain technologies via a community process, with intellectual property
rights that encourage open development and the adoption of key standards over
time.

Hyperledger Fabric is one of the blockchain projects within Hyperledger.
Like other blockchain technologies, it has a ledger, uses smart contracts,
and is a system by which participants manage their transactions.

Where Hyperledger Fabric breaks from some other blockchain systems is that
it is private and permissioned. Rather than an open permissionless system
that allows unknown identities to participate in the network (requiring protocols
like “proof of work” to validate transactions and secure the network), the members
of a Hyperledger Fabric network enroll through a trusted Membership Service Provider (MSP).

Hyperledger Fabric also offers several pluggable options. Ledger data can be
stored in multiple formats, consensus mechanisms can be swapped in and out,
and different MSPs are supported.

Hyperledger Fabric also offers the ability to create channels, allowing a group of
participants to create a separate ledger of transactions. This is an especially
important option for networks where some participants might be competitors and not
want every transaction they make — a special price they’re offering to some participants
and not others, for example — known to every participant. If two participants
form a channel, then those participants — and no others — have copies of the ledger
for that channel.

Shared Ledger

Hyperledger Fabric has a ledger subsystem comprising two components: the world
state and the transaction log. Each participant has a copy of the ledger to
every Hyperledger Fabric network they belong to.

The world state component describes the state of the ledger at a given point
in time. It’s the database of the ledger. The transaction log component records
all transactions which have resulted in the current value of the world state;
it’s the update history for the world state. The ledger, then, is a combination
of the world state database and the transaction log history.

The ledger has a replaceable data store for the world state. By default, this
is a LevelDB key-value store database. The transaction log does not need to be
pluggable. It simply records the before and after values of the ledger database
being used by the blockchain network.

Smart Contracts

Hyperledger Fabric smart contracts are written in chaincode and are invoked
by an application external to the blockchain when that application needs to
interact with the ledger. In most cases, chaincode interacts only with the
database component of the ledger, the world state (querying it, for example), and
not the transaction log.

Chaincode can be implemented in several programming languages. Currently, Go and
Node are supported.

Privacy

Depending on the needs of a network, participants in a Business-to-Business
(B2B) network might be extremely sensitive about how much information they share.
For other networks, privacy will not be a top concern.

Hyperledger Fabric supports networks where privacy (using channels) is a key
operational requirement as well as networks that are comparatively open.

Consensus

Transactions must be written to the ledger in the order in which they occur,
even though they might be between different sets of participants within the
network. For this to happen, the order of transactions must be established
and a method for rejecting bad transactions that have been inserted into the
ledger in error (or maliciously) must be put into place.

This is a thoroughly researched area of computer science, and there are many
ways to achieve it, each with different trade-offs. For example, PBFT (Practical
Byzantine Fault Tolerance) can provide a mechanism for file replicas to
communicate with each other to keep each copy consistent, even in the event
of corruption. Alternatively, in Bitcoin, ordering happens through a process
called mining where competing computers race to solve a cryptographic puzzle
which defines the order that all processes subsequently build upon.

Hyperledger Fabric has been designed to allow network starters to choose a
consensus mechanism that best represents the relationships that exist between
participants. As with privacy, there is a spectrum of needs; from networks
that are highly structured in their relationships to those that are more
peer-to-peer.

We’ll learn more about the Hyperledger Fabric consensus mechanisms, which
currently include SOLO and Kafka.

Where can I learn more?

	Identity (conceptual documentation)

A conceptual doc that will take you through the critical role identities play
in a Fabric network (using an established PKI structure and x.509 certificates).

	Membership (conceptual documentation)

Talks through the role of a Membership Service Provider (MSP), which converts
identities into roles in a Fabric network.

	Peers (conceptual documentation)

Peers — owned by organizations — host the ledger and smart contracts and make
up the physical structure of a Fabric network.

	Building Your First Network (tutorial)

Learn how to download Fabric binaries and bootstrap your own sample network with
a sample script. Then tear down the network and learn how it was constructed one
step at a time.

	Writing Your First Application (tutorial)

Deploys a very simple network — even simpler than Build Your First Network —
to use with a simple smart contract and application.

	Transaction Flow

A high level look at a sample transaction flow.

	Hyperledger Fabric Model

A high level look at some of components and concepts brought up in this introduction as
well as a few others and describes how they work together in a sample
transaction flow.

 Hyperledger Fabric Functionalities

Hyperledger Fabric Functionalities

Hyperledger Fabric is an implementation of distributed ledger technology
(DLT) that delivers enterprise-ready network security, scalability,
confidentiality and performance, in a modular blockchain architecture.
Hyperledger Fabric delivers the following blockchain network functionalities:

Identity management

To enable permissioned networks, Hyperledger Fabric provides a membership
identity service that manages user IDs and authenticates all participants on
the network. Access control lists can be used to provide additional layers of
permission through authorization of specific network operations. For example, a
specific user ID could be permitted to invoke a chaincode application, but
be blocked from deploying new chaincode.

Privacy and confidentiality

Hyperledger Fabric enables competing business interests, and any groups that
require private, confidential transactions, to coexist on the same permissioned
network. Private channels are restricted messaging paths that can be used
to provide transaction privacy and confidentiality for specific subsets of
network members. All data, including transaction, member and channel
information, on a channel are invisible and inaccessible to any network members
not explicitly granted access to that channel.

Efficient processing

Hyperledger Fabric assigns network roles by node type. To provide concurrency
and parallelism to the network, transaction execution is separated from
transaction ordering and commitment. Executing transactions prior to
ordering them enables each peer node to process multiple transactions
simultaneously. This concurrent execution increases processing efficiency on
each peer and accelerates delivery of transactions to the ordering service.

In addition to enabling parallel processing, the division of labor unburdens
ordering nodes from the demands of transaction execution and ledger
maintenance, while peer nodes are freed from ordering (consensus) workloads.
This bifurcation of roles also limits the processing required for authorization
and authentication; all peer nodes do not have to trust all ordering nodes, and
vice versa, so processes on one can run independently of verification by the
other.

Chaincode functionality

Chaincode applications encode logic that is
invoked by specific types of transactions on the channel. Chaincode that
defines parameters for a change of asset ownership, for example, ensures that
all transactions that transfer ownership are subject to the same rules and
requirements. System chaincode is distinguished as chaincode that defines
operating parameters for the entire channel. Lifecycle and configuration system
chaincode defines the rules for the channel; endorsement and validation system
chaincode defines the requirements for endorsing and validating transactions.

Modular design

Hyperledger Fabric implements a modular architecture to
provide functional choice to network designers. Specific algorithms for
identity, ordering (consensus) and encryption, for example, can be plugged in
to any Hyperledger Fabric network. The result is a universal blockchain
architecture that any industry or public domain can adopt, with the assurance
that its networks will be interoperable across market, regulatory and
geographic boundaries.

 Hyperledger Fabric Model

Hyperledger Fabric Model

This section outlines the key design features woven into Hyperledger Fabric that
fulfill its promise of a comprehensive, yet customizable, enterprise blockchain solution:

	Assets — Asset definitions enable the exchange of almost anything with
monetary value over the network, from whole foods to antique cars to currency
futures.

	Chaincode — Chaincode execution is partitioned from transaction ordering,
limiting the required levels of trust and verification across node types, and
optimizing network scalability and performance.

	Ledger Features — The immutable, shared ledger encodes the entire
transaction history for each channel, and includes SQL-like query capability
for efficient auditing and dispute resolution.

	Privacy — Channels and private data collections enable private and
confidential multi-lateral transactions that are usually required by
competing businesses and regulated industries that exchange assets on a common
network.

	Security & Membership Services — Permissioned membership provides a
trusted blockchain network, where participants know that all transactions can
be detected and traced by authorized regulators and auditors.

	Consensus — A unique approach to consensus enables the
flexibility and scalability needed for the enterprise.

Assets

Assets can range from the tangible (real estate and hardware) to the intangible
(contracts and intellectual property). Hyperledger Fabric provides the
ability to modify assets using chaincode transactions.

Assets are represented in Hyperledger Fabric as a collection of
key-value pairs, with state changes recorded as transactions on a Channel
ledger. Assets can be represented in binary and/or JSON form.

You can easily define and use assets in your Hyperledger Fabric applications
using the Hyperledger Composer [https://github.com/hyperledger/composer] tool.

Chaincode

Chaincode is software defining an asset or assets, and the transaction instructions for
modifying the asset(s); in other words, it’s the business logic. Chaincode enforces the rules for reading
or altering key-value pairs or other state database information. Chaincode functions execute against
the ledger’s current state database and are initiated through a transaction proposal. Chaincode execution
results in a set of key-value writes (write set) that can be submitted to the network and applied to
the ledger on all peers.

Ledger Features

The ledger is the sequenced, tamper-resistant record of all state transitions in the fabric. State
transitions are a result of chaincode invocations (‘transactions’) submitted by participating
parties. Each transaction results in a set of asset key-value pairs that are committed to the
ledger as creates, updates, or deletes.

The ledger is comprised of a blockchain (‘chain’) to store the immutable, sequenced record in
blocks, as well as a state database to maintain current fabric state. There is one ledger per
channel. Each peer maintains a copy of the ledger for each channel of which they are a member.

Some features of a Fabric ledger:

	Query and update ledger using key-based lookups, range queries, and composite key queries

	Read-only queries using a rich query language (if using CouchDB as state database)

	Read-only history queries — Query ledger history for a key, enabling data provenance scenarios

	Transactions consist of the versions of keys/values that were read in chaincode (read set) and keys/values that were written in chaincode (write set)

	Transactions contain signatures of every endorsing peer and are submitted to ordering service

	Transactions are ordered into blocks and are “delivered” from an ordering service to peers on a channel

	Peers validate transactions against endorsement policies and enforce the policies

	Prior to appending a block, a versioning check is performed to ensure that states for assets that were read have not changed since chaincode execution time

	There is immutability once a transaction is validated and committed

	A channel’s ledger contains a configuration block defining policies, access control lists, and other pertinent information

	Channels contain Membership Service Provider instances allowing for crypto materials to be derived from different certificate authorities

See the Ledger topic for a deeper dive on the databases, storage structure, and “query-ability.”

Privacy

Hyperledger Fabric employs an immutable ledger on a per-channel basis, as well as
chaincode that can manipulate and modify the current state of assets (i.e. update
key-value pairs). A ledger exists in the scope of a channel — it can be shared
across the entire network (assuming every participant is operating on one common
channel) — or it can be privatized to include only a specific set of participants.

In the latter scenario, these participants would create a separate channel and
thereby isolate/segregate their transactions and ledger. In order to solve
scenarios that want to bridge the gap between total transparency and privacy,
chaincode can be installed only on peers that need to access the asset states
to perform reads and writes (in other words, if a chaincode is not installed on
a peer, it will not be able to properly interface with the ledger).

When a subset of organizations on that channel need to keep their transaction
data confidential, a private data collection (collection) is used to segregate
this data in a private database, logically separate from the channel ledger,
accessible only to the authorized subset of organizations.

Thus, channels keep transactions private from the broader network whereas
collections keep data private between subsets of organizations on the channel.

To further obfuscate the data, values within chaincode can be encrypted
(in part or in total) using common cryptographic algorithms such as AES before
sending transactions to the ordering service and appending blocks to the ledger.
Once encrypted data has been written to the ledger, it can be decrypted only by
a user in possession of the corresponding key that was used to generate the cipher
text. For further details on chaincode encryption, see the Chaincode for Developers
topic.

See the Private Data topic for more details on how to achieve
privacy on your blockchain network.

Security & Membership Services

Hyperledger Fabric underpins a transactional network where all participants have
known identities. Public Key Infrastructure is used to generate cryptographic
certificates which are tied to organizations, network components, and end users
or client applications. As a result, data access control can be manipulated and
governed on the broader network and on channel levels. This “permissioned” notion
of Hyperledger Fabric, coupled with the existence and capabilities of channels,
helps address scenarios where privacy and confidentiality are paramount concerns.

See the Membership Service Providers (MSP) topic to better understand cryptographic
implementations, and the sign, verify, authenticate approach used in
Hyperledger Fabric.

Consensus

In distributed ledger technology, consensus has recently become synonymous with
a specific algorithm, within a single function. However, consensus encompasses more
than simply agreeing upon the order of transactions, and this differentiation is
highlighted in Hyperledger Fabric through its fundamental role in the entire
transaction flow, from proposal and endorsement, to ordering, validation and commitment.
In a nutshell, consensus is defined as the full-circle verification of the correctness of
a set of transactions comprising a block.

Consensus is achieved ultimately when the order and results of a block’s
transactions have met the explicit policy criteria checks. These checks and balances
take place during the lifecycle of a transaction, and include the usage of
endorsement policies to dictate which specific members must endorse a certain
transaction class, as well as system chaincodes to ensure that these policies
are enforced and upheld. Prior to commitment, the peers will employ these
system chaincodes to make sure that enough endorsements are present, and that
they were derived from the appropriate entities. Moreover, a versioning check
will take place during which the current state of the ledger is agreed or
consented upon, before any blocks containing transactions are appended to the ledger.
This final check provides protection against double spend operations and other
threats that might compromise data integrity, and allows for functions to be
executed against non-static variables.

In addition to the multitude of endorsement, validity and versioning checks that
take place, there are also ongoing identity verifications happening in all
directions of the transaction flow. Access control lists are implemented on
hierarchical layers of the network (ordering service down to channels), and
payloads are repeatedly signed, verified and authenticated as a transaction proposal passes
through the different architectural components. To conclude, consensus is not
merely limited to the agreed upon order of a batch of transactions; rather,
it is an overarching characterization that is achieved as a byproduct of the ongoing
verifications that take place during a transaction’s journey from proposal to
commitment.

Check out the Transaction Flow diagram for a visual representation
of consensus.

 Blockchain network

Blockchain network

This topic will describe, at a conceptual level, how Hyperledger Fabric
allows organizations to collaborate in the formation of blockchain networks. If
you’re an architect, administrator or developer, you can use this topic to get a
solid understanding of the major structure and process components in a
Hyperledger Fabric blockchain network. This topic will use a manageable worked
example that introduces all of the major components in a blockchain network.
After understanding this example you can read more detailed information about
these components elsewhere in the documentation, or try
building a sample network.

After reading this topic and understanding the concept of policies, you will
have a solid understanding of the decisions that organizations need to make to
establish the policies that control a deployed Hyperledger Fabric network.
You’ll also understand how organizations manage network evolution using
declarative policies – a key feature of Hyperledger Fabric. In a nutshell,
you’ll understand the major technical components of Hyperledger Fabric and the
decisions organizations need to make about them.

What is a blockchain network?

A blockchain network is a technical infrastructure that provides ledger and
smart contract (chaincode) services to applications. Primarily, smart contracts
are used to generate transactions which are subsequently distributed to every
peer node in the network where they are immutably recorded on their copy of the
ledger. The users of applications might be end users using client applications
or blockchain network administrators.

In most cases, multiple organizations come
together as a consortium to form the network and
their permissions are determined by a set of policies
that are agreed by the consortium when the network is originally configured.
Moreover, network policies can change over time subject to the agreement of the
organizations in the consortium, as we’ll discover when we discuss the concept
of modification policy.

The sample network

Before we start, let’s show you what we’re aiming at! Here’s a diagram
representing the final state of our sample network.

Don’t worry that this might look complicated! As we go through this topic, we
will build up the network piece by piece, so that you see how the organizations
R1, R2, R3 and R4 contribute infrastructure to the network to help form it. This
infrastructure implements the blockchain network, and it is governed by policies
agreed by the organizations who form the network – for example, who can add new
organizations. You’ll discover how applications consume the ledger and smart
contract services provided by the blockchain network.

[image: network.structure]

Four organizations, R1, R2, R3 and R4 have jointly decided, and written into an
agreement, that they will set up and exploit a Hyperledger Fabric
network. R4 has been assigned to be the network initiator – it has been given
the power to set up the initial version of the network. R4 has no intention to
perform business transactions on the network. R1 and R2 have a need for a
private communications within the overall network, as do R2 and R3.
Organization R1 has a client application that can perform business transactions
within channel C1. Organization R2 has a client application that can do similar
work both in channel C1 and C2. Organization R3 has a client application that
can do this on channel C2. Peer node P1 maintains a copy of the ledger L1
associated with C1. Peer node P2 maintains a copy of the ledger L1 associated
with C1 and a copy of ledger L2 associated with C2. Peer node P3 maintains a
copy of the ledger L2 associated with C2. The network is governed according to
policy rules specified in network configuration NC4, the network is under the
control of organizations R1 and R4. Channel C1 is governed according to the
policy rules specified in channel configuration CC1; the channel is under the
control of organizations R1 and R2. Channel C2 is governed according to the
policy rules specified in channel configuration CC2; the channel is under the
control of organizations R2 and R3. There is an ordering service O4 that
services as a network administration point for N, and uses the system channel.
The ordering service also supports application channels C1 and C2, for the
purposes of transaction ordering into blocks for distribution. Each of the four
organizations has a preferred Certificate Authority.

Creating the Network

Let’s start at the beginning by creating the basis for the network:

[image: network.creation]

The network is formed when an orderer is started. In our example network, N,
the ordering service comprising a single node, O4, is configured according to a
network configuration NC4, which gives administrative rights to organization
R4. At the network level, Certificate Authority CA4 is used to dispense
identities to the administrators and network nodes of the R4 organization.

We can see that the first thing that defines a network, N, is an ordering
service, O4. It’s helpful to think of the ordering service as the initial
administration point for the network. As agreed beforehand, O4 is initially
configured and started by an administrator in organization R4, and hosted in R4.
The configuration NC4 contains the policies that describe the starting set of
administrative capabilities for the network. Initially this is set to only give
R4 rights over the network. This will change, as we’ll see later, but for now R4
is the only member of the network.

Certificate Authorities

You can also see a Certificate Authority, CA4, which is used to issue
certificates to administrators and network nodes. CA4 plays a key role in our
network because it dispenses X.509 certificates that can be used to identify
components as belonging to organization R4. Certificates issued by CAs
can also be used to sign transactions to indicate that an organization endorses
the transaction result – a precondition of it being accepted onto the
ledger. Let’s examine these two aspects of a CA in a little more detail.

Firstly, different components of the blockchain network use certificates to
identify themselves to each other as being from a particular organization.
That’s why there is usually more than one CA supporting a blockchain network –
different organizations often use different CAs. We’re going to use four CAs in
our network; one of for each organization. Indeed, CAs are so important that
Hyperledger Fabric provides you with a built-in one (called Fabric-CA) to help
you get going, though in practice, organizations will choose to use their own
CA.

The mapping of certificates to member organizations is achieved by via
a structure called a
Membership Services Provider (MSP).
Network configuration NC4 uses a named
MSP to identify the properties of certificates dispensed by CA4 which associate
certificate holders with organization R4. NC4 can then use this MSP name in
policies to grant actors from R4 particular
rights over network resources. An example of such a policy is to identify the
administrators in R4 who can add new member organizations to the network. We
don’t show MSPs on these diagrams, as they would just clutter them up, but they
are very important.

Secondly, we’ll see later how certificates issued by CAs are at the heart of the
transaction generation and validation process.
Specifically, X.509 certificates are used in client application
transaction proposals and smart contract
transaction responses to digitally sign
transactions. Subsequently the network nodes
who host copies of the ledger verify that transaction signatures are valid
before accepting transactions onto the ledger.

Let’s recap the basic structure of our example blockchain network. There’s a
resource, the network N, accessed by a set of users defined by a Certificate
Authority CA4, who have a set of rights over the resources in the network N as
described by policies contained inside a network configuration NC4. All of this
is made real when we configure and start the ordering service node O4.

Adding Network Administrators

NC4 was initially configured to only allow R4 users administrative rights over
the network. In this next phase, we are going to allow organization R1 users to
administer the network. Let’s see how the network evolves:

[image: network.admins]

Organization R4 updates the network configuration to make organization R1 an
administrator too. After this point R1 and R4 have equal rights over the
network configuration.

We see the addition of a new organization R1 as an administrator – R1 and R4
now have equal rights over the network. We can also see that certificate
authority CA1 has been added – it can be used to identify users from the R1
organization. After this point, users from both R1 and R4 can administer the
network.

Although the orderer node, O4, is running on R4’s infrastructure, R1 has shared
administrative rights over it, as long as it can gain network access. It means
that R1 or R4 could update the network configuration NC4 to allow the R2
organization a subset of network operations. In this way, even though R4 is
running the ordering service, and R1 has full administrative rights over it, R2
has limited rights to create new consortia.

In its simplest form, the ordering service is a single node in the network, and
that’s what you can see in the example. Ordering services are usually
multi-node, and can be configured to have different nodes in different
organizations. For example, we might run O4 in R4 and connect it to O2, a
separate orderer node in organization R1. In this way, we would have a
multi-site, multi-organization administration structure.

We’ll discuss the ordering service a little more later in this
topic, but for now just think of the ordering service as
an administration point which provides different organizations controlled access
to the network.

Defining a Consortium

Although the network can now be administered by R1 and R4, there is very little
that can be done. The first thing we need to do is define a consortium. This
word literally means “a group with a shared destiny”, so it’s an appropriate
choice for a set of organizations in a blockchain network.

Let’s see how a consortium is defined:

[image: network.consortium]

A network administrator defines a consortium X1 that contains two members,
the organizations R1 and R2. This consortium definition is stored in the
network configuration NC4, and will be used at the next stage of network
development. CA1 and CA2 are the respective Certificate Authorities for these
organizations.

Because of the way NC4 is configured, only R1 or R4 can create new consortia.
This diagram shows the addition of a new consortium, X1, which defines R1 and R2
as its constituting organizations. We can also see that CA2 has been added to
identify users from R2. Note that a consortium can have any number of
organizational members – we have just shown two as it is the simplest
configuration.

Why are consortia important? We can see that a consortium defines the set of
organizations in the network who share a need to transact with one another –
in this case R1 and R2. It really makes sense to group organizations together if
they have a common goal, and that’s exactly what’s happening.

The network, although started by a single organization, is now controlled by a
larger set of organizations. We could have started it this way, with R1, R2 and
R4 having shared control, but this build up makes it easier to understand.

We’re now going to use consortium X1 to create a really important part of a
Hyperledger Fabric blockchain – a channel.

Creating a channel for a consortium

So let’s create this key part of the Fabric blockchain network – a channel.
A channel is a primary communications mechanism by which the members of a
consortium can communicate with each other. There can be multiple channels in a
network, but for now, we’ll start with one.

Let’s see how the first channel has been added to the network:

[image: network.channel]

A channel C1 has been created for R1 and R2 using the consortium definition X1.
The channel is governed by a channel configuration CC1, completely separate to
the network configuration. CC1 is managed by R1 and R2 who have equal rights
over C1. R4 has no rights in CC1 whatsoever.

The channel C1 provides a private communications mechanism for the consortium
X1. We can see channel C1 has been connected to the ordering service O4 but that
nothing else is attached to it. In the next stage of network development, we’re
going to connect components such as client applications and peer nodes. But at
this point, a channel represents the potential for future connectivity.

Even though channel C1 is a part of the network N, it is quite distinguishable
from it. Also notice that organizations R3 and R4 are not in this channel – it
is for transaction processing between R1 and R2. In the previous step, we saw
how R4 could grant R1 permission to create new consortia. It’s helpful to
mention that R4 also allowed R1 to create channels! In this diagram, it
could have been organization R1 or R4 who created a channel C1. Again, note
that a channel can have any number of organizations connected to it – we’ve
shown two as it’s the simplest configuration.

Again, notice how channel C1 has a completely separate configuration, CC1, to
the network configuration NC4. CC1 contains the policies that govern the
rights that R1 and R2 have over the channel C1 – and as we’ve seen, R3 and
R4 have no permissions in this channel. R3 and R4 can only interact with C1 if
they are added by R1 or R2 to the appropriate policy in the channel
configuration CC1. An example is defining who can add a new organization to the
channel. Specifically, note that R4 cannot add itself to the channel C1 – it
must, and can only, be authorized by R1 or R2.

Why are channels so important? Channels are useful because they provide a
mechanism for private communications and private data between the members of a
consortium. Channels provide privacy from other channels, and from the network.
Hyperledger Fabric is powerful in this regard, as it allows organizations to
share infrastructure and keep it private at the same time. There’s no
contradiction here – different consortia within the network will have a need
for different information and processes to be appropriately shared, and channels
provide an efficient mechanism to do this. Channels provide an efficient
sharing of infrastructure while maintaining data and communications privacy.

We can also see that once a channel has been created, it is in a very real sense
“free from the network”. It is only organizations that are explicitly specified
in a channel configuration that have any control over it, from this time forward
into the future. Likewise, any updates to network configuration NC4 from this
time onwards will have no direct effect on channel configuration CC1; for
example if consortia definition X1 is changed, it will not affect the members of
channel C1. Channels are therefore useful because they allow private
communications between the organizations constituting the channel. Moreover, the
data in a channel is completely isolated from the rest of the network, including
other channels.

As an aside, there is also a special system channel defined for use by the
ordering service. It behaves in exactly the same way as a regular channel,
which are sometimes called application channels for this reason. We don’t
normally need to worry about this channel, but we’ll discuss a little bit more
about it later in this topic.

Peers and Ledgers

Let’s now start to use the channel to connect the blockchain network and the
organizational components together. In the next stage of network development, we
can see that our network N has just acquired two new components, namely a peer
node P1 and a ledger instance, L1.

[image: network.peersledger]

A peer node P1 has joined the channel C1. P1 physically hosts a copy of the
ledger L1. P1 and O4 can communicate with each other using channel C1.

Peer nodes are the network components where copies of the blockchain ledger are
hosted! At last, we’re starting to see some recognizable blockchain components!
P1’s purpose in the network is purely to host a copy of the ledger L1 for others
to access. We can think of L1 as being physically hosted on P1, but
logically hosted on the channel C1. We’ll see this idea more clearly when we
add more peers to the channel.

A key part of a P1’s configuration is an X.509 identity issued by CA1 which
associates P1 with organization R1. Once P1 is started, it can join channel
C1 using the orderer O4. When O4 receives this join request, it uses the channel
configuration CC1 to determine P1’s permissions on this channel. For example,
CC1 determines whether P1 can read and/or write information to the ledger L1.

Notice how peers are joined to channels by the organizations that own them, and
though we’ve only added one peer, we’ll see how there can be multiple peer
nodes on multiple channels within the network. We’ll see the different roles
that peers can take on a little later.

Applications and Smart Contract chaincode

Now that the channel C1 has a ledger on it, we can start connecting client
applications to consume some of the services provided by workhorse of the
ledger, the peer!

Notice how the network has grown:

[image: network.appsmartcontract]

A smart contract S5 has been installed onto P1. Client application A1 in
organization R1 can use S5 to access the ledger via peer node P1. A1, P1 and
O4 are all joined to channel C1, i.e. they can all make use of the
communication facilities provided by that channel.

In the next stage of network development, we can see that client application A1
can use channel C1 to connect to specific network resources – in this case A1
can connect to both peer node P1 and orderer node O4. Again, see how channels
are central to the communication between network and organization components.
Just like peers and orderers, a client application will have an identity that
associates it with an organization. In our example, client application A1 is
associated with organization R1; and although it is outside the Fabric
blockchain network, it is connected to it via the channel C1.

It might now appear that A1 can access the ledger L1 directly via P1, but in
fact, all access is managed via a special program called a smart contract
chaincode, S5. Think of S5 as defining all the common access patterns to the
ledger; S5 provides a well-defined set of ways by which the ledger L1 can
be queried or updated. In short, client application A1 has to go through smart
contract S5 to get to ledger L1!

Smart contract chaincodes can be created by application developers in each
organization to implement a business process shared by the consortium members.
Smart contracts are used to help generate transactions which can be subsequently
distributed to the every node in the network. We’ll discuss this idea a little
later; it’ll be easier to understand when the network is bigger. For now, the
important thing to understand is that to get to this point two operations must
have been performed on the smart contract; it must have been installed, and
then instantiated.

Installing a smart contract

After a smart contract S5 has been developed, an administrator in organization
R1 must install it onto peer node P1. This is a
straightforward operation; after it has occurred, P1 has full knowledge of S5.
Specifically, P1 can see the implementation logic of S5 – the program code
that it uses to access the ledger L1. We contrast this to the S5 interface
which merely describes the inputs and outputs of S5, without regard to its
implementation.

When an organization has multiple peers in a channel, it can choose the peers
upon which it installs smart contracts; it does not need to install a smart
contract on every peer.

Instantiating a smart contract

However, just because P1 has installed S5, the other components connected to
channel C1 are unaware of it; it must first be
instantiated on channel C1. In our example,
which only has a single peer node P1, an administrator in organization R1 must
instantiate S5 on channel C1 using P1. After instantiation, every component on
channel C1 is aware of the existence of S5; and in our example it means that S5
can now be invoked by client application A1!

Note that although every component on the channel can now access S5, they are
not able to see its program logic. This remains private to those nodes who have
installed it; in our example that means P1. Conceptually this means that it’s
the smart contract interface that is instantiated, in contrast to the smart
contract implementation that is installed. To reinforce this idea;
installing a smart contract shows how we think of it being physically hosted
on a peer, whereas instantiating a smart contract shows how we consider it
logically hosted by the channel.

Endorsement policy

The most important piece of additional information supplied at instantiation is
an endorsement policy. It describes which
organizations must approve transactions before they will be accepted by other
organizations onto their copy of the ledger. In our sample network, transactions
can be only be accepted onto ledger L1 if R1 or R2 endorse them.

The act of instantiation places the endorsement policy in channel configuration
CC1; it enables it to be accessed by any member of the channel. You can read
more about endorsement policies in the
transaction flow topic.

Invoking a smart contract

Once a smart contract has been installed on a peer node and instantiated on a
channel it can be invoked by a client application.
Client applications do this by sending transaction proposals to peers owned by
the organizations specified by the smart contract endorsement policy. The
transaction proposal serves as input to the smart contract, which uses it to
generate an endorsed transaction response, which is returned by the peer node to
the client application.

It’s these transactions responses that are packaged together with the
transaction proposal to form a fully endorsed transaction, which can be
distributed to the entire network. We’ll look at this in more detail later For
now, it’s enough to understand how applications invoke smart contracts to
generate endorsed transactions.

By this stage in network development we can see that organization R1 is fully
participating in the network. Its applications – starting with A1 – can access
the ledger L1 via smart contract S5, to generate transactions that will be
endorsed by R1, and therefore accepted onto the ledger because they conform to
the endorsement policy.

Network completed

Recall that our objective was to create a channel for consortium X1 –
organizations R1 and R2. This next phase of network development sees
organization R2 add its infrastructure to the network.

Let’s see how the network has evolved:

[image: network.grow]

The network has grown through the addition of infrastructure from
organization R2. Specifically, R2 has added peer node P2, which hosts a copy of
ledger L1, and chaincode S5. P2 has also joined channel C1, as has application
A2. A2 and P2 are identified using certificates from CA2. All of this means
that both applications A1 and A2 can invoke S5 on C1 either using peer node P1
or P2.

We can see that organization R2 has added a peer node, P2, on channel C1. P2
also hosts a copy of the ledger L1 and smart contract S5. We can see that R2 has
also added client application A2 which can connect to the network via channel
C1. To achieve this, an administrator in organization R2 has created peer node
P2 and joined it to channel C1, in the same way as an administrator in R1.

We have created our first operational network! At this stage in network
development, we have a channel in which organizations R1 and R2 can fully
transact with each other. Specifically, this means that applications A1 and A2
can generate transactions using smart contract S5 and ledger L1 on channel C1.

Generating and accepting transactions

In contrast to peer nodes, which always host a copy of the ledger, we see that
there are two different kinds of peer nodes; those which host smart contracts
and those which do not. In our network, every peer hosts a copy of the smart
contract, but in larger networks, there will be many more peer nodes that do not
host a copy of the smart contract. A peer can only run a smart contract if it
is installed on it, but it can know about the interface of a smart contract by
being connected to a channel.

You should not think of peer nodes which do not have smart contracts installed
as being somehow inferior. It’s more the case that peer nodes with smart
contracts have a special power – to help generate transactions. Note that
all peer nodes can validate and subsequently accept or reject
transactions onto their copy of the ledger L1. However, only peer nodes with a
smart contract installed can take part in the process of transaction
endorsement which is central to the generation of valid transactions.

We don’t need to worry about the exact details of how transactions are
generated, distributed and accepted in this topic – it is sufficient to
understand that we have a blockchain network where organizations R1 and R2 can
share information and processes as ledger-captured transactions. We’ll learn a
lot more about transactions, ledgers, smart contracts in other topics.

Types of peers

In Hyperledger Fabric, while all peers are the same, they can assume multiple
roles depending on how the network is configured. We now have enough
understanding of a typical network topology to describe these roles.

	Committing peer. Every peer node in a
channel is a committing peer. It receives blocks of generated transactions,
which are subsequently validated before they are committed to the peer
node’s copy of the ledger as an append operation.

	Endorsing peer. Every peer with a smart
contract can be an endorsing peer if it has a smart contract installed.
However, to actually be an endorsing peer, the smart contract on the peer
must be used by a client application to generate a digitally signed
transaction response. The term endorsing peer is an explicit reference to
this fact.

An endorsement policy for a smart contract identifies the
organizations whose peer should digitally sign a generated transaction
before it can be accepted onto a committing peer’s copy of the ledger.

These are the two major types of peer; there are two other roles a peer can
adopt:

	Leader peer. When an organization has
multiple peers in a channel, a leader peer is a node which takes
responsibility for distributing transactions from the orderer to the other
committing peers in the organization. A peer can choose to participate in
static or dynamic leadership selection.

It is helpful, therefore to think of two sets of peers from leadership
perspective – those that have static leader selection, and those with
dynamic leader selection. For the static set, zero or more peers can be
configured as leaders. For the dynamic set, one peer will be elected leader
by the set. Moreover, in the dynamic set, if a leader peer fails, then the
remaining peers will re-elect a leader.

It means that an organization’s peers can have one or more leaders connected
to the ordering service. This can help to improve resilience and scalability
in large networks which process high volumes of transactions.

	Anchor peer. If a peer needs to
communicate with a peer in another organization, then it can use one of the
anchor peers defined in the channel configuration for that organization.
An organization can have zero or more anchor peers defined for it, and an
anchor peer can help with many different cross-organization communication
scenarios.

Note that a peer can be a committing peer, endorsing peer, leader peer and
anchor peer all at the same time! Only the anchor peer is optional – for all
practical purposes there will always be a leader peer and at least one
endorsing peer and at least one committing peer.

Install not instantiate

In a similar way to organization R1, organization R2 must install smart contract
S5 onto its peer node, P2. That’s obvious – if applications A1 or A2 wish to
use S5 on peer node P2 to generate transactions, it must first be present;
installation is the mechanism by which this happens. At this point, peer node P2
has a physical copy of the smart contract and the ledger; like P1, it can both
generate and accept transactions onto its copy of ledger L1.

However, in contrast to organization R1, organization R2 does not need to
instantiate smart contract S5 on channel C1. That’s because S5 has already been
instantiated on the channel by organization R1. Instantiation only needs to
happen once; any peer which subsequently joins the channel knows that smart
contract S5 is available to the channel. This fact reflects the fact that ledger
L1 and smart contract really exist in a physical manner on the peer nodes, and a
logical manner on the channel; R2 is merely adding another physical instance of
L1 and S5 to the network.

In our network, we can see that channel C1 connects two client applications, two
peer nodes and an ordering service. Since there is only one channel, there is
only one logical ledger with which these components interact. Peer nodes P1
and P2 have identical copies of ledger L1. Copies of smart contract S5 will
usually be identically implemented using the same programming language, but
if not, they must be semantically equivalent.

We can see that the careful addition of peers to the network can help support
increased throughput, stability, and resilience. For example, more peers in a
network will allow more applications to connect to it; and multiple peers in an
organization will provide extra resilience in the case of planned or unplanned
outages.

It all means that it is possible to configure sophisticated topologies which
support a variety of operational goals – there is no theoretical limit to how
big a network can get. Moreover, the technical mechanism by which peers within
an individual organization efficiently discover and communicate with each other –
the gossip protocol – will accommodate a
large number of peer nodes in support of such topologies.

The careful use of network and channel policies allow even large networks to be
well-governed. Organizations are free to add peer nodes to the network so long
as they conform to the policies agreed by the network. Network and channel
policies create the balance between autonomy and control which characterizes a
de-centralized network.

Simplifying the visual vocabulary

We’re now going to simplify the visual vocabulary used to represent our sample
blockchain network. As the size of the network grows, the lines initially used
to help us understand channels will become cumbersome. Imagine how complicated
our diagram would be if we added another peer or client application, or another
channel?

That’s what we’re going to do in a minute, so before we do, let’s
simplify the visual vocabulary. Here’s a simplified representation of the network we’ve developed so far:

[image: network.vocabulary]

The diagram shows the facts relating to channel C1 in the network N as follows:
Client applications A1 and A2 can use channel C1 for communication with peers
P1 and P2, and orderer O4. Peer nodes P1 and P2 can use the communication
services of channel C1. Ordering service O4 can make use of the communication
services of channel C1. Channel configuration CC1 applies to channel C1.

Note that the network diagram has been simplified by replacing channel lines
with connection points, shown as blue circles which include the channel number.
No information has been lost. This representation is more scalable because it
eliminates crossing lines. This allows us to more clearly represent larger
networks. We’ve achieved this simplification by focusing on the connection
points between components and a channel, rather than the channel itself.

Adding another consortium definition

In this next phase of network development, we introduce organization R3. We’re
going to give organizations R2 and R3 a separate application channel which
allows them to transact with each other. This application channel will be
completely separate to that previously defined, so that R2 and R3 transactions
can be kept private to them.

Let’s return to the network level and define a new consortium, X2, for R2 and
R3:

[image: network.consortium2]

A network administrator from organization R1 or R4 has added a new consortium
definition, X2, which includes organizations R2 and R3. This will be used to
define a new channel for X2.

Notice that the network now has two consortia defined: X1 for organizations R1
and R2 and X2 for organizations R2 and R3. Consortium X2 has been introduced in
order to be able to create a new channel for R2 and R3.

A new channel can only be created by those organizations specifically identified
in the network configuration policy, NC4, as having the appropriate rights to do
so, i.e. R1 or R4. This is an example of a policy which separates organizations
that can manage resources at the network level versus those who can manage
resources at the channel level. Seeing these policies at work helps us
understand why Hyperledger Fabric has a sophisticated tiered policy
structure.

In practice, consortium definition X2 has been added to the network
configuration NC4. We discuss the exact mechanics of this operation elsewhere in
the documentation.

Adding a new channel

Let’s now use this new consortium definition, X2, to create a new channel, C2.
To help reinforce your understanding of the simpler channel notation, we’ve used
both visual styles – channel C1 is represented with blue circular end points,
whereas channel C2 is represented with red connecting lines:

[image: network.channel2]

A new channel C2 has been created for R2 and R3 using consortium definition X2.
The channel has a channel configuration CC2, completely separate to the network
configuration NC4, and the channel configuration CC1. Channel C2 is managed by
R2 and R3 who have equal rights over C2 as defined by a policy in CC2. R1 and
R4 have no rights defined in CC2 whatsoever.

The channel C2 provides a private communications mechanism for the consortium
X2. Again, notice how organizations united in a consortium are what form
channels. The channel configuration CC2 now contains the policies that govern
channel resources, assigning management rights to organizations R2 and R3 over
channel C2. It is managed exclusively by R2 and R3; R1 and R4 have no power in
channel C2. For example, channel configuration CC2 can subsequently be updated
to add organizations to support network growth, but this can only be done by R2
or R3.

Note how the channel configurations CC1 and CC2 remain completely separate from
each other, and completely separate from the network configuration, NC4. Again
we’re seeing the de-centralized nature of a Hyperledger Fabric network; once
channel C2 has been created, it is managed by organizations R2 and R3
independently to other network elements. Channel policies always remain separate
from each other and can only be changed by the organizations authorized to do so
in the channel.

As the network and channels evolve, so will the network and channel
configurations. There is a process by which this is accomplished in a controlled
manner – involving configuration transactions which capture the change to these
configurations. Every configuration change results in a new configuration block
transaction being generated, and later in this topic,
we’ll see how these blocks are validated and accepted to create updated network
and channel configurations respectively.

Network and channel configurations

Throughout our sample network, we see the importance of network and channel
configurations. These configurations are important because they encapsulate the
policies agreed by the network members, which provide a shared reference for
controlling access to network resources. Network and channel configurations also
contain facts about the network and channel composition, such as the name of
consortia and its organizations.

For example, when the network is first formed using the ordering service node
O4, its behaviour is governed by the network configuration NC4. The initial
configuration of NC4 only contains policies that permit organization R4 to
manage network resources. NC4 is subsequently updated to also allow R1 to manage
network resources. Once this change is made, any administrator from organization
R1 or R4 that connects to O4 will have network management rights because that is
what the policy in the network configuration NC4 permits. Internally, each node
in the ordering service records each channel in the network configuration, so
that there is a record of each channel created, at the network level.

It means that although ordering service node O4 is the actor that created
consortia X1 and X2 and channels C1 and C2, the intelligence of the network
is contained in the network configuration NC4 that O4 is obeying. As long as O4
behaves as a good actor, and correctly implements the policies defined in NC4
whenever it is dealing with network resources, our network will behave as all
organizations have agreed. In many ways NC4 can be considered more important
than O4 because, ultimately, it controls network access.

The same principles apply for channel configurations with respect to peers. In
our network, P1 and P2 are likewise good actors. When peer nodes P1 and P2 are
interacting with client applications A1 or A2 they are each using the policies
defined within channel configuration CC1 to control access to the channel C1
resources.

For example, if A1 wants to access the smart contract chaincode S5 on peer nodes
P1 or P2, each peer node uses its copy of CC1 to determine the operations that
A1 can perform. For example, A1 may be permitted to read or write data from the
ledger L1 according to policies defined in CC1. We’ll see later the same pattern
for actors in channel and its channel configuration CC2. Again, we can see that
while the peers and applications are critical actors in the network, their
behaviour in a channel is dictated more by the channel configuration policy than
any other factor.

Finally, it is helpful to understand how network and channel configurations are
physically realized. We can see that network and channel configurations are
logically singular – there is one for the network, and one for each channel.
This is important; every component that accesses the network or the channel must
have a shared understanding of the permissions granted to different
organizations.

Even though there is logically a single configuration, it is actually replicated
and kept consistent by every node that forms the network or channel. For
example, in our network peer nodes P1 and P2 both have a copy of channel
configuration CC1, and by the time the network is fully complete, peer nodes P2
and P3 will both have a copy of channel configuration CC2. Similarly ordering
service node O4 has a copy of the network configuration, but in a multi-node
configuration, every ordering service node will have its
own copy of the network configuration.

Both network and channel configurations are kept consistent using the same
blockchain technology that is used for user transactions – but for
configuration transactions. To change a network or channel configuration, an
administrator must submit a configuration transaction to change the network or
channel configuration. It must be signed by the organizations identified in the
appropriate policy as being responsible for configuration change. This policy is
called the mod_policy and we’ll discuss it later.

Indeed, the ordering service nodes operate a mini-blockchain, connected via the
system channel we mentioned earlier. Using the system channel ordering
service nodes distribute network configuration transactions. These transactions
are used to co-operatively maintain a consistent copy of the network
configuration at each ordering service node. In a similar way, peer nodes in an
application channel can distribute channel configuration transactions.
Likewise, these transactions are used to maintain a consistent copy of the
channel configuration at each peer node.

This balance between objects that are logically singular, by being physically
distributed is a common pattern in Hyperledger Fabric. Objects like network
configurations, that are logically single, turn out to be physically replicated
among a set of ordering services nodes for example. We also see it with channel
configurations, ledgers, and to some extent smart contracts which are installed
in multiple places but whose interfaces exist logically at the channel level.
It’s a pattern you see repeated time and again in Hyperledger Fabric, and
enables Hyperledger Fabric to be both de-centralized and yet manageable at the
same time.

Adding another peer

Now that organization R3 is able to fully participate in channel C2, let’s add
its infrastructure components to the channel. Rather than do this one component
at a time, we’re going to add a peer, its local copy of a ledger, a smart
contract and a client application all at once!

Let’s see the network with organization R3’s components added:

[image: network.peer2]

The diagram shows the facts relating to channels C1 and C2 in the network N as
follows: Client applications A1 and A2 can use channel C1 for communication
with peers P1 and P2, and ordering service O4; client applications A3 can use
channel C2 for communication with peer P3 and ordering service O4. Ordering
service O4 can make use of the communication services of channels C1 and C2.
Channel configuration CC1 applies to channel C1, CC2 applies to channel C2.

First of all, notice that because peer node P3 is connected to channel C2, it
has a different ledger – L2 – to those peer nodes using channel C1. The
ledger L2 is effectively scoped to channel C2. The ledger L1 is completely
separate; it is scoped to channel C1. This makes sense – the purpose of the
channel C2 is to provide private communications between the members of the
consortium X2, and the ledger L2 is the private store for their transactions.

In a similar way, the smart contract S6, installed on peer node P3, and
instantiated on channel C2, is used to provide controlled access to ledger L2.
Application A3 can now use channel C2 to invoke the services provided by smart
contract S6 to generate transactions that can be accepted onto every copy of the
ledger L2 in the network.

At this point in time, we have a single network that has two completely separate
channels defined within it. These channels provide independently managed
facilities for organizations to transact with each other. Again, this is
de-centralization at work; we have a balance between control and autonomy. This
is achieved through policies which are applied to channels which are controlled
by, and affect, different organizations.

Joining a peer to multiple channels

In this final stage of network development, let’s return our focus to
organization R2. We can exploit the fact that R2 is a member of both consortia
X1 and X2 by joining it to multiple channels:

[image: network.multichannel]

The diagram shows the facts relating to channels C1 and C2 in the network N as
follows: Client applications A1 can use channel C1 for communication with peers
P1 and P2, and ordering service O4; client application A2 can use channel C1
for communication with peers P1 and P2 and channel C2 for communication with
peers P2 and P3 and ordering service O4; client application A3 can use channel
C2 for communication with peer P3 and P2 and ordering service O4. Ordering service O4
can make use of the communication services of channels C1 and C2. Channel
configuration CC1 applies to channel C1, CC2 applies to channel C2.

We can see that R2 is a special organization in the network, because it is the
only organization that is a member of two application channels! It is able to
transact with organization R1 on channel C1, while at the same time it can also
transact with organization R3 on a different channel, C2.

Notice how peer node P2 has smart contract S5 installed for channel C1 and smart
contract S6 installed for channel C2. Peer node P2 is a full member of both
channels at the same time via different smart contracts for different ledgers.

This is a very powerful concept – channels provide both a mechanism for the
separation of organizations, and a mechanism for collaboration between
organizations. All the while, this infrastructure is provided by, and shared
between, a set of independent organizations.

It is also important to note that peer node P2’s behaviour is controlled very
differently depending upon the channel in which it is transacting. Specifically,
the policies contained in channel configuration CC1 dictate the operations
available to P2 when it is transacting in channel C1, whereas it is the policies
in channel configuration CC2 that control P2’s behaviour in channel C2.

Again, this is desirable – R2 and R1 agreed the rules for channel C1, whereas
R2 and R3 agreed the rules for channel C2. These rules were captured in the
respective channel policies – they can and must be used by every
component in a channel to enforce correct behaviour, as agreed.

Similarly, we can see that client application A2 is now able to transact on
channels C1 and C2. And likewise, it too will be governed by the policies in
the appropriate channel configurations. As an aside, note that client
application A2 and peer node P2 are using a mixed visual vocabulary – both
lines and connections. You can see that they are equivalent; they are visual
synonyms.

The ordering service

The observant reader may notice that the ordering service node appears to be a
centralized component; it was used to create the network initially, and connects
to every channel in the network. Even though we added R1 and R4 to the network
configuration policy NC4 which controls the orderer, the node was running on
R4’s infrastructure. In a world of de-centralization, this looks wrong!

Don’t worry! Our example network showed the simplest ordering service
configuration to help you understand the idea of a network administration point.
In fact, the ordering service can itself too be completely de-centralized! We
mentioned earlier that an ordering service could be comprised of many individual
nodes owned by different organizations, so let’s see how that would be done in
our sample network.

Let’s have a look at a more realistic ordering service node configuration:

[image: network.finalnetwork2]

A multi-organization ordering service. The ordering service comprises ordering
service nodes O1 and O4. O1 is provided by organization R1 and node O4 is
provided by organization R4. The network configuration NC4 defines network
resource permissions for actors from both organizations R1 and R4.

We can see that this ordering service completely de-centralized – it runs in
organization R1 and it runs in organization R4. The network configuration
policy, NC4, permits R1 and R4 equal rights over network resources. Client
applications and peer nodes from organizations R1 and R4 can manage network
resources by connecting to either node O1 or node O4, because both nodes behave
the same way, as defined by the policies in network configuration NC4. In
practice, actors from a particular organization tend to use infrastructure
provided by their home organization, but that’s certainly not always the case.

De-centralized transaction distribution

As well as being the management point for the network, the ordering service also
provides another key facility – it is the distribution point for transactions.
The ordering service is the component which gathers endorsed transactions
from applications and orders them into transaction blocks, which are
subsequently distributed to every peer node in the channel. At each of these
committing peers, transactions are recorded, whether valid or invalid, and their
local copy of the ledger updated appropriately.

Notice how the ordering service node O4 performs a very different role for the
channel C1 than it does for the network N. When acting at the channel level,
O4’s role is to gather transactions and distribute blocks inside channel C1. It
does this according to the policies defined in channel configuration CC1. In
contrast, when acting at the network level, O4’s role is to provide a management
point for network resources according to the policies defined in network
configuration NC4. Notice again how these roles are defined by different
policies within the channel and network configurations respectively. This should
reinforce to you the importance of declarative policy based configuration in
Hyperledger Fabric. Policies both define, and are used to control, the agreed
behaviours by each and every member of a consortium.

We can see that the ordering service, like the other components in Hyperledger
Fabric, is a fully de-centralized component. Whether acting as a network
management point, or as a distributor of blocks in a channel, its nodes can be
distributed as required throughout the multiple organizations in a network.

Changing policy

Throughout our exploration of the sample network, we’ve seen the importance of
the policies to control the behaviour of the actors in the system. We’ve only
discussed a few of the available policies, but there are many that can be
declaratively defined to control every aspect of behaviour. These individual
policies are discussed elsewhere in the documentation.

Most importantly of all, Hyperledger Fabric provides a uniquely powerful policy
that allows network and channel administrators to manage policy change itself!
The underlying philosophy is that policy change is a constant, whether it occurs
within or between organizations, or whether it is imposed by external
regulators. For example, new organizations may join a channel, or existing
organizations may have their permissions increased or decreased. Let’s
investigate a little more how change policy is implemented in Hyperledger
Fabric.

They key point of understanding is that policy change is managed by a
policy within the policy itself. The modification policy, or
mod_policy for short, is a first class policy within a network or channel
configuration that manages change. Let’s give two brief examples of how we’ve
already used mod_policy to manage change in our network!

The first example was when the network was initially set up. At this time, only
organization R4 was allowed to manage the network. In practice, this was
achieved by making R4 the only organization defined in the network configuration
NC4 with permissions to network resources. Moreover, the mod_policy for NC4
only mentioned organization R4 – only R4 was allowed to change this
configuration.

We then evolved the network N to also allow organization R1 to administer the
network. R4 did this by adding R1 to the policies for channel creation and
consortium creation. Because of this change, R1 was able to define the
consortia X1 and X2, and create the channels C1 and C2. R1 had equal
administrative rights over the channel and consortium policies in the network
configuration.

R4 however, could grant even more power over the network configuration to R1! R4
could add R1 to the mod_policy such that R1 would be able to manage change of
the network policy too.

This second power is much more powerful than the first, because now R1 now has
full control over the network configuration NC4! This means that R1 can, in
principle remove R4’s management rights from the network. In practice, R4 would
configure the mod_policy such that R4 would need to also approve the change, or
that all organizations in the mod_policy would have to approve the change.
There’s lots of flexibility to make the mod_policy as sophisticated as it needs
to be to support whatever change process is required.

This is mod_policy at work – it has allowed the graceful evolution of a basic
configuration into a sophisticated one. All the time this has occurred with the
agreement of all organization involved. The mod_policy behaves like every other
policy inside a network or channel configuration; it defines a set of
organizations that are allowed to change the mod_policy itself.

We’ve only scratched the surface of the power of policies and mod_policy in
particular in this subsection. It is discussed at much more length in the policy
topic, but for now let’s return to our finished network!

Network fully formed

Let’s recap what our network looks like using a consistent visual vocabulary.
We’ve re-organized it slightly using our more compact visual syntax, because it
better accommodates larger topologies:

[image: network.finalnetwork2]

In this diagram we see that the Fabric blockchain network consists of two
application channels and one ordering channel. The organizations R1 and R4 are
responsible for the ordering channel, R1 and R2 are responsible for the blue
application channel while R2 and R3 are responsible for the red application
channel. Client applications A1 is an element of organization R1, and CA1 is
its certificate authority. Note that peer P2 of organization R2 can use the
communication facilities of the blue and the red application channel. Each
application channel has its own channel configuration, in this case CC1 and
CC2. The channel configuration of the system channel is part of the network
configuration, NC4.

We’re at the end of our conceptual journey to build a sample Hyperledger Fabric
blockchain network. We’ve created a four organization network with two channels
and three peer nodes, with two smart contracts and an ordering service. It is
supported by four certificate authorities. It provides ledger and smart contract
services to three client applications, who can interact with it via the two
channels. Take a moment to look through the details of the network in the
diagram, and feel free to read back through the topic to reinforce your
knowledge, or go to a more detailed topic.

Summary of network components

Here’s a quick summary of the network components we’ve discussed:

	Ledger. One per channel. Comprised of the
Blockchain and
the World state

	Smart contract (aka chaincode)

	Peer nodes

	Ordering service

	Channel

	Certificate Authority

Network summary

In this topic, we’ve seen how different organizations share their infrastructure
to provide an integrated Hyperledger Fabric blockchain network. We’ve seen how
the collective infrastructure can be organized into channels that provide
private communications mechanisms that are independently managed. We’ve seen
how actors such as client applications, administrators, peers and orderers are
identified as being from different organizations by their use of certificates
from their respective certificate authorities. And in turn, we’ve seen the
importance of policy to define the agreed permissions that these organizational
actors have over network and channel resources.

 Identity

Identity

What is an Identity?

The different actors in a blockchain network include peers, orderers, client
applications, administrators and more. Each of these actors — active elements
inside or outside a network able to consume services — has a digital identity
encapsulated in an X.509 digital certificate. These identities really matter
because they determine the exact permissions over resources and access to
information that actors have in a blockchain network.

A digital identity furthermore has some additional attributes that Fabric uses
to determine permissions, and it gives the union of an identity and the associated
attributes a special name — principal. Principals are just like userIDs or
groupIDs, but a little more flexible because they can include a wide range of
properties of an actor’s identity, such as the actor’s organization, organizational
unit, role or even the actor’s specific identity. When we talk about principals,
they are the properties which determine their permissions.

For an identity to be verifiable, it must come from a trusted authority.
A membership service provider
(MSP) is how this is achieved in Fabric. More specifically, an MSP is a component
that defines the rules that govern the valid identities for this organization.
The default MSP implementation in Fabric uses X.509 certificates as identities,
adopting a traditional Public Key Infrastructure (PKI) hierarchical model (more
on PKI later).

A Simple Scenario to Explain the Use of an Identity

Imagine that you visit a supermarket to buy some groceries. At the checkout you see
a sign that says that only Visa, Mastercard and AMEX cards are accepted. If you try to
pay with a different card — let’s call it an “ImagineCard” — it doesn’t matter whether
the card is authentic and you have sufficient funds in your account. It will be not be
accepted.

[image: Scenario]

Having a valid credit card is not enough — it must also be accepted by the store! PKIs
and MSPs work together in the same way — a PKI provides a list of identities,
and an MSP says which of these are members of a given organization that participates in
the network.

PKI certificate authorities and MSPs provide a similar combination of functionalities.
A PKI is like a card provider — it dispenses many different types of verifiable
identities. An MSP, on the other hand, is like the list of card providers accepted
by the store, determining which identities are the trusted members (actors)
of the store payment network. MSPs turn verifiable identities into the members
of a blockchain network.

Let’s drill into these concepts in a little more detail.

What are PKIs?

A public key infrastructure (PKI) is a collection of internet technologies that provides
secure communications in a network. It’s PKI that puts the S in HTTPS — and if
you’re reading this documentation on a web browser, you’re probably using a PKI to make
sure it comes from a verified source.

[image: PKI]

The elements of Public Key Infrastructure (PKI). A PKI is comprised of Certificate
Authorities who issue digital certificates to parties (e.g., users of a service, service
provider), who then use them to authenticate themselves in the messages they exchange
with their environment. A CA’s Certificate Revocation List (CRL) constitutes a reference
for the certificates that are no longer valid. Revocation of a certificate can happen for
a number of reasons. For example, a certificate may be revoked because the cryptographic
private material associated to the certificate has been exposed.

Although a blockchain network is more than a communications network, it relies on the
PKI standard to ensure secure communication between various network participants, and to
ensure that messages posted on the blockchain are properly authenticated.
It’s therefore important to understand the basics of PKI and then why MSPs are
so important.

There are four key elements to PKI:

	Digital Certificates

	Public and Private Keys

	Certificate Authorities

	Certificate Revocation Lists

Let’s quickly describe these PKI basics, and if you want to know more details,
Wikipedia [https://en.wikipedia.org/wiki/Public_key_infrastructure] is a good
place to start.

Digital Certificates

A digital certificate is a document which holds a set of attributes relating to
the holder of the certificate. The most common type of certificate is the one
compliant with the X.509 standard [https://en.wikipedia.org/wiki/X.509], which
allows the encoding of a party’s identifying details in its structure.

For example, Mary Morris in the Manufacturing Division of Mitchell Cars in Detroit,
Michigan might have a digital certificate with a SUBJECT attribute of C=US,
ST=Michigan, L=Detroit, O=Mitchell Cars, OU=Manufacturing, CN=Mary Morris /UID=123456.
Mary’s certificate is similar to her government identity card — it provides
information about Mary which she can use to prove key facts about her. There are
many other attributes in an X.509 certificate, but let’s concentrate on just these
for now.

[image: DigitalCertificate]

A digital certificate describing a party called Mary Morris. Mary is the SUBJECT of the
certificate, and the highlighted SUBJECT text shows key facts about Mary. The
certificate also holds many more pieces of information, as you can see. Most importantly,
Mary’s public key is distributed within her certificate, whereas her private signing key
is not. This signing key must be kept private.

What is important is that all of Mary’s attributes can be recorded using a mathematical
technique called cryptography (literally, “secret writing”) so that tampering will
invalidate the certificate. Cryptography allows Mary to present her certificate to others
to prove her identity so long as the other party trusts the certificate issuer, known
as a Certificate Authority (CA). As long as the CA keeps certain cryptographic
information securely (meaning, its own private signing key), anyone reading the
certificate can be sure that the information about Mary has not been tampered with —
it will always have those particular attributes for Mary Morris. Think of Mary’s X.509
certificate as a digital identity card that is impossible to change.

Authentication, Public keys, and Private Keys

Authentication and message integrity are important concepts in secure
communications. Authentication requires that parties who exchange messages
are assured of the identity that created a specific message. For a message to have
“integrity” means that cannot have been modified during its transmission.
For example, you might want to be sure you’re communicating with the real Mary
Morris rather than an impersonator. Or if Mary has sent you a message, you might want
to be sure that it hasn’t been tampered with by anyone else during transmission.

Traditional authentication mechanisms rely on digital signatures that,
as the name suggests, allow a party to digitally sign its messages. Digital
signatures also provide guarantees on the integrity of the signed message.

Technically speaking, digital signature mechanisms require each party to
hold two cryptographically connected keys: a public key that is made widely available
and acts as authentication anchor, and a private key that is used to produce
digital signatures on messages. Recipients of digitally signed messages can verify
the origin and integrity of a received message by checking that the
attached signature is valid under the public key of the expected sender.

The unique relationship between a private key and the respective public key is the
cryptographic magic that makes secure communications possible. The unique
mathematical relationship between the keys is such that the private key can be used to
produce a signature on a message that only the corresponding public key can match, and
only on the same message.

[image: AuthenticationKeys]

In the example above, Mary uses her private key to sign the message. The signature
can be verified by anyone who sees the signed message using her public key.

Certificate Authorities

As you’ve seen, an actor or a node is able to participate in the blockchain network,
via the means of a digital identity issued for it by an authority trusted by the
system. In the most common case, digital identities (or simply identities) have
the form of cryptographically validated digital certificates that comply with X.509
standard and are issued by a Certificate Authority (CA).

CAs are a common part of internet security protocols, and you’ve probably heard of
some of the more popular ones: Symantec (originally Verisign), GeoTrust, DigiCert,
GoDaddy, and Comodo, among others.

[image: CertificateAuthorities]

A Certificate Authority dispenses certificates to different actors. These certificates
are digitally signed by the CA and bind together the actor with the actor’s public key
(and optionally with a comprehensive list of properties). As a result, if one trusts
the CA (and knows its public key), it can trust that the specific actor is bound
to the public key included in the certificate, and owns the included attributes,
by validating the CA’s signature on the actor’s certificate.

Certificates can be widely disseminated, as they do not include either the
actors’ nor the CA’s private keys. As such they can be used as anchor of
trusts for authenticating messages coming from different actors.

CAs also have a certificate, which they make widely available. This allows the
consumers of identities issued by a given CA to verify them by checking that the
certificate could only have been generated by the holder of the corresponding
private key (the CA).

In a blockchain setting, every actor who wishes to interact with the network
needs an identity. In this setting, you might say that one or more CAs can be used
to define the members of an organization’s from a digital perspective. It’s
the CA that provides the basis for an organization’s actors to have a verifiable
digital identity.

Root CAs, Intermediate CAs and Chains of Trust

CAs come in two flavors: Root CAs and Intermediate CAs. Because Root CAs
(Symantec, Geotrust, etc) have to securely distribute hundreds of millions
of certificates to internet users, it makes sense to spread this process out
across what are called Intermediate CAs. These Intermediate CAs have their
certificates issued by the root CA or another intermediate authority, allowing
the establishment of a “chain of trust” for any certificate that is issued by
any CA in the chain. This ability to track back to the Root CA not only allows
the function of CAs to scale while still providing security — allowing
organizations that consume certificates to use Intermediate CAs with confidence
— it limits the exposure of the Root CA, which, if compromised, would endanger
the entire chain of trust. If an Intermediate CA is compromised, on the other
hand, there will be a much smaller exposure.

[image: ChainOfTrust]

A chain of trust is established between a Root CA and a set of Intermediate CAs
as long as the issuing CA for the certificate of each of these Intermediate CAs is
either the Root CA itself or has a chain of trust to the Root CA.

Intermediate CAs provide a huge amount of flexibility when it comes to the issuance
of certificates across multiple organizations, and that’s very helpful in a
permissioned blockchain system (like Fabric). For example, you’ll see that
different organizations may use different Root CAs, or the same Root CA with
different Intermediate CAs — it really does depend on the needs of the network.

Fabric CA

It’s because CAs are so important that Fabric provides a built-in CA component to
allow you to create CAs in the blockchain networks you form. This component — known
as Fabric CA is a private root CA provider capable of managing digital identities of
Fabric participants that have the form of X.509 certificates.
Because Fabric CA is a custom CA targeting the Root CA needs of Fabric,
it is inherently not capable of providing SSL certificates for general/automatic use
in browsers. However, because some CA must be used to manage identity
(even in a test environment), Fabric CA can be used to provide and manage
certificates. It is also possible — and fully appropriate — to use a
public/commerical root or intermediate CA to provide identification.

If you’re interested, you can read a lot more about Fabric CA
in the CA documentation section [http://hyperledger-fabric-ca.readthedocs.io/].

Certificate Revocation Lists

A Certificate Revocation List (CRL) is easy to understand — it’s just a list of
references to certificates that a CA knows to be revoked for one reason or another.
If you recall the store scenario, a CRL would be like a list of stolen credit cards.

When a third party wants to verify another party’s identity, it first checks the
issuing CA’s CRL to make sure that the certificate has not been revoked. A
verifier doesn’t have to check the CRL, but if they don’t they run the risk of
accepting a compromised identity.

[image: CRL]

Using a CRL to check that a certificate is still valid. If an impersonator tries to
pass a compromised digital certificate to a validating party, it can be first
checked against the issuing CA’s CRL to make sure it’s not listed as no longer valid.

Note that a certificate being revoked is very different from a certificate expiring.
Revoked certificates have not expired — they are, by every other measure, a fully
valid certificate. For more in-depth information about CRLs, click here [https://hyperledger-fabric-ca.readthedocs.io/en/latest/users-guide.html#generating-a-crl-certificate-revocation-list].

Now that you’ve seen how a PKI can provide verifiable identities through a chain of
trust, the next step is to see how these identities can be used to represent the
trusted members of a blockchain network. That’s where a Membership Service Provider
(MSP) comes into play — it identifies the parties who are the members of a
given organization in the blockchain network.

To learn more about membership, check out the conceptual documentation on MSPs.

 Membership

Membership

If you’ve read through the documentation on identity
you’ve seen how a PKI can provide verifiable identities through a chain
of trust. Now let’s see how these identities can be used to represent the
trusted members of a blockchain network.

This is where a Membership Service Provider (MSP) comes into play —
it identifies which Root CAs and Intermediate CAs are trusted to define
the members of a trust domain, e.g., an organization, either by listing the
identities of their members, or by identifying which CAs are authorized to
issue valid identities for their members, or — as will usually be the case —
through a combination of both.

The power of an MSP goes beyond simply listing who is a network participant or
member of a channel. An MSP can identify specific roles an actor might play either
within the scope of the organization the MSP represents (e.g., admins, or as members
of a sub-organization group), and sets the basis for defining access privileges
in the context of a network and channel (e.g., channel admins, readers, writers).

The configuration of an MSP is advertised to all the channels where members of
the corresponding organization participate (in the form of a channel MSP). In
addition to the channel MSP, peers, orderers, and clients also maintain a local MSP
to authenticate member messages outside the context of a channel and to define the
permissions over a particular component (who has the ability to install chaincode on
a peer, for example).

In addition, an MSP can allow for the identification of a list of identities that
have been revoked — as discussed in the Identity
documentation — but we will talk about how that process also extends to an MSP.

We’ll talk more about local and channel MSPs in a moment. For now let’s see what
MSPs do in general.

Mapping MSPs to Organizations

An organization is a managed group of members. This can be something as big
as a multinational corporation or a small as a flower shop. What’s most
important about organizations (or orgs) is that they manage their
members under a single MSP. Note that this is different from the organization
concept defined in an X.509 certificate, which we’ll talk about later.

The exclusive relationship between an organization and its MSP makes it sensible to
name the MSP after the organization, a convention you’ll find adopted in most policy
configurations. For example, organization ORG1 would likely have an MSP called
something like ORG1-MSP. In some cases an organization may require multiple
membership groups — for example, where channels are used to perform very different
business functions between organizations. In these cases it makes sense to have
multiple MSPs and name them accordingly, e.g., ORG2-MSP-NATIONAL and
ORG2-MSP-GOVERNMENT, reflecting the different membership roots of trust within
ORG2 in the NATIONAL sales channel compared to the GOVERNMENT regulatory
channel.

[image: MSP1]

Two different MSP configurations for an organization. The first configuration shows
the typical relationship between an MSP and an organization — a single MSP defines
the list of members of an organization. In the second configuration, different MSPs
are used to represent different organizational groups with national, international,
and governmental affiliation.

Organizational Units and MSPs

An organization is often divided up into multiple organizational units (OUs), each
of which has a certain set of responsibilities. For example, the ORG1
organization might have both ORG1-MANUFACTURING and ORG1-DISTRIBUTION OUs
to reflect these separate lines of business. When a CA issues X.509 certificates,
the OU field in the certificate specifies the line of business to which the
identity belongs.

We’ll see later how OUs can be helpful to control the parts of an organization who
are considered to be the members of a blockchain network. For example, only
identities from the ORG1-MANUFACTURING OU might be able to access a channel,
whereas ORG1-DISTRIBUTION cannot.

Finally, though this is a slight misuse of OUs, they can sometimes be used by
different organizations in a consortium to distinguish each other. In such cases, the
different organizations use the same Root CAs and Intermediate CAs for their chain
of trust, but assign the OU field to identify members of each organization.
We’ll also see how to configure MSPs to achieve this later.

Local and Channel MSPs

MSPs appear in two places in a blockchain network: channel configuration
(channel MSPs), and locally on an actor’s premise (local MSP). Local MSPs are
defined for clients (users) and for nodes (peers and orderers). Node local MSPs define
the permissions for that node (who the peer admins are, for example). The local MSPs
of the users allow the user side to authenticate itself in its transactions as a member
of a channel (e.g. in chaincode transactions), or as the owner of a specific role
into the system (an org admin, for example, in configuration transactions).

Every node and user must have a local MSP defined, as it defines who has
administrative or participatory rights at that level (peer admins will not necessarily
be channel admins, and vice versa).

In contrast, channel MSPs define administrative and participatory rights at the
channel level. Every organization participating in a channel must have an MSP
defined for it. Peers and orderers on a channel will all share the same view of channel
MSPs, and will therefore be able to correctly authenticate the channel participants.
This means that if an organization wishes to join the channel, an MSP incorporating
the chain of trust for the organization’s members would need to be included in the
channel configuration. Otherwise transactions originating from this organization’s
identities will be rejected.

The key difference here between local and channel MSPs is not how they function
— both turn identities into roles — but their scope.

[bookmark: msp2img]

[image: MSP2]

Local and channel MSPs. The trust domain (e.g., the organization) of each
peer is defined by the peer’s local MSP, e.g., ORG1 or ORG2. Representation
of an organization on a channel is achieved by adding the organization’s MSP to
the channel configuration. For example, the channel of this figure is managed by
both ORG1 and ORG2. Similar principles apply for the network, orderers, and users,
but these are not shown here for simplicity.

You may find it helpful to see how local and channel MSPs are used by seeing
what happens when a blockchain administrator installs and instantiates a smart
contract, as shown in the diagram above.

An administrator B connects to the peer with an identity issued by RCA1
and stored in their local MSP. When B tries to install a smart contract on
the peer, the peer checks its local MSP, ORG1-MSP, to verify that the identity
of B is indeed a member of ORG1. A successful verification will allow the
install command to complete successfully. Subsequently, B wishes
to instantiate the smart contract on the channel. Because this is a channel
operation, all organizations on the channel must agree to it. Therefore, the
peer must check the MSPs of the channel before it can successfully commit this
command. (Other things must happen too, but concentrate on the above for now.)

Local MSPs are only defined on the file system of the node or user to which
they apply. Therefore, physically and logically there is only one local MSP per
node or user. However, as channel MSPs are available to all nodes in the
channel, they are logically defined once in the channel configuration. However,
a channel MSP is also instantiated on the file system of every node in the
channel and kept synchronized via consensus. So while there is a copy of each
channel MSP on the local file system of every node, logically a channel MSP
resides on and is maintained by the channel or the network.

MSP Levels

The split between channel and local MSPs reflects the needs of organizations
to administer their local resources, such as a peer or orderer nodes, and their
channel resources, such as ledgers, smart contracts, and consortia, which
operate at the channel or network level. It’s helpful to think of these MSPs
as being at different levels, with MSPs at a higher level relating to
network administration concerns while MSPs at a lower level handle
identity for the administration of private resources. MSPs are mandatory
at every level of administration — they must be defined for the network,
channel, peer, orderer, and users.

[image: MSP3]

MSP Levels. The MSPs for the peer and orderer are local, whereas the MSPs for a
channel (including the network configuration channel) are shared across all
participants of that channel. In this figure, the network configuration channel
is administered by ORG1, but another application channel can be managed by ORG1
and ORG2. The peer is a member of and managed by ORG2, whereas ORG1 manages the
orderer of the figure. ORG1 trusts identities from RCA1, whereas ORG2 trusts
identities from RCA2. Note that these are administration identities, reflecting
who can administer these components. So while ORG1 administers the network,
ORG2.MSP does exist in the network definition.

	Network MSP: The configuration of a network defines who are the
members in the network — by defining the MSPs of the participant organizations
— as well as which of these members are authorized to perform
administrative tasks (e.g., creating a channel).

	Channel MSP: It is important for a channel to maintain the MSPs of its members
separately. A channel provides private communications between a particular set of
organizations which in turn have administrative control over it. Channel policies
interpreted in the context of that channel’s MSPs define who has ability to
participate in certain action on the channel, e.g., adding organizations, or
instantiating chaincodes. Note that there is no necessary relationship between
the permission to administrate a channel and the ability to administrate the
network configuration channel (or any other channel). Administrative rights
exist within the scope of what is being administrated (unless the rules have
been written otherwise — see the discussion of the ROLE attribute below).

	Peer MSP: This local MSP is defined on the file system of each peer and there is a
single MSP instance for each peer. Conceptually, it performs exactly the same function
as channel MSPs with the restriction that it only applies to the peer where it is defined.
An example of an action whose authorization is evaluated using the peer’s local MSP is
the installation of a chaincode on the peer.

	Orderer MSP: Like a peer MSP, an orderer local MSP is also defined on the file system
of the node and only applies to that node. Like peer nodes, orderers are also owned by a single
organization and therefore have a single MSP to list the actors or nodes it trusts.

MSP Structure

So far, you’ve seen that the most important element of an MSP are the specification
of the root or intermediate CAs that are used to establish an actor’s or node’s
membership in the respective organization. There are, however, more elements that are
used in conjunction with these two to assist with membership functions.

[image: MSP4]

The figure above shows how a local MSP is stored on a local filesystem. Even though
channel MSPs are not physically structured in exactly this way, it’s still a helpful
way to think about them.

As you can see, there are nine elements to an MSP. It’s easiest to think of these elements
in a directory structure, where the MSP name is the root folder name with each
subfolder representing different elements of an MSP configuration.

Let’s describe these folders in a little more detail and see why they are important.

	Root CAs: This folder contains a list of self-signed X.509 certificates of
the Root CAs trusted by the organization represented by this MSP.
There must be at least one Root CA X.509 certificate in this MSP folder.

This is the most important folder because it identifies the CAs from
which all other certificates must be derived to be considered members of the
corresponding organization.

	Intermediate CAs: This folder contains a list of X.509 certificates of the
Intermediate CAs trusted by this organization. Each certificate must be signed by
one of the Root CAs in the MSP or by an Intermediate CA whose issuing CA chain ultimately
leads back to a trusted Root CA.

An intermediate CA may represent a different subdivision of the organization
(like ORG1-MANUFACTURING and ORG1-DISTRIBUTION do for ORG1), or the
organization itself (as may be the case if a commercial CA is leveraged for
the organization’s identity management). In the latter case intermediate CAs
can be used to represent organization subdivisions. Here you
may find more information on best practices for MSP configuration. Notice, that
it is possible to have a functioning network that does not have an Intermediate
CA, in which case this folder would be empty.

Like the Root CA folder, this folder defines the CAs from which certificates must be
issued to be considered members of the organization.

	Organizational Units (OUs): These are listed in the $FABRIC_CFG_PATH/msp/config.yaml
file and contain a list of organizational units, whose members are considered
to be part of the organization represented by this MSP. This is particularly
useful when you want to restrict the members of an organization to the ones
holding an identity (signed by one of MSP designated CAs) with a specific OU
in it.

Specifying OUs is optional. If no OUs are listed, all the identities that are part of
an MSP — as identified by the Root CA and Intermediate CA folders — will be considered
members of the organization.

	Administrators: This folder contains a list of identities that define the
actors who have the role of administrators for this organization. For the standard MSP type,
there should be one or more X.509 certificates in this list.

It’s worth noting that just because an actor has the role of an administrator it doesn’t
mean that they can administer particular resources! The actual power a given identity has
with respect to administering the system is determined by the policies that manage system
resources. For example, a channel policy might specify that ORG1-MANUFACTURING
administrators have the rights to add new organizations to the channel, whereas the
ORG1-DISTRIBUTION administrators have no such rights.

Even though an X.509 certificate has a ROLE attribute (specifying, for example, that
an actor is an admin), this refers to an actor’s role within its organization
rather than on the blockchain network. This is similar to the purpose of
the OU attribute, which — if it has been defined — refers to an actor’s place in
the organization.

The ROLE attribute can be used to confer administrative rights at the channel level
if the policy for that channel has been written to allow any administrator from an organization
(or certain organizations) permission to perform certain channel functions (such as
instantiating chaincode). In this way, an organizational role can confer a network role.

	Revoked Certificates: If the identity of an actor has been revoked,
identifying information about the identity — not the identity itself — is held
in this folder. For X.509-based identities, these identifiers are pairs of strings known as
Subject Key Identifier (SKI) and Authority Access Identifier (AKI), and are checked
whenever the X.509 certificate is being used to make sure the certificate has not
been revoked.

This list is conceptually the same as a CA’s Certificate Revocation List (CRL),
but it also relates to revocation of membership from the organization. As a result,
the administrator of an MSP, local or channel, can quickly revoke an actor or node
from an organization by advertising the updated CRL of the CA the revoked certificate
as issued by. This “list of lists” is optional. It will only become populated
as certificates are revoked.

	Node Identity: This folder contains the identity of the node, i.e.,
cryptographic material that — in combination to the content of KeyStore — would
allow the node to authenticate itself in the messages that is sends to other
participants of its channels and network. For X.509 based identities, this
folder contains an X.509 certificate. This is the certificate a peer places
in a transaction proposal response, for example, to indicate that the peer has
endorsed it — which can subsequently be checked against the resulting
transaction’s endorsement policy at validation time.

This folder is mandatory for local MSPs, and there must be exactly one X.509 certificate
for the node. It is not used for channel MSPs.

	KeyStore for Private Key: This folder is defined for the local MSP of a peer or
orderer node (or in an client’s local MSP), and contains the node’s signing key.
This key matches cryptographically the node’s identity included in Node Identity
folder and is used to sign data — for example to sign a transaction proposal response,
as part of the endorsement phase.

This folder is mandatory for local MSPs, and must contain exactly one private key.
Obviously, access to this folder must be limited only to the identities of users who have
administrative responsibility on the peer.

Configuration of a channel MSPs does not include this folder, as channel MSPs
solely aim to offer identity validation functionalities and not signing abilities.

	TLS Root CA: This folder contains a list of self-signed X.509 certificates of the
Root CAs trusted by this organization for TLS communications. An example of a TLS
communication would be when a peer needs to connect to an orderer so that it can receive
ledger updates.

MSP TLS information relates to the nodes inside the network — the peers and the
orderers, in other words, rather than the applications and administrations that
consume the network.

There must be at least one TLS Root CA X.509 certificate in this folder.

	TLS Intermediate CA: This folder contains a list intermediate CA certificates
CAs trusted by the organization represented by this MSP for TLS communications.
This folder is specifically useful when commercial CAs are used for TLS certificates of an
organization. Similar to membership intermediate CAs, specifying intermediate TLS CAs is
optional.

For more information about TLS, click here.

If you’ve read this doc as well as our doc on Identity), you
should have a pretty good grasp of how identities and membership work in Hyperledger Fabric.
You’ve seen how a PKI and MSPs are used to identify the actors collaborating in a blockchain
network. You’ve learned how certificates, public/private keys, and roots of trust work,
in addition to how MSPs are physically and logically structured.

 Peers

Peers

A blockchain network is comprised primarily of a set of peer nodes (or, simply, peers).
Peers are a fundamental element of the network because they host ledgers and smart
contracts. Recall that a ledger immutably records all the transactions generated
by smart contracts (or chaincode). Smart contracts and ledgers are used to encapsulate the
shared processes and shared information in a network, respectively. These
aspects of a peer make them a good starting point to understand a Hyperledger
Fabric network.

Other elements of the blockchain network are of course important: ledgers and
smart contracts, orderers, policies, channels, applications, organizations,
identities, and membership, and you can read more about them in their own
dedicated sections. This section focusses on peers, and their relationship to those
other elements in a Hyperledger Fabric network.

[image: Peer1]

A blockchain network is comprised of peer nodes, each of which can hold copies
of ledgers and copies of smart contracts. In this example, the network N
consists of peers P1, P2 and P3, each of which maintain their own instance
of the distributed ledger L1. P1, P2 and P3 use the same chaincode, S1, to access their copy of
that distributed ledger.

Peers can be created, started, stopped, reconfigured, and even deleted. They
expose a set of APIs that enable administrators and applications to interact
with the services that they provide. We’ll learn more about these services in
this section.

A word on terminology

Hyperledger Fabric implements smart contracts with a technology concept it calls
chaincode — simply a piece of code that accesses the ledger, written in one
of the supported programming languages. In this topic, we’ll usually use the
term chaincode, but feel free to read it as smart contract if you’re
more used to that term. It’s the same thing!

Ledgers and Chaincode

Let’s look at a peer in a little more detail. We can see that it’s the peer that
hosts both the ledger and chaincode. More accurately, the peer actually hosts
instances of the ledger, and instances of chaincode. Note that this provides
a deliberate redundancy in a Fabric network — it avoids single points of
failure. We’ll learn more about the distributed and decentralized nature of a
blockchain network later in this section.

[image: Peer2]

A peer hosts instances of ledgers and instances of chaincodes. In this example,
P1 hosts an instance of ledger L1 and an instance of chaincode S1. There
can be many ledgers and chaincodes hosted on an individual peer.

Because a peer is a host for ledgers and chaincodes, applications and
administrators must interact with a peer if they want to access these resources.
That’s why peers are considered the most fundamental building blocks of a
Hyperledger Fabric network. When a peer is first created, it has
neither ledgers nor chaincodes. We’ll see later how ledgers get created,
and how chaincodes get installed, on peers.

Multiple Ledgers

A peer is able to host more than one ledger, which is helpful because it allows
for a flexible system design. The simplest configuration is for a peer to manage a
single ledger, but it’s absolutely appropriate for a peer to host two or more
ledgers when required.

[image: Peer3]

A peer hosting multiple ledgers. Peers host one or more ledgers, and each
ledger has zero or more chaincodes that apply to them. In this example, we
can see that the peer P1 hosts ledgers L1 and L2. Ledger L1 is accessed using
chaincode S1. Ledger L2 on the other hand can be accessed using chaincodes S1 and S2.

Although it is perfectly possible for a peer to host a ledger instance without
hosting any chaincodes which access that ledger, it’s rare that peers are configured
this way. The vast majority of peers will have at least one chaincode installed
on it which can query or update the peer’s ledger instances. It’s worth
mentioning in passing that, whether or not users have installed chaincodes for use by
external applications, peers also have special system chaincodes that are
always present. These are not discussed in detail in this topic.

Multiple Chaincodes

There isn’t a fixed relationship between the number of ledgers a peer has and
the number of chaincodes that can access that ledger. A peer might have
many chaincodes and many ledgers available to it.

[image: Peer4]

An example of a peer hosting multiple chaincodes. Each ledger can have
many chaincodes which access it. In this example, we can see that peer P1
hosts ledgers L1 and L2, where L1 is accessed by chaincodes S1 and S2, and
L2 is accessed by S1 and S3. We can see that S1 can access both L1 and L2.

We’ll see a little later why the concept of channels in Hyperledger Fabric
is important when hosting multiple ledgers or multiple chaincodes on a
peer.

Applications and Peers

We’re now going to show how applications interact with peers to access the
ledger. Ledger-query interactions involve a simple three-step dialogue between
an application and a peer; ledger-update interactions are a little more
involved, and require two extra steps. We’ve simplified these steps a little to
help you get started with Hyperledger Fabric, but don’t worry — what’s most
important to understand is the difference in application-peer interactions for
ledger-query compared to ledger-update transaction styles.

Applications always connect to peers when they need to access ledgers and
chaincodes. The Hyperledger Fabric Software Development Kit (SDK) makes this
easy for programmers — its APIs enable applications to connect to peers, invoke
chaincodes to generate transactions, submit transactions to the network that
will get ordered and committed to the distributed ledger, and receive events
when this process is complete.

Through a peer connection, applications can execute chaincodes to query or
update a ledger. The result of a ledger query transaction is returned
immediately, whereas ledger updates involve a more complex interaction between
applications, peers and orderers. Let’s investigate this in a little more detail.

[image: Peer6]

Peers, in conjunction with orderers, ensure that the ledger is kept up-to-date
on every peer. In this example, application A connects to P1 and invokes
chaincode S1 to query or update the ledger L1. P1 invokes S1 to generate a
proposal response that contains a query result or a proposed ledger update.
Application A receives the proposal response and, for queries,
the process is now complete. For updates, A builds a transaction
from all of the responses, which it sends it to O1 for ordering. O1 collects
transactions from across the network into blocks, and distributes these to all
peers, including P1. P1 validates the transaction before applying to L1. Once L1
is updated, P1 generates an event, received by A, to signify completion.

A peer can return the results of a query to an application immediately since
all of the information required to satisfy the query is in the peer’s local copy of
the ledger. Peers never consult with other peers in order to respond to a query from
an application. Applications can, however, connect to one or more peers to issue
a query; for example, to corroborate a result between multiple peers, or
retrieve a more up-to-date result from a different peer if there’s a suspicion
that information might be out of date. In the diagram, you can see that ledger
query is a simple three-step process.

An update transaction starts in the same way as a query transaction, but has two
extra steps. Although ledger-updating applications also connect to peers to
invoke a chaincode, unlike with ledger-querying applications, an individual peer
cannot perform a ledger update at this time, because other peers must first
agree to the change — a process called consensus. Therefore, peers return
to the application a proposed update — one that this peer would apply
subject to other peers’ prior agreement. The first extra step — step four —
requires that applications send an appropriate set of matching proposed updates
to the entire network of peers as a transaction for commitment to their
respective ledgers. This is achieved by the application using an orderer to
package transactions into blocks, and distribute them to the entire network of
peers, where they can be verified before being applied to each peer’s local copy
of the ledger. As this whole ordering processing takes some time to complete
(seconds), the application is notified asynchronously, as shown in step five.

Later in this section, you’ll learn more about the detailed nature of this
ordering process — and for a really detailed look at this process see the
Transaction Flow topic.

Peers and Channels

Although this section is about peers rather than channels, it’s worth spending a
little time understanding how peers interact with each other, and with applications,
via channels — a mechanism by which a set of components within a blockchain
network can communicate and transact privately.

These components are typically peer nodes, orderer nodes and applications and,
by joining a channel, they agree to collaborate to collectively share and
manage identical copies of the ledger associated with that channel. Conceptually, you can
think of channels as being similar to groups of friends (though the members of a
channel certainly don’t need to be friends!). A person might have several groups
of friends, with each group having activities they do together. These groups
might be totally separate (a group of work friends as compared to a group of
hobby friends), or there can be some crossover between them. Nevertheless, each group
is its own entity, with “rules” of a kind.

[image: Peer5]

Channels allow a specific set of peers and applications to communicate with
each other within a blockchain network. In this example, application A can
communicate directly with peers P1 and P2 using channel C. You can think of the
channel as a pathway for communications between particular applications and
peers. (For simplicity, orderers are not shown in this diagram, but must be
present in a functioning network.)

We see that channels don’t exist in the same way that peers do — it’s more
appropriate to think of a channel as a logical structure that is formed by a
collection of physical peers. It is vital to understand this point — peers
provide the control point for access to, and management of, channels.

Peers and Organizations

Now that you understand peers and their relationship to ledgers, chaincodes
and channels, you’ll be able to see how multiple organizations come together to
form a blockchain network.

Blockchain networks are administered by a collection of organizations rather
than a single organization. Peers are central to how this kind of distributed
network is built because they are owned by — and are the connection points to
the network for — these organizations.

[image: Peer8]

Peers in a blockchain network with multiple organizations. The blockchain
network is built up from the peers owned and contributed by the different
organizations. In this example, we see four organizations contributing eight
peers to form a network. The channel C connects five of these peers in the
network N — P1, P3, P5, P7 and P8. The other peers owned by these
organizations have not been joined to this channel, but are typically joined to
at least one other channel. Applications that have been developed by a
particular organization will connect to their own organization’s peers as well
as those of different organizations. Again,
for simplicity, an orderer node is not shown in this diagram.

It’s really important that you can see what’s happening in the formation of a
blockchain network. The network is both formed and managed by the multiple
organizations who contribute resources to it. Peers are the resources that
we’re discussing in this topic, but the resources an organization provides are
more than just peers. There’s a principle at work here — the network literally
does not exist without organizations contributing their individual resources to
the collective network. Moreover, the network grows and shrinks with the
resources that are provided by these collaborating organizations.

You can see that (other than the ordering service) there are no centralized
resources — in the example above, the network, N, would not exist
if the organizations did not contribute their peers. This reflects the fact that
the network does not exist in any meaningful sense unless and until
organizations contribute the resources that form it. Moreover, the network does
not depend on any individual organization — it will continue to exist as long
as one organization remains, no matter which other organizations may come and
go. This is at the heart of what it means for a network to be decentralized.

Applications in different organizations, as in the example above, may
or may not be the same. That’s because it’s entirely up to an organization as to how
its applications process their peers’ copies of the ledger. This means that both
application and presentation logic may vary from organization to organization
even though their respective peers host exactly the same ledger data.

Applications connect either to peers in their organization, or peers in another
organization, depending on the nature of the ledger interaction that’s required.
For ledger-query interactions, applications typically connect to their own
organization’s peers. For ledger-update interactions, we’ll see later why
applications need to connect to peers representing every organization that is required to
endorse the ledger update.

Peers and Identity

Now that you’ve seen how peers from different organizations come together to
form a blockchain network, it’s worth spending a few moments understanding how
peers get assigned to organizations by their administrators.

Peers have an identity assigned to them via a digital certificate from a
particular certificate authority. You can read lots more about how X.509
digital certificates work elsewhere in this guide but, for now, think of a
digital certificate as being like an ID card that provides lots of verifiable
information about a peer. Each and every peer in the network is assigned a
digital certificate by an administrator from its owning organization.

[image: Peer9]

When a peer connects to a channel, its digital certificate identifies its
owning organization via a channel MSP. In this example, P1 and P2 have
identities issued by CA1. Channel C determines from a policy in its channel
configuration that identities from CA1 should be associated with Org1 using
ORG1.MSP. Similarly, P3 and P4 are identified by ORG2.MSP as being part of
Org2.

Whenever a peer connects using a channel to a blockchain network, a policy in
the channel configuration uses the peer’s identity to determine its
rights. The mapping of identity to organization is provided by a component
called a Membership Service Provider (MSP) — it determines how a peer gets
assigned to a specific role in a particular organization and accordingly gains
appropriate access to blockchain resources. Moreover, a peer can be owned only
by a single organization, and is therefore associated with a single MSP. We’ll
learn more about peer access control later in this section, and there’s an entire
section on MSPs and access control policies elsewhere in this guide. But for now,
think of an MSP as providing linkage between an individual identity and a
particular organizational role in a blockchain network.

To digress for a moment, peers as well as everything that interacts with a
blockchain network acquire their organizational identity from their digital
certificate and an MSP. Peers, applications, end users, administrators and
orderers must have an identity and an associated MSP if they want to interact
with a blockchain network. We give a name to every entity that interacts with
a blockchain network using an identity — a principal. You can learn lots
more about principals and organizations elsewhere in this guide, but for now
you know more than enough to continue your understanding of peers!

Finally, note that it’s not really important where the peer is physically
located — it could reside in the cloud, or in a data centre owned by one
of the organizations, or on a local machine — it’s the identity associated
with it that identifies it as being owned by a particular organization. In our
example above, P3 could be hosted in Org1’s data center, but as long as the
digital certificate associated with it is issued by CA2, then it’s owned by
Org2.

Peers and Orderers

We’ve seen that peers form the basis for a blockchain network, hosting ledgers and chaincode
which can be queried and updated by peer-connected applications.
However, the mechanism by which applications and peers interact with each other
to ensure that every peer’s ledger is kept consistent is mediated by special
nodes called orderers, and it’s to these nodes we now turn our
attention.

An update transaction is quite different from a query transaction because a single
peer cannot, on its own, update the ledger — updating requires the consent of other
peers in the network. A peer requires other peers in the network to approve a
ledger update before it can be applied to a peer’s local ledger. This process is
called consensus, which takes much longer to complete than a simple query. But when
all the peers required to approve the transaction do so, and the transaction is
committed to the ledger, peers will notify their connected applications that the
ledger has been updated. You’re about to be shown a lot more detail about how
peers and orderers manage the consensus process in this section.

Specifically, applications that want to update the ledger are involved in a
3-phase process, which ensures that all the peers in a blockchain network keep
their ledgers consistent with each other. In the first phase, applications work
with a subset of endorsing peers, each of which provide an endorsement of the
proposed ledger update to the application, but do not apply the proposed update
to their copy of the ledger. In the second phase, these separate endorsements
are collected together as transactions and packaged into blocks. In the final
phase, these blocks are distributed back to every peer where each transaction is
validated before being applied to that peer’s copy of the ledger.

As you will see, orderer nodes are central to this process, so let’s
investigate in a little more detail how applications and peers use orderers to
generate ledger updates that can be consistently applied to a distributed,
replicated ledger.

Phase 1: Proposal

Phase 1 of the transaction workflow involves an interaction between an
application and a set of peers — it does not involve orderers. Phase 1 is only
concerned with an application asking different organizations’ endorsing peers to
agree to the results of the proposed chaincode invocation.

To start phase 1, applications generate a transaction proposal which they send
to each of the required set of peers for endorsement. Each of these endorsing peers then
independently executes a chaincode using the transaction proposal to
generate a transaction proposal response. It does not apply this update to the
ledger, but rather simply signs it and returns it to the application. Once the
application has received a sufficient number of signed proposal responses,
the first phase of the transaction flow is complete. Let’s examine this phase in
a little more detail.

[image: Peer10]

Transaction proposals are independently executed by peers who return endorsed
proposal responses. In this example, application A1 generates transaction T1
proposal P which it sends to both peer P1 and peer P2 on channel C. P1 executes
S1 using transaction T1 proposal P generating transaction T1 response R1 which
it endorses with E1. Independently, P2 executes S1 using transaction T1
proposal P generating transaction T1 response R2 which it endorses with E2.
Application A1 receives two endorsed responses for transaction T1, namely E1
and E2.

Initially, a set of peers are chosen by the application to generate a set of
proposed ledger updates. Which peers are chosen by the application? Well, that
depends on the endorsement policy (defined for a chaincode), which defines
the set of organizations that need to endorse a proposed ledger change before it
can be accepted by the network. This is literally what it means to achieve
consensus — every organization who matters must have endorsed the proposed
ledger change before it will be accepted onto any peer’s ledger.

A peer endorses a proposal response by adding its digital signature, and signing
the entire payload using its private key. This endorsement can be subsequently
used to prove that this organization’s peer generated a particular response. In
our example, if peer P1 is owned by organization Org1, endorsement E1
corresponds to a digital proof that “Transaction T1 response R1 on ledger L1 has
been provided by Org1’s peer P1!”.

Phase 1 ends when the application receives signed proposal responses from
sufficient peers. We note that different peers can return different and
therefore inconsistent transaction responses to the application for the same
transaction proposal. It might simply be that the result was generated at
different times on different peers with ledgers at different states, in which
case an application can simply request a more up-to-date proposal response. Less
likely, but much more seriously, results might be different because the chaincode
is non-deterministic. Non-determinism is the enemy of chaincodes
and ledgers and if it occurs it indicates a serious problem with the proposed
transaction, as inconsistent results cannot, obviously, be applied to ledgers.
An individual peer cannot know that their transaction result is
non-deterministic — transaction responses must be gathered together for
comparison before non-determinism can be detected. (Strictly speaking, even this
is not enough, but we defer this discussion to the transaction section, where
non-determinism is discussed in detail.)

At the end of phase 1, the application is free to discard inconsistent
transaction responses if it wishes to do so, effectively terminating the
transaction workflow early. We’ll see later that if an application tries to use
an inconsistent set of transaction responses to update the ledger, it will be
rejected.

Phase 2: Packaging

The second phase of the transaction workflow is the packaging phase. The orderer
is pivotal to this process — it receives transactions containing endorsed
transaction proposal responses from many applications. It orders each
transaction relative to other transactions, and packages batches of transactions
into blocks ready for distribution back to all peers connected to the orderer,
including the original endorsing peers.

[image: Peer11]

The first role of an orderer node is to package proposed ledger updates. In
this example, application A1 sends a transaction T1 endorsed by E1 and E2 to
the orderer O1. In parallel, Application A2 sends transaction T2 endorsed by E1
to the orderer O1. O1 packages transaction T1 from application A1 and
transaction T2 from application A2 together with other transactions from other
applications in the network into block B2. We can see that in B2, the
transaction order is T1,T2,T3,T4,T6,T5 – which may not be the order in which
these transactions arrived at the orderer node! (This example shows a very
simplified orderer configuration.)

An orderer receives proposed ledger updates concurrently from many different
applications in the network on a particular channel. Its job is to arrange
these proposed updates into a well-defined sequence, and package them into
blocks for subsequent distribution. These blocks will become the blocks of
the blockchain! Once an orderer has generated a block of the desired size, or
after a maximum elapsed time, it will be sent to all peers connected to it on a
particular channel. We’ll see how this block is processed in phase 3.

It’s worth noting that the sequencing of transactions in a block is not
necessarily the same as the order of arrival of transactions at the orderer!
Transactions can be packaged in any order into a block, and it’s this sequence
that becomes the order of execution. What’s important is that there is a
strict order, rather than what that order is.

This strict ordering of transactions within blocks makes Hyperledger Fabric a
little different from other blockchains where the same transaction can be
packaged into multiple different blocks. In Hyperledger Fabric, this cannot
happen — the blocks generated by a collection of orderers are said to be
final because once a transaction has been written to a block, its position
in the ledger is immutably assured. Hyperledger Fabric’s finality means that a
disastrous occurrence known as a ledger fork cannot occur. Once transactions
are captured in a block, history cannot be rewritten for that transaction at
a future point in time.

We can see also see that, whereas peers host the ledger and chaincodes,
orderers most definitely do not. Every transaction that arrives at an orderer is
mechanically packaged in a block — the orderer makes no judgement as to the
value of a transaction, it simply packages it. That’s an important property of
Hyperledger Fabric — all transactions are marshalled into a strict order —
transactions are never dropped or de-prioritized.

At the end of phase 2, we see that orderers have been responsible for the simple
but vital processes of collecting proposed transaction updates, ordering them,
packaging them into blocks, ready for distribution.

Phase 3: Validation

The final phase of the transaction workflow involves the distribution and
subsequent validation of blocks from the orderer to the peers, where they can be
applied to the ledger. Specifically, at each peer, every transaction within a
block is validated to ensure that it has been consistently endorsed by all
relevant organizations before it is applied to the ledger. Failed transactions
are retained for audit, but are not applied to the ledger.

[image: Peer12]

The second role of an orderer node is to distribute blocks to peers. In this
example, orderer O1 distributes block B2 to peer P1 and peer P2. Peer P1
processes block B2, resulting in a new block being added to ledger L1 on P1.
In parallel, peer P2 processes block B2, resulting in a new block being added
to ledger L1 on P2. Once this process is complete, the ledger L1 has been
consistently updated on peers P1 and P2, and each may inform connected
applications that the transaction has been processed.

Phase 3 begins with the orderer distributing blocks to all peers connected to
it. Peers are connected to orderers on channels such that when a new block is
generated, all of the peers connected to the orderer will be sent a copy of the
new block. Each peer will process this block independently, but in exactly the
same way as every other peer on the channel. In this way, we’ll see that the
ledger can be kept consistent. It’s also worth noting that not every peer needs
to be connected to an orderer — peers can cascade blocks to other peers using
the gossip protocol, who also can process them independently. But let’s
leave that discussion to another time!

Upon receipt of a block, a peer will process each transaction in the sequence in
which it appears in the block. For every transaction, each peer will verify that
the transaction has been endorsed by the required organizations according to the
endorsement policy of the chaincode which generated the transaction. For
example, some transactions may only need to be endorsed by a single
organization, whereas others may require multiple endorsements before they are
considered valid. This process of validation verifies that all relevant
organizations have generated the same outcome or result. Also note that this
validation is different than the endorsement check in phase 1, where it is the
application that receives the response from endorsing peers and makes the
decision to send the proposal transactions. In case the application violates
the endorsement policy by sending wrong transactions, the peer is still able to
reject the transaction in the validation process of phase 3.

If a transaction has been endorsed correctly, the peer will attempt to apply it
to the ledger. To do this, a peer must perform a ledger consistency check to
verify that the current state of the ledger is compatible with the state of the
ledger when the proposed update was generated. This may not always be possible,
even when the transaction has been fully endorsed. For example, another
transaction may have updated the same asset in the ledger such that the
transaction update is no longer valid and therefore can no longer be applied. In
this way each peer’s copy of the ledger is kept consistent across the network
because they each follow the same rules for validation.

After a peer has successfully validated each individual transaction, it updates
the ledger. Failed transactions are not applied to the ledger, but they are
retained for audit purposes, as are successful transactions. This means that
peer blocks are almost exactly the same as the blocks received from the orderer,
except for a valid or invalid indicator on each transaction in the block.

We also note that phase 3 does not require the running of chaincodes — this is
done only during phase 1, and that’s important. It means that chaincodes only have
to be available on endorsing nodes, rather than throughout the blockchain
network. This is often helpful as it keeps the logic of the chaincode
confidential to endorsing organizations. This is in contrast to the output of
the chaincodes (the transaction proposal responses) which are shared with every
peer in the channel, whether or not they endorsed the transaction. This
specialization of endorsing peers is designed to help scalability.

Finally, every time a block is committed to a peer’s ledger, that peer
generates an appropriate event. Block events include the full block content,
while block transaction events include summary information only, such as
whether each transaction in the block has been validated or invalidated.
Chaincode events that the chaincode execution has produced can also be
published at this time. Applications can register for these event types so
that they can be notified when they occur. These notifications conclude the
third and final phase of the transaction workflow.

In summary, phase 3 sees the blocks which are generated by the orderer
consistently applied to the ledger. The strict ordering of transactions into
blocks allows each peer to validate that transaction updates are consistently
applied across the blockchain network.

Orderers and Consensus

This entire transaction workflow process is called consensus because all peers
have reached agreement on the order and content of transactions, in a process
that is mediated by orderers. Consensus is a multi-step process and applications
are only notified of ledger updates when the process is complete — which may
happen at slightly different times on different peers.

We will discuss orderers in a lot more detail in a future orderer topic, but for
now, think of orderers as nodes which collect and distribute proposed ledger
updates from applications for peers to validate and include on the ledger.

That’s it! We’ve now finished our tour of peers and the other components that
they relate to in Hyperledger Fabric. We’ve seen that peers are in many ways the
most fundamental element — they form the network, host chaincodes and the
ledger, handle transaction proposals and responses, and keep the ledger
up-to-date by consistently applying transaction updates to it.

 Private data

Private data

What is private data?

In cases where a group of organizations on a channel need to keep data private from
other organizations on that channel, they have the option to create a new channel
comprising just the organizations who need access to the data. However, creating
separate channels in each of these cases creates additional administrative overhead
(maintaining chaincode versions, policies, MSPs, etc), and doesn’t allow for use
cases in which you want all channel participants to see a transaction while keeping
a portion of the data private.

That’s why, starting in v1.2, Fabric offers the ability to create
private data collections, which allow a defined subset of organizations on a
channel the ability to endorse, commit, or query private data without having to
create a separate channel.

What is a private data collection?

A collection is the combination of two elements:

	The actual private data, sent peer-to-peer via gossip protocol
to only the organization(s) authorized to see it. This data is stored in a
private database on the peer (sometimes called a “side” database, or
“SideDB”). The ordering service is not involved here and does not see the
private data. Note that setting up gossip requires setting up anchor peers
in order to bootstrap cross-organization communication.

	A hash of that data, which is endorsed, ordered, and written to the ledgers
of every peer on the channel. The hash serves as evidence of the transaction and
is used for state validation and can be used for audit purposes.

The following diagram illustrates the ledger contents of a peer authorized to have
private data and one which is not.

[image: private-data.private-data]

Collection members may decide to share the private data with other parties if they
get into a dispute or if they want to transfer the asset to a third party. The
third party can then compute the hash of the private data and see if it matches the
state on the channel ledger, proving that the state existed between the collection
members at a certain point in time.

When to use a collection within a channel vs. a separate channel

	Use channels when entire transactions (and ledgers) must be kept
confidential within a set of organizations that are members of the channel.

	Use collections when transactions (and ledgers) must be shared among a set
of organizations, but when only a subset of those organizations should have
access to some (or all) of the data within a transaction. Additionally,
since private data is disseminated peer-to-peer rather than via blocks,
use private data collections when transaction data must be kept confidential
from ordering service nodes.

A use case to explain collections

Consider a group of five organizations on a channel who trade produce:

	A Farmer selling his goods abroad

	A Distributor moving goods abroad

	A Shipper moving goods between parties

	A Wholesaler purchasing goods from distributors

	A Retailer purchasing goods from shippers and wholesalers

The Distributor might want to make private transactions with the
Farmer and Shipper to keep the terms of the trades confidential from
the Wholesaler and the Retailer (so as not to expose the markup they’re
charging).

The Distributor may also want to have a separate private data relationship
with the Wholesaler because it charges them a lower price than it does the
Retailer.

The Wholesaler may also want to have a private data relationship with the
Retailer and the Shipper.

Rather than defining many small channels for each of these relationships, multiple
private data collections (PDC) can be defined to share private data between:

	PDC1: Distributor, Farmer and Shipper

	PDC2: Distributor and Wholesaler

	PDC3: Wholesaler, Retailer and Shipper

[image: private-data.private-data]

Using this example, peers owned by the Distributor will have multiple private
databases inside their ledger which includes the private data from the
Distributor, Farmer and Shipper relationship and the
Distributor and Wholesaler relationship. Because these databases are kept
separate from the database that holds the channel ledger, private data is
sometimes referred to as “SideDB”.

[image: private-data.private-data]

Transaction flow with private data

When private data collections are referenced in chaincode, the transaction flow
is slightly different in order to protect the confidentiality of the private
data as transactions are proposed, endorsed, and committed to the ledger.

For details on transaction flows that don’t use private data refer to our
documentation on transaction flow.

	The client application submits a proposal request to invoke a chaincode
function (reading or writing private data) to endorsing peers which are
part of authorized organizations of the collection. The private data, or
data used to generate private data in chaincode, is sent in a transient
field of the proposal.

	The endorsing peers simulate the transaction and store the private data in
a transient data store (a temporary storage local to the peer). They
distribute the private data, based on the collection policy, to authorized peers
via gossip.

	The endorsing peer sends the proposal response back to the client with public
data, including a hash of the private data key and value. No private data is
sent back to the client. For more information on how endorsement works with
private data, click here.

	The client application submits the transaction to the ordering service (with
hashes of the private data) which gets distributed into blocks as normal.
The block with the hashed values is distributed to all the peers. In this way,
all peers on the channel can validate transactions with the hashes of the private
data in a consistent way, without knowing the actual private data.

	At block-committal time, authorized peers use the collection policy to
determine if they are authorized to have access to the private data. If they do,
they will first check their local transient data store to determine if they
have already received the private data at chaincode endorsement time. If not,
they will attempt to pull the private data from another peer. Then they will
validate the private data against the hashes in the public block and commit the
transaction and the block. Upon validation/commit, the private data is moved to
their copy of the private state database and private writeset storage. The
private data is then deleted from the transient data store.

How a private data collection is defined

For more details on collection definitions, and other low level information about
private data and collections, refer to the private data reference topic.

Purging data

For very sensitive data, even the parties sharing the private data might want
— or might be required by government regulations — to “purge” the data stored
on their peers after a set amount of time, leaving behind only a hash of the data
to serve as immutable evidence of the transaction.

In some of these cases, the private data only needs to exist on the peer’s private
database until it can be replicated into a database external to the blockchain
network. The data might also only need to exist on the peers until a chaincode business
process is done with it (trade settled, contract fulfilled, etc). To support the later
use case, it is possible to purge private data if it has not been modified once a set
number of subsequent blocks have been added to the private database.

 Ledger

Ledger

What is a Ledger?

A ledger contains the current state of a business as a journal of transactions.
The earliest European and Chinese ledgers date from almost 1000 years ago, and
the Sumerians had stone
ledgers [http://www.sciencephoto.com/media/686227/view/accounting-ledger-sumerian-cuneiform]
4000 years ago – but let’s start with a more up-to-date example!

You’re probably used to looking at your bank account every month. What’s most
important to you is the available balance – it’s what you’re able to spend at
the current moment in time. If you want to see how your balance was derived,
then you can look through the transaction credits and debits that determined it.
This is a real life example of a ledger – a state (your bank balance), and a
set of ordered transactions (credits and debits) that determine it. Hyperledger
Fabric is motivated by these same two concerns – to present the current value
of a set of ledger states, and to capture the history of the transactions that
determined these states.

Let’s take a closer look at the Hyperledger Fabric ledger structure!

A Blockchain Ledger

A blockchain ledger consists of two distinct, though related, parts – a world
state and a blockchain.

Firstly, there’s a world state – a database that holds the current
values of a set of ledger states. The world state makes it easy for a program
to get the current value of these states, rather than having to calculate them
by traversing the entire transaction log. Ledger states are, by default,
expressed as key-value pairs, though we’ll see later that Hyperledger Fabric
provides flexibility in this regard. The world state can change frequently, as
states can be created, updated and deleted.

Secondly, there’s a blockchain – a transaction log that records all the
changes that determine the world state. Transactions are collected inside blocks
that are appended to the blockchain – enabling you to understand the history of
changes that have resulted in the current world state. The blockchain data
structure is very different to the world state because once written, it cannot
be modified. It is an immutable sequence of blocks, each of which contains a
set of ordered transactions.

[image: ledger.ledger]

The visual vocabulary expressed in facts is as follows: Ledger L comprises
blockchain B and World State W. Blockchain B determines World State W. Also
expressed as: World state W is derived from blockchain B.

It’s helpful to think of there being one logical ledger in a Hyperledger
Fabric network. In reality, the network maintains multiple copies of a ledger –
which are kept consistent with every other copy through a process called
consensus. The term Distributed Ledger Technology (DLT) is often
associated with this kind of ledger – one that is logically singular, but has
many consistent copies distributed throughout a network.

Let’s now examine the world state and blockchain data structures in more detail.

World State

The world state represents the current values of all ledger states. It’s
extremely useful because programs usually need the current value of a ledger
state and that’s always easily available. You do not need to traverse the entire
blockchain to calculate the current value of any ledger state – you just get it
directly from the world state.

[image: ledger.worldstate]

The visual vocabulary expressed in facts is as follows: There is a ledger
state with key=CAR1 and value=Audi. There is a ledger state with key=CAR2 and a
more complex value {model:BMW, color=red, owner=Jane}. Both states are at
version 0.

Ledger state is used to record application information to be shared via the
blockchain. The example above shows ledger states for two cars, CAR1 and CAR2.
You can see that states have a key and a value. Your application programs invoke
chaincode which access states via simple APIs – they get, put and
delete states using a state key. Notice how a state value can be simple
(Audi…) or complex (type:BMW…).

Physically, the world state is implemented as a database. This makes a lot of
sense because a database provides a rich set of operators for the efficient
storage and retrieval of states. We’ll see later that Hyperledger Fabric can be
configured to use different world state databases to address the needs of
different types of state values and the access patterns required by
applications, for example in complex queries.

Transactions capture changes to the world state, and as you’d expect,
transactions have a lifecycle. They are created by applications, and finally end
up being committed to the ledger blockchain. The whole lifecycle is described in
detail here; but the key design point for Hyperledger Fabric
is that only transactions that are signed by a set of endorsing
organizations will result in an update to the world state. If a transaction is
not signed by sufficient endorsers, then it will fail this validity check, and
will not result in an update to the world state.

You’ll also notice that a state has a version number, and in the diagram above,
states CAR1 and CAR2 are at their starting versions, 0. The version number of a
state is incremented every time the state changes. It is also checked whenever
the state is updated – to make sure it matches the version when the transaction
was created. This check ensures that the world state changing from the same
expected value to the same expected value as when the transaction was created.

Finally, when a ledger is first created, the world state is empty. Because any
transaction which represents a valid change to world state is recorded on the
blockchain, it means that the world state can be re-generated from the
blockchain at any time. This can be very convenient – for example, the world
state is automatically generated when a peer is created. Moreover, if a peer
fails abnormally, the world state can be regenerated on peer restart, before
transactions are accepted.

Blockchain

Let’s now turn our attention from the ledger world state to the ledger
blockchain.

The blockchain is a transaction log, structured as interlinked blocks, where
each block contains a sequence of transactions, each of which represents a query
or update to the world state. The exact mechanism by which transactions are
ordered is discussed elsewhere –
what’s important is that block sequencing, as well as transaction sequencing
within blocks, is established when blocks are first created.

Each block’s header includes a hash of the block’s transactions, as well a copy
of the hash of the prior block’s header. In this way, all transactions on the
ledger are sequenced and cryptographically linked together. This hashing and
linking makes the ledger data very secure. Even if one node hosting the ledger
was tampered with, it would not be able to convince all the other nodes that it
has the ‘correct’ blockchain because the ledger is distributed throughout a
network of independent nodes.

Physically, the blockchain is always implemented as a file, in contrast to the
world state, which uses a database. This is a sensible design choice as the
blockchain data structure is heavily biased towards a very small set of simple
operations. Appending to the end of the blockchain is the primary operation, and
query is currently a relatively infrequent operation.

Let’s have a look at the structure of a blockchain in a little more detail.

[image: ledger.blockchain]

The visual vocabulary expressed in facts is as follows: Blockchain B
contains blocks B0, B1, B2, B3. B0 is the first block in the blockchain, the
genesis block

In the above diagram, we can see that block B2 has a block data D2 which
contains all its transactions: T5, T6, T7.

Most importantly, B2 has a block header H2, which contains a cryptographic
hash of all the transactions in D2 as well as with the equivalent hash from
the previous block B1. In this way, blocks are inextricably and immutably linked
to each other, which the term blockchain so neatly captures!

Finally, as you can see in the diagram, the first block in the blockchain is
called the genesis block. It’s the starting point for the ledger, though it
does not contain any user transactions. Instead, it contains a configuration
transaction containing the initial state of the network channel (not shown). We
discuss the genesis block in more detail when we discuss the blockchain network
and channels in the documentation.

Blocks

Let’s have a closer look at the structure of a block. It consists of three
sections

	Block Header

This section comprises three fields, written when a block is created.

	Block number: An integer starting at 0 (the genesis block), and
increased by 1 for every new block appended to the blockchain.

	Current Block Hash: The hash of all the transactions contained in the
current block.

	Previous Block Hash: A copy of the hash from the previous block in the
blockchain.

[image: ledger.blocks]

The visual vocabulary expressed in facts is as follows: Block header H2 of
block B2 consists of block number 2, the hash CH2 of the current block data
D2, and a copy of a hash PH1 from the previous block, block number 1.

	Block Data

This section contains a list of transactions arranged in order. It is
written when the block is created. These transactions have a rich but
straightforward structure, which we describe later in this
topic.

	Block Metadata

This section contains the time when the block was written, as well as the
certificate, public key and signature of the block writer. Subsequently, the
block committer also adds a valid/invalid indicator for every transaction,
though this information is not included in the hash, as that is created when
the block is created.

Transactions

As we’ve seen, a transaction captures changes to the world state. Let’s have a
look at the detailed blockdata structure which contains the transactions in
a block.

[image: ledger.transaction]

The visual vocabulary expressed in facts is as follows: Transaction T4 in
blockdata D1 of block B1 consists of transaction header, H4, a transaction
signature, S4, a transaction proposal P4, a transaction response, R4, and a list
of endorsements, E4.

In the above example, we can see the following fields:

	Header

This section, illustrated by H4, captures some essential metadata about the
transaction – for example, the name of the relevant chaincode, and its
version.

	Signature

This section, illustrated by S4, contains a cryptographic signature, created by
the client application. This field is used to check that the transaction
details have not been tampered with, as it requires the application’s private
key to generate it.

	Proposal

This field, illustrated by P4, encodes the input parameters supplied by an
application to the chaincode which creates the proposed ledger update. When
the chaincode runs, this proposal provides a set of input parameters, which,
in combination with the current world state, determines the new world state.

	Response

This section, illustrated by R4, captures the before and after values of the
world state, as a Read Write set (RW-set). It’s the output of a chaincode,
and if the transaction is successfully validated, it will be applied to the
ledger to update the world state.

	Endorsements

As shown in E4, this is a list of signed transaction responses from each
required organization sufficient to satisfy the endorsement policy. You’ll
notice that, whereas only one transaction response is included in the
transaction, there are multiple endorsements. That’s because each endorsement
effectively encodes its organization’s particular transaction response –
meaning that there’s no need to include any transaction response that doesn’t
match sufficient endorsements as it will be rejected as invalid, and not
update the world state.

That concludes the major fields of the transaction – there are others, but
these are the essential ones that you need to understand to have a solid
understanding of the ledger data structure.

World State database options

The world state is physically implemented as a database, to provide simple and
efficient storage and retrieval of ledger states. As we’ve seen, ledger states
can have simple or complex values, and to accommodate this, the world state
database implementation can vary, allowing these values to be efficiently
implemented. Options for the world state database currently include LevelDB and
CouchDB.

LevelDB is the default and is particularly appropriate when ledger states are
simple key-value pairs. A LevelDB database is closely co-located with a network
node – it is embedded within the same operating system process.

CouchDB is a particularly appropriate choice when ledger states are structured
as JSON documents because CouchDB supports the rich queries and update of richer
data types often found in business transactions. Implementation-wise, CouchDB
runs in a separate operating system process, but there is still a 1:1 relation
between a network node and a CouchDB instance. All of this is invisible to
chaincode. See CouchDB as the StateDatabase
for more information on CouchDB.

In LevelDB and CouchDB, we see an important aspect of Hyperledger Fabric – it is
pluggable. The world state database could be a relational data store, or a
graph store, or a temporal database. This provides great flexibility in the
types of ledger states that can be efficiently accessed, allowing Hyperledger
Fabric to address many different types of problems.

Example Ledger: fabcar

As we end this topic on the ledger, let’s have a look at a sample ledger. If
you’ve run the fabcar sample application, then you’ve
created this ledger.

The fabcar sample app creates a set of 10 cars, of different color, make, model
and owner. Here’s what the ledger looks like after the first four cars have been
created.

[image: ledger.transaction]

The visual vocabulary expressed in facts is as follows: The ledger L, comprises
a world state, W and a blockchain, B. W contains four states with keys: CAR1,
CAR2, CAR3 and CAR4. B contains two blocks, 0 and 1. Block 1 contains four
transactions: T1, T2, T3, T4.

We can see that the ledger world state contains states that correspond to CAR0,
CAR1, CAR2 and CAR3. CAR0 has a value which indicates that it is a blue Toyota
Prius, owned by Tomoko, and we can see similar states and values for the other
cars. Moreover, we can see that all car states are at version number 0,
indicating that this is their starting version number – they have not been
updated since they were created.

We can also see that the ledger blockchain contains two blocks. Block 0 is the
genesis block, though it does not contain any transactions that relate to cars.
Block 1 however, contains transactions T1, T2, T3, T4 and these correspond to
transactions that created the initial states for CAR0 to CAR3 in the world
state. We can see that block 1 is linked to block 0.

We have not shown the other fields in the blocks or transactions, specifically
headers and hashes. If you’re interested in the precise details of these, you
will find a dedicated reference topic elsewhere in the documentation. It gives
you a fully worked example of an entire block with its transactions in glorious
detail – but for now, you have achieved a solid conceptual understanding of a
Hyperledger Fabric ledger. Well done!

More information

See the Transaction Flow,
Read-Write set semantics and
CouchDB as the StateDatabase topics for a
deeper dive on transaction flow, concurrency control, and the world state
database.

 Use Cases

Use Cases

The Hyperledger Requirements WG is documenting a number of blockchain use
cases and maintaining an inventory
here [https://wiki.hyperledger.org/groups/requirements/use-case-inventory].

 Getting Started

Getting Started

Before we begin, if you haven’t already done so, you may wish to check that
you have all the Prerequisites installed on the platform(s)
on which you’ll be developing blockchain applications and/or operating
Hyperledger Fabric.

Once you have the prerequisites installed, you are ready to download and
install HyperLedger Fabric. While we work on developing real installers for the
Fabric binaries, we provide a script that will Install Samples, Binaries and Docker Images to your system.
The script also will download the Docker images to your local registry.

Hyperledger Fabric SDKs

Hyperledger Fabric offers a number of SDKs to support various programming
languages. There are two officially released SDKs for Node.js and Java:

	Hyperledger Fabric Node SDK [https://github.com/hyperledger/fabric-sdk-node] and Node SDK documentation [https://fabric-sdk-node.github.io/].

	Hyperledger Fabric Java SDK [https://github.com/hyperledger/fabric-sdk-java].

In addition, there are three more SDKs that have not yet been officially released
(for Python, Go and REST), but they are still available for downloading and testing:

	Hyperledger Fabric Python SDK [https://github.com/hyperledger/fabric-sdk-py].

	Hyperledger Fabric Go SDK [https://github.com/hyperledger/fabric-sdk-go].

	Hyperledger Fabric REST SDK [https://github.com/hyperledger/fabric-sdk-rest].

Hyperledger Fabric CA

Hyperledger Fabric provides an optional
certificate authority service [http://hyperledger-fabric-ca.readthedocs.io/en/latest]
that you may choose to use to generate the certificates and key material
to configure and manage identity in your blockchain network. However, any CA
that can generate ECDSA certificates may be used.

 Prerequisites

Prerequisites

Before we begin, if you haven’t already done so, you may wish to check that
you have all the prerequisites below installed on the platform(s)
on which you’ll be developing blockchain applications and/or operating
Hyperledger Fabric.

Install cURL

Download the latest version of the cURL [https://curl.haxx.se/download.html] tool if it is not already
installed or if you get errors running the curl commands from the
documentation.

Note

If you’re on Windows please see the specific note on Windows
extras below.

Docker and Docker Compose

You will need the following installed on the platform on which you will be
operating, or developing on (or for), Hyperledger Fabric:

	MacOSX, *nix, or Windows 10: Docker [https://www.docker.com/get-docker]
Docker version 17.06.2-ce or greater is required.

	Older versions of Windows: Docker
Toolbox [https://docs.docker.com/toolbox/toolbox_install_windows/] -
again, Docker version Docker 17.06.2-ce or greater is required.

You can check the version of Docker you have installed with the following
command from a terminal prompt:

docker --version

Note

Installing Docker for Mac or Windows, or Docker Toolbox will also
install Docker Compose. If you already had Docker installed, you
should check that you have Docker Compose version 1.14.0 or greater
installed. If not, we recommend that you install a more recent
version of Docker.

You can check the version of Docker Compose you have installed with the
following command from a terminal prompt:

docker-compose --version

Go Programming Language

Hyperledger Fabric uses the Go Programming Language for many of its
components.

	Go [https://golang.org/dl/] version 1.11.x is required.

Given that we will be writing chaincode programs in Go, there are two
environment variables you will need to set properly; you can make these
settings permanent by placing them in the appropriate startup file, such
as your personal ~/.bashrc file if you are using the bash shell
under Linux.

First, you must set the environment variable GOPATH to point at the
Go workspace containing the downloaded Fabric code base, with something like:

export GOPATH=$HOME/go

Note

You must set the GOPATH variable

Even though, in Linux, Go’s GOPATH variable can be a colon-separated list
of directories, and will use a default value of $HOME/go if it is unset,
the current Fabric build framework still requires you to set and export that
variable, and it must contain only the single directory name for your Go
workspace. (This restriction might be removed in a future release.)

Second, you should (again, in the appropriate startup file) extend your
command search path to include the Go bin directory, such as the following
example for bash under Linux:

export PATH=$PATH:$GOPATH/bin

While this directory may not exist in a new Go workspace installation, it is
populated later by the Fabric build system with a small number of Go executables
used by other parts of the build system. So even if you currently have no such
directory yet, extend your shell search path as above.

Node.js Runtime and NPM

If you will be developing applications for Hyperledger Fabric leveraging the
Hyperledger Fabric SDK for Node.js, you will need to have version 8.9.x of Node.js
installed.

Note

Versions other than the 8.x series are not supported at this time.

	Node.js [https://nodejs.org/en/download/] - version 8.x

Note

Installing Node.js will also install NPM, however it is recommended
that you confirm the version of NPM installed. You can upgrade
the npm tool with the following command:

npm install npm@5.6.0 -g

Python

Note

The following applies to Ubuntu 16.04 users only.

By default Ubuntu 16.04 comes with Python 3.5.1 installed as the python3 binary.
The Fabric Node.js SDK requires an iteration of Python 2.7 in order for npm install
operations to complete successfully. Retrieve the 2.7 version with the following command:

sudo apt-get install python

Check your version(s):

python --version

Windows extras

If you are developing on Windows 7, you will want to work within the
Docker Quickstart Terminal which uses Git Bash [https://git-scm.com/downloads] and provides a better alternative
to the built-in Windows shell.

However experience has shown this to be a poor development environment
with limited functionality. It is suitable to run Docker based
scenarios, such as Getting Started, but you may have
difficulties with operations involving the make and docker
commands.

On Windows 10 you should use the native Docker distribution and you
may use the Windows PowerShell. However, for the binaries
command to succeed you will still need to have the uname command
available. You can get it as part of Git but beware that only the
64bit version is supported.

Before running any git clone commands, run the following commands:

git config --global core.autocrlf false
git config --global core.longpaths true

You can check the setting of these parameters with the following commands:

git config --get core.autocrlf
git config --get core.longpaths

These need to be false and true respectively.

The curl command that comes with Git and Docker Toolbox is old and
does not handle properly the redirect used in
Getting Started. Make sure you install and use a newer version
from the cURL downloads page [https://curl.haxx.se/download.html]

For Node.js you also need the necessary Visual Studio C++ Build Tools
which are freely available and can be installed with the following
command:

npm install --global windows-build-tools

See the NPM windows-build-tools page [https://www.npmjs.com/package/windows-build-tools] for more
details.

Once this is done, you should also install the NPM GRPC module with the
following command:

npm install --global grpc

Your environment should now be ready to go through the
Getting Started samples and tutorials.

Note

If you have questions not addressed by this documentation, or run into
issues with any of the tutorials, please visit the Still Have Questions?
page for some tips on where to find additional help.

 Install Samples, Binaries and Docker Images

Install Samples, Binaries and Docker Images

While we work on developing real installers for the Hyperledger Fabric
binaries, we provide a script that will download and install samples and
binaries to your system. We think that you’ll find the sample applications
installed useful to learn more about the capabilities and operations of
Hyperledger Fabric.

Note

If you are running on Windows you will want to make use of the
Docker Quickstart Terminal for the upcoming terminal commands.
Please visit the Prerequisites if you haven’t previously installed
it.

If you are using Docker Toolbox on Windows 7 or macOS, you
will need to use a location under C:\Users (Windows 7) or
/Users (macOS) when installing and running the samples.

If you are using Docker for Mac, you will need to use a location
under /Users, /Volumes, /private, or /tmp. To use a different
location, please consult the Docker documentation for
file sharing [https://docs.docker.com/docker-for-mac/#file-sharing].

If you are using Docker for Windows, please consult the Docker
documentation for shared drives [https://docs.docker.com/docker-for-windows/#shared-drives]
and use a location under one of the shared drives.

Determine a location on your machine where you want to place the fabric-samples
repository and enter that directory in a terminal window. The
command that follows will perform the following steps:

	If needed, clone the hyperledger/fabric-samples [https://github.com/hyperledger/fabric-samples] repository

	Checkout the appropriate version tag

	Install the Hyperledger Fabric platform-specific binaries and config files
for the version specified into the /bin and /config directories of fabric-samples

	Download the Hyperledger Fabric docker images for the version specified

Once you are ready, and in the directory into which you will install the
Fabric Samples and binaries, go ahead and execute the following command:

curl -sSL http://bit.ly/2ysbOFE | bash -s 1.4.0-rc2

Note

If you want to download different versions for Fabric, Fabric-ca and thirdparty
Docker images, you must pass the version identifier for each.

curl -sSL http://bit.ly/2ysbOFE | bash -s <fabric> <fabric-ca> <thirdparty>
curl -sSL http://bit.ly/2ysbOFE | bash -s 1.4.0-rc2 1.4.0-rc2 0.4.14

Note

If you get an error running the above curl command, you may
have too old a version of curl that does not handle
redirects or an unsupported environment.

Please visit the Prerequisites page for additional
information on where to find the latest version of curl and
get the right environment. Alternately, you can substitute
the un-shortened URL:
https://raw.githubusercontent.com/hyperledger/fabric/master/scripts/bootstrap.sh

Note

You can use the command above for any published version of Hyperledger
Fabric. Simply replace 1.4.0-rc2 with the version identifier
of the version you wish to install.

The command above downloads and executes a bash script
that will download and extract all of the platform-specific binaries you
will need to set up your network and place them into the cloned repo you
created above. It retrieves the following platform-specific binaries:

	configtxgen,

	configtxlator,

	cryptogen,

	discover,

	idemixgen

	orderer,

	peer, and

	fabric-ca-client

and places them in the bin sub-directory of the current working
directory.

You may want to add that to your PATH environment variable so that these
can be picked up without fully qualifying the path to each binary. e.g.:

export PATH=<path to download location>/bin:$PATH

Finally, the script will download the Hyperledger Fabric docker images from
Docker Hub [https://hub.docker.com/u/hyperledger/] into
your local Docker registry and tag them as ‘latest’.

The script lists out the Docker images installed upon conclusion.

Look at the names for each image; these are the components that will ultimately
comprise our Hyperledger Fabric network. You will also notice that you have
two instances of the same image ID - one tagged as “amd64-1.x.x” and
one tagged as “latest”. Prior to 1.2.0, the image being downloaded was determined
by uname -m and showed as “x86_64-1.x.x”.

Note

On different architectures, the x86_64/amd64 would be replaced
with the string identifying your architecture.

Note

If you have questions not addressed by this documentation, or run into
issues with any of the tutorials, please visit the Still Have Questions?
page for some tips on where to find additional help.

 Developing Applications

Developing Applications

This topic covers how to develop a client application and smart contract to
solve a business problem using Hyperledger Fabric. In a real world Commercial
Paper scenario, involving multiple organizations, you’ll learn about all the
concepts and tasks required to accomplish this goal. We assume that the
blockchain network is already available.

The topic is designed for multiple audiences:

	Solution and application architect

	Client application developer

	Smart contract developer

	Business professional

You can chose to read the topic in order, or you can select individual sections
as appropriate. Individual topic sections are marked according to reader
relevance, so whether you’re looking for business or technical information it’ll
be clear when a topic is for you.

The topic follows a typical software development lifecycle. It starts with
business requirements, and then covers all the major technical activities
required to develop an application and smart contract to meet these
requirements.

If you’d prefer, you can try out the commercial paper scenario immediately,
following an abbreviated explanation, by running the commercial paper tutorial. You can return to this topic when you
need fuller explanations of the concepts introduced in the tutorial.

 The scenario

The scenario

Audience: Architects, Application and smart contract developers, Business
professionals

In this topic, we’re going to describe a business scenario involving six
organizations who use PaperNet, a commercial paper network built on Hyperledger
Fabric, to issue, buy and redeem commercial paper. We’re going to use the
scenario to outline requirements for the development of commercial paper
applications and smart contracts used by the participant organizations.

PaperNet network

PaperNet is a commercial paper network that allows suitably authorized
participants to issue, trade, redeem and rate commercial paper.

[image: develop.systemscontext]

The PaperNet commercial paper network. Six organizations currently use PaperNet
network to issue, buy, sell, redeem and rate commercial paper. MagentoCorp
issues and redeems commercial paper. DigiBank, BigFund, BrokerHouse and
HedgeMatic all trade commercial paper with each other. RateM provides various
measures of risk for commercial paper.

Let’s see how MagnetoCorp uses PaperNet and commercial paper to help its
business.

Introducing the actors

MagnetoCorp is a well-respected company that makes self-driving electric
vehicles. In early April 2020, MagnetoCorp won a large order to manufacture
10,000 Model D cars for Daintree, a new entrant in the personal transport
market. Although the order represents a significant win for MagnetoCorp,
Daintree will not have to pay for the vehicles until they start to be delivered
on November 1, six months after the deal was formally agreed between MagnetoCorp
and Daintree.

To manufacture the vehicles, MagnetoCorp will need to hire 1000 workers for at
least 6 months. This puts a short term strain on its finances – it will require
an extra 5M USD each month to pay these new employees. Commercial paper is
designed to help MagnetoCorp overcome its short term financing needs – to meet
payroll every month based on the expectation that it will be cash rich when
Daintree starts to pay for its new Model D cars.

At the end of May, MagnetoCorp needs 5M USD to meet payroll for the extra
workers it hired on May 1. To do this, it issues a commercial paper with a face
value of 5M USD with a maturity date 6 months in the future – when it expects
to see cash flow from Daintree. DigiBank thinks that MagnetoCorp is
creditworthy, and therefore doesn’t require much of a premium above the central
bank base rate of 2%, which would value 4.95M USD today at 5M USD in 6 months
time. It therefore purchases the MagnetoCorp 6 month commercial paper for 4.94M
USD – a slight discount compared to the 4.95M USD it is worth. DigiBank fully
expects that it will be able to redeem 5M USD from MagnetoCorp in 6 months time,
making it a profit of 10K USD for bearing the increased risk associated with
this commercial paper. This extra 10K means it receives a 2.4% return on
investment – significantly better than the risk free return of 2%.

At the end of June, when MagnetoCorp issues a new commercial paper for 5M USD to
meet June’s payroll, it is purchased by BigFund for 4.94M USD. That’s because
the commercial conditions are roughly the same in June as they are in May,
resulting in BigFund valuing MagnetoCorp commercial paper at the same price that
DigiBank did in May.

Each subsequent month, MagnetoCorp can issue new commercial paper to meet its
payroll obligations, and these may be purchased by DigiBank, or any other
participant in the PaperNet commercial paper network – BigFund, HedgeMatic or
BrokerHouse. These organizations may pay more or less for the commercial paper
depending on two factors – the central bank base rate, and the risk associated
with MagnetoCorp. This latter figure depends on a variety of factors such as the
production of Model D cars, and the creditworthiness of MagnetoCorp as assessed
by RateM, a ratings agency.

Let’s pause the MagnetoCorp story for a moment, and develop the client
applications and smart contracts that PaperNet uses to issue, buy, sell and
redeem commercial paper. We’ll come back to the role of the rating agency,
RateM, a little later.

 Analysis

Analysis

Audience: Architects, Application and smart contract developers, Business
professionals

Let’s analyze commercial paper in a little more detail. PaperNet participants
such as MagnetoCorp and DigiBank use commercial paper transactions to achieve
their business objectives – let’s examine the structure of a commercial paper
and the transactions that affect it over time. Later we’ll focus on how money
flows between buyers and sellers; for now, let’s focus on the first paper issued
by MagnetoCorp.

Commercial paper lifecycle

A paper 00001 is issued by MagnetoCorp on May 31. Spend a few moments looking at
the first state of this paper, with its different properties and values:

Issuer = MagnetoCorp
Paper = 00001
Owner = MagnetoCorp
Issue date = 31 May 2020
Maturity = 30 November 2020
Face value = 5M USD
Current state = issued

This paper state is a result of the issue transaction and it brings
MagnetoCorp’s first commercial paper into existence! Notice how this paper has a
5M USD face value for redemption later in the year. See how the Issuer and
Owner are the same when paper 00001 is issued. Notice that this paper could be
uniquely identified as MagnetoCorp00001 – a composition of the Issuer and
Paper properties. Finally, see how the property Current state = issued
quickly identifies the stage of MagnetoCorp paper 00001 in its lifecycle.

Shortly after issuance, the paper is bought by DigiBank. Spend a few moments
looking at how the same commercial paper has changed as a result of this buy
transaction:

Issuer = MagnetoCorp
Paper = 00001
Owner = DigiBank
Issue date = 31 May 2020
Maturity date = 30 November 2020
Face value = 5M USD
Current state = trading

The most significant change is that of Owner – see how the paper initially
owned by MagnetoCorp is now owned by DigiBank. We could imagine how the
paper might be subsequently sold to BrokerHouse or HedgeMatic, and the
corresponding change to Owner. Note how Current state allow us to easily
identify that the paper is now trading.

After 6 months, if DigiBank still holds the the commercial paper, it can redeem
it with MagnetoCorp:

Issuer = MagnetoCorp
Paper = 00001
Owner = MagnetoCorp
Issue date = 31 May 2020
Maturity date = 30 November 2020
Face value = 5M USD
Current state = redeemed

This final redeem transaction has ended the commercial paper’s lifecycle –
it can be considered closed. It is often mandatory to keep a record of redeemed
commercial papers, and the redeemed state allows us to quickly identify these.

Transactions

We’ve seen that paper 00001’s lifecycle is relatively straightforward – it
moves between issued, trading and redeemed as a result of an issue,
buy, or redeem transaction.

These three transactions are initiated by MagnetoCorp and DigiBank (twice), and
drive the state changes of paper 00001. Let’s have a look at the transactions
that affect this paper in a little more detail:

Issue

Examine the first transaction initiated by MagnetoCorp:

Txn = issue
Issuer = MagnetoCorp
Paper = 00001
Issue time = 31 May 2020 09:00:00 EST
Maturity date = 30 November 2020
Face value = 5M USD

See how the issue transaction has a structure with properties and values.
This transaction structure is different to, but closely matches, the structure
of paper 00001. That’s because they are different things – paper 00001 reflects
a state of PaperNet that is a result of the issue transaction. It’s the
logic behind the issue transaction (which we cannot see) that takes these
properties and creates this paper. Because the transaction creates the
paper, it means there’s a very close relationship between these structures.

Buy

Next, examine the buy transaction which transfers ownership of paper 00001
from MagnetoCorp to DigiBank:

Txn = buy
Issuer = MagnetoCorp
Paper = 00001
Current owner = MagnetoCorp
New owner = DigiBank
Purchase time = 31 May 2020 10:00:00 EST
Price = 4.94M USD

See how the buy transaction has fewer properties that end up in this paper.
That’s because this transaction only modifies this paper. It’s only New owner = DigiBank that changes as a result of this transaction; everything else
is the same. That’s OK – the most important thing about the buy transaction
is the change of ownership, and indeed in this transaction, there’s an
acknowledgement of the current owner of the paper, MagnetoCorp.

You might ask why the Purchase time and Price properties are not captured in
paper 00001? This comes back to the difference between the transaction and the
paper. The 4.94 M USD price tag is actually a property of the transaction,
rather than a property of this paper. Spend a little time thinking about
this difference; it is not as obvious as it seems. We’re going to see later
that the ledger will record both pieces of information – the history of all
transactions that affect this paper, as well its latest state. Being clear on
this separation of information is really important.

It’s also worth remembering that paper 00001 may be bought and sold many times.
Although we’re skipping ahead a little in our scenario, let’s examine what
transactions we might see if paper 00001 changes ownership.

If we have a purchase by BigFund:

Txn = buy
Issuer = MagnetoCorp
Paper = 00001
Current owner = DigiBank
New owner = BigFund
Purchase time = 2 June 2020 12:20:00 EST
Price = 4.93M USD

Followed by a subsequent purchase by HedgeMatic:

Txn = buy
Issuer = MagnetoCorp
Paper = 00001
Current owner = BigFund
New owner = HedgeMatic
Purchase time = 3 June 2020 15:59:00 EST
Price = 4.90M USD

See how the paper owners changes, and how in out example, the price changes. Can
you think of a reason why the price of MagnetoCorp commercial paper might be
falling?

Redeem

The redeem transaction for paper 00001 represents the end of its lifecycle.
In our relatively simple example, DigiBank initiates the transaction which
transfers the commercial paper back to MagnetoCorp:

Txn = redeem
Issuer = MagnetoCorp
Paper = 00001
Current owner = HedgeMatic
Redeem time = 30 Nov 2020 12:00:00 EST

Again, notice how the redeem transaction has very few properties; all of the
changes to paper 00001 can be calculated data by the redeem transaction logic:
the Issuer will become the new owner, and the Current state will change to
redeemed. The Current owner property is specified in our example, so that it
can be checked against the current holder of the paper.

The Ledger

In this topic, we’ve seen how transactions and the resultant paper states are
the two most important concepts in PaperNet. Indeed, we’ll see these two
fundamental elements in any Hyperledger Fabric distributed
ledger – a world state, that contains the current
value of all objects, and a blockchain that records the history of all
transactions that resulted in the current world state.

You’re now in a great place translate these ideas into a smart contract. Don’t
worry if your programming is a little rusty, we’ll provide tips and pointers to
understand the program code. Mastering the commercial paper smart contract is
the first big step towards designing your own application. Or, if you’re a
business analyst who’s comfortable with a little programming, don’t be afraid to
keep dig a little deeper!

 Process and Data Design

Process and Data Design

Audience: Architects, Application and smart contract developers, Business
professionals

This topic shows you how to design the commercial paper processes and their
related data structures in PaperNet. Our analysis highlighted
that modelling PaperNet using states and transactions provided a precise way to
understand what’s happening. We’re now going to elaborate on these two strongly
related concepts to help us subsequently design the smart contracts and
applications of PaperNet.

Lifecycle

As we’ve seen, there are two important concepts that concern us when dealing
with commercial paper; states and transactions. Indeed, this is true for
all blockchain use cases; there are conceptual objects of value, modelled as
states, whose lifecycle transitions are described by transactions. An effective
analysis of states and transactions is an essential starting point for a
successful implementation.

We can represent the life cycle of a commercial paper using a state transition
diagram:

[image: develop.statetransition] The state transition
diagram for commercial paper. Commercial papers transition between issued,
trading and redeemed states by means of the issue, buy and
redeem transactions.

See how the state diagram describes how commercial papers change over time, and
how specific transactions govern the life cycle transitions. In Hypledger
Fabric, smart contracts implement transaction logic that transition commercial
papers between their different states. Commercial paper states are actually held
in the ledger world state; so let’s take a closer look at them.

Ledger state

Recall the structure of a commercial paper:

[image: develop.paperstructure] A commercial paper can be
represented as a set of properties, each with a value. Typically, some
combination of these properties will provide a unique key for each paper.

See how a commercial paper Paper property has value 00001, and the Face value property has value 5M USD. Most importantly, the Current state
property indicates whether the commercial paper is issued,trading or
redeemed. In combination, the full set of properties make up the state of
a commercial paper. Moreover, the entire collection of these individual
commercial paper states constitutes the ledger
world state.

All ledger state share this form; each has a set of properties, each with a
different value. This multi-property aspect of states is a powerful feature –
it allows us to think of a Fabric state as a vector rather than a simple scalar.
We then represent facts about whole objects as individual states, which
subsequently undergo transitions controlled by transaction logic. A Fabric state
is implemented as a key/value pair, in which the value encodes the object
properties in a format that captures the object’s multiple properties, typically
JSON. The ledger
database can support
advanced query operations against these properties, which is very helpful for
sophisticated object retrieval.

See how MagnetoCorp’s paper 00001 is represented as a state vector that
transitions according to different transaction stimuli:

[image: develop.paperstates] A commercial paper state is
brought into existence and transitions as a result of different transactions.
Hyperledger Fabric states have multiple properties, making them vectors rather
than scalars.

Notice how each individual paper starts with the empty state, which is
technically a nil [https://en.wikipedia.org/wiki/Null_(SQL)] state for the
paper, as it doesn’t exist! See how paper 00001 is brought into existence by
the issue transaction, and how it is subsequently updated as a result of the
buy and redeem transactions.

Notice how each state is self-describing; each property has a name and a value.
Although all our commercial papers currently have the same properties, this need
not be the case for all time, as Hyperledger Fabric supports different states
having different properties. This allows the same ledger world state to contain
different forms of the same asset as well as different types of asset. It also
makes it possible to update a state’s structure; imagine a new regulation that
requires an additional data field. Flexible state properties support the
fundamental requirement of data evolution over time.

State keys

In most practical applications, a state will have a combination of properties
that uniquely identify it in a given context – it’s key. The key for a
PaperNet commercial paper is formed by a concatenation of the Issuer and
paper properties; so for MagnetoCorp’s first paper, it’s MagnetoCorp00001.

A state key allows us to uniquely identify a paper; it is created as a result
of the issue transaction and subsequently updated by buy and redeem.
Hyperledger Fabric requires each state in a ledger to have a unique key.

When a unique key is not available from the available set of properties, an
application-determined unique key is specified as an input to the transaction
that creates the state. This unique key is usually with some form of
UUID [https://en.wikipedia.org/wiki/Universally_unique_identifier], which
although less readable, is a standard practice. What’s important is that every
individual state object in a ledger must have a unique key.

Multiple states

As we’ve seen, commercial papers in PaperNet are stored as state vectors in a
ledger. It’s a reasonable requirement to be able to query different commercial
papers from the ledger; for example: find all the papers issued by MagnetoCorp,
or: find all the papers issued by MagnetoCorp in the redeemed state.

To make these kinds of search tasks possible, it’s helpful to group all related
papers together in a logical list. The PaperNet design incorporates the idea of
a commercial paper list – a logical container which is updated whenever
commercial papers are issued or otherwise changed.

Logical representation

It’s helpful to think of all PaperNet commercial papers being in a single list
of commercial papers:

[image: develop.paperlist] MagnetoCorp’s
newly created commercial paper 00004 is added to the list of existing
commercial papers.

New papers can be added to the list as a result of an issue transaction, and
papers already in the list can be updated with buy or redeem
transactions. See how the list has a descriptive name: org.papernet.papers;
it’s a really good idea to use this kind of DNS
name [https://en.wikipedia.org/wiki/Domain_Name_System] because well-chosen
names will make your blockchain designs intuitive to other people. This idea
applies equally well to smart contract namespaces.

Physical representation

While it’s correct to think of a single list of papers in PaperNet –
org.papernet.papers – lists are best implemented as a set of individual
Fabric states, whose composite key associates the state with its list. In this
way, each state’s composite key is both unique and supports effective list query.

[image: develop.paperphysical] Representing a list of
PaperNet commercial papers as a set of distinct Hyperledger Fabric states

Notice how each paper in the list is represented by a vector state, with a
unique composite key formed by the concatenation of org.papernet.paper,
Issuer and Paper properties. This structure is helpful for two reasons:

	It allows us to examine any state vector in the ledger to determine which
list it’s in, without reference to a separate list. It’s analogous to
looking at set of sports fans, and identifying which team they support by
the colour of the shirt they are wearing. The sports fans self-declare their
allegiance; we don’t need a list of fans.

	Hyperlegder Fabric internally uses a concurrency control
mechanism
to update a ledger, such that keeping papers in separate state vectors vastly
reduces the opportunity for shared-state collisions. Such collisions require
transaction re-submission, complicate application design, and decrease
performance.

This second point is actually a key take-away for Hyperledger Fabric; the
physical design of state vectors is very important to optimum performance
and behaviour. Keep your states separate!

In the next topic, we will show you how to combine these design concepts to
implement the PaperNet commercial paper smart contract, and then an application
in exploits it!

 Smart Contract Processing

Smart Contract Processing

Audience: Architects, Application and smart contract developers

At the heart of a blockchain network is a smart contract. In PaperNet, the code
in the commercial paper smart contract defines the valid states for commercial
paper, and the transaction logic that transition a paper from one state to
another. In this topic, we’re going to show you how to implement a real world
smart contract that governs the process of issuing, buying and redeeming
commercial paper.

We’re going to cover:

	What is a smart contract and why it’s important

	How to define a smart contract

	How to define a transaction

	How to implement a transaction

	How to represent a business object in a smart contract

	How to store and retrieve an object in the ledger

If you’d like, you can download the sample and even run it
locally. It is written in JavaScript, but
the logic is quite language independent, so you’ll be easily able to see what’s
going on! (The sample will become available for Java and GOLANG as well.)

Smart Contract

A smart contract defines the different states of a business object and governs
the processes that move the object between these different states. Smart
contracts are important because they allow architects and smart contract
developers to define the key business processes and data that are shared across
the different organizations collaborating in a blockchain network.

In the PaperNet network, the smart contract is shared by the different network
participants, such as MagnetoCorp and DigiBank. The same version of the smart
contract must be used by all applications connected to the network so that they
jointly implement the same shared business processes and data.

Contract class

A copy of the PaperNet commercial paper smart contract is contained in
papercontract.js. View
it [https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/lib/papercontract.js]
with your browser, or open it in your favourite editor if you’ve downloaded it.

You may notice from the file path that this is MagnetoCorp’s copy of the smart
contract. MagnetoCorp and DigiBank must agree the version of the smart contract
that they are going to use. For now, it doesn’t matter which organization’s copy
you look at, they are all the same.

Spend a few moments looking at the overall structure of the smart contract;
notice that it’s quite short! Towards the top of papercontract.js, you’ll see
that there’s a definition for the commercial paper smart contract:

class CommercialPaperContract extends Contract {...}

The CommercialPaperContract
class [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes]
contains the transaction definitions for commercial paper – issue, buy
and redeem. It’s these transactions that bring commercial papers into
existence and move them through their lifecycle. We’ll examine these
transactions soon, but for now notice how
CommericalPaperContract extends the Hyperledger Fabric Contract
class [https://fabric-shim.github.io/release-1.4/fabric-contract-api.Contract.html].
This built-in class, and the Context class, were brought into scope earlier:

const { Contract, Context } = require('fabric-contract-api');

Our commercial paper contract will use built-in features of these classes, such
as automatic method invocation, a
per-transaction context,
transaction handlers, and class-shared state.

Notice also how the class constructor uses its
superclass [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/super]
to initialize itself with a namespace:

constructor() {
 super('org.papernet.commercialpaper');
}

Most importantly, org.papernet.commercialpaper is very descriptive – this smart
contract is the agreed definition of commercial paper for all PaperNet
organizations.

Usually there will only be one smart contract per file – contracts tend to have
different lifecycles, which makes it sensible to separate them. However, in some
cases, multiple smart contracts might provide syntactic help for applications,
e.g. EuroBond, DollarBond, YenBond, but essentially provide the same
function. In such cases, smart contracts and transactions can be disambiguated.

Transaction definition

Within the class, locate the issue method.

async issue(ctx, issuer, paperNumber, issueDateTime, maturityDateTime, faceValue) {...}

This function is given control whenever this contract is called to issue a
commercial paper. Recall how commercial paper 00001 was created with the
following transaction:

Txn = issue
Issuer = MagnetoCorp
Paper = 00001
Issue time = 31 May 2020 09:00:00 EST
Maturity date = 30 November 2020
Face value = 5M USD

We’ve changed the variable names for programming style, but see how these
properties map almost directly to the issue method variables.

The issue method is automatically given control by the contract whenever an
application makes a request to issue a commercial paper. The transaction
property values are made available to the method via the corresponding
variables. See how an application submits a transaction using the Hyperledger
Fabric SDK in the application topic, using a sample
application program.

You might have noticed an extra variable in the issue definition – ctx.
It’s called the transaction context, and it’s
always first. By default, it maintains both per-contract and per-transaction
information relevant to transaction logic. For example, it
would contain MagnetoCorp’s specified transaction identifier, a MagnetoCorp
issuing user’s digital certificate, as well as access to the ledger API.

See how the smart contract extends the default transaction context by
implementing its own createContext() method rather than accepting the
default implementation:

createContext() {
 return new CommercialPaperContext()
}

This extended context adds a custom property paperList to the defaults:

class CommercialPaperContext extends Context {

 constructor() {
 super();
 // All papers are held in a list of papers
 this.paperList = new PaperList(this);
}

We’ll soon see how ctx.paperList can be subsequently used to help store and
retrieve all PaperNet commercial papers.

To solidify your understanding of the structure of a smart contract transaction,
locate the buy and redeem transaction definitions, and see if you can
see how they map to their corresponding commercial paper transactions.

The buy transaction:

async buy(ctx, issuer, paperNumber, currentOwner, newOwner, price, purchaseTime) {...}

Txn = buy
Issuer = MagnetoCorp
Paper = 00001
Current owner = MagnetoCorp
New owner = DigiBank
Purchase time = 31 May 2020 10:00:00 EST
Price = 4.94M USD

The redeem transaction:

async redeem(ctx, issuer, paperNumber, redeemingOwner, redeemDateTime) {...}

Txn = redeem
Issuer = MagnetoCorp
Paper = 00001
Redeemer = DigiBank
Redeem time = 31 Dec 2020 12:00:00 EST

In both cases, observe the 1:1 correspondence between the commercial paper
transaction and the smart contract method definition. And don’t worry about the
async and await
keywords [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function]
– they allow asynchronous JavaScript functions to be treated like their
synchronous cousins in other programming languages.

Transaction logic

Now that you’ve seen how contracts are structured and transactions are defined,
let’s focus on the logic within the smart contract.

Recall the first issue transaction:

Txn = issue
Issuer = MagnetoCorp
Paper = 00001
Issue time = 31 May 2020 09:00:00 EST
Maturity date = 30 November 2020
Face value = 5M USD

It results in the issue method being passed control:

async issue(ctx, issuer, paperNumber, issueDateTime, maturityDateTime, faceValue) {

 // create an instance of the paper
 let paper = CommercialPaper.createInstance(issuer, paperNumber, issueDateTime, maturityDateTime, faceValue);

 // Smart contract, rather than paper, moves paper into ISSUED state
 paper.setIssued();

 // Newly issued paper is owned by the issuer
 paper.setOwner(issuer);

 // Add the paper to the list of all similar commercial papers in the ledger world state
 await ctx.paperList.addPaper(paper);

 // Must return a serialized paper to caller of smart contract
 return paper.toBuffer();
}

The logic is simple: take the transaction input variables, create a new
commercial paper paper, add it to the list of all commercial papers using
paperList, and return the new commercial paper (serialized as a buffer) as the
transaction response.

See how paperList is retrieved from the transaction context to provide access
to the list of commercial papers. issue(), buy() and redeem() continually
re-access ctx.paperList to keep the list of commercial papers up-to-date.

The logic for the buy transaction is a little more elaborate:

async buy(ctx, issuer, paperNumber, currentOwner, newOwner, price, purchaseDateTime) {

 // Retrieve the current paper using key fields provided
 let paperKey = CommercialPaper.makeKey([issuer, paperNumber]);
 let paper = await ctx.paperList.getPaper(paperKey);

 // Validate current owner
 if (paper.getOwner() !== currentOwner) {
 throw new Error('Paper ' + issuer + paperNumber + ' is not owned by ' + currentOwner);
 }

 // First buy moves state from ISSUED to TRADING
 if (paper.isIssued()) {
 paper.setTrading();
 }

 // Check paper is not already REDEEMED
 if (paper.isTrading()) {
 paper.setOwner(newOwner);
 } else {
 throw new Error('Paper ' + issuer + paperNumber + ' is not trading. Current state = ' +paper.getCurrentState());
 }

 // Update the paper
 await ctx.paperList.updatePaper(paper);
 return paper.toBuffer();
}

See how the transaction checks currentOwner and that paper is TRADING
before changing the owner with paper.setOwner(newOwner). The basic flow is
simple though – check some pre-conditions, set the new owner, update the
commercial paper on the ledger, and return the updated commercial paper
(serialized as a buffer) as the transaction response.

Why don’t you see if you can understand the logic for the redeem
transaction?

Representing an object

We’ve seen how to define and implement the issue, buy and redeem
transactions using the CommercialPaper and PaperList classes. Let’s end
this topic by seeing how these classes work.

Locate the CommercialPaper class in the paper.js
file [https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/lib/paper.js]:

class CommercialPaper extends State {...}

This class contains the in-memory representation of a commercial paper state.
See how the createInstance method initializes a new commercial paper with the
provided parameters:

static createInstance(issuer, paperNumber, issueDateTime, maturityDateTime, faceValue) {
 return new CommercialPaper({ issuer, paperNumber, issueDateTime, maturityDateTime, faceValue });
}

Recall how this class was used by the issue transaction:

let paper = CommercialPaper.createInstance(issuer, paperNumber, issueDateTime, maturityDateTime, faceValue);

See how every time the issue transaction is called, a new in-memory instance of
a commercial paper is created containing the transaction data.

A few important points to note:

	This is an in-memory representation; we’ll see
later how it appears on the ledger.

	The CommercialPaper class extends the State class. State is an
application-defined class which creates a common abstraction for a state.
All states have a business object class which they represent, a composite
key, can be serialized and de-serialized, and so on. State helps our code
be more legible when we are storing more than one business object type on
the ledger. Examine the State class in the state.js
file [https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/ledger-api/state.js].

	A paper computes its own key when it is created – this key will be used
when the ledger is accessed. The key is formed from a combination of
issuer and paperNumber.

constructor(obj) {
 super(CommercialPaper.getClass(), [obj.issuer, obj.paperNumber]);
 Object.assign(this, obj);
}

	A paper is moved to the ISSUED state by the transaction, not by the paper
class. That’s because it’s the smart contract that governs the lifecycle
state of the paper. For example, an import transaction might create a new
set of papers immediately in the TRADING state.

The rest of the CommercialPaper class contains simple helper methods:

getOwner() {
 return this.owner;
}

Recall how methods like this were used by the smart contract to move the
commercial paper through its lifecycle. For example, in the redeem
transaction we saw:

if (paper.getOwner() === redeemingOwner) {
 paper.setOwner(paper.getIssuer());
 paper.setRedeemed();
}

Access the ledger

Now locate the PaperList class in the paperlist.js
file [https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/lib/paperlist.js]:

class PaperList extends StateList {

This utility class is used to manage all PaperNet commercial papers in
Hyperledger Fabric state database. The PaperList data structures are described
in more detail in the architecture topic.

Like the CommercialPaper class, this class extends an application-defined
StateList class which creates a common abstraction for a list of states – in
this case, all the commercial papers in PaperNet.

The addPaper() method is a simple veneer over the StateList.addState()
method:

async addPaper(paper) {
 return this.addState(paper);
}

You can see in the StateList.js
file [https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/contract/ledger-api/statelist.js]
how the StateList class uses the Fabric API putState() to write the
commercial paper as state data in the ledger:

async addState(state) {
 let key = this.ctx.stub.createCompositeKey(this.name, state.getSplitKey());
 let data = State.serialize(state);
 await this.ctx.stub.putState(key, data);
}

Every piece of state data in a ledger requires these two fundamental elements:

	Key: key is formed with createCompositeKey() using a fixed name and
the key of state. The name was assigned when the PaperList object was
constructed, and state.getSplitKey() determines each state’s unique key.

	Data: data is simply the serialized form of the commercial paper
state, created using the State.serialize() utility method. The State
class serializes and deserializes data using JSON, and the State’s business
object class as required, in our case CommercialPaper, again set when the
PaperList object was constructed.

Notice how a StateList doesn’t store anything about an individual state or the
total list of states – it delegates all of that to the Fabric state database.
This is an important design pattern – it reduces the opportunity for ledger
MVCC collisions in Hyperledger Fabric.

The StateList getState() and updateState() methods work in similar ways:

async getState(key) {
 let ledgerKey = this.ctx.stub.createCompositeKey(this.name, State.splitKey(key));
 let data = await this.ctx.stub.getState(ledgerKey);
 let state = State.deserialize(data, this.supportedClasses);
 return state;
}

async updateState(state) {
 let key = this.ctx.stub.createCompositeKey(this.name, state.getSplitKey());
 let data = State.serialize(state);
 await this.ctx.stub.putState(key, data);
}

See how they use the Fabric APIs putState(), getState() and
createCompositeKey() to access the ledger. We’ll expand this smart contract
later to list all commercial papers in paperNet – what might the method look
like to implement this ledger retrieval?

That’s it! In this topic you’ve understood how to implement the smart contract
for PaperNet. You can move to the next sub topic to see how an application
calls the smart contract using the Fabric SDK.

 Application

Application

Audience: Architects, Application and smart contract developers

An application can interact with a blockhain network by submitting transactions
to a ledger or querying ledger content. This topic covers the mechanics of how
an application does this; in our scenario, organizations access PaperNet using
applications which invoke issue, sell and redeem transactions
defined in a commercial paper smart contract. Even though MagnetoCorp’s
application to issue a commercial paper is basic, it covers all the major points
of understanding.

In this topic, we’re going to cover:

	The application flow to invoke a smart contract

	How an application uses a wallet and identity

	How an application connects using a gateway

	How to access a particular network

	How to construct a transaction request

	How to submit a transaction

	How to process a transaction response

To help your understanding, we’ll make reference to the commercial paper sample
application provided with Hyperledger Fabric. You can download
it and run it locally. It
is written in JavaScript, but the logic is quite language independent, so you’ll
be easily able to see what’s going on! (The sample will become available for
Java and GOLANG as well.)

Basic Flow

An application interacts with a blockchain network using the Fabric SDK. Here’s
a simplified diagram of how an application invokes a commercial paper smart
contract:

[image: develop.application] A PaperNet application invokes
the commercial paper smart contract to submit an issue transaction request.

An application has to follow six basic steps to submit a transaction:

	Select an identity from a wallet

	Connect to a gateway

	Access the desired network

	Construct a transaction request for a smart contract

	Submit the transaction to the network

	Process the response

You’re going to see how a typical application performs these six steps using the
Fabric SDK. You’ll find the application code in the issue.js file. View
it [https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/application/issue.js]
in your browser, or open it in your favourite editor if you’ve downloaded it.
Spend a few moments looking at the overall structure of the application; even
with comments and spacing, it’s only 100 lines of code!

Wallet

Towards the top of issue.js, you’ll see two Fabric classes are brought
into scope:

const { FileSystemWallet, Gateway } = require('fabric-network');

You can read about the fabric-network classes in the
node SDK documentation [https://fabric-sdk-node.github.io/master/module-fabric-network.html], but for
now, let’s see how they are used to connect MagnetoCorp’s application to
PaperNet. The application uses the Fabric Wallet class as follows:

const wallet = new FileSystemWallet('../identity/user/isabella/wallet');

See how wallet locates a wallet in the local filesystem. The
identity retrieved from the wallet is clearly for a user called Isabella, who is
using the issue application. The wallet holds a set of identities – X.509
digital certificates – which can be used to access PaperNet or any other Fabric
network. If you run the tutorial, and look in this directory, you’ll see the
identity credentials for Isabella.

Think of a wallet holding the digital equivalents of your
government ID, driving license or ATM card. The X.509 digital certificates
within it will associate the holder with a organization, thereby entitling them
to rights in a network channel. For example, Isabella might be an
administrator in MagnetoCorp, and this could give her more privileges than a
different user – Balaji from DigiBank. Moreover, a smart contract can
retrieve this identity during smart contract processing using the transaction
context.

Note also that wallets don’t hold any form of cash or tokens – they hold
identities.

Gateway

The second key class is a Fabric Gateway. Most importantly, a
gateway identifies one or more peers that provide access to a
network – in our case, PaperNet. See how issue.js connects to its gateway:

await gateway.connect(connectionProfile, connectionOptions);

gateway.connect() has two important parameters:

	connectionProfile: the file system location of a
connection profile that identifies
a set of peers as a gateway to PaperNet

	connectionOptions: a set of options used to control how issue.js
interacts with PaperNet

See how the client application uses a gateway to insulate itself from the
network topology, which might change. The gateway takes care of sending the
transaction proposal to the right peer nodes in the network using the
connection profile and connection
options.

Spend a few moments examining the connection
profile [https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/gateway/networkConnection.yaml]
./gateway/connectionProfile.yaml. It uses
YAML [http://yaml.org/spec/1.2/spec.html#Preview], making it easy to read.

It was loaded and converted into a JSON object:

let connectionProfile = yaml.safeLoad(file.readFileSync('./gateway/connectionProfile.yaml', 'utf8'));

Right now, we’re only interested in the channels: and peers: sections of the
profile: (We’ve modified the details slightly to better explain what’s
happening.)

channels:
 papernet:
 peers:
 peer1.magnetocorp.com:
 endorsingPeer: true
 eventSource: true

 peer2.digibank.com:
 endorsingPeer: true
 eventSource: true

peers:
 peer1.magnetocorp.com:
 url: grpcs://localhost:7051
 grpcOptions:
 ssl-target-name-override: peer1.magnetocorp.com
 request-timeout: 120
 tlsCACerts:
 path: certificates/magnetocorp/magnetocorp.com-cert.pem

 peer2.digibank.com:
 url: grpcs://localhost:8051
 grpcOptions:
 ssl-target-name-override: peer1.digibank.com
 tlsCACerts:
 path: certificates/digibank/digibank.com-cert.pem

See how channel: identifies the PaperNet: network channel, and two of its
peers. MagnetoCorp has peer1.magenetocorp.com and DigiBank has
peer2.digibank.com, and both have the role of endorsing peers. Link to these
peers via the peers: key, which contains details about how to connect to them,
including their respective network addresses.

The connection profile contains a lot of information – not just peers – but
network channels, network orderers, organizations, and CAs, so don’t worry if
you don’t understand all of it!

Let’s now turn our attention to the connectionOptions object:

let connectionOptions = {
 identity: userName,
 wallet: wallet
}

See how it specifies that identity, userName, and wallet, wallet, should be
used to connect to a gateway. These were assigned values earlier in the code.

There are other connection options which an
application could use to instruct the SDK to act intelligently on its behalf.
For example:

let connectionOptions = {
 identity: userName,
 wallet: wallet,
 eventHandlerOptions: {
 commitTimeout: 100,
 strategy: EventStrategies.MSPID_SCOPE_ANYFORTX
 },
}

Here, commitTimeout tells the SDK to wait 100 seconds to hear whether a
transaction has been committed. And strategy: EventStrategies.MSPID_SCOPE_ANYFORTX specifies that the SDK can notify an
application after a single MagnetoCorp peer has confirmed the transaction, in
contrast to strategy: EventStrategies.NETWORK_SCOPE_ALLFORTX which requires
that all peers from MagnetoCorp and DigiBank to confirm the transaction.

If you’d like to, read more about how connection
options allow applications to specify goal-oriented behaviour without having to
worry about how it is achieved.

Network channel

The peers defined in the gateway connectionProfile.yaml provide
issue.js with access to PaperNet. Because these peers can be joined to
multiple network channels, the gateway actually provides the application with
access to multiple network channels!

See how the application selects a particular channel:

const network = await gateway.getNetwork('PaperNet');

From this point onwards, network will provide access to PaperNet. Moreover,
if the application wanted to access another network, BondNet, at the same
time, it is easy:

const network2 = await gateway.getNetwork('BondNet');

Now our application has access to a second network, BondNet, simultaneously
with PaperNet!

We can see here a powerful feature of Hyperledger Fabric – applications can
participate in a network of networks, by connecting to multiple gateway
peers, each of which is joined to multiple network channels. Applications will
have different rights in different channels according to their wallet identity
provided in gateway.connect().

Construct request

The application is now ready to issue a commercial paper. To do this, it’s
going to use CommercialPaperContract and again, its fairly straightforward to
access this smart contract:

const contract = await network.getContract('papercontract', 'org.papernet.commercialpaper');

Note how the application provides a name – papercontract – and the optional
namespace of a contract: org.papernet.commercialpaper! We see how a
namespace picks out a particular contract from a chaincode
file such as papercontract.js that contains many contracts. In PaperNet,
papercontract.js was installed and instantiated with the name papercontract,
and if you’re interested, read how to install and
instantiate a chaincode containing multiple smart contracts.

If our application simultaneously required access to another contract in
PaperNet or BondNet this would be easy:

const euroContract = await network.getContract('EuroCommercialPaperContract');

const bondContract = await network2.getContract('BondContract');

In these examples, note how we didn’t use a qualifying namespace – we assumed
only one smart contract per file.

Recall the transaction MagnetoCorp uses to issue its first commercial paper:

Txn = issue
Issuer = MagnetoCorp
Paper = 00001
Issue time = 31 May 2020 09:00:00 EST
Maturity date = 30 November 2020
Face value = 5M USD

Let’s now submit this transaction to PaperNet!

Submit transaction

Submitting a transaction is a single method call to the SDK:

const issueResponse = await contract.submitTransaction('issue', 'MagnetoCorp', '00001', '2020-05-31', '2020-11-30', '5000000');

See how the submitTransaction() parameters match those of the transaction
request. It’s these values that will be passed to the issue() method in the
smart contract, and used to create a new commercial paper. Recall its
signature:

async issue(ctx, issuer, paperNumber, issueDateTime, maturityDateTime, faceValue) {...}

It might appear that a smart contract receives control shortly after the
application issues submitTransaction(), but that’s not the case. Under the
covers, the SDK uses the connectionOptions and connectionProfile details to
send the transaction proposal to the right peers in the network, where it can
get the required endorsements. But the application doesn’t need to worry about
any of this – it just issues submitTransaction and the SDK takes care of it
all!

Let’s now turn our attention to how the application handles the response!

Process response

Recall from papercontract.js how the issue transaction returns a
commercial paper response:

return paper.toBuffer();

You’ll notice a slight quirk – the new paper needs to be converted to a
buffer before it is returned to the application. Notice how issue.js uses the
class method CommercialPaper.fromBuffer() to rehydrate the response buffer as
a commercial paper:

let paper = CommercialPaper.fromBuffer(issueResponse);

This allows paper to be used in a natural way in a descriptive completion
message:

console.log(`${paper.issuer} commercial paper : ${paper.paperNumber} successfully issued for value ${paper.faceValue}`);

See how the same paper class has been used in both the application and smart
contract – if you structure your code like this, it’ll really help readability
and reuse.

As with the transaction proposal, it might appear that the application receives
control soon after the smart contract completes, but that’s not the case. Under
the covers, the SDK manages the entire consensus process, and notifies the
application when it is complete according to the strategy connectionOption. If
you’re interested in what the SDK does under the covers, read the detailed
transaction flow.

That’s it! In this topic you’ve understood how to call a smart contract from a
sample application by examining how MagnetoCorp’s application issues a new
commercial paper in PaperNet. Now examine the key ledger and smart contract data
structures are designed by in the architecture topic behind
them.

 APIs

APIs

 Application design elements

Application design elements

This section elaborates the key features for client application and smart
contract development found in Hyperledger Fabric. A solid understanding of
the features will help you design and implement efficient and effective
solutions.

	Contract namespaces

	Transaction context

	Transaction handlers

	Connection Profile

	Connection Options

	Wallet

	Gateway

 Contract namespaces

Contract namespaces

 Transaction context

Transaction context

 Transaction handlers

Transaction handlers

Audience: Architects, Application and smart contract developers

Transaction handlers allow smart contract developers to define common processing
at key points during the interaction between an application and a smart
contract. Transaction handlers are optional but, if defined, they will receive
control before or after every transaction in a smart contract is invoked. There
is also a specific handler which receives control when a request is made to
invoke a transaction not defined in a smart contract.

Here’s an example of transaction handlers for the commercial paper smart
contract sample:

[image: develop.transactionhandler]

Before, After and Unknown transaction handlers. In this example,
BeforeFunction() is called before the issue, buy and redeem
transactions. AfterFunction() is called after the issue, buy and
redeem transactions. UnknownFunction() is only called if a request is made
to invoke a transaction not defined in the smart contract. (The diagram is
simplified by not repeating BeforeFunction and AfterFunction boxes for each
transaction.

Types of handler

There are three types of transaction handlers which cover different aspects
of the interaction between an application and a smart contract:

	Before handler: is called before every smart contract transaction is
invoked. The handler will usually modify the transaction context to be used
by the transaction. The handler has access to the full range of Fabric APIs;
for example, it can issue getState() and putState().

	After handler: is called after every smart contract transaction is
invoked. The handler will usually perform post-processing common to all
transactions, and also has full access to the Fabric APIs.

	Unknown handler: is called if an attempt is made to invoke a transaction
that is not defined in a smart contract. Typically, the handler will record
the failure for subsequent processing by an administrator. The handler has
full access to the Fabric APIs.

Defining a handler

Transaction handlers are added to the smart contract as methods with well
defined names. Here’s an example which adds a handler of each type:

CommercialPaperContract extends Contract {

 ...

 async beforeTransaction(ctx) {
 // Write the transaction ID as an informational to the console
 console.info(ctx.stub.getTxID());
 };

 async afterTransaction(ctx, result) {
 // This handler interacts with the ledger
 ctx.stub.cpList.putState(...);
 };

 async unknownTransaction(ctx) {
 // This handler throws an exception
 throw new Error('Unknown transaction function');
 };

}

The form of a transaction handler definition is the similar for all handler
types, but notice how the afterTransaction(ctx, result) also receives any
result returned by the transaction.

Handler processing

Once a handler has been added to the smart contract, it can be invoked during
transaction processing. During processing, the handler receives ctx, the
transaction context, performs some processing, and
returns control as it completes. Processing continues as follows:

	Before handler: If the handler completes successfully, the transaction is
called with the updated context. If the handler throws an exception, then the
transaction is not called and the smart contract fails with the exception
error message.

	After handler: If the handler completes successfully, then the smart
contract completes as determined by the invoked transaction. If the handler
throws an exception, then the transaction fails with the exception error
message.

	Unknown handler: The handler should complete by throwing an exception with
the required error message. If an Unknown handler is not specified, or an
exception is not thrown by it, there is sensible default processing; the smart
contract will fail with an unknown transaction error message.

If the handler requires access to the function and parameters, then it is easy to do this:

async beforeTransaction(ctx) {
 // Retrieve details of the transaction
 let txnDetails = ctx.stub.getFunctionAndParameters();

 console.info(`Calling function: ${txnDetails.fcn} `);
 console.info(util.format(`Function arguments : %j ${stub.getArgs()} ``);
}

Multiple handlers

It is only possible to define at most one handler of each type for a smart
contract. If a smart contract needs to invoke multiple functions during before,
after or unknown handling, it should coordinate this from within the appropriate
function.

 Connection Profile

Connection Profile

Audience: Architects, application and smart contract developers

A connection profile describes a set of components, including peers, orderers
and certificate authorities in a Hyperledger Fabric blockchain network. It also
contains channel and organization information relating to these components. A
connection profile is primarily used by an application to configure a
gateway that handles all network interactions, allowing it it
to focus on business logic. A connection profile is normally created by an
administrator who understands the network topology.

In this topic, we’re going to cover:

	Why connection profiles are important

	How applications use a connection profile

	How to define a connection profile

Scenario

A connection profile is used to configure a gateway. Gateways are important for
many reasons, the primary being to simplify an application’s
interaction with a network channel.

[image: profile.scenario] Two applications, issue and buy,
use gateways 1&2 configured with connection profiles 1&2. Each profile
describes a different subset of MagnetoCorp and DigiBank network components.
Each connection profile must contain sufficient information for a gateway to
interact with the network on behalf of the issue and buy applications. See the
text for a detailed explanation.

A connection profile contains a description of a network view, expressed in a
technical syntax, which can either be JSON or YAML. In this topic, we use the
YAML representation, as it’s easier for you to read. Static gateways need more
information than dynamic gateways because the latter can use service
discovery to dynamically augment the information in
a connection profile.

A connection profile should not be an exhaustive description of a network
channel; it just needs to contain enough information sufficient for a gateway
that’s using it. In the network above, connection profile 1 needs to contain at
least the endorsing organizations and peers for the issue transaction, as well
as identifying the peers that will notify the gateway when the transaction has
been committed to the ledger.

It’s easiest to think of a connection profile as describing a view of the
network. It could be a comprehensive view, but that’s unrealistic for a few
reasons:

	Peers, orderers, certificate authorities, channels, and organizations are
added and removed according to demand.

	Components can start and stop, or fail unexpectedly (e.g. power outage).

	A gateway doesn’t need a view of the whole network, only what’s necessary to
successfully handle transaction submission or event notification for example.

	Service Discovery can augment the information in a connection profile.
Specifically, dynamic gateways can be configured with minimal Fabric topology
information; the rest can be discovered.

A static connection profile is normally created by an administrator who
understands the network topology in detail. That’s because a static profile can
contain quite a lot of information, and an administrator needs to capture this
in the corresponding connection profile. In contrast, dynamic profiles minimize
the amount of definition required, and therefore can be a better choice for
developers who want to get going quickly, or administrators who want to create a
more responsive gateway. Connection profiles are created in either the YAML or
JSON format using an editor of choice.

Usage

We’ll see how to define a connection profile in a moment; let’s first see how it
is used by a sample MagnetoCorp issue application:

const yaml = require('js-yaml');
const { Gateway } = require('fabric-network');

const connectionProfile = yaml.safeLoad(fs.readFileSync('../gateway/paperNet.yaml', 'utf8'));

const gateway = new Gateway();

await gateway.connect(connectionProfile, connectionOptions);

After loading some required classes, see how the paperNet.yaml gateway file is
loaded from the file system, converted to a JSON object using the
yaml.safeLoad() method, and used to configure a gateway using its connect()
method.

By configuring a gateway with this connection profile, the issue application is
providing the gateway with the relevant network topology it should use to
process transactions. That’s because the connection profile contains sufficient
information about the PaperNet channels, organizations, peers, orderers and CAs
to ensure transactions can be successfully processed.

It’s good practice for a connection profile to define more than one peer for any
given organization – it prevents a single point of failure. This practice also
applies to dynamic gateways; to provide more than one starting point for service
discovery.

A DigiBank buy application would typically configure its gateway with a
similar connection profile, but with some important differences. Some elements
will be the same, such as the channel; some elements will overlap, such as the
endorsing peers. Other elements will be completely different, such as
notification peers or certificate authorities for example.

The connectionOptions passed to a gateway complement the connection profile.
They allow an application to declare how it would like the gateway to use the
connection profile. They are interpreted by the SDK to control interaction
patterns with network components, for example to select which identity to
connect with, or which peers to use for event notifications. Read
about the list of available connection options and
when to use them.

Structure

To help you understand the structure of a connection profile, we’re going to
step through an example for the network shown above. Its connection
profile is based on the PaperNet commercial paper sample, and
stored [https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/gateway/networkConnection.yaml]
in the GitHub repository. For convenience, we’ve reproduced it below.
You will find it helpful to display it in another browser window as you now read
about it:

	Line 9: name: "papernet.magnetocorp.profile.sample"

This is the name of the connection profile. Try to use DNS style names; they
are a very easy way to convey meaning.

	Line 16: x-type: "hlfv1"

Users can add their own x- properties that are “application-specific” –
just like with HTTP headers. They are provided primarily for future use.

	Line 20: description: "Sample connection profile for documentation topic"

A short description of the connection profile. Try to make this helpful for
the reader who might be seeing this for the first time!

	Line 25: version: "1.0"

The schema version for this connection profile. Currently only version 1.0 is
supported, and it is not envisioned that this schema will change frequently.

	Line 32: channels:

This is the first really important line. channels: identifies that what
follows are all the channels that this connection profile describes. However,
it is good practice to keep different channels in different connection
profiles, especially if they are used independently of each other.

	Line 36: papernet:

Details of papernet, the first channel in this connection profile, will
follow.

	Line 41: orderers:

Details of all the orderers for papernet follow. You can see in line 45 that
the orderer for this channel is orderer1.magnetocorp.example.com. This is
just a logical name; later in the connection profile (lines 134 - 147), there
will be details of how to connect to this orderer. Notice that
orderer2.digibank.example.com is not in this list; it makes sense that
applications use their own organization’s orderers, rather than those from a
different organization.

	Line 49: peers:

Details of all the peers for papernet will follow.

You can see three peers listed from MagnetoCorp:
peer1.magnetocorp.example.com, peer2.magnetocorp.example.com and
peer3.magnetocorp.example.com. It’s not necessary to list all the peers in
MagnetoCorp, as has been done here. You can see only one peer listed from
DigiBank: peer9.digibank.example.com; including this peer starts to imply
that the endorsement policy requires MagnetoCorp and DigiBank to endorse
transactions, as we’ll now confirm. It’s good practice to have multiple peers
to avoid single points of failure.

Underneath each peer you can see four non-exclusive roles: endorsingPeer,
chaincodeQuery, ledgerQuery and eventSource. See how peer1 and
peer2 can perform all roles as they host papercontract. Contrast to
peer3, which can only be used for notifications, or ledger queries that
access the blockchain component of the ledger rather than the world state, and
hence do not need to have smart contracts installed. Notice how peer9 should
not be used for anything other than endorsement, because those roles are
better served by MagnetoCorp peers.

Again, see how the peers are described according to their logical names and
their roles. Later in the profile, we’ll see the physical information for
these peers.

	Line 97: organizations:

Details of all the organizations will follow, for all channels. Note that
these organizations are for all channels, even though papernet is currently
the only one listed. That’s because organizations can be in multiple
channels, and channels can have multiple organizations. Moreover, some
application operations relate to organizations rather than channels. For
example, an application can request notification from one or all peers within
its organization, or all organizations within the network – using connection
options. For this, there needs to be an organization
to peer mapping, and this section provides it.

	Line 101: MagnetoCorp:

All peers that are considered part of MagnetoCorp are listed: peer1,
peer2 and peer3. Likewise for Certificate Authorities. Again, note the
logical name usages, the same as the channels: section; physical information
will follow later in the profile.

	Line 121: DigiBank:

Only peer9 is listed as part of DigiBank, and no Certificate Authorities.
That’s because these other peers and the DigiBank CA are not relevant for
users of this connection profile.

	Line 134: orderers:

The physical information for orderers is now listed. As this connection
profile only mentioned one orderer for papernet, you see
orderer1.magnetocorp.example.com details listed. These include its IP
address and port, and gRPC options that can override the defaults used when
communicating with the orderer, if necessary. As with peers:, for high
availability, specifying more than one orderer is a good idea.

	Line 152: peers:

The physical information for all previous peers is now listed. This
connection profile has three peers for MagnetoCorp: peer1, peer2, and
peer3; for DigiBank, a single peer peer9 has its information listed. For
each peer, as with orderers, their IP address and port is listed, together
with gRPC options that can override the defaults used when communicating with
a particular peer, if necessary.

	Line 194: certificateAuthorities:

The physical information for certificate authorities is now listed. The
connection profile has a single CA listed for MagnetoCorp, ca1-magnetocorp,
and its physical information follows. As well as IP details, the registrar
information allows this CA to be used for Certificate Signing Requests (CSR).
These are used to request new certificates for locally generated
public/private key pairs.

Now you’ve understood a connection profile for MagnetoCorp, you might like to
look at a
corresponding [https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/gateway/networkConnection.yaml]
profile for DigiBank. Locate where the profile is the same as MagnetoCorp’s, see
where it’s similar, and finally where it’s different. Think about why these
differences make sense for DigiBank applications.

That’s everything you need to know about connection profiles. In summary, a
connection profile defines sufficient channels, organizations, peers, orderers
and certificate authorities for an application to configure a gateway. The
gateway allows the application to focus on business logic rather than the
details of the network topology.

Sample

This file is reproduced inline from the GitHub commercial paper
sample [https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/gateway/networkConnection.yaml].

1: ---
2: #
3: # [Required]. A connection profile contains information about a set of network
4: # components. It is typically used to configure gateway, allowing applications
5: # interact with a network channel without worrying about the underlying
6: # topology. A connection profile is normally created by an administrator who
7: # understands this topology.
8: #
9: name: "papernet.magnetocorp.profile.sample"
10: #
11: # [Optional]. Analogous to HTTP, properties with an "x-" prefix are deemed
12: # "application-specific", and ignored by the gateway. For example, property
13: # "x-type" with value "hlfv1" was originally used to identify a connection
14: # profile for Fabric 1.x rather than 0.x.
15: #
16: x-type: "hlfv1"
17: #
18: # [Required]. A short description of the connection profile
19: #
20: description: "Sample connection profile for documentation topic"
21: #
22: # [Required]. Connection profile schema version. Used by the gateway to
23: # interpret these data.
24: #
25: version: "1.0"
26: #
27: # [Optional]. A logical description of each network channel; its peer and
28: # orderer names and their roles within the channel. The physical details of
29: # these components (e.g. peer IP addresses) will be specified later in the
30: # profile; we focus first on the logical, and then the physical.
31: #
32: channels:
33: #
34: # [Optional]. papernet is the only channel in this connection profile
35: #
36: papernet:
37: #
38: # [Optional]. Channel orderers for PaperNet. Details of how to connect to
39: # them is specified later, under the physical "orderers:" section
40: #
41: orderers:
42: #
43: # [Required]. Orderer logical name
44: #
45: - orderer1.magnetocorp.example.com
46: #
47: # [Optional]. Peers and their roles
48: #
49: peers:
50: #
51: # [Required]. Peer logical name
52: #
53: peer1.magnetocorp.example.com:
54: #
55: # [Optional]. Is this an endorsing peer? (It must have chaincode
56: # installed.) Default: true
57: #
58: endorsingPeer: true
59: #
60: # [Optional]. Is this peer used for query? (It must have chaincode
61: # installed.) Default: true
62: #
63: chaincodeQuery: true
64: #
65: # [Optional]. Is this peer used for non-chaincode queries? All peers
66: # support these types of queries, which include queryBlock(),
67: # queryTransaction(), etc. Default: true
68: #
69: ledgerQuery: true
70: #
71: # [Optional]. Is this peer used as an event hub? All peers can produce
72: # events. Default: true
73: #
74: eventSource: true
75: #
76: peer2.magnetocorp.example.com:
77: endorsingPeer: true
78: chaincodeQuery: true
79: ledgerQuery: true
80: eventSource: true
81: #
82: peer3.magnetocorp.example.com:
83: endorsingPeer: false
84: chaincodeQuery: false
85: ledgerQuery: true
86: eventSource: true
87: #
88: peer9.digibank.example.com:
89: endorsingPeer: true
90: chaincodeQuery: false
91: ledgerQuery: false
92: eventSource: false
93: #
94: # [Required]. List of organizations for all channels. At least one organization
95: # is required.
96: #
97: organizations:
98: #
99: # [Required]. Organizational information for MagnetoCorp
100: #
101: MagnetoCorp:
102: #
103: # [Required]. The MSPID used to identify MagnetoCorp
104: #
105: mspid: MagnetoCorpMSP
106: #
107: # [Required]. The MagnetoCorp peers
108: #
109: peers:
110: - peer1.magnetocorp.example.com
111: - peer2.magnetocorp.example.com
112: - peer3.magnetocorp.example.com
113: #
114: # [Optional]. Fabric-CA Certificate Authorities.
115: #
116: certificateAuthorities:
117: - ca-magnetocorp
118: #
119: # [Optional]. Organizational information for DigiBank
120: #
121: DigiBank:
122: #
123: # [Required]. The MSPID used to identify DigiBank
124: #
125: mspid: DigiBankMSP
126: #
127: # [Required]. The DigiBank peers
128: #
129: peers:
130: - peer9.digibank.example.com
131: #
132: # [Optional]. Orderer physical information, by orderer name
133: #
134: orderers:
135: #
136: # [Required]. Name of MagnetoCorp orderer
137: #
138: orderer1.magnetocorp.example.com:
139: #
140: # [Required]. This orderer's IP address
141: #
142: url: grpc://localhost:7050
143: #
144: # [Optional]. gRPC connection properties used for communication
145: #
146: grpcOptions:
147: ssl-target-name-override: orderer1.magnetocorp.example.com
148: #
149: # [Required]. Peer physical information, by peer name. At least one peer is
150: # required.
151: #
152: peers:
153: #
154: # [Required]. First MagetoCorp peer physical properties
155: #
156: peer1.magnetocorp.example.com:
157: #
158: # [Required]. Peer's IP address
159: #
160: url: grpc://localhost:7151
161: #
162: # [Optional]. gRPC connection properties used for communication
163: #
164: grpcOptions:
165: ssl-target-name-override: peer1.magnetocorp.example.com
166: request-timeout: 120001
167: #
168: # [Optional]. Other MagnetoCorp peers
169: #
170: peer2.magnetocorp.example.com:
171: url: grpc://localhost:7251
172: grpcOptions:
173: ssl-target-name-override: peer2.magnetocorp.example.com
174: request-timeout: 120001
175: #
176: peer3.magnetocorp.example.com:
177: url: grpc://localhost:7351
178: grpcOptions:
179: ssl-target-name-override: peer3.magnetocorp.example.com
180: request-timeout: 120001
181: #
182: # [Required]. Digibank peer physical properties
183: #
184: peer9.digibank.example.com:
185: url: grpc://localhost:7951
186: grpcOptions:
187: ssl-target-name-override: peer9.digibank.example.com
188: request-timeout: 120001
189: #
190: # [Optional]. Fabric-CA Certificate Authority physical information, by name.
191: # This information can be used to (e.g.) enroll new users. Communication is via
192: # REST, hence options relate to HTTP rather than gRPC.
193: #
194: certificateAuthorities:
195: #
196: # [Required]. MagnetoCorp CA
197: #
198: ca1-magnetocorp:
199: #
200: # [Required]. CA IP address
201: #
202: url: http://localhost:7054
203: #
204: # [Optioanl]. HTTP connection properties used for communication
205: #
206: httpOptions:
207: verify: false
208: #
209: # [Optional]. Fabric-CA supports Certificate Signing Requests (CSRs). A
210: # registrar is needed to enroll new users.
211: #
212: registrar:
213: - enrollId: admin
214: enrollSecret: adminpw
215: #
216: # [Optional]. The name of the CA.
217: #
218: caName: ca-magnetocorp

 Connection Options

Connection Options

Audience: Architects, administrators, application and smart contract
developers

Connection options are used in conjunction with a connection profile to control
precisely how a gateway interacts with a network. Using a gateway allows an
application to focus on business logic rather than network topology.

In this topic, we’re going to cover:

	Why connection options are important

	How an application uses connection options

	What each connection option does

	When to use a particular connection option

Scenario

A connection option specifies a particular aspect of a gateway’s behaviour.
Gateways are important for many reasons, the primary being to
allow an application to focus on business logic and smart contracts, while it
manages interactions with the many components of a network.

[image: profile.scenario] The different interaction points
where connection options control behaviour. These options are explained fully in
the text.

One example of a connection option might be to specify that the gateway used by
the issue application should use identity Isabella to submit transactions to
the papernet network. Another might be that a gateway should wait for all
three nodes from MagnetoCorp to confirm a transaction has been committed
returning control. Connection options allow applications to specify the precise
behaviour of a gateway’s interaction with the network. Without a gateway,
applications need to do a lot more work; gateways save you time, make your
application more readable, and less error prone.

Usage

We’ll describe the full set of connection options available to an
application in a moment; let’s first see see how they are specified by the
sample MagnetoCorp issue application:

const userName = 'User1@org1.example.com';
const wallet = new FileSystemWallet('../identity/user/isabella/wallet');

const connectionOptions = {
 identity: userName,
 wallet: wallet,
 eventHandlerOptions: {
 commitTimeout: 100,
 strategy: EventStrategies.MSPID_SCOPE_ANYFORTX
 }
 };

await gateway.connect(connectionProfile, connectionOptions);

See how the identity and wallet options are simple properties of the
connectionOptions object. They have values userName and wallet
respectively, which were set earlier in the code. Contrast these options with
the eventHandlerOptions option which is an object in its own right. It has
two properties: commitTimeout: 100 (measured in seconds) and strategy: EventStrategies.MSPID_SCOPE_ANYFORTX.

See how connectionOptions is passed to a gateway as a complement to
connectionProfile; the network is identified by the connection profile and
the options specify precisely how the gateway should interact with it. Let’s now
look at the available options.

Options

Here’s a list of the available options and what they do.

	wallet identifies the wallet that will be used by the gateway on behalf of
the application. See interaction 1; the wallet is specified by the
application, but it’s actually the gateway that retrieves identities from it.

A wallet must be specified; the most important decision is the
type of wallet to use, whether that’s file system,
in-memory, HSM or database.

	identity is the user identity that the application will use from wallet.
See interaction 2a; the user identity is specified by the application and
represents the user of the application, Isabella, 2b. The identity is
actually retrieved by the gateway.

In our example, Isabella’s identity will be used by different MSPs (2c,
2d) to identify her as being from MagnetoCorp, and having a particular
role within it. These two facts will correspondingly determine her permission
over resources, such as being able to read and write the ledger, for example.

A user identity must be specified. As you can see, this identity is
fundamental to the idea that Hyperledger Fabric is a permissioned network –
all actors have an identity, including applications, peers and orderers, which
determines their control over resources. You can read more about this idea in the membership services topic.

	clientTlsIdentity is the identity that is retrieved from a wallet (3a)
and used for secure communications (3b) between the gateway and different
channel components, such as peers and orderers.

Note that this identity is different to the user identity. Even though
clientTlsIdentity is important for secure communications, it is not as
foundational as the user identity because its scope does not extend beyond
secure network communications.

clientTlsIdentity is optional. You are advised to set it in production
environments. You should always use a different clientTlsIdentity to
identity because these identities have very different meanings and
lifecycles. For example, if your clientTlsIdentity was compromised, then so
would your identity; it’s more secure to keep them separate.

	eventHandlerOptions.commitTimeout is optional. It specifies, in seconds, the
maximum amount of time the gateway should wait for a transaction to be
committed by any peer (4a) before returning control to the application.
The set of peers to use for notification is determined by the
eventHandlerOptions.strategy option. If a commitTimeout is not
specified, the gateway will use a timeout of 300 seconds.

	eventHandlerOptions.strategy is optional. It identifies the set of peers
that a gateway should use to listen for notification that a transaction has
been committed. For example, whether to listen for a single peer, or all
peers, from its organization. It can take one of the following values:

	EventStrategies.MSPID_SCOPE_ANYFORTX Listen for any peer within the
user’s organization. In our example, see interaction points 4b; any of
peer 1, peer 2 or peer 3 from MagnetoCorp can notify the gateway.

	EventStrategies.MSPID_SCOPE_ALLFORTX This is the default value. Listen
for all peers within the user’s organization. In our example peer, see
interaction point 4b. All peers from MagnetoCorp must all have notified
the gateway; peer 1, peer 2 and peer 3. Peers are only counted if they are
known/discovered and available; peers that are stopped or have failed are
not included.

	EventStrategies.NETWORK_SCOPE_ANYFORTX Listen for any peer within the
entire network channel. In our example, see interaction points 4b and
4c; any of peer 1-3 from MagnetoCorp or peer 7-9 of DigiBank can notify
the gateway.

	EventStrategies.NETWORK_SCOPE_ALLFORTX Listen for all peers within the
entire network channel. In our example, see interaction points 4b and
4c. All peers from MagnetoCorp and DigiBank must notify the gateway;
peers 1-3 and peers 7-9. Peers are only counted if they are known/discovered
and available; peers that are stopped or have failed are not included.

	<PluginEventHandlerFunction> The name of a user-defined event handler.
This allows a user to define their own logic for event handling. See how to
define [https://fabric-sdk-node.github.io/master/tutorial-transaction-commit-events.html]
a plugin event handler, and examine a sample
handler [https://github.com/hyperledger/fabric-sdk-node/blob/master/test/integration/network-e2e/sample-transaction-event-handler.js].

A user-defined event handler is only necessary if you have very specific
event handling requirements; in general, one of the built-in event
strategies will be sufficient. An example of a user-defined event handler
might be to wait for more than half the peers in an organization to confirm
a transaction has been committed.

If you do specify a user-defined event handler, it does not affect your
application logic; it is quite separate from it. The handler is called by
the SDK during processing; it decides when to call it, and uses its results
to select which peers to use for event notification. The application
receives control when the SDK has finished its processing.

If a user-defined event handler is not specified then the default values for
EventStrategies are used.

	discovery.enabled is optional and has possible values true or false. The
default is true. It determines whether the gateway uses service
discovery to augment the network topology
specified in the connection profile. See interaction point 6; peer’s
gossip information used by the gateway.

This value will be overridden by the INITIALIIZE-WITH-DISCOVERY environment
variable, which can be set to true or false.

	discovery.asLocalhost is optional and has possible values true or false.
The default is true. It determines whether IP addresses found during service
discovery are translated from the docker network to the local host.

Typically developers will write applications that use docker containers for
their network components such as peers, orderers and CAs, but that do not run
in docker containers themselves. This is why true is the default; in
production environments, applications will likely run in docker containers in
the same manner as network components and therefore address translation is not
required. In this case, applications should either explicitly specify false
or use the environment variable override.

This value will be overridden by the DISCOVERY-AS-LOCALHOST environment
variable, which can be set to true or false.

Considerations

The following list of considerations is helpful when deciding how to choose
connection options.

	eventHandlerOptions.commitTimeout and eventHandlerOptions.strategy work
together. For example, commitTimeout: 100 and strategy: EventStrategies.MSPID_SCOPE_ANYFORTX means that the gateway will wait for up
to 100 seconds for any peer to confirm a transaction has been committed. In
contrast, specifying strategy: EventStrategies.NETWORK_SCOPE_ALLFORTX means
that the gateway will wait up to 100 seconds for all peers in all
organizations.

	The default value of eventHandlerOptions.strategy: EventStrategies.MSPID_SCOPE_ALLFORTX will wait for all peers in the
application’s organization to commit the transaction. This is a good default
because applications can be sure that all their peers have an up-to-date copy
of the ledger, minimizing concurrency
issues.

However, as the number of peers in an organization grows, it becomes a little
unnecessary to wait for all peers, in which case using a pluggable event
handler can provide a more efficient strategy. For example the same set of
peers could be used to submit transactions and listen for notifications, on
the safe assumption that consensus will keep all ledgers synchronized.

	Service discovery requires clientTlsIdentity to be set. That’s because the
peers exchanging information with an application need to be confident that
they are exchanging information with entities they trust. If
clientTlsIdentity is not set, then discovery will not be obeyed,
regardless of whether or not it is set.

	Although applications can set connection options when they connect to the
gateway, it can be necessary for these options to be overridden by an
administrator. That’s because options relate to network interactions, which
can vary over time. For example, an administrator trying to understand the
effect of using service discovery on network performance.

A good approach is to define application overrides in a configuration file
which is read by the application when it configures its connection to the
gateway.

Because the discovery options enabled and asLocalHost are most frequently
required to be overridden by administrators, the environment variables
INITIALIIZE-WITH-DISCOVERY and DISCOVERY-AS-LOCALHOST are provided for
convenience. The administrator should set these in the production runtime
environment of the application, which will most likely be a docker container.

 Wallet

Wallet

Audience: Architects, application and smart contract developers

A wallet contains a set of user identities. An application run by a user selects
one of these identities when it connects to a channel. Access rights to channel
resources, such as the ledger, are determined using this identity in combination
with an MSP.

In this topic, we’re going to cover:

	Why wallets are important

	How wallets are organized

	Different types of wallet

	Wallet operations

Scenario

When an application connects to a network channel such as PaperNet, it selects a
user identity to do so, for example ID1. The channel MSPs associate ID1 with
a role within a particular organization, and this role will ultimately determine
the application’s rights over channel resources. For example, ID1 might
identify a user as a member of the MagnetoCorp organization who can read and
write to the ledger, whereas ID2 might identify an administrator in
MagnetoCorp who can add a new organization to a consortium.

[image: wallet.scenario] Two users, Isabella and Balaji
have wallets containing different identities they can use to connect to
different network channels, PaperNet and BondNet.

Consider the example of two users; Isabella from MagnetoCorp and Balaji from
DigiBank. Isabella is going to use App 1 to invoke a smart contract in PaperNet
and a different smart contract in BondNet. Similarly, Balaji is going to use
App 2 to invoke smart contracts, but only in PaperNet. (It’s very
easy for applications to access multiple
networks and multiple smart contracts within them.)

See how:

	MagnetoCorp uses CA1 to issue identities and DigiBank uses CA2 to issue
identities. These identities are stored in user wallets.

	Balaji’s wallet holds a single identity, ID4 issued by CA2. Isabella’s
wallet has many identities, ID1, ID2 and ID3, issued by CA1. Wallets
can hold multiple identities for a single user, and each identity can be
issued by a different CA.

	Both Isabella and Balaji connect to PaperNet, and its MSPs determine that
Isabella is a member of the MagnetoCorp organization, and Balaji is a member
of the DigiBank organization, because of the respective CAs that issued their
identities. (It is
possible for an
organization to use multiple CAs, and for a single CA to support multiple
organizations.)

	Isabella can use ID1 to connect to both PaperNet and BondNet. In both cases,
when Isabella uses this identity, she is recognized as a member of
MangetoCorp.

	Isabella can use ID2 to connect to BondNet, in which case she is identified
as an administrator of MagnetoCorp. This gives Isabella two very different
privileges: ID1 identifies her as a simple member of MagnetoCorp who can
read and write to the BondNet ledger, whereas ID2 identities her as a
MagnetoCorp administrator who can add a new organization to BondNet.

	Balaji cannot connect to BondNet with ID4. If he tried to connect, ID4
would not be recognized as belonging to DigiBank because CA2 is not known to
BondNet’s MSP.

Types

There are different types of wallets according to where they store their
identities:

[image: wallet.types] The four different types of wallet:
File system, In-memory, Hardware Security Module (HSM) and CouchDB.

	FileSystem: This is the most common place to store wallets; file systems
are pervasive, easy to understand, and can be network mounted. They are a good
default choice for wallets.

Use the FileSystemWallet
class [https://fabric-sdk-node.github.io/master/module-fabric-network.FileSystemWallet.html]
to manage file system wallets.

	In-memory: A wallet in application storage. Use this type of wallet when
your application is running in a constrained environment without access to a
file system; typically a web browser. It’s worth remembering that this type of
wallet is volatile; identities will be lost after the application ends
normally or crashes.

Use the InMemoryWallet
class [https://fabric-sdk-node.github.io/master/module-fabric-network.InMemoryWallet.html]
to manage in-memory wallets.

	Hardware Security Module: A wallet stored in an
HSM [https://en.wikipedia.org/wiki/Hardware_security_module]. This
ultra-secure, tamper-proof device stores digital identity information,
particularly private keys. HSMs can be locally attached to your computer or
network accessible. Most HSMs provide the ability to perform on-board
encryption with private keys, such that the private key never leave the HSM.

Currently you should use the FileSystemWallet
class [https://fabric-sdk-node.github.io/master/module-fabric-network.FileSystemWallet.html]
in combination with the
HSMWalletMixin [https://fabric-sdk-node.github.io/master/module-fabric-network.HSMWalletMixin.html]
class to manage HSM wallets.

	CouchDB: A wallet stored in Couch DB. This is the rarest form of wallet
storage, but for those users who want to use the database back-up and restore
mechanisms, CouchDB wallets can provide a useful option to simplify disaster
recovery.

Use the CouchDBWallet
class [https://fabric-sdk-node.github.io/master/module-fabric-network.CouchDBWallet.html]
to manage CouchDB wallets.

Structure

A single wallet can hold multiple identities, each issued by a particular
Certificate Authority. Each identity has a standard structure comprising a
descriptive label, an X.509 certificate containing a public key, a private key,
and some Fabric-specific metadata. Different wallet types map this
structure appropriately to their storage mechanism.

[image: wallet.structure] A Fabric wallet can hold multiple
identities with certificates issued by a different Certificate Authority.
Identities comprise certificate, private key and Fabric metadata.

There’s a couple of key class methods that make it easy to manage wallets and
identities:

const identity = X509WalletMixin.createIdentity('Org1MSP', certificate, key);

await wallet.import(identityLabel, identity);

See how the X509WalletMixin.createIdentity()
method [https://fabric-sdk-node.github.io/master/module-fabric-network.X509WalletMixin.html]
creates an identity that has metadata Org1MSP, a certificate and a private
key. See how wallet.import() adds this identity to the wallet with a
particular identityLabel.

The Gateway class only requires the mspid metadata to be set for an identity
– Org1MSP in the above example. It currently uses this value to identify
particular peers from a connection profile, for
example when a specific notification strategy is
requested. In the DigiBank gateway file networkConnection.yaml, see how
Org1MSP notifications will be associated with peer0.org1.example.com:

organizations:
 Org1:
 mspid: Org1MSP

 peers:
 - peer0.org1.example.com

You really don’t need to worry about the internal structure of the different
wallet types, but if you’re interested, navigate to a user identity folder in
the commercial paper sample:

magnetocorp/identity/user/isabella/
 wallet/
 User1@org1.example.com/
 User1@org.example.com
 c75bd6911aca8089...-priv
 c75bd6911aca8089...-pub

You can examine these files, but as discussed, it’s easier to use the SDK to
manipulate these data.

Operations

The different wallet classes are derived from a common
Wallet [https://fabric-sdk-node.github.io/master/module-fabric-network.Wallet.html]
base class which provides a standard set of APIs to manage identities. It means
that applications can be made independent of the underlying wallet storage
mechanism; for example, File system and HSM wallets are handled in a very
similar way.

[image: wallet.operations] Wallets follow a
lifecycle: they can be created or opened, and identities can be read, added,
deleted and exported.

An application can use a wallet according to a simple lifecycle. Wallets can be
opened or created, and subsequently identities can be added, read, updated,
deleted and exported. Spend a little time on the different Wallet methods in
the
JSDOC [https://fabric-sdk-node.github.io/master/module-fabric-network.Wallet.html]
to see how they work; the commercial paper tutorial provides a nice example in
addToWallet.js:

const wallet = new FileSystemWallet('../identity/user/isabella/wallet');

const cert = fs.readFileSync(path.join(credPath, '.../User1@org1.example.com-cert.pem')).toString();
const key = fs.readFileSync(path.join(credPath, '.../_sk')).toString();

const identityLabel = 'User1@org1.example.com';
const identity = X509WalletMixin.createIdentity('Org1MSP', cert, key);

await wallet.import(identityLabel, identity);

Notice how:

	When the program is first run, a wallet is created on the local file system at
.../isabella/wallet.

	a certificate cert and private key are loaded from the file system.

	a new identity is created with cert, key and Org1MSP using
X509WalletMixin.createIdentity().

	the new identity is imported to the wallet with wallet.import() with a label
User1@org1.example.com.

That’s everything you need to know about wallets. You’ve seen how they hold
identities that are used by applications on behalf of users to access Fabric
network resources. There are different types of wallets available depending on
your application and security needs, and a simple set of APIs to help
applications manage wallets and the identities within them.

 Gateway

Gateway

Audience: Architects, application and smart contract developers

A gateway manages the network interactions on behalf of an application, allowing
it to focus on business logic. Applications connect to a gateway and then all
subsequent interactions are managed using that gateway’s configuration.

In this topic, we’re going to cover:

	Why gateways are important

	How applications use a gateway

	How to define a static gateway

	How to define a dynamic gateway for service discovery

	Using multiple gateways

Scenario

A Hyperledger Fabric network channel can constantly change. The peer, orderer
and CA components, contributed by the different organizations in the network,
will come and go. Reasons for this include increased or reduced business demand,
and both planned and unplanned outages. A gateway relieves an application of
this burden, allowing it to focus on the business problem it is trying to solve.

[image: gateway.scenario] A MagnetoCorp and DigiBank
applications (issue and buy) delegate their respective network interactions to
their gateways. Each gateway understands the network channel topology comprising
the multiple peers and orderers of two organizations MagnetoCorp and DigiBank,
leaving applications to focus on business logic. Peers can talk to each other
both within and across organizations using the gossip protocol.

A gateway can be used by an application in two different ways:

	Static: The gateway configuration is completely defined in a connection
profile. All the peers, orderers and CAs
available to an application are statically defined in the connection profile
used to configure the gateway. For peers, this includes their role as an
endorsing peer or event notification hub, for example. You can read more about
these roles in the connection profile topic.

The SDK will use this static topology, in conjunction with gateway
connection options, to manage the transaction
submission and notification processes. The connection profile must contain
enough of the network topology to allow a gateway to interact with the
network on behalf of the application; this includes the network channels,
organizations, orderers, peers and their roles.

	Dynamic: The gateway configuration is minimally defined in a connection
profile. Typically, one or two peers from the application’s organization are
specified, and they use service discovery to
discover the available network topology. This includes peers, orderers,
channels, instantiated smart contracts and their endorsement policies. (In
production environments, a gateway configuration should specify at least two
peers for availability.)

The SDK will use all of the static and discovered topology information, in
conjunction with gateway connection options, to manage the transaction
submission and notification processes. As part of this, it will also
intelligently use the discovered topology; for example, it will calculate
the minimum required endorsing peers using the discovered endorsement policy
for the smart contract.

You might ask yourself whether a static or dynamic gateway is better? The
trade-off is between predictability and responsiveness. Static networks will
always behave the same way, as they perceive the network as unchanging. In this
sense they are predictable – they will always use the same peers and orderers
if they are available. Dynamic networks are more responsive as they understand
how the network changes – they can use newly added peers and orderers, which
brings extra resilience and scalability, at potentially some cost in
predictability. In general it’s fine to use dynamic networks, and indeed this
the default mode for gateways.

Note that the same connection profile can be used statically or dynamically.
Clearly, if a profile is going to be used statically, it needs to be
comprehensive, whereas dynamic usage requires only sparse population.

Both styles of gateway are transparent to the application; the application
program design does not change whether static or dynamic gateways are used. This
also means that some applications may use service discovery, while others may
not. In general using dynamic discovery means less definition and more
intelligence by the SDK; it is the default.

Connect

When an application connects to a gateway, two options are provided. These are
used in subsequent SDK processing:

 await gateway.connect(connectionProfile, connectionOptions);

	Connection profile: connectionProfile is the gateway configuration that
will be used for transaction processing by the SDK, whether statically or
dynamically. It can be specified in YAML or JSON, though it must be converted
to a JSON object when passed to the gateway:

let connectionProfile = yaml.safeLoad(fs.readFileSync('../gateway/paperNet.yaml', 'utf8'));

Read more about connection profiles and how
to configure them.

	Connection options: connectionOptions allow an application to declare
rather than implement desired transaction processing behaviour. Connection
options are interpreted by the SDK to control interaction patterns with
network components, for example to select which identity to connect with, or
which peers to use for event notifications. These options significantly reduce
application complexity without compromising functionality. This is possible
because the SDK has implemented much of the low level logic that would
otherwise be required by applications; connection options control this logic
flow.

Read about the list of available connection options
and when to use them.

Static

Static gateways define a fixed view of a network. In the MagnetoCorp
scenario, a gateway might identify a single peer from MagnetoCorp,
a single peer from DigiBank, and a MagentoCorp orderer. Alternatively, a gateway
might define all peers and orderers from MagnetCorp and DigiBank. In both
cases, a gateway must define a view of the network sufficient to get commercial
paper transactions endorsed and distributed.

Applications can use a gateway statically by explicitly specifying the connect
option discovery: { enabled:false } on the gateway.connect() API.
Alternatively, the environment variable setting FABRIC_SDK_DISCOVERY=false
will always override the application choice.

Examine the connection
profile [https://github.com/hyperledger/fabric-samples/blob/master/commercial-paper/organization/magnetocorp/gateway/networkConnection.yaml]
used by the MagnetoCorp issue application. See how all the peers, orderers and
even CAs are specified in this file, including their roles.

It’s worth bearing in mind that a static gateway represents a view of a network
at a moment in time. As networks change, it may be important to reflect this
in a change to the gateway file. Applications will automatically pick up these
changes when they re-load the gateway file.

Dynamic

Dynamic gateways define a small, fixed starting point for a network. In the
MagnetoCorp scenario, a dynamic gateway might identify just a
single peer from MagnetoCorp; everything else will be discovered! (To provide
resiliency, it might be better to define two such bootstrap peers.)

If service discovery is selected by an
application, the topology defined in the gateway file is augmented with that
produced by this process. Service discovery starts with the gateway definition,
and finds all the connected peers and orderers within the MagnetoCorp
organization using the gossip protocol. If anchor
peers have been defined for a channel, then
service discovery will use the gossip protocol across organizations to discover
components within the connected organization. This process will also discover
smart contracts installed on peers and their endorsement policies defined at a
channel level. As with static gateways, the discovered network must be
sufficient to get commercial paper transactions endorsed and distributed.

Dynamic gateways are the default setting for Fabric applications. They can be
explicitly specified using the connect option discovery: { enabled:true } on
the gateway.connect() API. Alternatively, the environment variable setting
FABRIC_SDK_DISCOVERY=true will always override the application choice.

A dynamic gateway represents an up-to-date view of a network. As networks
change, service discovery will ensure that the network view is an accurate
reflection of the topology visible to the application. Applications will
automatically pick up these changes; they do not even need to re-load the
gateway file.

Multiple gateways

Finally, it is straightforward for an application to define multiple gateways,
both for the same or different networks. Moreover, applications can use the name
gateway both statically and dynamically.

It can be helpful to have multiple gateways. Here are a few reasons:

	Handling requests on behalf of different users.

	Connecting to different networks simultaneously.

	Testing a network configuration, by simultaneously comparing its behaviour
with an existing configuration.

 Tutorials

Tutorials

We offer tutorials to get you started with Hyperledger Fabric.
The first is oriented to the Hyperledger Fabric application developer,
Writing Your First Application. It takes you through the process of writing your first
blockchain application for Hyperledger Fabric using the Hyperledger Fabric
Node SDK [https://github.com/hyperledger/fabric-sdk-node].

The second tutorial is oriented towards the Hyperledger Fabric network
operators, Building Your First Network. This one walks you through the process of
establishing a blockchain network using Hyperledger Fabric and provides
a basic sample application to test it out.

There are also tutorials for updating your channel, Adding an Org to a Channel, and
upgrading your network to a later version of Hyperledger Fabric, Upgrading Your Network Components.

Finally, we offer two chaincode tutorials. One oriented to developers,
Chaincode for Developers, and the other oriented to operators,
Chaincode for Operators.

Note

If you have questions not addressed by this documentation, or run into
issues with any of the tutorials, please visit the Still Have Questions?
page for some tips on where to find additional help.

Tutorials

	Writing Your First Application

	Commercial paper tutorial

	Building Your First Network

	Adding an Org to a Channel

	Upgrading Your Network Components

	Using Private Data in Fabric

	Chaincode Tutorials

	Chaincode for Developers

	Chaincode for Operators

	System Chaincode Plugins

	Using CouchDB

	Videos

 Writing Your First Application

Writing Your First Application

Note

If you’re not yet familiar with the fundamental architecture of a
Fabric network, you may want to visit the Key Concepts section
prior to continuing.

It is also worth noting that this tutorial serves as an introduction
to Fabric applications and uses simple smart contracts and
applications. For a more in-depth look at Fabric applications and
smart contracts, check out our
Developing Applications section or the
Commercial paper tutorial.

In this tutorial we’ll be looking at a handful of sample programs to see how
Fabric apps work. These applications and the smart contracts they use are
collectively known as FabCar. They provide a great starting point to
understand a Hyperledger Fabric blockchain. You’ll learn how to write an
application and smart contract to query and update a ledger, and how to use a
Certificate Authority to generate the X.509 certificates used by applications
which interact with a permissioned blockchain.

We will use the application SDK — described in detail in the
Application topic – to invoke a smart contract which
queries and updates the ledger using the smart contract SDK — described in
detail in section Smart Contract Processing.

We’ll go through three principle steps:

1. Setting up a development environment. Our application needs a network
to interact with, so we’ll get a basic network our smart contracts and
application will use.

[image: _images/AppConceptsOverview.png]
2. Learning about a sample smart contract, FabCar.
We use a smart contract written in JavaScript. We’ll
inspect the smart contract to learn about the transactions within them, and
how they are used by applications to query and update the ledger.

3. Develop a sample application which uses FabCar. Our application will
use the FabCar smart contract to query and update car assets on the ledger.
We’ll get into the code of the apps and the transactions they create,
including querying a car, querying a range of cars, and creating a new car.

After completing this tutorial you should have a basic understanding of how an
application is programmed in conjunction with a smart contract to interact with
the ledger hosted and replicated on the peers in a Fabric network.

Note

These applications are also compatible with Service Discovery
and Private data, though we won’t explicitly show
how to use our apps to leverage those features.

Set up the blockchain network

Note

This next section requires you to be in the first-network
subdirectory within your local clone of the fabric-samples repo.

If you’ve already run through Building Your First Network, you will have downloaded
fabric-samples and have a network up and running. Before you run this
tutorial, you must stop this network:

./byfn.sh down

If you have run through this tutorial before, use the following commands to
kill any stale or active containers. Note, this will take down all of your
containers whether they’re Fabric related or not.

docker rm -f $(docker ps -aq)
docker rmi -f $(docker images | grep fabcar | awk '{print $3}')

If you don’t have a development environment and the accompanying artifacts for
the network and applications, visit the Prerequisites page and ensure you have
the necessary dependencies installed on your machine.

Next, if you haven’t done so already, visit the Install Samples, Binaries and Docker Images page and follow
the provided instructions. Return to this tutorial once you have cloned the
fabric-samples repository, and downloaded the latest stable Fabric images
and available utilities.

If you are using Mac OS and running Mojave, you will need to install Xcode.

Launch the network

Note

This next section requires you to be in the fabcar
subdirectory within your local clone of the fabric-samples repo.

Launch your network using the startFabric.sh shell script. This command will
spin up a blockchain network comprising peers, orderers, certificate
authorities and more. It will also install and instantiate a javascript version
of the FabCar smart contract which will be used by our application to access
the ledger. We’ll learn more about these components as we go through the
tutorial.

./startFabric.sh javascript

Alright, you’ve now got a sample network up and running, and the FabCar
smart contract installed and instantiated. Let’s install our application
pre-requisites so that we can try it out, and see how everything works together.

Install the application

Note

The following instructions require you to be in the
fabcar/javascript subdirectory within your local clone of the
fabric-samples repo.

Run the following command to install the Fabric dependencies for the
applications. It will take about a minute to complete:

npm install

This process is installing the key application dependencies defined in
package.json. The most important of which is the fabric-network class;
it enables an application to use identities, wallets, and gateways to connect to
channels, submit transactions, and wait for notifications. This tutorial also
uses the fabric-ca-client class to enroll users with their respective
certificate authorities, generating a valid identity which is then used by
fabric-network class methods.

Once npm install completes, everything is in place to run the application.
For this tutorial, you’ll primarily be using the application JavaScript files in
the fabcar/javascript directory. Let’s take a look at what’s inside:

ls

You should see the following:

enrollAdmin.js node_modules package.json registerUser.js
invoke.js package-lock.json query.js wallet

There are files for other program languages, for example in the
fabcar/typescript directory. You can read these once you’ve used the
JavaScript example – the principles are the same.

If you are using Mac OS and running Mojave, you will need to install Xcode.

Enrolling the admin user

Note

The following two sections involve communication with the Certificate
Authority. You may find it useful to stream the CA logs when running
the upcoming programs by opening a new terminal shell and running
docker logs -f ca.example.com.

When we created the network, an admin user — literally called admin —
was created as the registrar for the certificate authority (CA). Our first
step is to generate the private key, public key, and X.509 certificate for
admin using the enroll.js program. This process uses a Certificate
Signing Request (CSR) — the private and public key are first generated
locally and the public key is then sent to the CA which returns an encoded
certificate for use by the application. These three credentials are then stored
in the wallet, allowing us to act as an administrator for the CA.

We will subsequently register and enroll a new application user which will be
used by our application to interact with the blockchain.

Let’s enroll user admin:

node enrollAdmin.js

This command has stored the CA administrator’s credentials in the wallet
directory.

Register and enroll user1

Now that we have the administrator’s credentials in a wallet, we can enroll a
new user — user1 — which will be used to query and update the ledger:

node registerUser.js

Similar to the admin enrollment, this program uses a CSR to enroll user1 and
store its credentials alongside those of admin in the wallet. We now have
identities for two separate users — admin and user1 — and these are
used by our application.

Time to interact with the ledger…

Querying the ledger

Each peer in a blockchain network hosts a copy of the ledger, and an application
program can query the ledger by invoking a smart contract which queries the most
recent value of the ledger and returns it to the application.

Here is a simplified representation of how a query works:

[image: _images/write_first_app.diagram.1.png]
Applications read data from the ledger using a query.
The most common queries involve the current values of data in the ledger – its
world state. The world state is
represented as a set of key-value pairs, and applications can query data for a
single key or multiple keys. Moreover, the ledger world state can be configured
to use a database like CouchDB which supports complex queries when key-values
are modeled as JSON data. This can be very helpful when looking for all assets
that match certain keywords with particular values; all cars with a particular
owner, for example.

First, let’s run our query.js program to return a listing of all the cars on
the ledger. This program uses our second identity – user1 – to access the
ledger:

node query.js

The output should look like this:

Wallet path: ...fabric-samples/fabcar/javascript/wallet
Transaction has been evaluated, result is:
[{"Key":"CAR0", "Record":{"colour":"blue","make":"Toyota","model":"Prius","owner":"Tomoko"}},
{"Key":"CAR1", "Record":{"colour":"red","make":"Ford","model":"Mustang","owner":"Brad"}},
{"Key":"CAR2", "Record":{"colour":"green","make":"Hyundai","model":"Tucson","owner":"Jin Soo"}},
{"Key":"CAR3", "Record":{"colour":"yellow","make":"Volkswagen","model":"Passat","owner":"Max"}},
{"Key":"CAR4", "Record":{"colour":"black","make":"Tesla","model":"S","owner":"Adriana"}},
{"Key":"CAR5", "Record":{"colour":"purple","make":"Peugeot","model":"205","owner":"Michel"}},
{"Key":"CAR6", "Record":{"colour":"white","make":"Chery","model":"S22L","owner":"Aarav"}},
{"Key":"CAR7", "Record":{"colour":"violet","make":"Fiat","model":"Punto","owner":"Pari"}},
{"Key":"CAR8", "Record":{"colour":"indigo","make":"Tata","model":"Nano","owner":"Valeria"}},
{"Key":"CAR9", "Record":{"colour":"brown","make":"Holden","model":"Barina","owner":"Shotaro"}}]

Let’s take a closer look at this program. Use an editor (e.g. atom or visual
studio) and open query.js.

The application starts by bringing in scope two key classes from the
fabric-network module; FileSystemWallet and Gateway. These classes
will be used to locate the user1 identity in the wallet, and use it to
connect to the network:

const { FileSystemWallet, Gateway } = require('fabric-network');

The application connects to the network using a gateway:

const gateway = new Gateway();
await gateway.connect(ccp, { wallet, identity: 'user1' });

This code creates a new gateway and then uses it to connect the application to
the network. ccp describes the network that the gateway will access with the
identity user1 from wallet. See how the ccp has been loaded from
../../basic-network/connection.json and parsed as a JSON file:

const ccpPath = path.resolve(__dirname, '..', '..', 'basic-network', 'connection.json');
const ccpJSON = fs.readFileSync(ccpPath, 'utf8');
const ccp = JSON.parse(ccpJSON);

If you’d like to understand more about the structure of a connection profile,
and how it defines the network, check out
the connection profile topic.

A network can be divided into multiple channels, and the next important line of
code connects the application to a particular channel within the network,
mychannel:

Within this channel, we can access the smart contract fabcar to interact
with the ledger:

const contract = network.getContract('fabcar');

Within fabcar there are many different transactions, and our application
initially uses the queryAllCars transaction to access the ledger world state
data:

const result = await contract.evaluateTransaction('queryAllCars');

The evaluateTransaction method represents one of the simplest interaction
with a smart contract in blockchain network. It simply picks a peer defined in
the connection profile and sends the request to it, where it is evaluated. The
smart contract queries all the cars on the peer’s copy of the ledger and returns
the result to the application. This interaction does not result in an update the
ledger.

The FabCar smart contract

Let’s take a look at the transactions within the FabCar smart contract.
Navigate to the chaincode/fabcar/javascript/lib subdirectory at the root of
fabric-samples and open fabcar.js in your editor.

See how our smart contract is defined using the Contract class:

class FabCar extends Contract {...

Within this class structure, you’ll see that we have the following
transactions defined: initLedger, queryCar, queryAllCars,
createCar, and changeCarOwner. For example:

async queryCar(ctx, carNumber) {...}
async queryAllCars(ctx) {...}

Let’s take a closer look at the queryAllCars transaction to see how it
interacts with the ledger.

async queryAllCars(ctx) {

 const startKey = 'CAR0';
 const endKey = 'CAR999';

 const iterator = await ctx.stub.getStateByRange(startKey, endKey);

This code defines the range of cars that queryAllCars will retrieve from the
ledger. Every car between CAR0 and CAR999 – 1,000 cars in all, assuming
every key has been tagged properly – will be returned by the query. The
remainder of the code iterates through the query results and packages them into
JSON for the application.

Below is a representation of how an application would call different
transactions in a smart contract. Each transaction uses a broad set of APIs such
as getStateByRange to interact with the ledger. You can read more about
these APIs in detail [https://fabric-shim.github.io/master/index.html?redirect=true].

[image: _images/RunningtheSample.png]
We can see our queryAllCars transaction, and another called createCar.
We will use this later in the tutorial to update the ledger, and add a new block
to the blockchain.

But first, go back to the query program and change the
evaluateTransaction request to query CAR4. The query program should
now look like this:

const result = await contract.evaluateTransaction('queryCar', 'CAR4');

Save the program and navigate back to your fabcar/javascript directory.
Now run the query program again:

node query.js

You should see the following:

Wallet path: ...fabric-samples/fabcar/javascript/wallet
Transaction has been evaluated, result is:
{"colour":"black","make":"Tesla","model":"S","owner":"Adriana"}

If you go back and look at the result from when the transaction was
queryAllCars, you can see that CAR4 was Adriana’s black Tesla model S,
which is the result that was returned here.

We can use the queryCar transaction to query against any car, using its
key (e.g. CAR0) and get whatever make, model, color, and owner correspond to
that car.

Great. At this point you should be comfortable with the basic query transactions
in the smart contract and the handful of parameters in the query program.

Time to update the ledger…

Updating the ledger

Now that we’ve done a few ledger queries and added a bit of code, we’re ready to
update the ledger. There are a lot of potential updates we could make, but
let’s start by creating a new car.

From an application perspective, updating the ledger is simple. An application
submits a transaction to the blockchain network, and when it has been
validated and committed, the application receives a notification that
the transaction has been successful. Under the covers this involves the process
of consensus whereby the different components of the blockchain network work
together to ensure that every proposed update to the ledger is valid and
performed in an agreed and consistent order.

[image: _images/write_first_app.diagram.2.png]
Above, you can see the major components that make this process work. As well as
the multiple peers which each host a copy of the ledger, and optionally a copy
of the smart contract, the network also contains an ordering service. The
ordering service coordinates transactions for a network; it creates blocks
containing transactions in a well-defined sequence originating from all the
different applications connected to the network.

Our first update to the ledger will create a new car. We have a separate program
called invoke.js that we will use to make updates to the ledger. Just as with
queries, use an editor to open the program and navigate to the code block where
we construct our transaction and submit it to the network:

await contract.submitTransaction('createCar', 'CAR12', 'Honda', 'Accord', 'Black', 'Tom');

See how the applications calls the smart contract transaction createCar to
create a black Honda Accord with an owner named Tom. We use CAR12 as the
identifying key here, just to show that we don’t need to use sequential keys.

Save it and run the program:

node invoke.js

If the invoke is successful, you will see output like this:

Wallet path: ...fabric-samples/fabcar/javascript/wallet
2018-12-11T14:11:40.935Z - info: [TransactionEventHandler]: _strategySuccess: strategy success for transaction "9076cd4279a71ecf99665aed0ed3590a25bba040fa6b4dd6d010f42bb26ff5d1"
Transaction has been submitted

Notice how the invoke application interacted with the blockchain network
using the submitTransaction API, rather than evaluateTransaction.

await contract.submitTransaction('createCar', 'CAR12', 'Honda', 'Accord', 'Black', 'Tom');

submitTransaction is much more sophisticated than evaluateTransaction.
Rather than interacting with a single peer, the SDK will send the
submitTransaction proposal to every required organization’s peer in the
blockchain network. Each of these peers will execute the requested smart
contract using this proposal, to generate a transaction response which it signs
and returns to the SDK. The SDK collects all the signed transaction responses
into a single transaction, which it then sends to the orderer. The orderer
collects and sequences transactions from every application into a block of
transactions. It then distributes these blocks to every peer in the network,
where every transaction is validated and committed. Finally, the SDK is
notified, allowing it to return control to the application.

submitTransaction does all this for the application! The process by which
the application, smart contract, peers and ordering service work together to
keep the ledger consistent across the network is called consensus, and it is
explained in detail in this section.

To see that this transaction has been written to the ledger, go back to
query.js and change the argument from CAR4 to CAR12.

In other words, change this:

const result = await contract.evaluateTransaction('queryCar', 'CAR4');

To this:

const result = await contract.evaluateTransaction('queryCar', 'CAR12');

Save once again, then query:

node query.js

Which should return this:

Wallet path: ...fabric-samples/fabcar/javascript/wallet
Transaction has been evaluated, result is:
{"colour":"Black","make":"Honda","model":"Accord","owner":"Tom"}

Congratulations. You’ve created a car and verified that its recorded on the
ledger!

So now that we’ve done that, let’s say that Tom is feeling generous and he
wants to give his Honda Accord to someone named Dave.

To do this, go back to invoke.js and change the smart contract transaction
from createCar to changeCarOwner with a corresponding change in input
arguments:

await contract.submitTransaction('changeCarOwner', 'CAR12', 'Dave');

The first argument — CAR12 — identifies the car that will be changing
owners. The second argument — Dave — defines the new owner of the car.

Save and execute the program again:

node invoke.js

Now let’s query the ledger again and ensure that Dave is now associated with the
CAR12 key:

node query.js

It should return this result:

Wallet path: ...fabric-samples/fabcar/javascript/wallet
Transaction has been evaluated, result is:
{"colour":"Black","make":"Honda","model":"Accord","owner":"Dave"}

The ownership of CAR12 has been changed from Tom to Dave.

Note

In a real world application the smart contract would likely have some
access control logic. For example, only certain authorized users may
create new cars, and only the car owner may transfer the car to
somebody else.

Summary

Now that we’ve done a few queries and a few updates, you should have a pretty
good sense of how applications interact with a blockchain network using a smart
contract to query or update the ledger. You’ve seen the basics of the roles
smart contracts, APIs, and the SDK play in queries and updates and you should
have a feel for how different kinds of applications could be used to perform
other business tasks and operations.

Additional resources

As we said in the introduction, we have a whole section on
Developing Applications that includes in-depth information on
smart contracts, process and data design, a tutorial using a more in-depth
Commercial Paper tutorial and a large
amount of other material relating to the development of applications.

 Commercial paper tutorial

Commercial paper tutorial

Audience: Architects, application and smart contract developers,
administrators

This tutorial will show you how to install and use a commercial paper sample
application and smart contract. It is a task-oriented topic, so it emphasizes
procedures above concepts. When you’d like to understand the concepts in more
detail, you can read the
Developing Applications topic.

[image: commercialpaper.tutorial] In this tutorial
two organizations, MagnetoCorp and DigiBank, trade commercial paper with each
other using PaperNet, a Hyperledger Fabric blockchain network.

Once you’ve set up a basic network, you’ll act as Isabella, an employee of
MagnetoCorp, who will issue a commercial paper on its behalf. You’ll then switch
hats to take the role of Balaji, an employee of DigiBank, who will buy this
commercial paper, hold it for a period of time, and then redeem it with
MagnetoCorp for a small profit.

You’ll act as an developer, end user, and administrator, each in different
organizations, performing the following steps designed to help you understand
what it’s like to collaborate as two different organizations working
independently, but according to mutually agreed rules in a Hyperledger Fabric
network.

	Set up machine and download samples

	Create a network

	Understand the structure of a smart contract

	Work as an organization, MagnetoCorp, to
install and instantiate smart
contract

	Understand the structure of a MagnetoCorp
application, including its
dependencies

	Configure and use a wallet and identities

	Run a MagnetoCorp application to issue a commercial
paper

	Understand how a second organization, Digibank, uses
the smart contract in their applications

	As Digibank, run applications that
buy and redeem commercial paper

This tutorial has been tested on MacOS and Ubuntu, and should work on other
Linux distributions. A Windows version is under development.

Prerequisites

Before you start, you must install some prerequisite technology required by the
tutorial. We’ve kept these to a minimum so that you can get going quickly.

You must have the following technologies installed:

	Node [https://nodejs.org/en/about/] version 8.9.0, or higher. Node is
a JavaScript runtime that you can use to run applications and smart
contracts. You are recommended to use the LTS (Long Term Support) version
of node. Install node here [https://nodejs.org/en/].

	Docker [https://www.docker.com/get-started] version 18.06, or higher.
Docker help developers and administrators create standard environments for
building and running applications and smart contracts. Hyperledger Fabric is
provided as a set of Docker images, and the PaperNet smart contract will run
in a docker container. Install Docker
here [https://www.docker.com/get-started].

You will find it helpful to install the following technologies:

	A source code editor, such as
Visual Studio Code [https://code.visualstudio.com/] version 1.28, or
higher. VS Code will help you develop and test your application and smart
contract. Install VS Code here [https://code.visualstudio.com/Download].

Many excellent code editors are available including
Atom [https://atom.io/], Sublime Text [http://www.sublimetext.com/] and
Brackets [http://www.sublimetext.com/].

You may find it helpful to install the following technologies as you become
more experienced with application and smart contract development. There’s no
requirement to install these when you first run the tutorial:

	Node Version Manager [https://github.com/creationix/nvm]. NVM helps you
easily switch between different versions of node – it can be really helpful
if you’re working on multiple projects at the same time. Install NVM
here [https://github.com/creationix/nvm#installation].

Download samples

The commercial paper tutorial is one of the Hyperledger Fabric
samples [https://github.com/hyperledger/fabric-samples] held in a public
GitHub [https://www.github.com] repository called fabric-samples. As you’re
going to run the tutorial on your machine, your first task is to download the
fabric-samples repository.

[image: commercialpaper.download] Download the
fabric-samples GitHub repository to your local machine.

$GOPATH is an important environment variable in Hyperledger Fabric; it
identifies the root directory for installation. It is important to get right no
matter which programming language you’re using! Open a new terminal window and
check your $GOPATH is set using the env command:

$ env
...
GOPATH=/Users/username/go
NVM_BIN=/Users/username/.nvm/versions/node/v8.11.2/bin
NVM_IOJS_ORG_MIRROR=https://iojs.org/dist
...

Use the following
instructions [https://github.com/golang/go/wiki/SettingGOPATH] if your
$GOPATH is not set.

You can now create a directory relative to $GOPATHwhere fabric-samples will
be installed:

$ mkdir -p $GOPATH/src/github.com/hyperledger/
$ cd $GOPATH/src/github.com/hyperledger/

Use the git clone [https://git-scm.com/docs/git-clone] command to copy
fabric-samples [https://github.com/hyperledger/fabric-samples] repository to
this location:

$ git clone https://github.com/hyperledger/fabric-samples.git

Feel free to examine the directory structure of fabric-samples:

$ cd fabric-samples
$ ls

CODE_OF_CONDUCT.md balance-transfer fabric-ca
CONTRIBUTING.md basic-network first-network
Jenkinsfile chaincode high-throughput
LICENSE chaincode-docker-devmode scripts
MAINTAINERS.md commercial-paper README.md
fabcar

Notice the commercial-paper directory – that’s where our sample is located!

You’ve now completed the first stage of the tutorial! As you proceed, you’ll
open multiple command windows open for different users and components. For
example:

	to run applications on behalf of Isabella and Balaji who will trade commercial
paper with each other

	to issue commands to on behalf of administrators from MagnetoCorp and
DigiBank, including installing and instantiating smart contracts

	to show peer, orderer and CA log output

We’ll make it clear when you should run a command from particular command
window; for example:

(isabella)$ ls

indicates that you should run the ls command from Isabella’s window.

Create network

The tutorial currently uses the basic network; it will be updated soon to a
configuration which better reflects the multi-organization structure of
PaperNet. For now, this network is sufficient to show you how to develop an
application and smart contract.

[image: commercialpaper.network] The Hyperledger
Fabric basic network comprises a peer and its ledger database, an orderer and a
certificate authority (CA). Each of these components runs as a docker
container.

The peer, its ledger, the
orderer and the CA each run in the their own docker container. In production
environments, organizations typically use existing CAs that are shared with
other systems; they’re not dedicated to the Fabric network.

You can manage the basic network using the commands and configuration included
in the fabric-samples\basic-network directory. Let’s start the network on your
local machine with the start.sh shell script:

$ cd fabric-samples/basic-network
$./start.sh

docker-compose -f docker-compose.yml up -d ca.example.com orderer.example.com peer0.org1.example.com couchdb
Creating network "net_basic" with the default driver
Pulling ca.example.com (hyperledger/fabric-ca:)...
latest: Pulling from hyperledger/fabric-ca
3b37166ec614: Pull complete
504facff238f: Pull complete
(...)
Pulling orderer.example.com (hyperledger/fabric-orderer:)...
latest: Pulling from hyperledger/fabric-orderer
3b37166ec614: Already exists
504facff238f: Already exists
(...)
Pulling couchdb (hyperledger/fabric-couchdb:)...
latest: Pulling from hyperledger/fabric-couchdb
3b37166ec614: Already exists
504facff238f: Already exists
(...)
Pulling peer0.org1.example.com (hyperledger/fabric-peer:)...
latest: Pulling from hyperledger/fabric-peer
3b37166ec614: Already exists
504facff238f: Already exists
(...)
Creating orderer.example.com ... done
Creating couchdb ... done
Creating ca.example.com ... done
Creating peer0.org1.example.com ... done
(...)
2018-11-07 13:47:31.634 UTC [channelCmd] InitCmdFactory -> INFO 001 Endorser and orderer connections initialized
2018-11-07 13:47:31.730 UTC [channelCmd] executeJoin -> INFO 002 Successfully submitted proposal to join channel

Notice how the docker-compose -f docker-compose.yml up -d ca.example.com...
command pulls the four Hyperledger Fabric container images from
DockerHub [https://hub.docker.com/], and then starts them. These containers
have the most up-to-date version of the software for these Hyperledger Fabric
components. Feel free to explore the basic-network directory – we’ll use
much of its contents during this tutorial.

You can list the docker containers that are running the basic-network components
using the docker ps command:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
ada3d078989b hyperledger/fabric-peer "peer node start" About a minute ago Up About a minute 0.0.0.0:7051->7051/tcp, 0.0.0.0:7053->7053/tcp peer0.org1.example.com
1fa1fd107bfb hyperledger/fabric-orderer "orderer" About a minute ago Up About a minute 0.0.0.0:7050->7050/tcp orderer.example.com
53fe614274f7 hyperledger/fabric-couchdb "tini -- /docker-ent…" About a minute ago Up About a minute 4369/tcp, 9100/tcp, 0.0.0.0:5984->5984/tcp couchdb
469201085a20 hyperledger/fabric-ca "sh -c 'fabric-ca-se…" About a minute ago Up About a minute 0.0.0.0:7054->7054/tcp ca.example.com

See if you can map these containers to the basic-network (you may need to
horizontally scroll to locate the information):

	A peer peer0.org1.example.com is running in container ada3d078989b

	An orderer orderer.example.com is running in container 1fa1fd107bfb

	A CouchDB database couchdb is running in container 53fe614274f7

	A CA ca.example.com is running in container 469201085a20

These containers all form a docker network [https://docs.docker.com/network/]
called net_basic. You can view the network with the docker network command:

$ docker network inspect net_basic

 {
 "Name": "net_basic",
 "Id": "62e9d37d00a0eda6c6301a76022c695f8e01258edaba6f65e876166164466ee5",
 "Created": "2018-11-07T13:46:30.4992927Z",
 "Containers": {
 "1fa1fd107bfbe61522e4a26a57c2178d82b2918d5d423e7ee626c79b8a233624": {
 "Name": "orderer.example.com",
 "IPv4Address": "172.20.0.4/16",
 },
 "469201085a20b6a8f476d1ac993abce3103e59e3a23b9125032b77b02b715f2c": {
 "Name": "ca.example.com",
 "IPv4Address": "172.20.0.2/16",
 },
 "53fe614274f7a40392210f980b53b421e242484dd3deac52bbfe49cb636ce720": {
 "Name": "couchdb",
 "IPv4Address": "172.20.0.3/16",
 },
 "ada3d078989b568c6e060fa7bf62301b4bf55bed8ac1c938d514c81c42d8727a": {
 "Name": "peer0.org1.example.com",
 "IPv4Address": "172.20.0.5/16",
 }
 },
 "Labels": {}
 }

See how the four containers use different IP addresses, while being part of a
single docker network. (We’ve abbreviated the output for clarity.)

To recap: you’ve downloaded the Hyperledger Fabric samples repository from
GitHub and you’ve got the basic network running on your local machine. Let’s now
start to play the role of MagnetoCorp, who wish to trade commercial paper.

Working as MagnetoCorp

To monitor the MagnetoCorp components of PaperNet, an administrator can view the
aggregated output from a set of docker containers using the logspout
tool [https://github.com/gliderlabs/logspout#logspout]. It collects the
different output streams into one place, making it easy to see what’s happening
from a single window. This can be really helpful for administrators when
installing smart contracts or for developers when invoking smart contracts, for
example.

Let’s now monitor PaperNet as a MagnetoCorp administrator. Open a new window in
the fabric-samples directory, and locate and run the monitordocker.sh
script to start the logspout tool for the PaperNet docker containers
associated with the docker network net_basic:

(magnetocorp admin)$ cd commercial-paper/organization/magnetocorp/configuration/cli/
(magnetocorp admin)$./monitordocker.sh net_basic
...
latest: Pulling from gliderlabs/logspout
4fe2ade4980c: Pull complete
decca452f519: Pull complete
(...)
Starting monitoring on all containers on the network net_basic
b7f3586e5d0233de5a454df369b8eadab0613886fc9877529587345fc01a3582

Note that you can pass a port number to the above command if the default port in monitordocker.sh is already in use.

(magnetocorp admin)$./monitordocker.sh net_basic <port_number>

This window will now show output from the docker containers, so let’s start
another terminal window which will allow the MagnetoCorp administrator to
interact with the network.

[image: commercialpaper.workmagneto] A MagnetoCorp
administrator interacts with the network via a docker container.

To interact with PaperNet, a MagnetoCorp administrator needs to use the
Hyperledger Fabric peer commands. Conveniently, these are available pre-built
in the hyperledger/fabric-tools
docker image [https://hub.docker.com/r/hyperledger/fabric-tools/].

Let’s start a MagnetoCorp-specific docker container for the administrator using
the docker-compose command [https://docs.docker.com/compose/overview/]:

(magnetocorp admin)$ cd commercial-paper/organization/magnetocorp/configuration/cli/
(magnetocorp admin)$ docker-compose -f docker-compose.yml up -d cliMagnetoCorp

Pulling cliMagnetoCorp (hyperledger/fabric-tools:)...
latest: Pulling from hyperledger/fabric-tools
3b37166ec614: Already exists
(...)
Digest: sha256:058cff3b378c1f3ebe35d56deb7bf33171bf19b327d91b452991509b8e9c7870
Status: Downloaded newer image for hyperledger/fabric-tools:latest
Creating cliMagnetoCorp ... done

Again, see how the hyperledger/fabric-tools docker image was retrieved from
Docker Hub and added to the network:

(magnetocorp admin)$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
562a88b25149 hyperledger/fabric-tools "/bin/bash" About a minute ago Up About a minute cliMagnetoCorp
b7f3586e5d02 gliderlabs/logspout "/bin/logspout" 7 minutes ago Up 7 minutes 127.0.0.1:8000->80/tcp logspout
ada3d078989b hyperledger/fabric-peer "peer node start" 29 minutes ago Up 29 minutes 0.0.0.0:7051->7051/tcp, 0.0.0.0:7053->7053/tcp peer0.org1.example.com
1fa1fd107bfb hyperledger/fabric-orderer "orderer" 29 minutes ago Up 29 minutes 0.0.0.0:7050->7050/tcp orderer.example.com
53fe614274f7 hyperledger/fabric-couchdb "tini -- /docker-ent…" 29 minutes ago Up 29 minutes 4369/tcp, 9100/tcp, 0.0.0.0:5984->5984/tcp couchdb
469201085a20 hyperledger/fabric-ca "sh -c 'fabric-ca-se…" 29 minutes ago Up 29 minutes 0.0.0.0:7054->7054/tcp ca.example.com

The MagnetoCorp administrator will use the command line in container
562a88b25149 to interact with PaperNet. Notice also the logspout container
b7f3586e5d02; this is capturing the output of all other docker containers for
the monitordocker.sh command.

Let’s now use this command line to interact with PaperNet as the MagnetoCorp
administrator.

Smart contract

issue, buy and redeem are the three functions at the heart of the PaperNet
smart contract. It is used by applications to submit transactions which
correspondingly issue, buy and redeem commercial paper on the ledger. Our next
task is to examine this smart contract.

Open a new terminal window to represent a MagnetoCorp developer and change to
the directory that contains MagnetoCorp’s copy of the smart contract to view it
with your chosen editor (VS Code in this tutorial):

(magnetocorp developer)$ cd commercial-paper/organization/magnetocorp/contract
(magnetocorp developer)$ code .

In the lib directory of the folder, you’ll see papercontract.js file – this
contains the commercial paper smart contract!

[image: commercialpaper.vscode1] An example code
editor displaying the commercial paper smart contract in papercontract.js

papercontract.js is a JavaScript program designed to run in the node.js
environment. Note the following key program lines:

	const { Contract, Context } = require('fabric-contract-api');

This statement brings into scope two key Hyperledger Fabric classes that will
be used extensively by the smart contract – Contract and Context. You
can learn more about these classes in the
fabric-shim JSDOCS [https://fabric-shim.github.io/].

	class CommercialPaperContract extends Contract {

This defines the smart contract class CommercialPaperContract based on the
built-in Fabric Contract class. The methods which implement the key
transactions to issue, buy and redeem commercial paper are defined
within this class.

	async issue(ctx, issuer, paperNumber, issueDateTime, maturityDateTime...) {

This method defines the commercial paper issue transaction for PaperNet. The
parameters that are passed to this method will be used to create the new
commercial paper.

Locate and examine the buy and redeem transactions within the smart
contract.

	let paper = CommercialPaper.createInstance(issuer, paperNumber, issueDateTime...);

Within the issue transaction, this statement creates a new commercial paper
in memory using the CommercialPaper class with the supplied transaction
inputs. Examine the buy and redeem transactions to see how they similarly
use this class.

	await ctx.paperList.addPaper(paper);

This statement adds the new commercial paper to the ledger using
ctx.paperList, an instance of a PaperList class that was created when the
smart contract context CommercialPaperContext was initialized. Again,
examine the buy and redeem methods to see how they use this class.

	return paper.toBuffer();

This statement returns a binary buffer as response from the issue
transaction for processing by the caller of the smart contract.

Feel free to examine other files in the contract directory to understand how
the smart contract works, and read in detail how papercontract.js is
designed in the smart contract topic.

Install contract

Before papercontract can be invoked by applications, it must be installed onto
the appropriate peer nodes in PaperNet. MagnetoCorp and DigiBank administrators
are able to install papercontract onto peers over which they respectively have
authority.

[image: commercialpaper.install] A MagnetoCorp
administrator installs a copy of the papercontract onto a MagnetoCorp peer.

Smart contracts are the focus of application development, and are contained
within a Hyperledger Fabric artifact called chaincode. One
or more smart contracts can be defined within a single chaincode, and installing
a chaincode will allow them to be consumed by the different organizations in
PaperNet. It means that only administrators need to worry about chaincode;
everyone else can think in terms of smart contracts.

The MagnetoCorp administrator uses the peer chaincode install command to copy
the papercontract smart contract from their local machine’s file system to the
file system within the target peer’s docker container. Once the smart contract
is installed on the peer and instantiated on a channel,
papercontract can be invoked by applications, and interact with the ledger
database via the
putState() [https://fabric-shim.github.io/release-1.3/fabric-shim.ChaincodeStub.html#putState__anchor]
and
getState() [https://fabric-shim.github.io/release-1.3/fabric-shim.ChaincodeStub.html#getState__anchor]
Fabric APIs. Examine how these APIs are used by StateList class within
ledger-api\statelist.js.

Let’s now install papercontract as the MagnetoCorp administrator. In the
MagnetoCorp administrator’s command window, use the docker exec command to run
the peer chaincode install command in the cliMagnetCorp container:

(magnetocorp admin)$ docker exec cliMagnetoCorp peer chaincode install -n papercontract -v 0 -p /opt/gopath/src/github.com/contract -l node

2018-11-07 14:21:48.400 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 001 Using default escc
2018-11-07 14:21:48.400 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 002 Using default vscc
2018-11-07 14:21:48.466 UTC [chaincodeCmd] install -> INFO 003 Installed remotely response:<status:200 payload:"OK" >

The cliMagnetCorp container has set
CORE_PEER_ADDRESS=peer0.org1.example.com:7051 to target its commands to
peer0.org1.example.com, and the INFO 003 Installed remotely... indicates
papercontract has been successfully installed on this peer. Currently, the
MagnetoCorp administrator only has to install a copy of papercontract on a
single MagentoCorp peer.

Note how peer chaincode install command specified the smart contract path,
-p, relative to the cliMagnetoCorp container’s file system:
/opt/gopath/src/github.com/contract. This path has been mapped to the local
file system path .../organization/magnetocorp/contract via the
magnetocorp/configuration/cli/docker-compose.yml file:

volumes:
 - ...
 - ./../../../../organization/magnetocorp:/opt/gopath/src/github.com/
 - ...

See how the volume directive maps organization/magnetocorp to
/opt/gopath/src/github.com/ providing this container access to your local file
system where MagnetoCorp’s copy of the papercontract smart contract is held.

You can read more about docker compose
here [https://docs.docker.com/compose/overview/] and peer chaincode install
command here.

Instantiate contract

Now that papercontract chaincode containing the CommercialPaper smart
contract is installed on the required PaperNet peers, an administrator can make
it available to different network channels, so that it can be invoked by
applications connected to those channels. Because we’re using the basic network
configuration for PaperNet, we’re only going to make papercontract available
in a single network channel, mychannel.

[image: commercialpaper.instant] A MagnetoCorp
administrator instantiates papercontract chaincode containing the smart
contract. A new docker chaincode container will be created to run
papercontract.

The MagnetoCorp administrator uses the peer chaincode instantiate command to
instantiate papercontract on mychannel:

(magnetocorp admin)$ docker exec cliMagnetoCorp peer chaincode instantiate -n papercontract -v 0 -l node -c '{"Args":["org.papernet.commercialpaper:instantiate"]}' -C mychannel -P "AND ('Org1MSP.member')"

2018-11-07 14:22:11.162 UTC [chaincodeCmd] InitCmdFactory -> INFO 001 Retrieved channel (mychannel) orderer endpoint: orderer.example.com:7050
2018-11-07 14:22:11.163 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 002 Using default escc
2018-11-07 14:22:11.163 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 003 Using default vscc

One of the most important parameters on instantiate is -P. It specifies the
endorsement policy for papercontract,
describing the set of organizations that must endorse (execute and sign) a
transaction before it can be determined as valid. All transactions, whether
valid or invalid, will be recorded on the ledger blockchain,
but only valid transactions will update the world
state.

In passing, see how instantiate passes the orderer address
orderer.example.com:7050. This is because it additionally submits an
instantiate transaction to the orderer, which will include the transaction
in the next block and distribute it to all peers that have joined
mychannel, enabling any peer to execute the chaincode in their own
isolated chaincode container. Note that instantiate only needs to be issued
once for papercontract even though typically it is installed on many peers.

See how a papercontract container has been started with the docker ps
command:

(magnetocorp admin)$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4fac1b91bfda dev-peer0.org1.example.com-papercontract-0-d96... "/bin/sh -c 'cd /usr…" 2 minutes ago Up 2 minutes dev-peer0.org1.example.com-papercontract-0

Notice that the container is named
dev-peer0.org1.example.com-papercontract-0-d96... to indicate which peer
started it, and the fact that it’s running papercontract version 0.

Now that we’ve got a basic PaperNet up and running, and papercontract
installed and instantiated, let’s turn our attention to the MagnetoCorp
application which issues a commercial paper.

Application structure

The smart contract contained in papercontract is called by MagnetoCorp’s
application issue.js. Isabella uses this application to submit a transaction
to the ledger which issues commercial paper 00001. Let’s quickly examine how
the issue application works.

[image: commercialpaper.application] A gateway
allows an application to focus on transaction generation, submission and
response. It coordinates transaction proposal, ordering and notification
processing between the different network components.

Because the issue application submits transactions on behalf of Isabella, it
starts by retrieving Isabella’s X.509 certificate from her
wallet, which might be stored on the local file
system or a Hardware Security Module
HSM [https://en.wikipedia.org/wiki/Hardware_security_module]. The issue
application is then able to utilize the gateway to submit transactions on the
channel. The Hyperledger Fabric SDK provides a
gateway abstraction so that applications can
focus on application logic while delegating network interaction to the
gateway. Gateways and wallets make it straightforward to write Hyperledger
Fabric applications.

So let’s examine the issue application that Isabella is going to use. open a
separate terminal window for her, and in fabric-samples locate the MagnetoCorp
/application folder:

(magnetocorp user)$ cd commercial-paper/organization/magnetocorp/application/
(magnetocorp user)$ ls

addToWallet.js issue.js package.json

addToWallet.js is the program that Isabella is going to use to load her
identity into her wallet, and issue.js will use this identity to create
commercial paper 00001 on behalf of MagnetoCorp by invoking papercontract.

Change to the directory that contains MagnetoCorp’s copy of the application
issue.js, and use your code editor to examine it:

(magnetocorp user)$ cd commercial-paper/organization/magnetocorp/application
(magnetocorp user)$ code issue.js

Examine this directory; it contains the issue application and all its
dependencies.

[image: commercialpaper.vscode2] A code editor
displaying the contents of the commercial paper application directory.

Note the following key program lines in issue.js:

	const { FileSystemWallet, Gateway } = require('fabric-network');

This statement brings two key Hyperledger Fabric SDK classes into scope –
Wallet and Gateway. Because Isabella’s X.509 certificate is in the local
file system, the application uses FileSystemWallet.

	const wallet = new FileSystemWallet('../identity/user/isabella/wallet');

This statement identifies that the application will use isabella wallet when
it connects to the blockchain network channel. The application will select a
particular identity within isabella wallet. (The wallet must have been
loaded with the Isabella’s X.509 certificate – that’s what addToWallet.js
does.)

	await gateway.connect(connectionProfile, connectionOptions);

This line of code connects to the network using the gateway identified by
connectionProfile, using the identity referred to in ConnectionOptions.

See how ../gateway/networkConnection.yaml and User1@org1.example.com are
used for these values respectively.

	const network = await gateway.getNetwork('mychannel');

This connects the application to the network channel mychannel, where the
papercontract was previously instantiated.

	const contract = await network.getContract('papercontract', 'org.papernet.comm...');

This statement gives the application addressability to smart contract defined
by the namespace org.papernet.commercialpaper within papercontract. Once
an application has issued getContract, it can submit any transaction
implemented within it.

	const issueResponse = await contract.submitTransaction('issue', 'MagnetoCorp', '00001'...);

This line of code submits the a transaction to the network using the issue
transaction defined within the smart contract. MagnetoCorp, 00001… are
the values to be used by the issue transaction to create a new commercial
paper.

	let paper = CommercialPaper.fromBuffer(issueResponse);

This statement processes the response from the issue transaction. The
response needs to deserialized from a buffer into paper, a CommercialPaper
object which can interpreted correctly by the application.

Feel free to examine other files in the /application directory to understand
how issue.js works, and read in detail how it is implemented in the
application topic.

Application dependencies

The issue.js application is written in JavaScript and designed to run in the
node.js environment that acts as a client to the PaperNet network.
As is common practice, MagnetoCorp’s application is built on many
external node packages – to improve quality and speed of development. Consider
how issue.js includes the js-yaml
package [https://www.npmjs.com/package/js-yaml] to process the YAML gateway
connection profile, or the fabric-network
package [https://www.npmjs.com/package/fabric-network] to access the Gateway
and Wallet classes:

const yaml = require('js-yaml');
const { FileSystemWallet, Gateway } = require('fabric-network');

These packages have to be downloaded from npm [https://www.npmjs.com/] to the
local file system using the npm install command. By convention, packages must
be installed into an application-relative /node_modules directory for use at
runtime.

Examine the package.json file to see how issue.js identifies the packages to
download and their exact versions:

 "dependencies": {
 "fabric-network": "^1.4.0-beta",
 "fabric-client": "^1.4.0-beta",
 "js-yaml": "^3.12.0"
 },

npm versioning is very powerful; you can read more about it
here [https://docs.npmjs.com/getting-started/semantic-versioning].

Let’s install these packages with the npm install command – this may take up
to a minute to complete:

(magnetocorp user)$ npm install

() extract:lodash: sill extract ansi-styles@3.2.1
(...)
added 738 packages in 46.701s

See how this command has updated the directory:

(magnetocorp user)$ ls

addToWallet.js node_modules package.json
issue.js package-lock.json

Examine the node_modules directory to see the packages that have been
installed. There are lots, because js-yaml and fabric-network are themselves
built on other npm packages! Helpfully, the package-lock.json
file [https://docs.npmjs.com/files/package-lock.json] identifies the exact
versions installed, which can prove invaluable if you want to exactly reproduce
environments; to test, diagnose problems or deliver proven applications for
example.

Wallet

Isabella is almost ready to run issue.js to issue MagnetoCorp commercial paper
00001; there’s just one remaining task to perform! As issue.js acts on
behalf of Isabella, and therefore MagnetoCorp, it will use identity from her
wallet that reflects these facts. We now need to
perform this one-time activity of adding appropriate X.509 credentials to her
wallet.

In Isabella’s terminal window, run the addToWallet.js program to add identity
information to her wallet:

(isabella)$ node addToWallet.js

done

Isabella can store multiple identities in her wallet, though in our example, she
only uses one – User1@org.example.com. This identity is currently associated
with the basic network, rather than a more realistic PaperNet configuration –
we’ll update this tutorial soon.

addToWallet.js is a simple file-copying program which you can examine at your
leisure. It moves an identity from the basic network sample to Isabella’s
wallet. Let’s focus on the result of this program – the contents of
the wallet which will be used to submit transactions to PaperNet:

(isabella)$ ls ../identity/user/isabella/wallet/

User1@org1.example.com

See how the directory structure maps the User1@org1.example.com identity –
other identities used by Isabella would have their own folder. Within this
directory you’ll find the identity information that issue.js will use on
behalf of isabella:

(isabella)$ ls ../identity/user/isabella/wallet/User1@org1.example.com

User1@org1.example.com c75bd6911a...-priv c75bd6911a...-pub

Notice:

	a private key c75bd6911a...-priv used to sign transactions on Isabella’s
behalf, but not distributed outside of her immediate control.

	a public key c75bd6911a...-pub which is cryptographically linked to
Isabella’s private key. This is wholly contained within Isabella’s X.509
certificate.

	a certificate User1@org.example.com which contains Isabella’s public key
and other X.509 attributes added by the Certificate Authority at certificate
creation. This certificate is distributed to the network so that different
actors at different times can cryptographically verify information created by
Isabella’s private key.

Learn more about certificates
here. In practice, the
certificate file also contains some Fabric-specific metadata such as
Isabella’s organization and role – read more in the
wallet topic.

Issue application

Isabella can now use issue.js to submit a transaction that will issue
MagnetoCorp commercial paper 00001:

(isabella)$ node issue.js

Connect to Fabric gateway.
Use network channel: mychannel.
Use org.papernet.commercialpaper smart contract.
Submit commercial paper issue transaction.
Process issue transaction response.
MagnetoCorp commercial paper : 00001 successfully issued for value 5000000
Transaction complete.
Disconnect from Fabric gateway.
Issue program complete.

The node command initializes a node.js environment, and runs issue.js. We
can see from the program output that MagnetoCorp commercial paper 00001 was
issued with a face value of 5M USD.

As you’ve seen, to achieve this, the application invokes the issue transaction
defined in the CommercialPaper smart contract within papercontract.js. This
had been installed and instantiated in the network by the MagnetoCorp
administrator. It’s the smart contract which interacts with the ledger via the
Fabric APIs, most notably putState() and getState(), to represent the new
commercial paper as a vector state within the world state. We’ll see how this
vector state is subsequently manipulated by the buy and redeem transactions
also defined within the smart contract.

All the time, the underlying Fabric SDK handles the transaction endorsement,
ordering and notification process, making the application’s logic
straightforward; the SDK uses a gateway to
abstract away network details and
connectionOptions to declare more advanced
processing strategies such as transaction retry.

Let’s now follow the lifecycle of MagnetoCorp 00001 by switching our emphasis
to DigiBank, who will buy the commercial paper.

Working as DigiBank

Now that commercial paper 00001has been issued by MagnetoCorp, let’s switch
context to interact with PaperNet as employees of DigiBank. First, we’ll act as
administrator who will create a console configured to interact with PaperNet.
Then Balaji, an end user, will use Digibank’s buy application to buy
commercial paper 00001, moving it to the next stage in its lifecycle.

[image: commercialpaper.workdigi] DigiBank
administrators and applications interact with the PaperNet network.

As the tutorial currently uses the basic network for PaperNet, the network
configuration is quite simple. Administrators use a console similar to
MagnetoCorp, but configured for Digibank’s file system. Likewise, Digibank end
users will use applications which invoke the same smart contract as MagnetoCorp
applications, though they contain Digibank-specific logic and configuration.
It’s the smart contract which captures the shared business process, and the
ledger which holds the shared business data, no matter which applications call
them.

Let’s open up a separate terminal to allow the DigiBank administrator to
interact with PaperNet. In fabric-samples:

(digibank admin)$ cd commercial-paper/organization/digibank/configuration/cli/
(digibank admin)$ docker-compose -f docker-compose.yml up -d cliDigiBank

(...)
Creating cliDigiBank ... done

This docker container is now available for Digibank administrators to interact
with the network:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORT NAMES
858c2d2961d4 hyperledger/fabric-tools "/bin/bash" 18 seconds ago Up 18 seconds cliDigiBank

In this tutorial, you’ll use the command line container named cliDigiBank to
interact with the network on behalf of DigiBank. We’ve not shown all the docker
containers, and in the real world DigiBank users would only see the network
components (peers, orderers, CAs) to which they have access.

Digibank’s administrator doesn’t have much to do in this tutorial right now
because the PaperNet network configuration is so simple. Let’s turn our
attention to Balaji.

Digibank applications

Balaji uses DigiBank’s buy application to submit a transaction to the ledger
which transfers ownership of commercial paper 00001 from MagnetoCorp to
DigiBank. The CommercialPaper smart contract is the same as that used by
MagnetoCorp’s application, however the transaction is different this time –
it’s buy rather than issue. Let’s examine how DigiBank’s application works.

Open a separate terminal window for Balaji. In fabric-samples, change to the
DigiBank application directory that contains the application, buy.js, and open
it with your editor:

(balaji)$ cd commercial-paper/organization/digibank/application/
(balaji)$ code buy.js

As you can see, this directory contains both the buy and redeem applications
that will be used by Balaji.

[image: commercialpaper.vscode3] DigiBank’s
commercial paper directory containing the buy.js and redeem.js
applications.

DigiBank’s buy.js application is very similar in structure to MagnetoCorp’s
issue.js with two important differences:

	Identity: the user is a DigiBank user Balaji rather than MagnetoCorp’s
Isabella

const wallet = new FileSystemWallet('../identity/user/balaji/wallet');`

See how the application uses the balaji wallet when it connects to the
PaperNet network channel. buy.js selects a particular identity within
balaji wallet.

	Transaction: the invoked transaction is buy rather than issue

`const buyResponse = await contract.submitTransaction('buy', 'MagnetoCorp', '00001'...);`

A buy transaction is submitted with the values MagnetoCorp, 00001…,
that are used by the CommercialPaper smart contract class to transfer
ownership of commercial paper 00001 to DigiBank.

Feel free to examine other files in the application directory to understand
how the application works, and read in detail how buy.js is implemented in
the application topic.

Run as DigiBank

The DigiBank applications which buy and redeem commercial paper have a very
similar structure to MagnetoCorp’s issue application. Therefore, let’s install
their dependencies and set up Balaji’s wallet so that he can use these
applications to buy and redeem commercial paper.

Like MagnetoCorp, Digibank must the install the required application packages
using the npm install command, and again, this make take a short time to
complete.

In the DigiBank administrator window, install the application dependencies:

(digibank admin)$ cd commercial-paper/organization/digibank/application/
(digibank admin)$ npm install

() extract:lodash: sill extract ansi-styles@3.2.1
(...)
added 738 packages in 46.701s

In Balaji’s terminal window, run the addToWallet.js program to add identity
information to his wallet:

(balaji)$ node addToWallet.js

done

The addToWallet.js program has added identity information for balaji, to his
wallet, which will be used by buy.js and redeem.js to submit transactions to
PaperNet.

Like Isabella, Balaji can store multiple identities in his wallet, though in our
example, he only uses one – Admin@org.example.com. His corresponding wallet
structure digibank/identity/user/balaji/wallet/Admin@org1.example.com
contains is very similar Isabella’s – feel free to examine it.

Buy application

Balaji can now use buy.js to submit a transaction that will transfer ownership
of MagnetoCorp commercial paper 00001 to DigiBank.

Run the buy application in Balaji’s window:

(balaji)$ node buy.js

Connect to Fabric gateway.
Use network channel: mychannel.
Use org.papernet.commercialpaper smart contract.
Submit commercial paper buy transaction.
Process buy transaction response.
MagnetoCorp commercial paper : 00001 successfully purchased by DigiBank
Transaction complete.
Disconnect from Fabric gateway.
Buy program complete.

You can see the program output that MagnetoCorp commercial paper 00001 was
successfully purchased by Balaji on behalf of DigiBank. buy.js invoked the
buy transaction defined in the CommercialPaper smart contract which updated
commercial paper 00001 within the world state using the putState() and
getState() Fabric APIs. As you’ve seen, the application logic to buy and issue
commercial paper is very similar, as is the smart contract logic.

Redeem application

The final transaction in the lifecycle of commercial paper 00001 is for
DigiBank to redeem it with MagnetoCorp. Balaji uses redeem.js to submit a
transaction to perform the redeem logic within the smart contract.

Run the redeem transaction in Balaji’s window:

(balaji)$ node redeem.js

Connect to Fabric gateway.
Use network channel: mychannel.
Use org.papernet.commercialpaper smart contract.
Submit commercial paper redeem transaction.
Process redeem transaction response.
MagnetoCorp commercial paper : 00001 successfully redeemed with MagnetoCorp
Transaction complete.
Disconnect from Fabric gateway.
Redeem program complete.

Again, see how the commercial paper 00001 was successfully redeemed when
redeem.js invoked the redeem transaction defined in CommercialPaper.
Again, it updated commercial paper 00001 within the world state to reflect
that the ownership returned to MagnetoCorp, the issuer of the paper.

Further reading

To understand how applications and smart contracts shown in this tutorial work
in more detail, you’ll find it helpful to read
Developing Applications. This
topic will give you a fuller explanation of the commercial paper scenario, the
PaperNet business network, its actors, and how the applications and smart
contracts they use work in detail.

Also feel free to use this sample to start creating your own applications and
smart contracts!

 Building Your First Network

Building Your First Network

Note

These instructions have been verified to work against the
latest stable Docker images and the pre-compiled
setup utilities within the supplied tar file. If you run
these commands with images or tools from the current master
branch, it is possible that you will see configuration and panic
errors.

The build your first network (BYFN) scenario provisions a sample Hyperledger
Fabric network consisting of two organizations, each maintaining two peer
nodes, and a “solo” ordering service.

Install prerequisites

Before we begin, if you haven’t already done so, you may wish to check that
you have all the Prerequisites installed on the platform(s)
on which you’ll be developing blockchain applications and/or operating
Hyperledger Fabric.

You will also need to Install Samples, Binaries and Docker Images. You will notice
that there are a number of samples included in the fabric-samples
repository. We will be using the first-network sample. Let’s open that
sub-directory now.

cd fabric-samples/first-network

Note

The supplied commands in this documentation
MUST be run from your first-network sub-directory
of the fabric-samples repository clone. If you elect to run the
commands from a different location, the various provided scripts
will be unable to find the binaries.

Want to run it now?

We provide a fully annotated script - byfn.sh - that leverages these Docker
images to quickly bootstrap a Hyperledger Fabric network comprised of 4 peers
representing two different organizations, and an orderer node. It will also
launch a container to run a scripted execution that will join peers to a
channel, deploy and instantiate chaincode and drive execution of transactions
against the deployed chaincode.

Here’s the help text for the byfn.sh script:

Usage:
 byfn.sh <mode> [-c <channel name>] [-t <timeout>] [-d <delay>] [-f <docker-compose-file>] [-s <dbtype>] [-l <language>] [-i <imagetag>] [-v]
 <mode> - one of 'up', 'down', 'restart', 'generate' or 'upgrade'
 - 'up' - bring up the network with docker-compose up
 - 'down' - clear the network with docker-compose down
 - 'restart' - restart the network
 - 'generate' - generate required certificates and genesis block
 - 'upgrade' - upgrade the network from v1.0.x to v1.1
 -c <channel name> - channel name to use (defaults to "mychannel")
 -t <timeout> - CLI timeout duration in seconds (defaults to 10)
 -d <delay> - delay duration in seconds (defaults to 3)
 -f <docker-compose-file> - specify which docker-compose file use (defaults to docker-compose-cli.yaml)
 -s <dbtype> - the database backend to use: goleveldb (default) or couchdb
 -l <language> - the chaincode language: golang (default), node or java
 -i <imagetag> - the tag to be used to launch the network (defaults to "latest")
 -v - verbose mode
 byfn.sh -h (print this message)

Typically, one would first generate the required certificates and
genesis block, then bring up the network. e.g.:

 byfn.sh generate -c mychannel
 byfn.sh up -c mychannel -s couchdb
 byfn.sh up -c mychannel -s couchdb -i 1.1.0-alpha
 byfn.sh up -l node
 byfn.sh down -c mychannel
 byfn.sh upgrade -c mychannel

Taking all defaults:
 byfn.sh generate
 byfn.sh up
 byfn.sh down

If you choose not to supply a channel name, then the
script will use a default name of mychannel. The CLI timeout parameter
(specified with the -t flag) is an optional value; if you choose not to set
it, then the CLI will give up on query requests made after the default
setting of 10 seconds.

Generate Network Artifacts

Ready to give it a go? Okay then! Execute the following command:

./byfn.sh generate

You will see a brief description as to what will occur, along with a yes/no command line
prompt. Respond with a y or hit the return key to execute the described action.

Generating certs and genesis block for with channel 'mychannel' and CLI timeout of '10'
Continue? [Y/n] y
proceeding ...
/Users/xxx/dev/fabric-samples/bin/cryptogen

##
Generate certificates using cryptogen tool
##
org1.example.com
2017-06-12 21:01:37.334 EDT [bccsp] GetDefault -> WARN 001 Before using BCCSP, please call InitFactories(). Falling back to bootBCCSP.
...

/Users/xxx/dev/fabric-samples/bin/configtxgen
##
######### Generating Orderer Genesis block ##############
##
2017-06-12 21:01:37.558 EDT [common/configtx/tool] main -> INFO 001 Loading configuration
2017-06-12 21:01:37.562 EDT [msp] getMspConfig -> INFO 002 intermediate certs folder not found at [/Users/xxx/dev/byfn/crypto-config/ordererOrganizations/example.com/msp/intermediatecerts]. Skipping.: [stat /Users/xxx/dev/byfn/crypto-config/ordererOrganizations/example.com/msp/intermediatecerts: no such file or directory]
...
2017-06-12 21:01:37.588 EDT [common/configtx/tool] doOutputBlock -> INFO 00b Generating genesis block
2017-06-12 21:01:37.590 EDT [common/configtx/tool] doOutputBlock -> INFO 00c Writing genesis block

###
Generating channel configuration transaction 'channel.tx'
###
2017-06-12 21:01:37.634 EDT [common/configtx/tool] main -> INFO 001 Loading configuration
2017-06-12 21:01:37.644 EDT [common/configtx/tool] doOutputChannelCreateTx -> INFO 002 Generating new channel configtx
2017-06-12 21:01:37.645 EDT [common/configtx/tool] doOutputChannelCreateTx -> INFO 003 Writing new channel tx

###
####### Generating anchor peer update for Org1MSP ##########
###
2017-06-12 21:01:37.674 EDT [common/configtx/tool] main -> INFO 001 Loading configuration
2017-06-12 21:01:37.678 EDT [common/configtx/tool] doOutputAnchorPeersUpdate -> INFO 002 Generating anchor peer update
2017-06-12 21:01:37.679 EDT [common/configtx/tool] doOutputAnchorPeersUpdate -> INFO 003 Writing anchor peer update

###
####### Generating anchor peer update for Org2MSP ##########
###
2017-06-12 21:01:37.700 EDT [common/configtx/tool] main -> INFO 001 Loading configuration
2017-06-12 21:01:37.704 EDT [common/configtx/tool] doOutputAnchorPeersUpdate -> INFO 002 Generating anchor peer update
2017-06-12 21:01:37.704 EDT [common/configtx/tool] doOutputAnchorPeersUpdate -> INFO 003 Writing anchor peer update

This first step generates all of the certificates and keys for our various
network entities, the genesis block used to bootstrap the ordering service,
and a collection of configuration transactions required to configure a
Channel.

Bring Up the Network

Next, you can bring the network up with one of the following commands:

./byfn.sh up

The above command will compile Golang chaincode images and spin up the corresponding
containers. Go is the default chaincode language, however there is also support
for Node.js [https://fabric-shim.github.io/] and Java [https://fabric-chaincode-java.github.io/]
chaincode. If you’d like to run through this tutorial with node
chaincode, pass the following command instead:

we use the -l flag to specify the chaincode language
forgoing the -l flag will default to Golang

./byfn.sh up -l node

Note

For more information on the Node.js shim, please refer to its
documentation [https://fabric-shim.github.io/ChaincodeInterface.html].

Note

For more information on the Java shim, please refer to its
documentation [https://fabric-chaincode-java.github.io/org/hyperledger/fabric/shim/Chaincode.html].

Тo make the sample run with Java chaincode, you have to specify -l java as follows:

./byfn.sh up -l java

Note

Do not run both of these commands. Only one language can be tried unless
you bring down and recreate the network between.

Once again, you will be prompted as to whether you wish to continue or abort.
Respond with a y or hit the return key:

Starting with channel 'mychannel' and CLI timeout of '10'
Continue? [Y/n]
proceeding ...
Creating network "net_byfn" with the default driver
Creating peer0.org1.example.com
Creating peer1.org1.example.com
Creating peer0.org2.example.com
Creating orderer.example.com
Creating peer1.org2.example.com
Creating cli

 ____ _____ _ ____ _____
/ ___| |_ _| / \ | _ \ |_ _|
___ \ | | / _ \ | |_) | | |
 ___) | | | / ___ \ | _ < | |
|____/ |_| /_/ _\ |_| _\ |_|

Channel name : mychannel
Creating channel...

The logs will continue from there. This will launch all of the containers, and
then drive a complete end-to-end application scenario. Upon successful
completion, it should report the following in your terminal window:

Query Result: 90
2017-05-16 17:08:15.158 UTC [main] main -> INFO 008 Exiting.....
===================== Query successful on peer1.org2 on channel 'mychannel' =====================

===================== All GOOD, BYFN execution completed =====================

 _____ _ _ ____
| ____| | \ | | | _ \
| _| | \| | | | | |
| |___ | |\ | | |_| |
|_____| |_| _| |____/

You can scroll through these logs to see the various transactions. If you don’t
get this result, then jump down to the Troubleshooting section and let’s see
whether we can help you discover what went wrong.

Bring Down the Network

Finally, let’s bring it all down so we can explore the network setup one step
at a time. The following will kill your containers, remove the crypto material
and four artifacts, and delete the chaincode images from your Docker Registry:

./byfn.sh down

Once again, you will be prompted to continue, respond with a y or hit the return key:

Stopping with channel 'mychannel' and CLI timeout of '10'
Continue? [Y/n] y
proceeding ...
WARNING: The CHANNEL_NAME variable is not set. Defaulting to a blank string.
WARNING: The TIMEOUT variable is not set. Defaulting to a blank string.
Removing network net_byfn
468aaa6201ed
...
Untagged: dev-peer1.org2.example.com-mycc-1.0:latest
Deleted: sha256:ed3230614e64e1c83e510c0c282e982d2b06d148b1c498bbdcc429e2b2531e91
...

If you’d like to learn more about the underlying tooling and bootstrap mechanics,
continue reading. In these next sections we’ll walk through the various steps
and requirements to build a fully-functional Hyperledger Fabric network.

Note

The manual steps outlined below assume that the FABRIC_LOGGING_SPEC in
the cli container is set to DEBUG. You can set this by modifying
the docker-compose-cli.yaml file in the first-network directory.
e.g.

cli:
 container_name: cli
 image: hyperledger/fabric-tools:$IMAGE_TAG
 tty: true
 stdin_open: true
 environment:
 - GOPATH=/opt/gopath
 - CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock
 - FABRIC_LOGGING_SPEC=DEBUG
 #- FABRIC_LOGGING_SPEC=INFO

Crypto Generator

We will use the cryptogen tool to generate the cryptographic material
(x509 certs and signing keys) for our various network entities. These certificates are
representative of identities, and they allow for sign/verify authentication to
take place as our entities communicate and transact.

How does it work?

Cryptogen consumes a file - crypto-config.yaml - that contains the network
topology and allows us to generate a set of certificates and keys for both the
Organizations and the components that belong to those Organizations. Each
Organization is provisioned a unique root certificate (ca-cert) that binds
specific components (peers and orderers) to that Org. By assigning each
Organization a unique CA certificate, we are mimicking a typical network where
a participating Member would use its own Certificate Authority.
Transactions and communications within Hyperledger Fabric are signed by an
entity’s private key (keystore), and then verified by means of a public
key (signcerts).

You will notice a count variable within this file. We use this to specify
the number of peers per Organization; in our case there are two peers per Org.
We won’t delve into the minutiae of x.509 certificates and public key
infrastructure [https://en.wikipedia.org/wiki/Public_key_infrastructure]
right now. If you’re interested, you can peruse these topics on your own time.

Before running the tool, let’s take a quick look at a snippet from the
crypto-config.yaml. Pay specific attention to the “Name”, “Domain”
and “Specs” parameters under the OrdererOrgs header:

OrdererOrgs:
#---
Orderer
--
- Name: Orderer
 Domain: example.com
 CA:
 Country: US
 Province: California
 Locality: San Francisco
 # OrganizationalUnit: Hyperledger Fabric
 # StreetAddress: address for org # default nil
 # PostalCode: postalCode for org # default nil
 # --
 # "Specs" - See PeerOrgs below for complete description

 Specs:
 - Hostname: orderer

"PeerOrgs" - Definition of organizations managing peer nodes
 # --
PeerOrgs:

Org1
--
- Name: Org1
 Domain: org1.example.com
 EnableNodeOUs: true

The naming convention for a network entity is as follows -
“{{.Hostname}}.{{.Domain}}”. So using our ordering node as a
reference point, we are left with an ordering node named -
orderer.example.com that is tied to an MSP ID of Orderer. This file
contains extensive documentation on the definitions and syntax. You can also
refer to the Membership Service Providers (MSP) documentation for a deeper dive on MSP.

After we run the cryptogen tool, the generated certificates and keys will be
saved to a folder titled crypto-config.

Configuration Transaction Generator

The configtxgen tool is used to create four configuration artifacts:

	orderer genesis block,

	channel configuration transaction,

	and two anchor peer transactions - one for each Peer Org.

Please see configtxgen for a complete description of this tool’s functionality.

The orderer block is the Genesis Block for the ordering service, and the
channel configuration transaction file is broadcast to the orderer at Channel creation
time. The anchor peer transactions, as the name might suggest, specify each
Org’s Anchor Peer on this channel.

How does it work?

Configtxgen consumes a file - configtx.yaml - that contains the definitions
for the sample network. There are three members - one Orderer Org (OrdererOrg)
and two Peer Orgs (Org1 & Org2) each managing and maintaining two peer nodes.
This file also specifies a consortium - SampleConsortium - consisting of our
two Peer Orgs. Pay specific attention to the “Profiles” section at the top of
this file. You will notice that we have two unique headers. One for the orderer genesis
block - TwoOrgsOrdererGenesis - and one for our channel - TwoOrgsChannel.

These headers are important, as we will pass them in as arguments when we create
our artifacts.

Note

Notice that our SampleConsortium is defined in
the system-level profile and then referenced by
our channel-level profile. Channels exist within
the purview of a consortium, and all consortia
must be defined in the scope of the network at
large.

This file also contains two additional specifications that are worth
noting. Firstly, we specify the anchor peers for each Peer Org
(peer0.org1.example.com & peer0.org2.example.com). Secondly, we point to
the location of the MSP directory for each member, in turn allowing us to store the
root certificates for each Org in the orderer genesis block. This is a critical
concept. Now any network entity communicating with the ordering service can have
its digital signature verified.

Run the tools

You can manually generate the certificates/keys and the various configuration
artifacts using the configtxgen and cryptogen commands. Alternately,
you could try to adapt the byfn.sh script to accomplish your objectives.

Manually generate the artifacts

You can refer to the generateCerts function in the byfn.sh script for the
commands necessary to generate the certificates that will be used for your
network configuration as defined in the crypto-config.yaml file. However,
for the sake of convenience, we will also provide a reference here.

First let’s run the cryptogen tool. Our binary is in the bin
directory, so we need to provide the relative path to where the tool resides.

../bin/cryptogen generate --config=./crypto-config.yaml

You should see the following in your terminal:

org1.example.com
org2.example.com

The certs and keys (i.e. the MSP material) will be output into a directory - crypto-config -
at the root of the first-network directory.

Next, we need to tell the configtxgen tool where to look for the
configtx.yaml file that it needs to ingest. We will tell it look in our
present working directory:

export FABRIC_CFG_PATH=$PWD

Then, we’ll invoke the configtxgen tool to create the orderer genesis block:

../bin/configtxgen -profile TwoOrgsOrdererGenesis -channelID byfn-sys-channel -outputBlock ./channel-artifacts/genesis.block

You should see an output similar to the following in your terminal:

2017-10-26 19:21:56.301 EDT [common/tools/configtxgen] main -> INFO 001 Loading configuration
2017-10-26 19:21:56.309 EDT [common/tools/configtxgen] doOutputBlock -> INFO 002 Generating genesis block
2017-10-26 19:21:56.309 EDT [common/tools/configtxgen] doOutputBlock -> INFO 003 Writing genesis block

Note

The orderer genesis block and the subsequent artifacts we are about to create
will be output into the channel-artifacts directory at the root of this
project. The channelID in the above command is the name of the system channel.

Create a Channel Configuration Transaction

Next, we need to create the channel transaction artifact. Be sure to replace $CHANNEL_NAME or
set CHANNEL_NAME as an environment variable that can be used throughout these instructions:

The channel.tx artifact contains the definitions for our sample channel

export CHANNEL_NAME=mychannel && ../bin/configtxgen -profile TwoOrgsChannel -outputCreateChannelTx ./channel-artifacts/channel.tx -channelID $CHANNEL_NAME

You should see an output similar to the following in your terminal:

2017-10-26 19:24:05.324 EDT [common/tools/configtxgen] main -> INFO 001 Loading configuration
2017-10-26 19:24:05.329 EDT [common/tools/configtxgen] doOutputChannelCreateTx -> INFO 002 Generating new channel configtx
2017-10-26 19:24:05.329 EDT [common/tools/configtxgen] doOutputChannelCreateTx -> INFO 003 Writing new channel tx

Next, we will define the anchor peer for Org1 on the channel that we are
constructing. Again, be sure to replace $CHANNEL_NAME or set the environment variable
for the following commands. The terminal output will mimic that of the channel transaction artifact:

../bin/configtxgen -profile TwoOrgsChannel -outputAnchorPeersUpdate ./channel-artifacts/Org1MSPanchors.tx -channelID $CHANNEL_NAME -asOrg Org1MSP

Now, we will define the anchor peer for Org2 on the same channel:

../bin/configtxgen -profile TwoOrgsChannel -outputAnchorPeersUpdate ./channel-artifacts/Org2MSPanchors.tx -channelID $CHANNEL_NAME -asOrg Org2MSP

Start the network

Note

If you ran the byfn.sh example above previously, be sure that you
have brought down the test network before you proceed (see
Bring Down the Network).

We will leverage a script to spin up our network. The
docker-compose file references the images that we have previously downloaded,
and bootstraps the orderer with our previously generated genesis.block.

We want to go through the commands manually in order to expose the
syntax and functionality of each call.

First let’s start our network:

docker-compose -f docker-compose-cli.yaml up -d

If you want to see the realtime logs for your network, then do not supply the -d flag.
If you let the logs stream, then you will need to open a second terminal to execute the CLI calls.

Environment variables

For the following CLI commands against peer0.org1.example.com to work, we need
to preface our commands with the four environment variables given below. These
variables for peer0.org1.example.com are baked into the CLI container,
therefore we can operate without passing them. HOWEVER, if you want to send
calls to other peers or the orderer, then you can provide these
values accordingly by editing the docker-compose-base.yaml before starting the
container. Modify the following four environment variables to use a different
peer and org.

Environment variables for PEER0

CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp
CORE_PEER_ADDRESS=peer0.org1.example.com:7051
CORE_PEER_LOCALMSPID="Org1MSP"
CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt

Create & Join Channel

Recall that we created the channel configuration transaction using the
configtxgen tool in the Create a Channel Configuration Transaction section, above. You can
repeat that process to create additional channel configuration transactions,
using the same or different profiles in the configtx.yaml that you pass
to the configtxgen tool. Then you can repeat the process defined in this
section to establish those other channels in your network.

We will enter the CLI container using the docker exec command:

docker exec -it cli bash

If successful you should see the following:

root@0d78bb69300d:/opt/gopath/src/github.com/hyperledger/fabric/peer#

If you do not want to run the CLI commands against the default peer
peer0.org1.example.com, replace the values of peer0 or org1 in the
four environment variables and run the commands:

Environment variables for PEER0

export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp
export CORE_PEER_ADDRESS=peer0.org1.example.com:7051
export CORE_PEER_LOCALMSPID="Org1MSP"
export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt

Next, we are going to pass in the generated channel configuration transaction
artifact that we created in the Create a Channel Configuration Transaction section (we called
it channel.tx) to the orderer as part of the create channel request.

We specify our channel name with the -c flag and our channel configuration
transaction with the -f flag. In this case it is channel.tx, however
you can mount your own configuration transaction with a different name. Once again
we will set the CHANNEL_NAME environment variable within our CLI container so that
we don’t have to explicitly pass this argument. Channel names must be all lower
case, less than 250 characters long and match the regular expression
[a-z][a-z0-9.-]*.

export CHANNEL_NAME=mychannel

the channel.tx file is mounted in the channel-artifacts directory within your CLI container
as a result, we pass the full path for the file
we also pass the path for the orderer ca-cert in order to verify the TLS handshake
be sure to export or replace the $CHANNEL_NAME variable appropriately

peer channel create -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/channel.tx --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem

Note

Notice the --cafile that we pass as part of this command. It is
the local path to the orderer’s root cert, allowing us to verify the
TLS handshake.

This command returns a genesis block - <channel-ID.block> - which we will use to join the channel.
It contains the configuration information specified in channel.tx If you have not
made any modifications to the default channel name, then the command will return you a
proto titled mychannel.block.

Note

You will remain in the CLI container for the remainder of
these manual commands. You must also remember to preface all commands
with the corresponding environment variables when targeting a peer other than
peer0.org1.example.com.

Now let’s join peer0.org1.example.com to the channel.

By default, this joins ``peer0.org1.example.com`` only
the <channel-ID.block> was returned by the previous command
if you have not modified the channel name, you will join with mychannel.block
if you have created a different channel name, then pass in the appropriately named block

 peer channel join -b mychannel.block

You can make other peers join the channel as necessary by making appropriate
changes in the four environment variables we used in the Environment variables
section, above.

Rather than join every peer, we will simply join peer0.org2.example.com so that
we can properly update the anchor peer definitions in our channel. Since we are
overriding the default environment variables baked into the CLI container, this full
command will be the following:

CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp CORE_PEER_ADDRESS=peer0.org2.example.com:7051 CORE_PEER_LOCALMSPID="Org2MSP" CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt peer channel join -b mychannel.block

Alternatively, you could choose to set these environment variables individually
rather than passing in the entire string. Once they’ve been set, you simply need
to issue the peer channel join command again and the CLI container will act
on behalf of peer0.org2.example.com.

Update the anchor peers

The following commands are channel updates and they will propagate to the definition
of the channel. In essence, we adding additional configuration information on top
of the channel’s genesis block. Note that we are not modifying the genesis block, but
simply adding deltas into the chain that will define the anchor peers.

Update the channel definition to define the anchor peer for Org1 as peer0.org1.example.com:

peer channel update -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/Org1MSPanchors.tx --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem

Now update the channel definition to define the anchor peer for Org2 as peer0.org2.example.com.
Identically to the peer channel join command for the Org2 peer, we will need to
preface this call with the appropriate environment variables.

CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp CORE_PEER_ADDRESS=peer0.org2.example.com:7051 CORE_PEER_LOCALMSPID="Org2MSP" CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt peer channel update -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/Org2MSPanchors.tx --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem

Install & Instantiate Chaincode

Note

We will utilize a simple existing chaincode. To learn how to write
your own chaincode, see the Chaincode for Developers tutorial.

Applications interact with the blockchain ledger through chaincode. As
such we need to install the chaincode on every peer that will execute and
endorse our transactions, and then instantiate the chaincode on the channel.

First, install the sample Go, Node.js or Java chaincode onto the peer0
node in Org1. These commands place the specified source
code flavor onto our peer’s filesystem.

Note

You can only install one version of the source code per chaincode name
and version. The source code exists on the peer’s file system in the
context of chaincode name and version; it is language agnostic. Similarly
the instantiated chaincode container will be reflective of whichever
language has been installed on the peer.

Golang

this installs the Go chaincode. For go chaincode -p takes the relative path from $GOPATH/src
peer chaincode install -n mycc -v 1.0 -p github.com/chaincode/chaincode_example02/go/

Node.js

this installs the Node.js chaincode
make note of the -l flag to indicate "node" chaincode
for node chaincode -p takes the absolute path to the node.js chaincode
peer chaincode install -n mycc -v 1.0 -l node -p /opt/gopath/src/github.com/chaincode/chaincode_example02/node/

Java

make note of the -l flag to indicate "java" chaincode
for java chaincode -p takes the absolute path to the java chaincode
peer chaincode install -n mycc -v 1.0 -l java -p /opt/gopath/src/github.com/chaincode/chaincode_example02/java/

When we instantiate the chaincode on the channel, the endorsement policy will be
set to require endorsements from a peer in both Org1 and Org2. Therefore, we
also need to install the chaincode on a peer in Org2.

Modify the following four environment variables to issue the install command
against peer0 in Org2:

Environment variables for PEER0 in Org2

CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp
CORE_PEER_ADDRESS=peer0.org2.example.com:7051
CORE_PEER_LOCALMSPID="Org2MSP"
CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt

Now install the sample Go, Node.js or Java chaincode onto a peer0
in Org2. These commands place the specified source
code flavor onto our peer’s filesystem.

Golang

this installs the Go chaincode. For go chaincode -p takes the relative path from $GOPATH/src
peer chaincode install -n mycc -v 1.0 -p github.com/chaincode/chaincode_example02/go/

Node.js

this installs the Node.js chaincode
make note of the -l flag to indicate "node" chaincode
for node chaincode -p takes the absolute path to the node.js chaincode
peer chaincode install -n mycc -v 1.0 -l node -p /opt/gopath/src/github.com/chaincode/chaincode_example02/node/

Java

make note of the -l flag to indicate "java" chaincode
for java chaincode -p takes the absolute path to the java chaincode
peer chaincode install -n mycc -v 1.0 -l java -p /opt/gopath/src/github.com/chaincode/chaincode_example02/java/

Next, instantiate the chaincode on the channel. This will initialize the
chaincode on the channel, set the endorsement policy for the chaincode, and
launch a chaincode container for the targeted peer. Take note of the -P
argument. This is our policy where we specify the required level of endorsement
for a transaction against this chaincode to be validated.

In the command below you’ll notice that we specify our policy as
-P "AND ('Org1MSP.peer','Org2MSP.peer')". This means that we need
“endorsement” from a peer belonging to Org1 AND Org2 (i.e. two endorsement).
If we changed the syntax to OR then we would need only one endorsement.

Golang

be sure to replace the $CHANNEL_NAME environment variable if you have not exported it
if you did not install your chaincode with a name of mycc, then modify that argument as well

peer chaincode instantiate -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n mycc -v 1.0 -c '{"Args":["init","a", "100", "b","200"]}' -P "AND ('Org1MSP.peer','Org2MSP.peer')"

Node.js

Note

The instantiation of the Node.js chaincode will take roughly a minute.
The command is not hanging; rather it is installing the fabric-shim
layer as the image is being compiled.

be sure to replace the $CHANNEL_NAME environment variable if you have not exported it
if you did not install your chaincode with a name of mycc, then modify that argument as well
notice that we must pass the -l flag after the chaincode name to identify the language

peer chaincode instantiate -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n mycc -l node -v 1.0 -c '{"Args":["init","a", "100", "b","200"]}' -P "AND ('Org1MSP.peer','Org2MSP.peer')"

Java

Note

Please note, Java chaincode instantiation might take time as it compiles chaincode and
downloads docker container with java environment.

peer chaincode instantiate -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n mycc -l java -v 1.0 -c '{"Args":["init","a", "100", "b","200"]}' -P "AND ('Org1MSP.peer','Org2MSP.peer')"

See the endorsement
policies [http://hyperledger-fabric.readthedocs.io/en/latest/endorsement-policies.html]
documentation for more details on policy implementation.

If you want additional peers to interact with ledger, then you will need to join
them to the channel, and install the same name, version and language of the
chaincode source onto the appropriate peer’s filesystem. A chaincode container
will be launched for each peer as soon as they try to interact with that specific
chaincode. Again, be cognizant of the fact that the Node.js images will be slower
to compile.

Once the chaincode has been instantiated on the channel, we can forgo the l
flag. We need only pass in the channel identifier and name of the chaincode.

Query

Let’s query for the value of a to make sure the chaincode was properly
instantiated and the state DB was populated. The syntax for query is as follows:

be sure to set the -C and -n flags appropriately

peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}'

Invoke

Now let’s move 10 from a to b. This transaction will cut a new block and
update the state DB. The syntax for invoke is as follows:

be sure to set the -C and -n flags appropriately

peer chaincode invoke -o orderer.example.com:7050 --tls true --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n mycc --peerAddresses peer0.org1.example.com:7051 --tlsRootCertFiles /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt --peerAddresses peer0.org2.example.com:7051 --tlsRootCertFiles /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt -c '{"Args":["invoke","a","b","10"]}'

Query

Let’s confirm that our previous invocation executed properly. We initialized the
key a with a value of 100 and just removed 10 with our previous
invocation. Therefore, a query against a should return 90. The syntax
for query is as follows.

be sure to set the -C and -n flags appropriately

peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}'

We should see the following:

Query Result: 90

Feel free to start over and manipulate the key value pairs and subsequent
invocations.

Install

Now we will install the chaincode on a third peer, peer1 in Org2. Modify the
following four environment variables to issue the install command
against peer1 in Org2:

Environment variables for PEER1 in Org2

CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp
CORE_PEER_ADDRESS=peer1.org2.example.com:7051
CORE_PEER_LOCALMSPID="Org2MSP"
CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer1.org2.example.com/tls/ca.crt

Now install the sample Go, Node.js or Java chaincode onto peer1
in Org2. These commands place the specified source
code flavor onto our peer’s filesystem.

Golang

this installs the Go chaincode. For go chaincode -p takes the relative path from $GOPATH/src
peer chaincode install -n mycc -v 1.0 -p github.com/chaincode/chaincode_example02/go/

Node.js

this installs the Node.js chaincode
make note of the -l flag to indicate "node" chaincode
for node chaincode -p takes the absolute path to the node.js chaincode
peer chaincode install -n mycc -v 1.0 -l node -p /opt/gopath/src/github.com/chaincode/chaincode_example02/node/

Java

make note of the -l flag to indicate "java" chaincode
for java chaincode -p takes the absolute path to the java chaincode
peer chaincode install -n mycc -v 1.0 -l java -p /opt/gopath/src/github.com/chaincode/chaincode_example02/java/

Query

Let’s confirm that we can issue the query to Peer1 in Org2. We initialized the
key a with a value of 100 and just removed 10 with our previous
invocation. Therefore, a query against a should still return 90.

peer1 in Org2 must first join the channel before it can respond to queries. The
channel can be joined by issuing the following command:

CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp CORE_PEER_ADDRESS=peer1.org2.example.com:7051 CORE_PEER_LOCALMSPID="Org2MSP" CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer1.org2.example.com/tls/ca.crt peer channel join -b mychannel.block

After the join command returns, the query can be issued. The syntax
for query is as follows.

be sure to set the -C and -n flags appropriately

peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}'

We should see the following:

Query Result: 90

Feel free to start over and manipulate the key value pairs and subsequent
invocations.

What’s happening behind the scenes?

Note

These steps describe the scenario in which
script.sh is run by ‘./byfn.sh up’. Clean your network
with ./byfn.sh down and ensure
this command is active. Then use the same
docker-compose prompt to launch your network again

	A script - script.sh - is baked inside the CLI container. The
script drives the createChannel command against the supplied channel name
and uses the channel.tx file for channel configuration.

	The output of createChannel is a genesis block -
<your_channel_name>.block - which gets stored on the peers’ file systems and contains
the channel configuration specified from channel.tx.

	The joinChannel command is exercised for all four peers, which takes as
input the previously generated genesis block. This command instructs the
peers to join <your_channel_name> and create a chain starting with <your_channel_name>.block.

	Now we have a channel consisting of four peers, and two
organizations. This is our TwoOrgsChannel profile.

	peer0.org1.example.com and peer1.org1.example.com belong to Org1;
peer0.org2.example.com and peer1.org2.example.com belong to Org2

	These relationships are defined through the crypto-config.yaml and
the MSP path is specified in our docker compose.

	The anchor peers for Org1MSP (peer0.org1.example.com) and
Org2MSP (peer0.org2.example.com) are then updated. We do this by passing
the Org1MSPanchors.tx and Org2MSPanchors.tx artifacts to the ordering
service along with the name of our channel.

	A chaincode - chaincode_example02 - is installed on peer0.org1.example.com and
peer0.org2.example.com

	The chaincode is then “instantiated” on mychannel. Instantiation
adds the chaincode to the channel, starts the container for the target peer,
and initializes the key value pairs associated with the chaincode. The initial
values for this example are [“a”,”100” “b”,”200”]. This “instantiation” results
in a container by the name of dev-peer0.org2.example.com-mycc-1.0 starting.

	The instantiation also passes in an argument for the endorsement
policy. The policy is defined as
-P "AND ('Org1MSP.peer','Org2MSP.peer')", meaning that any
transaction must be endorsed by a peer tied to Org1 and Org2.

	A query against the value of “a” is issued to peer0.org2.example.com.
A container for Org2 peer0 by the name of dev-peer0.org2.example.com-mycc-1.0
was started when the chaincode was instantiated. The result
of the query is returned. No write operations have occurred, so
a query against “a” will still return a value of “100”.

	An invoke is sent to peer0.org1.example.com and peer0.org2.example.com
to move “10” from “a” to “b”

	A query is sent to peer0.org2.example.com for the value of “a”. A
value of 90 is returned, correctly reflecting the previous
transaction during which the value for key “a” was modified by 10.

	The chaincode - chaincode_example02 - is installed on peer1.org2.example.com

	A query is sent to peer1.org2.example.com for the value of “a”. This starts a
third chaincode container by the name of dev-peer1.org2.example.com-mycc-1.0. A
value of 90 is returned, correctly reflecting the previous
transaction during which the value for key “a” was modified by 10.

What does this demonstrate?

Chaincode MUST be installed on a peer in order for it to
successfully perform read/write operations against the ledger.
Furthermore, a chaincode container is not started for a peer until an init or
traditional transaction - read/write - is performed against that chaincode (e.g. query for
the value of “a”). The transaction causes the container to start. Also,
all peers in a channel maintain an exact copy of the ledger which
comprises the blockchain to store the immutable, sequenced record in
blocks, as well as a state database to maintain a snapshot of the current state.
This includes those peers that do not have chaincode installed on them
(like peer1.org1.example.com in the above example) . Finally, the chaincode is accessible
after it is installed (like peer1.org2.example.com in the above example) because it
has already been instantiated.

How do I see these transactions?

Check the logs for the CLI Docker container.

docker logs -f cli

You should see the following output:

2017-05-16 17:08:01.366 UTC [msp] GetLocalMSP -> DEBU 004 Returning existing local MSP
2017-05-16 17:08:01.366 UTC [msp] GetDefaultSigningIdentity -> DEBU 005 Obtaining default signing identity
2017-05-16 17:08:01.366 UTC [msp/identity] Sign -> DEBU 006 Sign: plaintext: 0AB1070A6708031A0C08F1E3ECC80510...6D7963631A0A0A0571756572790A0161
2017-05-16 17:08:01.367 UTC [msp/identity] Sign -> DEBU 007 Sign: digest: E61DB37F4E8B0D32C9FE10E3936BA9B8CD278FAA1F3320B08712164248285C54
Query Result: 90
2017-05-16 17:08:15.158 UTC [main] main -> INFO 008 Exiting.....
===================== Query successful on peer1.org2 on channel 'mychannel' =====================

===================== All GOOD, BYFN execution completed =====================

 _____ _ _ ____
| ____| | \ | | | _ \
| _| | \| | | | | |
| |___ | |\ | | |_| |
|_____| |_| _| |____/

You can scroll through these logs to see the various transactions.

How can I see the chaincode logs?

Inspect the individual chaincode containers to see the separate
transactions executed against each container. Here is the combined
output from each container:

$ docker logs dev-peer0.org2.example.com-mycc-1.0
04:30:45.947 [BCCSP_FACTORY] DEBU : Initialize BCCSP [SW]
ex02 Init
Aval = 100, Bval = 200

$ docker logs dev-peer0.org1.example.com-mycc-1.0
04:31:10.569 [BCCSP_FACTORY] DEBU : Initialize BCCSP [SW]
ex02 Invoke
Query Response:{"Name":"a","Amount":"100"}
ex02 Invoke
Aval = 90, Bval = 210

$ docker logs dev-peer1.org2.example.com-mycc-1.0
04:31:30.420 [BCCSP_FACTORY] DEBU : Initialize BCCSP [SW]
ex02 Invoke
Query Response:{"Name":"a","Amount":"90"}

Understanding the Docker Compose topology

The BYFN sample offers us two flavors of Docker Compose files, both of which
are extended from the docker-compose-base.yaml (located in the base
folder). Our first flavor, docker-compose-cli.yaml, provides us with a
CLI container, along with an orderer, four peers. We use this file
for the entirety of the instructions on this page.

Note

the remainder of this section covers a docker-compose file designed for the
SDK. Refer to the Node SDK [https://github.com/hyperledger/fabric-sdk-node]
repo for details on running these tests.

The second flavor, docker-compose-e2e.yaml, is constructed to run end-to-end tests
using the Node.js SDK. Aside from functioning with the SDK, its primary differentiation
is that there are containers for the fabric-ca servers. As a result, we are able
to send REST calls to the organizational CAs for user registration and enrollment.

If you want to use the docker-compose-e2e.yaml without first running the
byfn.sh script, then we will need to make four slight modifications.
We need to point to the private keys for our Organization’s CA’s. You can locate
these values in your crypto-config folder. For example, to locate the private
key for Org1 we would follow this path - crypto-config/peerOrganizations/org1.example.com/ca/.
The private key is a long hash value followed by _sk. The path for Org2
would be - crypto-config/peerOrganizations/org2.example.com/ca/.

In the docker-compose-e2e.yaml update the FABRIC_CA_SERVER_TLS_KEYFILE variable
for ca0 and ca1. You also need to edit the path that is provided in the command
to start the ca server. You are providing the same private key twice for each
CA container.

Using CouchDB

The state database can be switched from the default (goleveldb) to CouchDB.
The same chaincode functions are available with CouchDB, however, there is the
added ability to perform rich and complex queries against the state database
data content contingent upon the chaincode data being modeled as JSON.

To use CouchDB instead of the default database (goleveldb), follow the same
procedures outlined earlier for generating the artifacts, except when starting
the network pass docker-compose-couch.yaml as well:

docker-compose -f docker-compose-cli.yaml -f docker-compose-couch.yaml up -d

chaincode_example02 should now work using CouchDB underneath.

Note

If you choose to implement mapping of the fabric-couchdb container
port to a host port, please make sure you are aware of the security
implications. Mapping of the port in a development environment makes the
CouchDB REST API available, and allows the
visualization of the database via the CouchDB web interface (Fauxton).
Production environments would likely refrain from implementing port mapping in
order to restrict outside access to the CouchDB containers.

You can use chaincode_example02 chaincode against the CouchDB state database
using the steps outlined above, however in order to exercise the CouchDB query
capabilities you will need to use a chaincode that has data modeled as JSON,
(e.g. marbles02). You can locate the marbles02 chaincode in the
fabric/examples/chaincode/go directory.

We will follow the same process to create and join the channel as outlined in the
Create & Join Channel section above. Once you have joined your peer(s) to the
channel, use the following steps to interact with the marbles02 chaincode:

	Install and instantiate the chaincode on peer0.org1.example.com:

be sure to modify the $CHANNEL_NAME variable accordingly for the instantiate command

peer chaincode install -n marbles -v 1.0 -p github.com/chaincode/marbles02/go
peer chaincode instantiate -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n marbles -v 1.0 -c '{"Args":["init"]}' -P "OR ('Org0MSP.peer','Org1MSP.peer')"

	Create some marbles and move them around:

be sure to modify the $CHANNEL_NAME variable accordingly

peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["initMarble","marble1","blue","35","tom"]}'
peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["initMarble","marble2","red","50","tom"]}'
peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["initMarble","marble3","blue","70","tom"]}'
peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["transferMarble","marble2","jerry"]}'
peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["transferMarblesBasedOnColor","blue","jerry"]}'
peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["delete","marble1"]}'

	If you chose to map the CouchDB ports in docker-compose, you can now view
the state database through the CouchDB web interface (Fauxton) by opening
a browser and navigating to the following URL:

http://localhost:5984/_utils

You should see a database named mychannel (or your unique channel name) and
the documents inside it.

Note

For the below commands, be sure to update the $CHANNEL_NAME variable appropriately.

You can run regular queries from the CLI (e.g. reading marble2):

peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["readMarble","marble2"]}'

The output should display the details of marble2:

Query Result: {"color":"red","docType":"marble","name":"marble2","owner":"jerry","size":50}

You can retrieve the history of a specific marble - e.g. marble1:

peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["getHistoryForMarble","marble1"]}'

The output should display the transactions on marble1:

Query Result: [{"TxId":"1c3d3caf124c89f91a4c0f353723ac736c58155325f02890adebaa15e16e6464", "Value":{"docType":"marble","name":"marble1","color":"blue","size":35,"owner":"tom"}},{"TxId":"755d55c281889eaeebf405586f9e25d71d36eb3d35420af833a20a2f53a3eefd", "Value":{"docType":"marble","name":"marble1","color":"blue","size":35,"owner":"jerry"}},{"TxId":"819451032d813dde6247f85e56a89262555e04f14788ee33e28b232eef36d98f", "Value":}]

You can also perform rich queries on the data content, such as querying marble fields by owner jerry:

peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["queryMarblesByOwner","jerry"]}'

The output should display the two marbles owned by jerry:

Query Result: [{"Key":"marble2", "Record":{"color":"red","docType":"marble","name":"marble2","owner":"jerry","size":50}},{"Key":"marble3", "Record":{"color":"blue","docType":"marble","name":"marble3","owner":"jerry","size":70}}]

Why CouchDB

CouchDB is a kind of NoSQL solution. It is a document-oriented database where document fields are stored as key-value maps. Fields can be either a simple key-value pair, list, or map.
In addition to keyed/composite-key/key-range queries which are supported by LevelDB, CouchDB also supports full data rich queries capability, such as non-key queries against the whole blockchain data,
since its data content is stored in JSON format and fully queryable. Therefore, CouchDB can meet chaincode, auditing, reporting requirements for many use cases that not supported by LevelDB.

CouchDB can also enhance the security for compliance and data protection in the blockchain. As it is able to implement field-level security through the filtering and masking of individual attributes within a transaction, and only authorizing the read-only permission if needed.

In addition, CouchDB falls into the AP-type (Availability and Partition Tolerance) of the CAP theorem. It uses a master-master replication model with Eventual Consistency.
More information can be found on the
Eventual Consistency page of the CouchDB documentation [http://docs.couchdb.org/en/latest/intro/consistency.html].
However, under each fabric peer, there is no database replicas, writes to database are guaranteed consistent and durable (not Eventual Consistency).

CouchDB is the first external pluggable state database for Fabric, and there could and should be other external database options. For example, IBM enables the relational database for its blockchain.
And the CP-type (Consistency and Partition Tolerance) databases may also in need, so as to enable data consistency without application level guarantee.

A Note on Data Persistence

If data persistence is desired on the peer container or the CouchDB container,
one option is to mount a directory in the docker-host into a relevant directory
in the container. For example, you may add the following two lines in
the peer container specification in the docker-compose-base.yaml file:

volumes:
 - /var/hyperledger/peer0:/var/hyperledger/production

For the CouchDB container, you may add the following two lines in the CouchDB
container specification:

volumes:
 - /var/hyperledger/couchdb0:/opt/couchdb/data

Troubleshooting

	Always start your network fresh. Use the following command
to remove artifacts, crypto, containers and chaincode images:

./byfn.sh down

Note

You will see errors if you do not remove old containers
and images.

	If you see Docker errors, first check your docker version (Prerequisites),
and then try restarting your Docker process. Problems with Docker are
oftentimes not immediately recognizable. For example, you may see errors
resulting from an inability to access crypto material mounted within a
container.

If they persist remove your images and start from scratch:

docker rm -f $(docker ps -aq)
docker rmi -f $(docker images -q)

	If you see errors on your create, instantiate, invoke or query commands, make
sure you have properly updated the channel name and chaincode name. There
are placeholder values in the supplied sample commands.

	If you see the below error:

Error: Error endorsing chaincode: rpc error: code = 2 desc = Error installing chaincode code mycc:1.0(chaincode /var/hyperledger/production/chaincodes/mycc.1.0 exits)

You likely have chaincode images (e.g. dev-peer1.org2.example.com-mycc-1.0 or
dev-peer0.org1.example.com-mycc-1.0) from prior runs. Remove them and try
again.

docker rmi -f $(docker images | grep peer[0-9]-peer[0-9] | awk '{print $3}')

	If you see something similar to the following:

Error connecting: rpc error: code = 14 desc = grpc: RPC failed fast due to transport failure
Error: rpc error: code = 14 desc = grpc: RPC failed fast due to transport failure

Make sure you are running your network against the “1.0.0” images that have
been retagged as “latest”.

	If you see the below error:

[configtx/tool/localconfig] Load -> CRIT 002 Error reading configuration: Unsupported Config Type ""
panic: Error reading configuration: Unsupported Config Type ""

Then you did not set the FABRIC_CFG_PATH environment variable properly. The
configtxgen tool needs this variable in order to locate the configtx.yaml. Go
back and execute an export FABRIC_CFG_PATH=$PWD, then recreate your
channel artifacts.

	To cleanup the network, use the down option:

./byfn.sh down

	If you see an error stating that you still have “active endpoints”, then prune
your Docker networks. This will wipe your previous networks and start you with a
fresh environment:

docker network prune

You will see the following message:

WARNING! This will remove all networks not used by at least one container.
Are you sure you want to continue? [y/N]

Select y.

	If you see an error similar to the following:

/bin/bash: ./scripts/script.sh: /bin/bash^M: bad interpreter: No such file or directory

Ensure that the file in question (script.sh in this example) is encoded
in the Unix format. This was most likely caused by not setting
core.autocrlf to false in your Git configuration (see
Windows extras). There are several ways of fixing this. If you have
access to the vim editor for instance, open the file:

vim ./fabric-samples/first-network/scripts/script.sh

Then change its format by executing the following vim command:

:set ff=unix

Note

If you continue to see errors, share your logs on the
fabric-questions channel on
Hyperledger Rocket Chat [https://chat.hyperledger.org/home]
or on StackOverflow [https://stackoverflow.com/questions/tagged/hyperledger-fabric].

 Adding an Org to a Channel

Adding an Org to a Channel

Note

Ensure that you have downloaded the appropriate images and binaries
as outlined in Install Samples, Binaries and Docker Images and Prerequisites that conform to the
version of this documentation (which can be found at the bottom of the
table of contents to the left). In particular, your version of the
fabric-samples folder must include the eyfn.sh (“Extending
Your First Network”) script and its related scripts.

This tutorial serves as an extension to the Building Your First Network (BYFN) tutorial,
and will demonstrate the addition of a new organization – Org3 – to the
application channel (mychannel) autogenerated by BYFN. It assumes a strong
understanding of BYFN, including the usage and functionality of the aforementioned
utilities.

While we will focus solely on the integration of a new organization here, the same
approach can be adopted when performing other channel configuration updates (updating
modification policies or altering batch size, for example). To learn more about the
process and possibilities of channel config updates in general, check out
Updating a Channel Configuration). It’s also worth noting that channel configuration updates like
the one demonstrated here will usually be the responsibility of an organization admin
(rather than a chaincode or application developer).

Note

Make sure the automated byfn.sh script runs without error on
your machine before continuing. If you have exported your binaries and
the related tools (cryptogen, configtxgen, etc) into your PATH
variable, you’ll be able to modify the commands accordingly without
passing the fully qualified path.

Setup the Environment

We will be operating from the root of the first-network subdirectory within
your local clone of fabric-samples. Change into that directory now. You will
also want to open a few extra terminals for ease of use.

First, use the byfn.sh script to tidy up. This command will kill any active
or stale docker containers and remove previously generated artifacts. It is by no
means necessary to bring down a Fabric network in order to perform channel
configuration update tasks. However, for the sake of this tutorial, we want to operate
from a known initial state. Therefore let’s run the following command to clean up any
previous environments:

./byfn.sh down

Now generate the default BYFN artifacts:

./byfn.sh generate

And launch the network making use of the scripted execution within the CLI container:

./byfn.sh up

Now that you have a clean version of BYFN running on your machine, you have two
different paths you can pursue. First, we offer a fully commented script that will
carry out a config transaction update to bring Org3 into the network.

Also, we will show a “manual” version of the same process, showing each step
and explaining what it accomplishes (since we show you how to bring down your
network before this manual process, you could also run the script and then look at
each step).

Bring Org3 into the Channel with the Script

You should be in first-network. To use the script, simply issue the following:

./eyfn.sh up

The output here is well worth reading. You’ll see the Org3 crypto material being
added, the config update being created and signed, and then chaincode being installed
to allow Org3 to execute ledger queries.

If everything goes well, you’ll get this message:

========= All GOOD, EYFN test execution completed ===========

eyfn.sh can be used with the same Node.js chaincode and database options
as byfn.sh by issuing the following (instead of ./byfn.sh up):

./byfn.sh up -c testchannel -s couchdb -l node

And then:

./eyfn.sh up -c testchannel -s couchdb -l node

For those who want to take a closer look at this process, the rest of the doc will
show you each command for making a channel update and what it does.

Bring Org3 into the Channel Manually

Note

The manual steps outlined below assume that the FABRIC_LOGGING_SPEC
in the cli and Org3cli containers is set to DEBUG.

For the cli container, you can set this by modifying the
docker-compose-cli.yaml file in the first-network directory.
e.g.

cli:
 container_name: cli
 image: hyperledger/fabric-tools:$IMAGE_TAG
 tty: true
 stdin_open: true
 environment:
 - GOPATH=/opt/gopath
 - CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock
 #- FABRIC_LOGGING_SPEC=INFO
 - FABRIC_LOGGING_SPEC=DEBUG

For the Org3cli container, you can set this by modifying the
docker-compose-org3.yaml file in the first-network directory.
e.g.

Org3cli:
 container_name: Org3cli
 image: hyperledger/fabric-tools:$IMAGE_TAG
 tty: true
 stdin_open: true
 environment:
 - GOPATH=/opt/gopath
 - CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock
 #- FABRIC_LOGGING_SPEC=INFO
 - FABRIC_LOGGING_SPEC=DEBUG

If you’ve used the eyfn.sh script, you’ll need to bring your network down.
This can be done by issuing:

./eyfn.sh down

This will bring down the network, delete all the containers and undo what we’ve
done to add Org3.

When the network is down, bring it back up again.

./byfn.sh generate

Then:

./byfn.sh up

This will bring your network back to the same state it was in before you executed
the eyfn.sh script.

Now we’re ready to add Org3 manually. As a first step, we’ll need to generate Org3’s
crypto material.

Generate the Org3 Crypto Material

In another terminal, change into the org3-artifacts subdirectory from
first-network.

cd org3-artifacts

There are two yaml files of interest here: org3-crypto.yaml and configtx.yaml.
First, generate the crypto material for Org3:

../../bin/cryptogen generate --config=./org3-crypto.yaml

This command reads in our new crypto yaml file – org3-crypto.yaml – and
leverages cryptogen to generate the keys and certificates for an Org3
CA as well as two peers bound to this new Org. As with the BYFN implementation,
this crypto material is put into a newly generated crypto-config folder
within the present working directory (in our case, org3-artifacts).

Now use the configtxgen utility to print out the Org3-specific configuration
material in JSON. We will preface the command by telling the tool to look in the
current directory for the configtx.yaml file that it needs to ingest.

export FABRIC_CFG_PATH=$PWD && ../../bin/configtxgen -printOrg Org3MSP > ../channel-artifacts/org3.json

The above command creates a JSON file – org3.json – and outputs it into the
channel-artifacts subdirectory at the root of first-network. This
file contains the policy definitions for Org3, as well as three important certificates
presented in base 64 format: the admin user certificate (which will be needed to act as
the admin of Org3 later on), a CA root cert, and a TLS root cert. In an upcoming step we
will append this JSON file to the channel configuration.

Our final piece of housekeeping is to port the Orderer Org’s MSP material into
the Org3 crypto-config directory. In particular, we are concerned with the
Orderer’s TLS root cert, which will allow for secure communication between
Org3 entities and the network’s ordering node.

cd ../ && cp -r crypto-config/ordererOrganizations org3-artifacts/crypto-config/

Now we’re ready to update the channel configuration…

Prepare the CLI Environment

The update process makes use of the configuration translator tool – configtxlator.
This tool provides a stateless REST API independent of the SDK. Additionally it
provides a CLI, to simplify configuration tasks in Fabric networks. The tool allows
for the easy conversion between different equivalent data representations/formats
(in this case, between protobufs and JSON). Additionally, the tool can compute a
configuration update transaction based on the differences between two channel
configurations.

First, exec into the CLI container. Recall that this container has been
mounted with the BYFN crypto-config library, giving us access to the MSP material
for the two original peer organizations and the Orderer Org. The bootstrapped
identity is the Org1 admin user, meaning that any steps where we want to act as
Org2 will require the export of MSP-specific environment variables.

docker exec -it cli bash

Export the ORDERER_CA and CHANNEL_NAME variables:

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem && export CHANNEL_NAME=mychannel

Check to make sure the variables have been properly set:

echo $ORDERER_CA && echo $CHANNEL_NAME

Note

If for any reason you need to restart the CLI container, you will also need to
re-export the two environment variables – ORDERER_CA and CHANNEL_NAME.

Fetch the Configuration

Now we have a CLI container with our two key environment variables – ORDERER_CA
and CHANNEL_NAME exported. Let’s go fetch the most recent config block for the
channel – mychannel.

The reason why we have to pull the latest version of the config is because channel
config elements are versioned. Versioning is important for several reasons. It prevents
config changes from being repeated or replayed (for instance, reverting to a channel config
with old CRLs would represent a security risk). Also it helps ensure concurrency (if you
want to remove an Org from your channel, for example, after a new Org has been added,
versioning will help prevent you from removing both Orgs, instead of just the Org you want
to remove).

peer channel fetch config config_block.pb -o orderer.example.com:7050 -c $CHANNEL_NAME --tls --cafile $ORDERER_CA

This command saves the binary protobuf channel configuration block to
config_block.pb. Note that the choice of name and file extension is arbitrary.
However, following a convention which identifies both the type of object being
represented and its encoding (protobuf or JSON) is recommended.

When you issued the peer channel fetch command, there was a decent amount of
output in the terminal. The last line in the logs is of interest:

2017-11-07 17:17:57.383 UTC [channelCmd] readBlock -> DEBU 011 Received block: 2

This is telling us that the most recent configuration block for mychannel is
actually block 2, NOT the genesis block. By default, the peer channel fetch config
command returns the most recent configuration block for the targeted channel, which
in this case is the third block. This is because the BYFN script defined anchor
peers for our two organizations – Org1 and Org2 – in two separate channel update
transactions.

As a result, we have the following configuration sequence:

	block 0: genesis block

	block 1: Org1 anchor peer update

	block 2: Org2 anchor peer update

Convert the Configuration to JSON and Trim It Down

Now we will make use of the configtxlator tool to decode this channel
configuration block into JSON format (which can be read and modified by humans).
We also must strip away all of the headers, metadata, creator signatures, and
so on that are irrelevant to the change we want to make. We accomplish this by
means of the jq tool:

configtxlator proto_decode --input config_block.pb --type common.Block | jq .data.data[0].payload.data.config > config.json

This leaves us with a trimmed down JSON object – config.json, located in
the fabric-samples folder inside first-network – which
will serve as the baseline for our config update.

Take a moment to open this file inside your text editor of choice (or in your
browser). Even after you’re done with this tutorial, it will be worth studying it
as it reveals the underlying configuration structure and the other kind of channel
updates that can be made. We discuss them in more detail in Updating a Channel Configuration.

Add the Org3 Crypto Material

Note

The steps you’ve taken up to this point will be nearly identical no matter
what kind of config update you’re trying to make. We’ve chosen to add an
org with this tutorial because it’s one of the most complex channel
configuration updates you can attempt.

We’ll use the jq tool once more to append the Org3 configuration definition
– org3.json – to the channel’s application groups field, and name the output
– modified_config.json.

jq -s '.[0] * {"channel_group":{"groups":{"Application":{"groups": {"Org3MSP":.[1]}}}}}' config.json ./channel-artifacts/org3.json > modified_config.json

Now, within the CLI container we have two JSON files of interest – config.json
and modified_config.json. The initial file contains only Org1 and Org2 material,
whereas “modified” file contains all three Orgs. At this point it’s simply
a matter of re-encoding these two JSON files and calculating the delta.

First, translate config.json back into a protobuf called config.pb:

configtxlator proto_encode --input config.json --type common.Config --output config.pb

Next, encode modified_config.json to modified_config.pb:

configtxlator proto_encode --input modified_config.json --type common.Config --output modified_config.pb

Now use configtxlator to calculate the delta between these two config
protobufs. This command will output a new protobuf binary named org3_update.pb:

configtxlator compute_update --channel_id $CHANNEL_NAME --original config.pb --updated modified_config.pb --output org3_update.pb

This new proto – org3_update.pb – contains the Org3 definitions and high
level pointers to the Org1 and Org2 material. We are able to forgo the extensive
MSP material and modification policy information for Org1 and Org2 because this
data is already present within the channel’s genesis block. As such, we only need
the delta between the two configurations.

Before submitting the channel update, we need to perform a few final steps. First,
let’s decode this object into editable JSON format and call it org3_update.json:

configtxlator proto_decode --input org3_update.pb --type common.ConfigUpdate | jq . > org3_update.json

Now, we have a decoded update file – org3_update.json – that we need to wrap
in an envelope message. This step will give us back the header field that we stripped away
earlier. We’ll name this file org3_update_in_envelope.json:

echo '{"payload":{"header":{"channel_header":{"channel_id":"mychannel", "type":2}},"data":{"config_update":'$(cat org3_update.json)'}}}' | jq . > org3_update_in_envelope.json

Using our properly formed JSON – org3_update_in_envelope.json – we will
leverage the configtxlator tool one last time and convert it into the
fully fledged protobuf format that Fabric requires. We’ll name our final update
object org3_update_in_envelope.pb:

configtxlator proto_encode --input org3_update_in_envelope.json --type common.Envelope --output org3_update_in_envelope.pb

Sign and Submit the Config Update

Almost done!

We now have a protobuf binary – org3_update_in_envelope.pb – within
our CLI container. However, we need signatures from the requisite Admin users
before the config can be written to the ledger. The modification policy (mod_policy)
for our channel Application group is set to the default of “MAJORITY”, which means that
we need a majority of existing org admins to sign it. Because we have only two orgs –
Org1 and Org2 – and the majority of two is two, we need both of them to sign. Without
both signatures, the ordering service will reject the transaction for failing to
fulfill the policy.

First, let’s sign this update proto as the Org1 Admin. Remember that the CLI container
is bootstrapped with the Org1 MSP material, so we simply need to issue the
peer channel signconfigtx command:

peer channel signconfigtx -f org3_update_in_envelope.pb

The final step is to switch the CLI container’s identity to reflect the Org2 Admin
user. We do this by exporting four environment variables specific to the Org2 MSP.

Note

Switching between organizations to sign a config transaction (or to do anything
else) is not reflective of a real-world Fabric operation. A single container
would never be mounted with an entire network’s crypto material. Rather, the
config update would need to be securely passed out-of-band to an Org2
Admin for inspection and approval.

Export the Org2 environment variables:

you can issue all of these commands at once

export CORE_PEER_LOCALMSPID="Org2MSP"

export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt

export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp

export CORE_PEER_ADDRESS=peer0.org2.example.com:7051

Lastly, we will issue the peer channel update command. The Org2 Admin signature
will be attached to this call so there is no need to manually sign the protobuf a
second time:

Note

The upcoming update call to the ordering service will undergo a series
of systematic signature and policy checks. As such you may find it
useful to stream and inspect the ordering node’s logs. From another shell,
issue a docker logs -f orderer.example.com command to display them.

Send the update call:

peer channel update -f org3_update_in_envelope.pb -c $CHANNEL_NAME -o orderer.example.com:7050 --tls --cafile $ORDERER_CA

You should see a message digest indication similar to the following if your
update has been submitted successfully:

2018-02-24 18:56:33.499 UTC [msp/identity] Sign -> DEBU 00f Sign: digest: 3207B24E40DE2FAB87A2E42BC004FEAA1E6FDCA42977CB78C64F05A88E556ABA

You will also see the submission of our configuration transaction:

2018-02-24 18:56:33.499 UTC [channelCmd] update -> INFO 010 Successfully submitted channel update

The successful channel update call returns a new block – block 5 – to all of the
peers on the channel. If you remember, blocks 0-2 are the initial channel
configurations while blocks 3 and 4 are the instantiation and invocation of
the mycc chaincode. As such, block 5 serves as the most recent channel
configuration with Org3 now defined on the channel.

Inspect the logs for peer0.org1.example.com:

docker logs -f peer0.org1.example.com

Follow the demonstrated process to fetch and decode the new config block if you wish to inspect
its contents.

Configuring Leader Election

Note

This section is included as a general reference for understanding
the leader election settings when adding organizations to a network
after the initial channel configuration has completed. This sample
defaults to dynamic leader election, which is set for all peers in the
network in peer-base.yaml.

Newly joining peers are bootstrapped with the genesis block, which does not
contain information about the organization that is being added in the channel
configuration update. Therefore new peers are not able to utilize gossip as
they cannot verify blocks forwarded by other peers from their own organization
until they get the configuration transaction which added the organization to the
channel. Newly added peers must therefore have one of the following
configurations so that they receive blocks from the ordering service:

1. To utilize static leader mode, configure the peer to be an organization
leader:

CORE_PEER_GOSSIP_USELEADERELECTION=false
CORE_PEER_GOSSIP_ORGLEADER=true

Note

This configuration must be the same for all new peers added to the
channel.

2. To utilize dynamic leader election, configure the peer to use leader
election:

CORE_PEER_GOSSIP_USELEADERELECTION=true
CORE_PEER_GOSSIP_ORGLEADER=false

Note

Because peers of the newly added organization won’t be able to form
membership view, this option will be similar to the static
configuration, as each peer will start proclaiming itself to be a
leader. However, once they get updated with the configuration
transaction that adds the organization to the channel, there will be
only one active leader for the organization. Therefore, it is
recommended to leverage this option if you eventually want the
organization’s peers to utilize leader election.

Join Org3 to the Channel

At this point, the channel configuration has been updated to include our new
organization – Org3 – meaning that peers attached to it can now join mychannel.

First, let’s launch the containers for the Org3 peers and an Org3-specific CLI.

Open a new terminal and from first-network kick off the Org3 docker compose:

docker-compose -f docker-compose-org3.yaml up -d

This new compose file has been configured to bridge across our initial network,
so the two peers and the CLI container will be able to resolve with the existing
peers and ordering node. With the three new containers now running, exec into
the Org3-specific CLI container:

docker exec -it Org3cli bash

Just as we did with the initial CLI container, export the two key environment
variables: ORDERER_CA and CHANNEL_NAME:

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem && export CHANNEL_NAME=mychannel

Check to make sure the variables have been properly set:

echo $ORDERER_CA && echo $CHANNEL_NAME

Now let’s send a call to the ordering service asking for the genesis block of
mychannel. The ordering service is able to verify the Org3 signature
attached to this call as a result of our successful channel update. If Org3
has not been successfully appended to the channel config, the ordering
service should reject this request.

Note

Again, you may find it useful to stream the ordering node’s logs
to reveal the sign/verify logic and policy checks.

Use the peer channel fetch command to retrieve this block:

peer channel fetch 0 mychannel.block -o orderer.example.com:7050 -c $CHANNEL_NAME --tls --cafile $ORDERER_CA

Notice, that we are passing a 0 to indicate that we want the first block on
the channel’s ledger (i.e. the genesis block). If we simply passed the
peer channel fetch config command, then we would have received block 5 – the
updated config with Org3 defined. However, we can’t begin our ledger with a
downstream block – we must start with block 0.

Issue the peer channel join command and pass in the genesis block – mychannel.block:

peer channel join -b mychannel.block

If you want to join the second peer for Org3, export the TLS and ADDRESS variables
and reissue the peer channel join command:

export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org3.example.com/peers/peer1.org3.example.com/tls/ca.crt && export CORE_PEER_ADDRESS=peer1.org3.example.com:7051

peer channel join -b mychannel.block

Upgrade and Invoke Chaincode

The final piece of the puzzle is to increment the chaincode version and update
the endorsement policy to include Org3. Since we know that an upgrade is coming,
we can forgo the futile exercise of installing version 1 of the chaincode. We
are solely concerned with the new version where Org3 will be part of the
endorsement policy, therefore we’ll jump directly to version 2 of the chaincode.

From the Org3 CLI:

peer chaincode install -n mycc -v 2.0 -p github.com/chaincode/chaincode_example02/go/

Modify the environment variables accordingly and reissue the command if you want to
install the chaincode on the second peer of Org3. Note that a second installation is
not mandated, as you only need to install chaincode on peers that are going to serve as
endorsers or otherwise interface with the ledger (i.e. query only). Peers will
still run the validation logic and serve as committers without a running chaincode
container.

Now jump back to the original CLI container and install the new version on the
Org1 and Org2 peers. We submitted the channel update call with the Org2 admin
identity, so the container is still acting on behalf of peer0.org2:

peer chaincode install -n mycc -v 2.0 -p github.com/chaincode/chaincode_example02/go/

Flip to the peer0.org1 identity:

export CORE_PEER_LOCALMSPID="Org1MSP"

export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt

export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp

export CORE_PEER_ADDRESS=peer0.org1.example.com:7051

And install again:

peer chaincode install -n mycc -v 2.0 -p github.com/chaincode/chaincode_example02/go/

Now we’re ready to upgrade the chaincode. There have been no modifications to
the underlying source code, we are simply adding Org3 to the endorsement policy for
a chaincode – mycc – on mychannel.

Note

Any identity satisfying the chaincode’s instantiation policy can issue
the upgrade call. By default, these identities are the channel Admins.

Send the call:

peer chaincode upgrade -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --cafile $ORDERER_CA -C $CHANNEL_NAME -n mycc -v 2.0 -c '{"Args":["init","a","90","b","210"]}' -P "OR ('Org1MSP.peer','Org2MSP.peer','Org3MSP.peer')"

You can see in the above command that we are specifying our new version by means
of the v flag. You can also see that the endorsement policy has been modified to
-P "OR ('Org1MSP.peer','Org2MSP.peer','Org3MSP.peer')", reflecting the
addition of Org3 to the policy. The final area of interest is our constructor
request (specified with the c flag).

As with an instantiate call, a chaincode upgrade requires usage of the init
method. If your chaincode requires arguments be passed to the init method,
then you will need to do so here.

The upgrade call adds a new block – block 6 – to the channel’s ledger and allows
for the Org3 peers to execute transactions during the endorsement phase. Hop
back to the Org3 CLI container and issue a query for the value of a. This will
take a bit of time because a chaincode image needs to be built for the targeted peer,
and the container needs to start:

peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}'

We should see a response of Query Result: 90.

Now issue an invocation to move 10 from a to b:

peer chaincode invoke -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --cafile $ORDERER_CA -C $CHANNEL_NAME -n mycc -c '{"Args":["invoke","a","b","10"]}'

Query one final time:

peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}'

We should see a response of Query Result: 80, accurately reflecting the
update of this chaincode’s world state.

Conclusion

The channel configuration update process is indeed quite involved, but there is a
logical method to the various steps. The endgame is to form a delta transaction object
represented in protobuf binary format and then acquire the requisite number of admin
signatures such that the channel configuration update transaction fulfills the channel’s
modification policy.

The configtxlator and jq tools, along with the ever-growing peer channel
commands, provide us with the functionality to accomplish this task.

 Upgrading Your Network Components

Upgrading Your Network Components

Note

When we use the term “upgrade” in this documentation, we’re primarily
referring to changing the version of a component (for example, going
from a v1.3 binary to a v1.4 binary). The term “update,” on the other
hand, refers not to versions but to configuration changes, such as
updating a channel configuration or a deployment script. As there is
no data migration, technically speaking, in Fabric, we will not use
the term “migration” or “migrate” here.

Note

Also, if your network is not yet at Fabric v1.3, follow the instructions for
Upgrading Your Network to v1.3 [http://hyperledger-fabric.readthedocs.io/en/release-1.3/upgrading_your_network_tutorial.html].
The instructions in this documentation only cover moving from v1.3 to
v1.4, not from any other version to v1.4.

Overview

Because the Building Your First Network (BYFN) tutorial defaults to the “latest” binaries,
if you have run it since the release of v1.4, your machine will have v1.4 binaries
and tools installed on it and you will not be able to upgrade them.

As a result, this tutorial will provide a network based on Hyperledger Fabric
v1.3 binaries as well as the v1.4 binaries you will be upgrading to.

At a high level, our upgrade tutorial will perform the following steps:

	Backup the ledger and MSPs.

	Upgrade the orderer binaries to Fabric v1.4.

	Upgrade the peer binaries to Fabric v1.4.

Note

There are no new Capability Requirements in v1.4. As a result,
we do not have to update any channel configurations as part of an
upgrade to v1.4.

This tutorial will demonstrate how to perform each of these steps individually
with CLI commands. We will also describe how the CLI tools image can be
updated.

Note

Because BYFN uses a “SOLO” ordering service (one orderer), our script
brings down the entire network. However, in production environments,
the orderers and peers can be upgraded simultaneously and on a rolling
basis. In other words, you can upgrade the binaries in any order without
bringing down the network.

Because BYFN is not compatible with the following components, our script for
upgrading BYFN will not cover them:

	Fabric CA

	Kafka

	CouchDB

	SDK

The process for upgrading these components — if necessary — will
be covered in a section following the tutorial. We will also show how
to upgrade the Node chaincode shim.

From an operational perspective, it’s worth noting that the process for gathering
logs has changed in v1.4, from CORE_LOGGING_LEVEL (for the peer) and
ORDERER_GENERAL_LOGLEVEL (for the orderer) to FABRIC_LOGGING_SPEC (the new
operations service). For more information, check out the
Fabric release notes [https://github.com/hyperledger/fabric/releases/tag/v1.4.0].

Prerequisites

If you haven’t already done so, ensure you have all of the dependencies on your
machine as described in Prerequisites.

Launch a v1.3 network

Before we can upgrade to v1.4, we must first provision a network running Fabric
v1.3 images.

Just as in the BYFN tutorial, we will be operating from the first-network
subdirectory within your local clone of fabric-samples. Change into that
directory now. You will also want to open a few extra terminals for ease of use.

Clean up

We want to operate from a known state, so we will use the byfn.sh script to
kill any active or stale docker containers and remove any previously generated
artifacts. Run:

./byfn.sh down

Generate the crypto and bring up the network

With a clean environment, launch our v1.3 BYFN network using these four commands:

git fetch origin

git checkout v1.3.0

./byfn.sh generate

./byfn.sh up -t 3000 -i 1.3.0

Note

If you have locally built v1.3 images, they will be used by the example.
If you get errors, please consider cleaning up your locally built v1.3 images
and running the example again. This will download v1.3 images from docker hub.

If BYFN has launched properly, you will see:

===================== All GOOD, BYFN execution completed =====================

We are now ready to upgrade our network to Hyperledger Fabric v1.4.

Get the newest samples

Note

The instructions below pertain to whatever is the most recently
published version of v1.4.x. Please substitute 1.4.x with the version
identifier of the published release that you are testing. In other
words, replace ‘1.4.x’ with ‘1.4.0’ if you are testing the first
release.

Before completing the rest of the tutorial, it’s important to get the v1.4.x
version of the samples, you can do this by issuing:

git fetch origin

git checkout v1.4.x

Want to upgrade now?

We have a script that will upgrade all of the components in BYFN as well as
enable any capabilities (note, no new capabilities are required for v1.4).
If you are running a production network, or are an
administrator of some part of a network, this script can serve as a template
for performing your own upgrades.

Afterwards, we will walk you through the steps in the script and describe what
each piece of code is doing in the upgrade process.

To run the script, issue these commands:

Note, replace '1.4.x' with a specific version, for example '1.4.0'.
Don't pass the image flag '-i 1.4.x' if you prefer to default to 'latest' images.

./byfn.sh upgrade -i 1.4.x

If the upgrade is successful, you should see the following:

===================== All GOOD, End-2-End UPGRADE Scenario execution completed =====================

If you want to upgrade the network manually, simply run ./byfn.sh down again
and perform the steps up to — but not including — ./byfn.sh upgrade -i 1.4.x.
Then proceed to the next section.

Note

Many of the commands you’ll run in this section will not result in any
output. In general, assume no output is good output.

Upgrade the orderer containers

Orderer containers should be upgraded in a rolling fashion (one at a time). At a
high level, the orderer upgrade process goes as follows:

	Stop the orderer.

	Back up the orderer’s ledger and MSP.

	Restart the orderer with the latest images.

	Verify upgrade completion.

As a consequence of leveraging BYFN, we have a solo orderer setup, therefore, we
will only perform this process once. In a Kafka setup, however, this process will
have to be repeated on each orderer.

Note

This tutorial uses a docker deployment. For native deployments,
replace the file orderer with the one from the release artifacts.
Backup the orderer.yaml and replace it with the orderer.yaml
file from the release artifacts. Then port any modified variables from
the backed up orderer.yaml to the new one. Utilizing a utility
like diff may be helpful.

Let’s begin the upgrade process by bringing down the orderer:

docker stop orderer.example.com

export LEDGERS_BACKUP=./ledgers-backup

Note, replace '1.4.x' with a specific version, for example '1.4.0'.
Set IMAGE_TAG to 'latest' if you prefer to default to the images tagged 'latest' on your system.

export IMAGE_TAG=$(go env GOARCH)-1.4.x

We have created a variable for a directory to put file backups into, and
exported the IMAGE_TAG we’d like to move to.

Once the orderer is down, you’ll want to backup its ledger and MSP:

mkdir -p $LEDGERS_BACKUP

docker cp orderer.example.com:/var/hyperledger/production/orderer/ ./$LEDGERS_BACKUP/orderer.example.com

In a production network this process would be repeated for each of the Kafka-based
orderers in a rolling fashion.

Now download and restart the orderer with our new fabric image:

docker-compose -f docker-compose-cli.yaml up -d --no-deps orderer.example.com

Because our sample uses a “solo” ordering service, there are no other orderers in the
network that the restarted orderer must sync up to. However, in a production network
leveraging Kafka, it will be a best practice to issue peer channel fetch <blocknumber>
after restarting the orderer to verify that it has caught up to the other orderers.

Upgrade the peer containers

Next, let’s look at how to upgrade peer containers to Fabric v1.4. Peer containers should,
like the orderers, be upgraded in a rolling fashion (one at a time). As mentioned
during the orderer upgrade, orderers and peers may be upgraded in parallel, but for
the purposes of this tutorial we’ve separated the processes out. At a high level,
we will perform the following steps:

	Stop the peer.

	Back up the peer’s ledger and MSP.

	Remove chaincode containers and images.

	Restart the peer with latest image.

	Verify upgrade completion.

We have four peers running in our network. We will perform this process once for
each peer, totaling four upgrades.

Note

Again, this tutorial utilizes a docker deployment. For native
deployments, replace the file peer with the one from the release
artifacts. Backup your core.yaml and replace it with the one from
the release artifacts. Port any modified variables from the backed up
core.yaml to the new one. Utilizing a utility like diff may be
helpful.

Let’s bring down the first peer with the following command:

export PEER=peer0.org1.example.com

docker stop $PEER

We can then backup the peer’s ledger and MSP:

mkdir -p $LEDGERS_BACKUP

docker cp $PEER:/var/hyperledger/production ./$LEDGERS_BACKUP/$PEER

With the peer stopped and the ledger backed up, remove the peer chaincode
containers:

CC_CONTAINERS=$(docker ps | grep dev-$PEER | awk '{print $1}')
if [-n "$CC_CONTAINERS"] ; then docker rm -f $CC_CONTAINERS ; fi

And the peer chaincode images:

CC_IMAGES=$(docker images | grep dev-$PEER | awk '{print $1}')
if [-n "$CC_IMAGES"] ; then docker rmi -f $CC_IMAGES ; fi

Now we’ll re-launch the peer using the v1.4 image tag:

docker-compose -f docker-compose-cli.yaml up -d --no-deps $PEER

Note

Although, BYFN supports using CouchDB, we opted for a simpler
implementation in this tutorial. If you are using CouchDB, however,
issue this command instead of the one above:

docker-compose -f docker-compose-cli.yaml -f docker-compose-couch.yaml up -d --no-deps $PEER

Note

You do not need to relaunch the chaincode container. When the peer gets
a request for a chaincode, (invoke or query), it first checks if it has
a copy of that chaincode running. If so, it uses it. Otherwise, as in
this case, the peer launches the chaincode (rebuilding the image if
required).

Verify peer upgrade completion

We’ve completed the upgrade for our first peer, but before we move on let’s check
to ensure the upgrade has been completed properly with a chaincode invoke.

Note

Before you attempt this, you may want to upgrade peers from
enough organizations to satisfy your endorsement policy.
Although, this is only mandatory if you are updating your chaincode
as part of the upgrade process. If you are not updating your chaincode
as part of the upgrade process, it is possible to get endorsements
from peers running at different Fabric versions.

Before we get into the CLI container and issue the invoke, make sure the CLI is
updated to the most current version by issuing:

docker-compose -f docker-compose-cli.yaml stop cli

docker-compose -f docker-compose-cli.yaml up -d --no-deps cli

If you specifically want the v1.3 version of the CLI, issue:

IMAGE_TAG=$(go env GOARCH)-1.3.x docker-compose -f docker-compose-cli.yaml up -d --no-deps cli

Once you have the version of the CLI you want, get into the CLI container:

docker exec -it cli bash

Now you’ll need to set two environment variables — the name of the channel and
the name of the ORDERER_CA:

CH_NAME=mychannel

ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem

Now you can issue the invoke:

peer chaincode invoke -o orderer.example.com:7050 --peerAddresses peer0.org1.example.com:7051 --tlsRootCertFiles /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt --peerAddresses peer0.org2.example.com:7051 --tlsRootCertFiles /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt --tls --cafile $ORDERER_CA -C $CH_NAME -n mycc -c '{"Args":["invoke","a","b","10"]}'

Our query earlier revealed a to have a value of 90 and we have just removed
10 with our invoke. Therefore, a query against a should reveal 80.
Let’s see:

peer chaincode query -C mychannel -n mycc -c '{"Args":["query","a"]}'

We should see the following:

Query Result: 80

After verifying the peer was upgraded correctly, make sure to issue an exit
to leave the container before continuing to upgrade your peers. You can
do this by repeating the process above with a different peer name exported.

export PEER=peer1.org1.example.com
export PEER=peer0.org2.example.com
export PEER=peer1.org2.example.com

Upgrading components BYFN does not support

Although this is the end of our update tutorial, there are other components that
exist in production networks that are not compatible with the BYFN sample. In this
section, we’ll talk through the process of updating them.

Fabric CA container

To learn how to upgrade your Fabric CA server, click over to the
CA documentation [http://hyperledger-fabric-ca.readthedocs.io/en/latest/users-guide.html#upgrading-the-server].

Upgrade Node SDK clients

Note

Upgrade Fabric and Fabric CA before upgrading Node SDK clients.
Fabric and Fabric CA are tested for backwards compatibility with
older SDK clients. While newer SDK clients often work with older
Fabric and Fabric CA releases, they may expose features that
are not yet available in the older Fabric and Fabric CA releases,
and are not tested for full compatibility.

Use NPM to upgrade any Node.js client by executing these commands in the
root directory of your application:

npm install fabric-client@latest

npm install fabric-ca-client@latest

These commands install the new version of both the Fabric client and Fabric-CA
client and write the new versions package.json.

Upgrading the Kafka cluster

It is not required, but it is recommended that the Kafka cluster be upgraded and
kept up to date along with the rest of Fabric. Newer versions of Kafka support
older protocol versions, so you may upgrade Kafka before or after the rest of
Fabric.

If you followed the Upgrading Your Network to v1.3 tutorial [http://hyperledger-fabric.readthedocs.io/en/release-1.3/upgrading_your_network_tutorial.html],
your Kafka cluster should be at v1.0.0. If it isn’t, refer to the official Apache
Kafka documentation on upgrading Kafka from previous versions [https://kafka.apache.org/documentation/#upgrade] to upgrade the
Kafka cluster brokers.

Upgrading Zookeeper

An Apache Kafka cluster requires an Apache Zookeeper cluster. The Zookeeper API
has been stable for a long time and, as such, almost any version of Zookeeper is
tolerated by Kafka. Refer to the Apache Kafka upgrade [https://kafka.apache.org/documentation/#upgrade] documentation in case
there is a specific requirement to upgrade to a specific version of Zookeeper.
If you would like to upgrade your Zookeeper cluster, some information on
upgrading Zookeeper cluster can be found in the Zookeeper FAQ [https://cwiki.apache.org/confluence/display/ZOOKEEPER/FAQ].

Upgrading CouchDB

If you are using CouchDB as state database, you should upgrade the peer’s
CouchDB at the same time the peer is being upgraded. CouchDB v2.2.0 has
been tested with Fabric v1.4.

To upgrade CouchDB:

	Stop CouchDB.

	Backup CouchDB data directory.

	Install CouchDB v2.2.0 binaries or update deployment scripts to use a new Docker image
(CouchDB v2.2.0 pre-configured Docker image is provided alongside Fabric v1.4).

	Restart CouchDB.

Upgrade Node chaincode shim

To move to the new version of the Node chaincode shim a developer would need to:

	Change the level of fabric-shim in their chaincode package.json from
1.3 to 1.4.

	Repackage this new chaincode package and install it on all the endorsing peers
in the channel.

	Perform an upgrade to this new chaincode. To see how to do this, check out peer chaincode.

Note

This flow isn’t specific to moving from 1.3 to 1.4. It is also how
one would upgrade from any incremental version of the node fabric shim.

Upgrade Chaincodes with vendored shim

Note

The v1.3.0 shim is compatible with the v1.4 peer, but, it is still
best practice to upgrade the chaincode shim to match the current level
of the peer.

A number of third party tools exist that will allow you to vendor a chaincode
shim. If you used one of these tools, use the same one to update your vendoring
and re-package your chaincode.

If your chaincode vendors the shim, after updating the shim version, you must install
it to all peers which already have the chaincode. Install it with the same name, but
a newer version. Then you should execute a chaincode upgrade on each channel where
this chaincode has been deployed to move to the new version.

If you did not vendor your chaincode, you can skip this step entirely.

 Using Private Data in Fabric

Using Private Data in Fabric

This tutorial will demonstrate the use of collections to provide storage
and retrieval of private data on the blockchain network for authorized peers
of organizations.

The information in this tutorial assumes knowledge of private data
stores and their use cases. For more information, check out Private data.

The tutorial will take you through the following steps to practice defining,
configuring and using private data with Fabric:

	Build a collection definition JSON file

	Read and Write private data using chaincode APIs

	Install and instantiate chaincode with a collection

	Store private data

	Query the private data as an authorized peer

	Query the private data as an unauthorized peer

	Purge Private Data

	Using indexes with private data

	Additional resources

This tutorial will use the marbles private data sample [https://github.com/hyperledger/fabric-samples/tree/master/chaincode/marbles02_private]
— running on the Building Your First Network (BYFN) tutorial network — to
demonstrate how to create, deploy, and use a collection of private data.
The marbles private data sample will be deployed to the Building Your First Network
(BYFN) tutorial network. You should have completed the task Install Samples, Binaries and Docker Images;
however, running the BYFN tutorial is not a prerequisite for this tutorial.
Instead the necessary commands are provided throughout this tutorial to use the
network. We will describe what is happening at each step, making it possible to
understand the tutorial without actually running the sample.

Build a collection definition JSON file

The first step in privatizing data on a channel is to build a collection
definition which defines access to the private data.

The collection definition describes who can persist data, how many peers the
data is distributed to, how many peers are required to disseminate the private
data, and how long the private data is persisted in the private database. Later,
we will demonstrate how chaincode APIs PutPrivateData and GetPrivateData
are used to map the collection to the private data being secured.

A collection definition is composed of five properties:

	name: Name of the collection.

	policy: Defines the organization peers allowed to persist the collection data.

	requiredPeerCount: Number of peers required to disseminate the private data as
a condition of the endorsement of the chaincode

	maxPeerCount: For data redundancy purposes, the number of other peers
that the current endorsing peer will attempt to distribute the data to.
If an endorsing peer goes down, these other peers are available at commit time
if there are requests to pull the private data.

	blockToLive: For very sensitive information such as pricing or personal information,
this value represents how long the data should live on the private database in terms
of blocks. The data will live for this specified number of blocks on the private database
and after that it will get purged, making this data obsolete from the network.
To keep private data indefinitely, that is, to never purge private data, set
the blockToLive property to 0.

To illustrate usage of private data, the marbles private data example contains
two private data collection definitions: collectionMarbles
and collectionMarblePrivateDetails. The policy property in the
collectionMarbles definition allows all members of the channel (Org1 and
Org2) to have the private data in a private database. The
collectionMarblesPrivateDetails collection allows only members of Org1 to
have the private data in their private database.

For more information on building a policy definition refer to the Endorsement policies
topic.

// collections_config.json

[
 {
 "name": "collectionMarbles",
 "policy": "OR('Org1MSP.member', 'Org2MSP.member')",
 "requiredPeerCount": 0,
 "maxPeerCount": 3,
 "blockToLive":1000000
 },

 {
 "name": "collectionMarblePrivateDetails",
 "policy": "OR('Org1MSP.member')",
 "requiredPeerCount": 0,
 "maxPeerCount": 3,
 "blockToLive":3
 }
]

The data to be secured by these policies is mapped in chaincode and will be
shown later in the tutorial.

This collection definition file is deployed on the channel when its associated
chaincode is instantiated on the channel using the peer chaincode instantiate command [http://hyperledger-fabric.readthedocs.io/en/latest/commands/peerchaincode.html#peer-chaincode-instantiate].
More details on this process are provided in Section 3 below.

Read and Write private data using chaincode APIs

The next step in understanding how to privatize data on a channel is to build
the data definition in the chaincode. The marbles private data sample divides
the private data into two separate data definitions according to how the data will
be accessed.

// Peers in Org1 and Org2 will have this private data in a side database
type marble struct {
 ObjectType string `json:"docType"`
 Name string `json:"name"`
 Color string `json:"color"`
 Size int `json:"size"`
 Owner string `json:"owner"`
}

// Only peers in Org1 will have this private data in a side database
type marblePrivateDetails struct {
 ObjectType string `json:"docType"`
 Name string `json:"name"`
 Price int `json:"price"`
}

Specifically access to the private data will be restricted as follows:

	name, color, size, and owner will be visible to all members of the channel (Org1 and Org2)

	price only visible to members of Org1

Thus two different sets of private data are defined in the marbles private data
sample. The mapping of this data to the collection policy which restricts its
access is controlled by chaincode APIs. Specifically, reading and writing
private data using a collection definition is performed by calling GetPrivateData()
and PutPrivateData(), which can be found here [https://github.com/hyperledger/fabric/blob/master/core/chaincode/shim/interfaces.go#L179].

The following diagrams illustrate the private data model used by the marbles
private data sample.

[image: _images/SideDB-org1.png]
[image: _images/SideDB-org2.png]

Reading collection data

Use the chaincode API GetPrivateData() to query private data in the
database. GetPrivateData() takes two arguments, the collection name
and the data key. Recall the collection collectionMarbles allows members of
Org1 and Org2 to have the private data in a side database, and the collection
collectionMarblePrivateDetails allows only members of Org1 to have the
private data in a side database. For implementation details refer to the
following two marbles private data functions [https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02_private/go/marbles_chaincode_private.go]:

	readMarble for querying the values of the name, color, size and owner attributes

	readMarblePrivateDetails for querying the values of the price attribute

When we issue the database queries using the peer commands later in this tutorial,
we will call these two functions.

Writing private data

Use the chaincode API PutPrivateData() to store the private data
into the private database. The API also requires the name of the collection.
Since the marbles private data sample includes two different collections, it is called
twice in the chaincode:

	Write the private data name, color, size and owner using the
collection named collectionMarbles.

	Write the private data price using the collection named
collectionMarblePrivateDetails.

For example, in the following snippet of the initMarble function,
PutPrivateData() is called twice, once for each set of private data.

// ==== Create marble object and marshal to JSON ====
 objectType := "marble"
 marble := &marble{objectType, marbleName, color, size, owner}
 marbleJSONasBytes, err := json.Marshal(marble)
 if err != nil {
 return shim.Error(err.Error())
 }
 //Alternatively, build the marble json string manually if you don't want to use struct marshalling
 //marbleJSONasString := `{"docType":"Marble", "name": "` + marbleName + `", "color": "` + color + `", "size": ` + strconv.Itoa(size) + `, "owner": "` + owner + `"}`
 //marbleJSONasBytes := []byte(str)

 // === Save marble to state ===
 err = stub.PutPrivateData("collectionMarbles", marbleName, marbleJSONasBytes)
 if err != nil {
 return shim.Error(err.Error())
 }

 // ==== Save marble private details ====
 objectType = "marblePrivateDetails"
 marblePrivateDetails := &marblePrivateDetails{objectType, marbleName, price}
 marblePrivateDetailsBytes, err := json.Marshal(marblePrivateDetails)
 if err != nil {
 return shim.Error(err.Error())
 }
 err = stub.PutPrivateData("collectionMarblePrivateDetails", marbleName, marblePrivateDetailsBytes)
 if err != nil {
 return shim.Error(err.Error())
 }

To summarize, the policy definition above for our collection.json
allows all peers in Org1 and Org2 can store and transact (endorse, commit,
query) with the marbles private data name, color, size, owner in their
private database. But only peers in Org1 can store and transact with
the price private data in an additional private database.

As an additional data privacy benefit, since a collection is being used,
only the private data hashes go through orderer, not the private data itself,
keeping private data confidential from orderer.

Start the network

Now we are ready to step through some commands which demonstrate using private
data.

Try it yourself

Before installing and instantiating the marbles private data chaincode below,
we need to start the BYFN network. For the sake of this tutorial, we want to
operate from a known initial state. The following command will kill any active
or stale docker containers and remove previously generated artifacts.
Therefore let’s run the following command to clean up any previous
environments:

cd fabric-samples/first-network
./byfn.sh down

If you’ve already run through this tutorial, you’ll also want to delete the
underlying docker containers for the marbles private data chaincode. Let’s
run the following commands to clean up previous environments:

docker rm -f $(docker ps -a | awk '($2 ~ /dev-peer.*.marblesp.*/) {print $1}')
docker rmi -f $(docker images | awk '($1 ~ /dev-peer.*.marblesp.*/) {print $3}')

Start up the BYFN network with CouchDB by running the following command:

./byfn.sh up -c mychannel -s couchdb

This will create a simple Fabric network consisting of a single channel named
mychannel with two organizations (each maintaining two peer nodes) and an
ordering service while using CouchDB as the state database. Either LevelDB
or CouchDB may be used with collections. CouchDB was chosen to demonstrate
how to use indexes with private data.

Note

For collections to work, it is important to have cross organizational
gossip configured correctly. Refer to our documentation on Gossip data dissemination protocol,
paying particular attention to the section on “anchor peers”. Our tutorial
does not focus on gossip given it is already configured in the BYFN sample,
but when configuring a channel, the gossip anchors peers are critical to
configure for collections to work properly.

Install and instantiate chaincode with a collection

Client applications interact with the blockchain ledger through chaincode. As
such we need to install and instantiate the chaincode on every peer that will
execute and endorse our transactions. Chaincode is installed onto a peer and
then instantiated onto the channel using peer-commands.

Install chaincode on all peers

As discussed above, the BYFN network includes two organizations, Org1 and Org2,
with two peers each. Therefore the chaincode has to be installed on four peers:

	peer0.org1.example.com

	peer1.org1.example.com

	peer0.org2.example.com

	peer1.org2.example.com

Use the peer chaincode install [http://hyperledger-fabric.readthedocs.io/en/master/commands/peerchaincode.html?%20chaincode%20instantiate#peer-chaincode-install] command to install the Marbles chaincode on each peer.

Try it yourself

Assuming you have started the BYFN network, enter the CLI container.

docker exec -it cli bash

Your command prompt will change to something similar to:

root@81eac8493633:/opt/gopath/src/github.com/hyperledger/fabric/peer#

	Use the following command to install the Marbles chaincode from the git
repository onto the peer peer0.org1.example.com in your BYFN network.
(By default, after starting the BYFN network, the active peer is set to:
CORE_PEER_ADDRESS=peer0.org1.example.com:7051):

peer chaincode install -n marblesp -v 1.0 -p github.com/chaincode/marbles02_private/go/

When it is complete you should see something similar to:

install -> INFO 003 Installed remotely response:<status:200 payload:"OK" >

	Use the CLI to switch the active peer to the second peer in Org1 and
install the chaincode. Copy and paste the following entire block of
commands into the CLI container and run them.

export CORE_PEER_ADDRESS=peer1.org1.example.com:7051
peer chaincode install -n marblesp -v 1.0 -p github.com/chaincode/marbles02_private/go/

	Use the CLI to switch to Org2. Copy and paste the following block of
commands as a group into the peer container and run them all at once.

export CORE_PEER_LOCALMSPID=Org2MSP
export PEER0_ORG2_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt
export CORE_PEER_TLS_ROOTCERT_FILE=$PEER0_ORG2_CA
export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp

	Switch the active peer to the first peer in Org2 and install the chaincode:

export CORE_PEER_ADDRESS=peer0.org2.example.com:7051
peer chaincode install -n marblesp -v 1.0 -p github.com/chaincode/marbles02_private/go/

	Switch the active peer to the second peer in org2 and install the chaincode:

export CORE_PEER_ADDRESS=peer1.org2.example.com:7051
peer chaincode install -n marblesp -v 1.0 -p github.com/chaincode/marbles02_private/go/

Instantiate the chaincode on the channel

Use the peer chaincode instantiate [http://hyperledger-fabric.readthedocs.io/en/master/commands/peerchaincode.html?%20chaincode%20instantiate#peer-chaincode-instantiate]
command to instantiate the marbles chaincode on a channel. To configure
the chaincode collections on the channel, specify the flag --collections-config
along with the name of the collections JSON file, collections_config.json in our
example.

Try it yourself

Run the following commands to instantiate the marbles private data
chaincode on the BYFN channel mychannel.

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem
peer chaincode instantiate -o orderer.example.com:7050 --tls --cafile $ORDERER_CA -C mychannel -n marblesp -v 1.0 -c '{"Args":["init"]}' -P "OR('Org1MSP.member','Org2MSP.member')" --collections-config $GOPATH/src/github.com/chaincode/marbles02_private/collections_config.json

Note

When specifying the value of the --collections-config flag, you will
need to specify the fully qualified path to the collections_config.json file.
For example: --collections-config $GOPATH/src/github.com/chaincode/marbles02_private/collections_config.json

When the instantiation completes successfully you should see something similar to:

[chaincodeCmd] checkChaincodeCmdParams -> INFO 001 Using default escc
[chaincodeCmd] checkChaincodeCmdParams -> INFO 002 Using default vscc

Store private data

Acting as a member of Org1, who is authorized to transact with all of the private data
in the marbles private data sample, switch back to an Org1 peer and
submit a request to add a marble:

Try it yourself

Copy and paste the following set of commands to the CLI command line.

export CORE_PEER_ADDRESS=peer0.org1.example.com:7051
export CORE_PEER_LOCALMSPID=Org1MSP
export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp
export PEER0_ORG1_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt

Invoke the marbles initMarble function which
creates a marble with private data — name marble1 owned by tom with a color
blue, size 35 and price of 99. Recall that private data price
will be stored separately from the public data name, owner, color, size.
For this reason, the initMarble function calls the PutPrivateData() API
twice to persist the private data, once using each collection.

peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n marblesp -c '{"Args":["initMarble","marble1","blue","35","tom","99"]}'

You should see results similar to:

[chaincodeCmd] chaincodeInvokeOrQuery->INFO 001 Chaincode invoke successful. result: status:200

Query the private data as an authorized peer

Our collection definition allows all members of Org1 and Org2
to have the name, color, size, owner private data in their side database,
but only peers in Org1 can have the price private data in their side
database. As an authorized peer in Org1, we will query both sets of private data.

The first query command calls the readMarble function which passes
collectionMarbles as an argument.

// ===
// readMarble - read a marble from chaincode state
// ===

func (t *SimpleChaincode) readMarble(stub shim.ChaincodeStubInterface, args []string) pb.Response {
 var name, jsonResp string
 var err error
 if len(args) != 1 {
 return shim.Error("Incorrect number of arguments. Expecting name of the marble to query")
 }

 name = args[0]
 valAsbytes, err := stub.GetPrivateData("collectionMarbles", name) //get the marble from chaincode state

 if err != nil {
 jsonResp = "{\"Error\":\"Failed to get state for " + name + "\"}"
 return shim.Error(jsonResp)
 } else if valAsbytes == nil {
 jsonResp = "{\"Error\":\"Marble does not exist: " + name + "\"}"
 return shim.Error(jsonResp)
 }

 return shim.Success(valAsbytes)
}

The second query command calls the readMarblePrivateDetails
function which passes collectionMarblePrivateDetails as an argument.

// ===
// readMarblePrivateDetails - read a marble private details from chaincode state
// ===

func (t *SimpleChaincode) readMarblePrivateDetails(stub shim.ChaincodeStubInterface, args []string) pb.Response {
 var name, jsonResp string
 var err error

 if len(args) != 1 {
 return shim.Error("Incorrect number of arguments. Expecting name of the marble to query")
 }

 name = args[0]
 valAsbytes, err := stub.GetPrivateData("collectionMarblePrivateDetails", name) //get the marble private details from chaincode state

 if err != nil {
 jsonResp = "{\"Error\":\"Failed to get private details for " + name + ": " + err.Error() + "\"}"
 return shim.Error(jsonResp)
 } else if valAsbytes == nil {
 jsonResp = "{\"Error\":\"Marble private details does not exist: " + name + "\"}"
 return shim.Error(jsonResp)
 }
 return shim.Success(valAsbytes)
}

Now Try it yourself

Query for the name, color, size and owner private data of marble1 as a member of Org1.

peer chaincode query -C mychannel -n marblesp -c '{"Args":["readMarble","marble1"]}'

You should see the following result:

{"color":"blue","docType":"marble","name":"marble1","owner":"tom","size":35}

Query for the price private data of marble1 as a member of Org1.

peer chaincode query -C mychannel -n marblesp -c '{"Args":["readMarblePrivateDetails","marble1"]}'

You should see the following result:

{"docType":"marblePrivateDetails","name":"marble1","price":99}

Query the private data as an unauthorized peer

Now we will switch to a member of Org2 which has the marbles private data
name, color, size, owner in its side database, but does not have the
marbles price private data in its side database. We will query for both
sets of private data.

Switch to a peer in Org2

From inside the docker container, run the following commands to switch to
the peer which is unauthorized to access the marbles price private data.

Try it yourself

export CORE_PEER_ADDRESS=peer0.org2.example.com:7051
export CORE_PEER_LOCALMSPID=Org2MSP
export PEER0_ORG2_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt
export CORE_PEER_TLS_ROOTCERT_FILE=$PEER0_ORG2_CA
export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp

Query private data Org2 is authorized to

Peers in Org2 should have the first set of marbles private data (name,
color, size and owner) in their side database and can access it using the
readMarble() function which is called with the collectionMarbles
argument.

Try it yourself

peer chaincode query -C mychannel -n marblesp -c '{"Args":["readMarble","marble1"]}'

You should see something similar to the following result:

{"docType":"marble","name":"marble1","color":"blue","size":35,"owner":"tom"}

Query private data Org2 is not authorized to

Peers in Org2 do not have the marbles price private data in their side database.
When they try to query for this data, they get back a hash of the key matching
the public state but will not have the private state.

Try it yourself

peer chaincode query -C mychannel -n marblesp -c '{"Args":["readMarblePrivateDetails","marble1"]}'

You should see a result similar to:

{"Error":"Failed to get private details for marble1: GET_STATE failed:
transaction ID: b04adebbf165ddc90b4ab897171e1daa7d360079ac18e65fa15d84ddfebfae90:
Private data matching public hash version is not available. Public hash
version = &version.Height{BlockNum:0x6, TxNum:0x0}, Private data version =
(*version.Height)(nil)"}

Members of Org2 will only be able to see the public hash of the private data.

Purge Private Data

For use cases where private data only needs to be on the ledger until it can be
replicated into an off-chain database, it is possible to “purge” the data after
a certain set number of blocks, leaving behind only hash of the data that serves
as immutable evidence of the transaction.

There may be private data including personal or confidential
information, such as the pricing data in our example, that the transacting
parties don’t want disclosed to other organizations on the channel. Thus, it
has a limited lifespan, and can be purged after existing unchanged on the
blockchain for a designated number of blocks using the blockToLive property
in the collection definition.

Our collectionMarblePrivateDetails definition has a blockToLive
property value of three meaning this data will live on the side database for
three blocks and then after that it will get purged. Tying all of the pieces
together, recall this collection definition collectionMarblePrivateDetails
is associated with the price private data in the initMarble() function
when it calls the PutPrivateData() API and passes the
collectionMarblePrivateDetails as an argument.

We will step through adding blocks to the chain, and then watch the price
information get purged by issuing four new transactions (Create a new marble,
followed by three marble transfers) which adds four new blocks to the chain.
After the fourth transaction (third marble transfer), we will verify that the
price private data is purged.

Try it yourself

Switch back to peer0 in Org1 using the following commands. Copy and paste the
following code block and run it inside your peer container:

export CORE_PEER_ADDRESS=peer0.org1.example.com:7051
export CORE_PEER_LOCALMSPID=Org1MSP
export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt
export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp
export PEER0_ORG1_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt

Open a new terminal window and view the private data logs for this peer by
running the following command:

docker logs peer0.org1.example.com 2>&1 | grep -i -a -E 'private|pvt|privdata'

You should see results similar to the following. Note the highest block number
in the list. In the example below, the highest block height is 4.

[pvtdatastorage] func1 -> INFO 023 Purger started: Purging expired private data till block number [0]
[pvtdatastorage] func1 -> INFO 024 Purger finished
[kvledger] CommitWithPvtData -> INFO 022 Channel [mychannel]: Committed block [0] with 1 transaction(s)
[kvledger] CommitWithPvtData -> INFO 02e Channel [mychannel]: Committed block [1] with 1 transaction(s)
[kvledger] CommitWithPvtData -> INFO 030 Channel [mychannel]: Committed block [2] with 1 transaction(s)
[kvledger] CommitWithPvtData -> INFO 036 Channel [mychannel]: Committed block [3] with 1 transaction(s)
[kvledger] CommitWithPvtData -> INFO 03e Channel [mychannel]: Committed block [4] with 1 transaction(s)

Back in the peer container, query for the marble1 price data by running the
following command. (A Query does not create a new transaction on the ledger
since no data is transacted).

peer chaincode query -C mychannel -n marblesp -c '{"Args":["readMarblePrivateDetails","marble1"]}'

You should see results similar to:

{"docType":"marblePrivateDetails","name":"marble1","price":99}

The price data is still in the private data ledger.

Create a new marble2 by issuing the following command. This transaction
creates a new block on the chain.

peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n marblesp -c '{"Args":["initMarble","marble2","blue","35","tom","99"]}'

Switch back to the Terminal window and view the private data logs for this peer
again. You should see the block height increase by 1.

docker logs peer0.org1.example.com 2>&1 | grep -i -a -E 'private|pvt|privdata'

Back in the peer container, query for the marble1 price data again by
running the following command:

peer chaincode query -C mychannel -n marblesp -c '{"Args":["readMarblePrivateDetails","marble1"]}'

The private data has not been purged, therefore the results are unchanged from
previous query:

{"docType":"marblePrivateDetails","name":"marble1","price":99}

Transfer marble2 to “joe” by running the following command. This transaction
will add a second new block on the chain.

peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n marblesp -c '{"Args":["transferMarble","marble2","joe"]}'

Switch back to the Terminal window and view the private data logs for this peer
again. You should see the block height increase by 1.

docker logs peer0.org1.example.com 2>&1 | grep -i -a -E 'private|pvt|privdata'

Back in the peer container, query for the marble1 price data by running
the following command:

peer chaincode query -C mychannel -n marblesp -c '{"Args":["readMarblePrivateDetails","marble1"]}'

You should still be able to see the price private data.

{"docType":"marblePrivateDetails","name":"marble1","price":99}

Transfer marble2 to “tom” by running the following command. This transaction
will create a third new block on the chain.

peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n marblesp -c '{"Args":["transferMarble","marble2","tom"]}'

Switch back to the Terminal window and view the private data logs for this peer
again. You should see the block height increase by 1.

docker logs peer0.org1.example.com 2>&1 | grep -i -a -E 'private|pvt|privdata'

Back in the peer container, query for the marble1 price data by running
the following command:

peer chaincode query -C mychannel -n marblesp -c '{"Args":["readMarblePrivateDetails","marble1"]}'

You should still be able to see the price data.

{"docType":"marblePrivateDetails","name":"marble1","price":99}

Finally, transfer marble2 to “jerry” by running the following command. This
transaction will create a fourth new block on the chain. The price private
data should be purged after this transaction.

peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -n marblesp -c '{"Args":["transferMarble","marble2","jerry"]}'

Switch back to the Terminal window and view the private data logs for this peer
again. You should see the block height increase by 1.

docker logs peer0.org1.example.com 2>&1 | grep -i -a -E 'private|pvt|privdata'

Back in the peer container, query for the marble1 price data by running the following command:

peer chaincode query -C mychannel -n marblesp -c '{"Args":["readMarblePrivateDetails","marble1"]}'

Because the price data has been purged, you should no longer be able to see
it. You should see something similar to:

Error: endorsement failure during query. response: status:500
message:"{\"Error\":\"Marble private details does not exist: marble1\"}"

Using indexes with private data

Indexes can also be applied to private data collections, by packaging indexes in
the META-INF/statedb/couchdb/collections/<collection_name>/indexes directory
alongside the chaincode. An example index is available here [https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02_private/go/META-INF/statedb/couchdb/collections/collectionMarbles/indexes/indexOwner.json] .

For deployment of chaincode to production environments, it is recommended
to define any indexes alongside chaincode so that the chaincode and supporting
indexes are deployed automatically as a unit, once the chaincode has been
installed on a peer and instantiated on a channel. The associated indexes are
automatically deployed upon chaincode instantiation on the channel when
the --collections-config flag is specified pointing to the location of
the collection JSON file.

Additional resources

For additional private data education, a video tutorial has been created.

 Chaincode Tutorials

Chaincode Tutorials

What is Chaincode?

Chaincode is a program, written in Go [https://golang.org], node.js [https://nodejs.org],
or Java [https://java.com/en/] that implements a prescribed interface.
Chaincode runs in a secured Docker container isolated from the endorsing peer
process. Chaincode initializes and manages ledger state through transactions
submitted by applications.

A chaincode typically handles business logic agreed to by members of the
network, so it may be considered as a “smart contract”. State created by a
chaincode is scoped exclusively to that chaincode and can’t be accessed
directly by another chaincode. However, within the same network, given
the appropriate permission a chaincode may invoke another chaincode to
access its state.

Two Personas

We offer two different perspectives on chaincode. One, from the perspective of
an application developer developing a blockchain application/solution
entitled Chaincode for Developers, and the other, Chaincode for Operators oriented
to the blockchain network operator who is responsible for managing a blockchain
network, and who would leverage the Hyperledger Fabric API to install,
instantiate, and upgrade chaincode, but would likely not be involved in the
development of a chaincode application.

 Chaincode for Developers

Chaincode for Developers

What is Chaincode?

Chaincode is a program, written in Go [https://golang.org], node.js [https://nodejs.org],
or Java [https://java.com/en/] that implements a prescribed interface.
Chaincode runs in a secured Docker container isolated from the endorsing peer
process. Chaincode initializes and manages the ledger state through transactions
submitted by applications.

A chaincode typically handles business logic agreed to by members of the
network, so it similar to a “smart contract”. A chaincode can be invoked to update or query
the ledger in a proposal transaction. Given the appropriate permission, a chaincode
may invoke another chaincode, either in the same channel or in different channels, to access its state.
Note that, if the called chaincode is on a different channel from the calling chaincode,
only read query is allowed. That is, the called chaincode on a different channel is only a Query,
which does not participate in state validation checks in subsequent commit phase.

In the following sections, we will explore chaincode through the eyes of an
application developer. We’ll present a simple chaincode sample application
and walk through the purpose of each method in the Chaincode Shim API.

Chaincode API

Note

There is another set of chaincode APIs that allow the client (submitter)
identity to be used for access control decisions, whether that is based
on client identity itself, or the org identity, or on a client identity
attribute. For example an asset that is represented as a key/value may
include the client’s identity, and only this client may be authorized
to make updates to the key/value. The client identity library has APIs
that chaincode can use to retrieve this submitter information to make
such access control decisions.

We won’t cover that in this tutorial, however it is
documented here [https://github.com/hyperledger/fabric/blob/master/core/chaincode/shim/ext/cid/README.md].

Every chaincode program must implement the Chaincode interface:

	Go [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#Chaincode]

	node.js [https://fabric-shim.github.io/ChaincodeInterface.html]

	Java [https://fabric-chaincode-java.github.io/org/hyperledger/fabric/shim/Chaincode.html]

whose methods are called in response to received transactions.
In particular the Init method is called when a
chaincode receives an instantiate or upgrade transaction so that the
chaincode may perform any necessary initialization, including initialization of
application state. The Invoke method is called in response to receiving an
invoke transaction to process transaction proposals.

The other interface in the chaincode “shim” APIs is the ChaincodeStubInterface:

	Go [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#ChaincodeStubInterface]

	node.js [https://fabric-shim.github.io/ChaincodeStub.html]

	Java [https://fabric-chaincode-java.github.io/org/hyperledger/fabric/shim/ChaincodeStub.html]

which is used to access and modify the ledger, and to make invocations between
chaincodes.

In this tutorial using Go chaincode, we will demonstrate the use of these APIs
by implementing a simple chaincode application that manages simple “assets”.

Simple Asset Chaincode

Our application is a basic sample chaincode to create assets
(key-value pairs) on the ledger.

Choosing a Location for the Code

If you haven’t been doing programming in Go, you may want to make sure that
you have Go Programming Language installed and your system properly configured.

Now, you will want to create a directory for your chaincode application as a
child directory of $GOPATH/src/.

To keep things simple, let’s use the following command:

mkdir -p $GOPATH/src/sacc && cd $GOPATH/src/sacc

Now, let’s create the source file that we’ll fill in with code:

touch sacc.go

Housekeeping

First, let’s start with some housekeeping. As with every chaincode, it implements the
Chaincode interface [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#Chaincode]
in particular, Init and Invoke functions. So, let’s add the Go import
statements for the necessary dependencies for our chaincode. We’ll import the
chaincode shim package and the
peer protobuf package [https://godoc.org/github.com/hyperledger/fabric/protos/peer].
Next, let’s add a struct SimpleAsset as a receiver for Chaincode shim functions.

package main

import (
 "fmt"

 "github.com/hyperledger/fabric/core/chaincode/shim"
 "github.com/hyperledger/fabric/protos/peer"
)

// SimpleAsset implements a simple chaincode to manage an asset
type SimpleAsset struct {
}

Initializing the Chaincode

Next, we’ll implement the Init function.

// Init is called during chaincode instantiation to initialize any data.
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {

}

Note

Note that chaincode upgrade also calls this function. When writing a
chaincode that will upgrade an existing one, make sure to modify the Init
function appropriately. In particular, provide an empty “Init” method if there’s
no “migration” or nothing to be initialized as part of the upgrade.

Next, we’ll retrieve the arguments to the Init call using the
ChaincodeStubInterface.GetStringArgs [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#ChaincodeStub.GetStringArgs]
function and check for validity. In our case, we are expecting a key-value pair.

// Init is called during chaincode instantiation to initialize any
// data. Note that chaincode upgrade also calls this function to reset
// or to migrate data, so be careful to avoid a scenario where you
// inadvertently clobber your ledger's data!
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {
 // Get the args from the transaction proposal
 args := stub.GetStringArgs()
 if len(args) != 2 {
 return shim.Error("Incorrect arguments. Expecting a key and a value")
 }
}

Next, now that we have established that the call is valid, we’ll store the
initial state in the ledger. To do this, we will call
ChaincodeStubInterface.PutState [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#ChaincodeStub.PutState]
with the key and value passed in as the arguments. Assuming all went well,
return a peer.Response object that indicates the initialization was a success.

// Init is called during chaincode instantiation to initialize any
// data. Note that chaincode upgrade also calls this function to reset
// or to migrate data, so be careful to avoid a scenario where you
// inadvertently clobber your ledger's data!
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {
 // Get the args from the transaction proposal
 args := stub.GetStringArgs()
 if len(args) != 2 {
 return shim.Error("Incorrect arguments. Expecting a key and a value")
 }

 // Set up any variables or assets here by calling stub.PutState()

 // We store the key and the value on the ledger
 err := stub.PutState(args[0], []byte(args[1]))
 if err != nil {
 return shim.Error(fmt.Sprintf("Failed to create asset: %s", args[0]))
 }
 return shim.Success(nil)
}

Invoking the Chaincode

First, let’s add the Invoke function’s signature.

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The 'set'
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {

}

As with the Init function above, we need to extract the arguments from the
ChaincodeStubInterface. The Invoke function’s arguments will be the
name of the chaincode application function to invoke. In our case, our application
will simply have two functions: set and get, that allow the value of an
asset to be set or its current state to be retrieved. We first call
ChaincodeStubInterface.GetFunctionAndParameters [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#ChaincodeStub.GetFunctionAndParameters]
to extract the function name and the parameters to that chaincode application
function.

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The Set
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {
 // Extract the function and args from the transaction proposal
 fn, args := stub.GetFunctionAndParameters()

}

Next, we’ll validate the function name as being either set or get, and
invoke those chaincode application functions, returning an appropriate
response via the shim.Success or shim.Error functions that will
serialize the response into a gRPC protobuf message.

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The Set
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {
 // Extract the function and args from the transaction proposal
 fn, args := stub.GetFunctionAndParameters()

 var result string
 var err error
 if fn == "set" {
 result, err = set(stub, args)
 } else {
 result, err = get(stub, args)
 }
 if err != nil {
 return shim.Error(err.Error())
 }

 // Return the result as success payload
 return shim.Success([]byte(result))
}

Implementing the Chaincode Application

As noted, our chaincode application implements two functions that can be
invoked via the Invoke function. Let’s implement those functions now.
Note that as we mentioned above, to access the ledger’s state, we will leverage
the ChaincodeStubInterface.PutState [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#ChaincodeStub.PutState]
and ChaincodeStubInterface.GetState [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#ChaincodeStub.GetState]
functions of the chaincode shim API.

// Set stores the asset (both key and value) on the ledger. If the key exists,
// it will override the value with the new one
func set(stub shim.ChaincodeStubInterface, args []string) (string, error) {
 if len(args) != 2 {
 return "", fmt.Errorf("Incorrect arguments. Expecting a key and a value")
 }

 err := stub.PutState(args[0], []byte(args[1]))
 if err != nil {
 return "", fmt.Errorf("Failed to set asset: %s", args[0])
 }
 return args[1], nil
}

// Get returns the value of the specified asset key
func get(stub shim.ChaincodeStubInterface, args []string) (string, error) {
 if len(args) != 1 {
 return "", fmt.Errorf("Incorrect arguments. Expecting a key")
 }

 value, err := stub.GetState(args[0])
 if err != nil {
 return "", fmt.Errorf("Failed to get asset: %s with error: %s", args[0], err)
 }
 if value == nil {
 return "", fmt.Errorf("Asset not found: %s", args[0])
 }
 return string(value), nil
}

Pulling it All Together

Finally, we need to add the main function, which will call the
shim.Start [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#Start]
function. Here’s the whole chaincode program source.

package main

import (
 "fmt"

 "github.com/hyperledger/fabric/core/chaincode/shim"
 "github.com/hyperledger/fabric/protos/peer"
)

// SimpleAsset implements a simple chaincode to manage an asset
type SimpleAsset struct {
}

// Init is called during chaincode instantiation to initialize any
// data. Note that chaincode upgrade also calls this function to reset
// or to migrate data.
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {
 // Get the args from the transaction proposal
 args := stub.GetStringArgs()
 if len(args) != 2 {
 return shim.Error("Incorrect arguments. Expecting a key and a value")
 }

 // Set up any variables or assets here by calling stub.PutState()

 // We store the key and the value on the ledger
 err := stub.PutState(args[0], []byte(args[1]))
 if err != nil {
 return shim.Error(fmt.Sprintf("Failed to create asset: %s", args[0]))
 }
 return shim.Success(nil)
}

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The Set
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {
 // Extract the function and args from the transaction proposal
 fn, args := stub.GetFunctionAndParameters()

 var result string
 var err error
 if fn == "set" {
 result, err = set(stub, args)
 } else { // assume 'get' even if fn is nil
 result, err = get(stub, args)
 }
 if err != nil {
 return shim.Error(err.Error())
 }

 // Return the result as success payload
 return shim.Success([]byte(result))
}

// Set stores the asset (both key and value) on the ledger. If the key exists,
// it will override the value with the new one
func set(stub shim.ChaincodeStubInterface, args []string) (string, error) {
 if len(args) != 2 {
 return "", fmt.Errorf("Incorrect arguments. Expecting a key and a value")
 }

 err := stub.PutState(args[0], []byte(args[1]))
 if err != nil {
 return "", fmt.Errorf("Failed to set asset: %s", args[0])
 }
 return args[1], nil
}

// Get returns the value of the specified asset key
func get(stub shim.ChaincodeStubInterface, args []string) (string, error) {
 if len(args) != 1 {
 return "", fmt.Errorf("Incorrect arguments. Expecting a key")
 }

 value, err := stub.GetState(args[0])
 if err != nil {
 return "", fmt.Errorf("Failed to get asset: %s with error: %s", args[0], err)
 }
 if value == nil {
 return "", fmt.Errorf("Asset not found: %s", args[0])
 }
 return string(value), nil
}

// main function starts up the chaincode in the container during instantiate
func main() {
 if err := shim.Start(new(SimpleAsset)); err != nil {
 fmt.Printf("Error starting SimpleAsset chaincode: %s", err)
 }
}

Building Chaincode

Now let’s compile your chaincode.

go get -u github.com/hyperledger/fabric/core/chaincode/shim
go build

Assuming there are no errors, now we can proceed to the next step, testing
your chaincode.

Testing Using dev mode

Normally chaincodes are started and maintained by peer. However in “dev
mode”, chaincode is built and started by the user. This mode is useful
during chaincode development phase for rapid code/build/run/debug cycle
turnaround.

We start “dev mode” by leveraging pre-generated orderer and channel artifacts for
a sample dev network. As such, the user can immediately jump into the process
of compiling chaincode and driving calls.

Install Hyperledger Fabric Samples

If you haven’t already done so, please Install Samples, Binaries and Docker Images.

Navigate to the chaincode-docker-devmode directory of the fabric-samples
clone:

cd chaincode-docker-devmode

Now open three terminals and navigate to your chaincode-docker-devmode
directory in each.

Terminal 1 - Start the network

docker-compose -f docker-compose-simple.yaml up

The above starts the network with the SingleSampleMSPSolo orderer profile and
launches the peer in “dev mode”. It also launches two additional containers -
one for the chaincode environment and a CLI to interact with the chaincode. The
commands for create and join channel are embedded in the CLI container, so we
can jump immediately to the chaincode calls.

Terminal 2 - Build & start the chaincode

docker exec -it chaincode bash

You should see the following:

root@d2629980e76b:/opt/gopath/src/chaincode#

Now, compile your chaincode:

cd sacc
go build

Now run the chaincode:

CORE_PEER_ADDRESS=peer:7052 CORE_CHAINCODE_ID_NAME=mycc:0 ./sacc

The chaincode is started with peer and chaincode logs indicating successful registration with the peer.
Note that at this stage the chaincode is not associated with any channel. This is done in subsequent steps
using the instantiate command.

Terminal 3 - Use the chaincode

Even though you are in --peer-chaincodedev mode, you still have to install the
chaincode so the life-cycle system chaincode can go through its checks normally.
This requirement may be removed in future when in --peer-chaincodedev mode.

We’ll leverage the CLI container to drive these calls.

docker exec -it cli bash

peer chaincode install -p chaincodedev/chaincode/sacc -n mycc -v 0
peer chaincode instantiate -n mycc -v 0 -c '{"Args":["a","10"]}' -C myc

Now issue an invoke to change the value of “a” to “20”.

peer chaincode invoke -n mycc -c '{"Args":["set", "a", "20"]}' -C myc

Finally, query a. We should see a value of 20.

peer chaincode query -n mycc -c '{"Args":["query","a"]}' -C myc

Testing new chaincode

By default, we mount only sacc. However, you can easily test different
chaincodes by adding them to the chaincode subdirectory and relaunching
your network. At this point they will be accessible in your chaincode container.

Chaincode encryption

In certain scenarios, it may be useful to encrypt values associated with a key
in their entirety or simply in part. For example, if a person’s social security
number or address was being written to the ledger, then you likely would not want
this data to appear in plaintext. Chaincode encryption is achieved by leveraging
the entities extension [https://github.com/hyperledger/fabric/tree/master/core/chaincode/shim/ext/entities]
which is a BCCSP wrapper with commodity factories and functions to perform cryptographic
operations such as encryption and elliptic curve digital signatures. For example,
to encrypt, the invoker of a chaincode passes in a cryptographic key via the
transient field. The same key may then be used for subsequent query operations, allowing
for proper decryption of the encrypted state values.

For more information and samples, see the
Encc Example [https://github.com/hyperledger/fabric/tree/master/examples/chaincode/go/enccc_example]
within the fabric/examples directory. Pay specific attention to the utils.go
helper program. This utility loads the chaincode shim APIs and Entities extension
and builds a new class of functions (e.g. encryptAndPutState & getStateAndDecrypt)
that the sample encryption chaincode then leverages. As such, the chaincode can
now marry the basic shim APIs of Get and Put with the added functionality of
Encrypt and Decrypt.

Managing external dependencies for chaincode written in Go

If your chaincode requires packages not provided by the Go standard library, you will need
to include those packages with your chaincode. There are many tools available [https://github.com/golang/go/wiki/PackageManagementTools]
for managing (or “vendoring”) these dependencies. The following demonstrates how to use
govendor:

govendor init
govendor add +external // Add all external package, or
govendor add github.com/external/pkg // Add specific external package

This imports the external dependencies into a local vendor directory. peer chaincode package
and peer chaincode install operations will then include code associated with the
dependencies into the chaincode package.

 Chaincode for Operators

Chaincode for Operators

What is Chaincode?

Chaincode is a program, written in Go [https://golang.org], node.js [https://nodejs.org],
or Java [https://java.com/en/] that implements a prescribed interface.
Chaincode runs in a secured Docker container isolated from the endorsing peer
process. Chaincode initializes and manages ledger state through transactions
submitted by applications.

A chaincode typically handles business logic agreed to by members of the
network, so it may be considered as a “smart contract”. State created by a
chaincode is scoped exclusively to that chaincode and can’t be accessed
directly by another chaincode. However, within the same network, given
the appropriate permission a chaincode may invoke another chaincode to
access its state.

In the following sections, we will explore chaincode through the eyes of a
blockchain network operator, Noah. For Noah’s interests, we will focus
on chaincode lifecycle operations; the process of packaging, installing,
instantiating and upgrading the chaincode as a function of the chaincode’s
operational lifecycle within a blockchain network.

Chaincode lifecycle

The Hyperledger Fabric API enables interaction with the various nodes
in a blockchain network - the peers, orderers and MSPs - and it also allows
one to package, install, instantiate and upgrade chaincode on the endorsing
peer nodes. The Hyperledger Fabric language-specific SDKs
abstract the specifics of the Hyperledger Fabric API to facilitate
application development, though it can be used to manage a chaincode’s
lifecycle. Additionally, the Hyperledger Fabric API can be accessed
directly via the CLI, which we will use in this document.

We provide four commands to manage a chaincode’s lifecycle: package,
install, instantiate, and upgrade. In a future release, we are
considering adding stop and start transactions to disable and re-enable
a chaincode without having to actually uninstall it. After a chaincode has
been successfully installed and instantiated, the chaincode is active (running)
and can process transactions via the invoke transaction. A chaincode may be
upgraded any time after it has been installed.

Packaging

The chaincode package consists of 3 parts:

	the chaincode, as defined by ChaincodeDeploymentSpec or CDS. The CDS
defines the chaincode package in terms of the code and other properties
such as name and version,

	an optional instantiation policy which can be syntactically described
by the same policy used for endorsement and described in
Endorsement policies, and

	a set of signatures by the entities that “own” the chaincode.

The signatures serve the following purposes:

	to establish an ownership of the chaincode,

	to allow verification of the contents of the package, and

	to allow detection of package tampering.

The creator of the instantiation transaction of the chaincode on a channel is
validated against the instantiation policy of the chaincode.

Creating the package

There are two approaches to packaging chaincode. One for when you want to have
multiple owners of a chaincode, and hence need to have the chaincode package
signed by multiple identities. This workflow requires that we initially create a
signed chaincode package (a SignedCDS) which is subsequently passed serially
to each of the other owners for signing.

The simpler workflow is for when you are deploying a SignedCDS that has only the
signature of the identity of the node that is issuing the install
transaction.

We will address the more complex case first. However, you may skip ahead to the
Installing chaincode section below if you do not need to worry about multiple owners
just yet.

To create a signed chaincode package, use the following command:

peer chaincode package -n mycc -p github.com/hyperledger/fabric/examples/chaincode/go/example02/cmd -v 0 -s -S -i "AND('OrgA.admin')" ccpack.out

The -s option creates a package that can be signed by multiple owners as
opposed to simply creating a raw CDS. When -s is specified, the -S
option must also be specified if other owners are going to need to sign.
Otherwise, the process will create a SignedCDS that includes only the
instantiation policy in addition to the CDS.

The -S option directs the process to sign the package
using the MSP identified by the value of the localMspid property in
core.yaml.

The -S option is optional. However if a package is created without a
signature, it cannot be signed by any other owner using the
signpackage command.

The optional -i option allows one to specify an instantiation policy
for the chaincode. The instantiation policy has the same format as an
endorsement policy and specifies which identities can instantiate the
chaincode. In the example above, only the admin of OrgA is allowed to
instantiate the chaincode. If no policy is provided, the default policy
is used, which only allows the admin identity of the peer’s MSP to
instantiate chaincode.

Package signing

A chaincode package that was signed at creation can be handed over to other
owners for inspection and signing. The workflow supports out-of-band signing
of chaincode package.

The
ChaincodeDeploymentSpec [https://github.com/hyperledger/fabric/blob/master/protos/peer/chaincode.proto#L78]
may be optionally be signed by the collective owners to create a
SignedChaincodeDeploymentSpec [https://github.com/hyperledger/fabric/blob/master/protos/peer/signed_cc_dep_spec.proto#L26]
(or SignedCDS). The SignedCDS contains 3 elements:

	The CDS contains the source code, the name, and version of the chaincode.

	An instantiation policy of the chaincode, expressed as endorsement policies.

	The list of chaincode owners, defined by means of
Endorsement [https://github.com/hyperledger/fabric/blob/master/protos/peer/proposal_response.proto#L111].

Note

Note that this endorsement policy is determined out-of-band to
provide proper MSP principals when the chaincode is instantiated
on some channels. If the instantiation policy is not specified,
the default policy is any MSP administrator of the channel.

Each owner endorses the ChaincodeDeploymentSpec by combining it
with that owner’s identity (e.g. certificate) and signing the combined
result.

A chaincode owner can sign a previously created signed package using the
following command:

peer chaincode signpackage ccpack.out signedccpack.out

Where ccpack.out and signedccpack.out are the input and output
packages, respectively. signedccpack.out contains an additional
signature over the package signed using the Local MSP.

Installing chaincode

The install transaction packages a chaincode’s source code into a prescribed
format called a ChaincodeDeploymentSpec (or CDS) and installs it on a
peer node that will run that chaincode.

Note

You must install the chaincode on each endorsing peer node
of a channel that will run your chaincode.

When the install API is given simply a ChaincodeDeploymentSpec,
it will default the instantiation policy and include an empty owner list.

Note

Chaincode should only be installed on endorsing peer nodes of the
owning members of the chaincode to protect the confidentiality of
the chaincode logic from other members on the network. Those members
without the chaincode, can’t be the endorsers of the chaincode’s
transactions; that is, they can’t execute the chaincode. However,
they can still validate and commit the transactions to the ledger.

To install a chaincode, send a SignedProposal [https://github.com/hyperledger/fabric/blob/master/protos/peer/proposal.proto#L104]
to the lifecycle system chaincode (LSCC) described in the System Chaincode
section. For example, to install the sacc sample chaincode described
in section Simple Asset Chaincode
using the CLI, the command would look like the following:

peer chaincode install -n asset_mgmt -v 1.0 -p sacc

The CLI internally creates the SignedChaincodeDeploymentSpec for sacc and
sends it to the local peer, which calls the Install method on the LSCC. The
argument to the -p option specifies the path to the chaincode, which must be
located within the source tree of the user’s GOPATH, e.g.
$GOPATH/src/sacc. Note if using -l node or -l java for node chaincode
or java chaincode, use -p with the absolute path of the chaincode location.
See the Commands Reference for a complete description of the command options.

Note that in order to install on a peer, the signature of the SignedProposal
must be from 1 of the peer’s local MSP administrators.

Instantiate

The instantiate transaction invokes the lifecycle System Chaincode
(LSCC) to create and initialize a chaincode on a channel. This is a
chaincode-channel binding process: a chaincode may be bound to any number of
channels and operate on each channel individually and independently. In other
words, regardless of how many other channels on which a chaincode might be
installed and instantiated, state is kept isolated to the channel to which
a transaction is submitted.

The creator of an instantiate transaction must satisfy the instantiation
policy of the chaincode included in SignedCDS and must also be a writer on the
channel, which is configured as part of the channel creation. This is important
for the security of the channel to prevent rogue entities from deploying
chaincodes or tricking members to execute chaincodes on an unbound channel.

For example, recall that the default instantiation policy is any channel MSP
administrator, so the creator of a chaincode instantiate transaction must be a
member of the channel administrators. When the transaction proposal arrives at
the endorser, it verifies the creator’s signature against the instantiation
policy. This is done again during the transaction validation before committing
it to the ledger.

The instantiate transaction also sets up the endorsement policy for that
chaincode on the channel. The endorsement policy describes the attestation
requirements for the transaction result to be accepted by members of the
channel.

For example, using the CLI to instantiate the sacc chaincode and initialize
the state with john and 0, the command would look like the following:

peer chaincode instantiate -n sacc -v 1.0 -c '{"Args":["john","0"]}' -P "AND ('Org1.member','Org2.member')"

Note

Note the endorsement policy (CLI uses polish notation), which requires an
endorsement from both a member of Org1 and Org2 for all transactions to
sacc. That is, both Org1 and Org2 must sign the
result of executing the Invoke on sacc for the transactions to
be valid.

After being successfully instantiated, the chaincode enters the active state on
the channel and is ready to process any transaction proposals of type
ENDORSER_TRANSACTION [https://github.com/hyperledger/fabric/blob/master/protos/common/common.proto#L42].
The transactions are processed concurrently as they arrive at the endorsing
peer.

Upgrade

A chaincode may be upgraded any time by changing its version, which is
part of the SignedCDS. Other parts, such as owners and instantiation policy
are optional. However, the chaincode name must be the same; otherwise it
would be considered as a totally different chaincode.

Prior to upgrade, the new version of the chaincode must be installed on
the required endorsers. Upgrade is a transaction similar to the instantiate
transaction, which binds the new version of the chaincode to the channel. Other
channels bound to the old version of the chaincode still run with the old
version. In other words, the upgrade transaction only affects one channel
at a time, the channel to which the transaction is submitted.

Note

Note that since multiple versions of a chaincode may be active
simultaneously, the upgrade process doesn’t automatically remove the
old versions, so user must manage this for the time being.

There’s one subtle difference with the instantiate transaction: the
upgrade transaction is checked against the current chaincode instantiation
policy, not the new policy (if specified). This is to ensure that only existing
members specified in the current instantiation policy may upgrade the chaincode.

Note

Note that during upgrade, the chaincode Init function is called to
perform any data related updates or re-initialize it, so care must be
taken to avoid resetting states when upgrading chaincode.

Stop and Start

Note that stop and start lifecycle transactions have not yet been
implemented. However, you may stop a chaincode manually by removing the
chaincode container and the SignedCDS package from each of the endorsers. This
is done by deleting the chaincode’s container on each of the hosts or virtual
machines on which the endorsing peer nodes are running, and then deleting
the SignedCDS from each of the endorsing peer nodes:

Note

TODO - in order to delete the CDS from the peer node, you would need
to enter the peer node’s container, first. We really need to provide
a utility script that can do this.

docker rm -f <container id>
rm /var/hyperledger/production/chaincodes/<ccname>:<ccversion>

Stop would be useful in the workflow for doing upgrade in controlled manner,
where a chaincode can be stopped on a channel on all peers before issuing an
upgrade.

System chaincode

System chaincode has the same programming model except that it runs within the
peer process rather than in an isolated container like normal chaincode.
Therefore, system chaincode is built into the peer executable and doesn’t follow
the same lifecycle described above. In particular, install, instantiate
and upgrade do not apply to system chaincodes.

The purpose of system chaincode is to shortcut gRPC communication cost between
peer and chaincode, and tradeoff the flexibility in management. For example, a
system chaincode can only be upgraded with the peer binary. It must also
register with a fixed set of parameters [https://github.com/hyperledger/fabric/blob/master/core/scc/importsysccs.go]
compiled in and doesn’t have endorsement policies or endorsement policy
functionality.

System chaincode is used in Hyperledger Fabric to implement a number of
system behaviors so that they can be replaced or modified as appropriate
by a system integrator.

The current list of system chaincodes:

	LSCC [https://github.com/hyperledger/fabric/tree/master/core/scc/lscc]
Lifecycle system chaincode handles lifecycle requests described above.

	CSCC [https://github.com/hyperledger/fabric/tree/master/core/scc/cscc]
Configuration system chaincode handles channel configuration on the peer side.

	QSCC [https://github.com/hyperledger/fabric/tree/master/core/scc/qscc]
Query system chaincode provides ledger query APIs such as getting blocks and
transactions.

The former system chaincodes for endorsement and validation have been replaced
by the pluggable endorsement and validation function as described by the
Pluggable transaction endorsement and validation documentation.

Extreme care must be taken when modifying or replacing these system chaincodes,
especially LSCC.

 System Chaincode Plugins

System Chaincode Plugins

System chaincodes are specialized chaincodes that run as part of the peer process
as opposed to user chaincodes that run in separate docker containers. As
such they have more access to resources in the peer and can be used for
implementing features that are difficult or impossible to be implemented through
user chaincodes. Examples of System Chaincodes include QSCC (Query System Chaincode)
for ledger and other Fabric-related queries, CSCC (Configuration System Chaincode)
which helps regulate access control, and LSCC (Lifecycle System Chaincode).

Unlike a user chaincode, a system chaincode is not installed and instantiated
using proposals from SDKs or CLI. It is registered and deployed by the peer at
start-up.

System chaincodes can be linked to a peer in two ways: statically, and dynamically
using Go plugins. This tutorial will outline how to develop and load system chaincodes
as plugins.

Developing Plugins

A system chaincode is a program written in Go [https://golang.org] and loaded
using the Go plugin [https://golang.org/pkg/plugin] package.

A plugin includes a main package with exported symbols and is built with the command
go build -buildmode=plugin.

Every system chaincode must implement the Chaincode Interface [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#Chaincode]
and export a constructor method that matches the signature func New() shim.Chaincode
in the main package. An example can be found in the repository at examples/plugin/scc.

Existing chaincodes such as the QSCC can also serve as templates for certain
features, such as access control, that are typically implemented through
system chaincodes. The existing system chaincodes also serve as a reference for
best-practices on things like logging and testing.

Note

On imported packages: the Go standard library requires that a plugin must
include the same version of imported packages as the host application
(Fabric, in this case).

Configuring Plugins

Plugins are configured in the chaincode.systemPlugin section in core.yaml:

chaincode:
 systemPlugins:
 - enabled: true
 name: mysyscc
 path: /opt/lib/syscc.so
 invokableExternal: true
 invokableCC2CC: true

A system chaincode must also be whitelisted in the chaincode.system section
in core.yaml:

chaincode:
 system:
 mysyscc: enable

 Using CouchDB

Using CouchDB

This tutorial will describe the steps required to use the CouchDB as the state
database with Hyperledger Fabric. By now, you should be familiar with Fabric
concepts and have explored some of the samples and tutorials.

The tutorial will take you through the following steps:

	Enable CouchDB in Hyperledger Fabric

	Create an index

	Add the index to your chaincode folder

	Install and instantiate the Chaincode

	Query the CouchDB State Database

	Query the CouchDB State Database With Pagination

	Update an Index

	Delete an Index

For a deeper dive into CouchDB refer to CouchDB as the State Database
and for more information on the Fabric ledger refer to the Ledger
topic. Follow the tutorial below for details on how to leverage CouchDB in your
blockchain network.

Throughout this tutorial we will use the Marbles sample [https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02/go/marbles_chaincode.go]
as our use case to demonstrate how to use CouchDB with Fabric and will deploy
Marbles to the Building Your First Network (BYFN) tutorial network. You should have
completed the task Install Samples, Binaries and Docker Images. However, running the BYFN tutorial is not
a prerequisite for this tutorial, instead the necessary commands are provided
throughout this tutorial to use the network.

Why CouchDB?

Fabric supports two types of peer databases. LevelDB is the default state
database embedded in the peer node and stores chaincode data as simple
key-value pairs and supports key, key range, and composite key queries only.
CouchDB is an optional alternate state database that supports rich
queries when chaincode data values are modeled as JSON. Rich queries are more
flexible and efficient against large indexed data stores, when you want to
query the actual data value content rather than the keys. CouchDB is a JSON
document datastore rather than a pure key-value store therefore enabling
indexing of the contents of the documents in the database.

In order to leverage the benefits of CouchDB, namely content-based JSON
queries,your data must be modeled in JSON format. You must decide whether to use
LevelDB or CouchDB before setting up your network. Switching a peer from using
LevelDB to CouchDB is not supported due to data compatibility issues. All peers
on the network must use the same database type. If you have a mix of JSON and
binary data values, you can still use CouchDB, however the binary values can
only be queried based on key, key range, and composite key queries.

Enable CouchDB in Hyperledger Fabric

CouchDB runs as a separate database process alongside the peer, therefore there
are additional considerations in terms of setup, management, and operations.
A docker image of CouchDB [https://hub.docker.com/r/hyperledger/fabric-couchdb/]
is available and we recommend that it be run on the same server as the
peer. You will need to setup one CouchDB container per peer
and update each peer container by changing the configuration found in
core.yaml to point to the CouchDB container. The core.yaml
file must be located in the directory specified by the environment variable
FABRIC_CFG_PATH:

	For docker deployments, core.yaml is pre-configured and located in the peer
container FABRIC_CFG_PATH folder. However when using docker environments,
you typically pass environment variables by editing the
docker-compose-couch.yaml to override the core.yaml

	For native binary deployments, core.yaml is included with the release artifact
distribution.

Edit the stateDatabase section of core.yaml. Specify CouchDB as the
stateDatabase and fill in the associated couchDBConfig properties. For
more details on configuring CouchDB to work with fabric, refer here [http://hyperledger-fabric.readthedocs.io/en/master/couchdb_as_state_database.html#couchdb-configuration].
To view an example of a core.yaml file configured for CouchDB, examine the
BYFN docker-compose-couch.yaml in the HyperLedger/fabric-samples/first-network
directory.

Create an index

Why are indexes important?

Indexes allow a database to be queried without having to examine every row
with every query, making them run faster and more efficiently. Normally,
indexes are built for frequently occurring query criteria allowing the data to
be queried more efficiently. To leverage the major benefit of CouchDB – the
ability to perform rich queries against JSON data – indexes are not required,
but they are strongly recommended for performance. Also, if sorting is required
in a query, CouchDB requires an index of the sorted fields.

Note

Rich queries that do not have an index will work but may throw a warning
in the CouchDB log that the index was not found. However, if a rich query
includes a sort specification, then an index on that field is required;
otherwise, the query will fail and an error will be thrown.

To demonstrate building an index, we will use the data from the Marbles
sample [https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02/go/marbles_chaincode.go].
In this example, the Marbles data structure is defined as:

type marble struct {
 ObjectType string `json:"docType"` //docType is used to distinguish the various types of objects in state database
 Name string `json:"name"` //the field tags are needed to keep case from bouncing around
 Color string `json:"color"`
 Size int `json:"size"`
 Owner string `json:"owner"`
}

In this structure, the attributes (docType, name, color, size,
owner) define the ledger data associated with the asset. The attribute
docType is a pattern used in the chaincode to differentiate different data
types that may need to be queried separately. When using CouchDB, it
recommended to include this docType attribute to distinguish each type of
document in the chaincode namespace. (Each chaincode is represented as its own
CouchDB database, that is, each chaincode has its own namespace for keys.)

With respect to the Marbles data structure, docType is used to identify
that this document/asset is a marble asset. Potentially there could be other
documents/assets in the chaincode database. The documents in the database are
searchable against all of these attribute values.

When defining an index for use in chaincode queries, each one must be defined
in its own text file with the extension *.json and the index definition must
be formatted in the CouchDB index JSON format.

To define an index, three pieces of information are required:

	fields: these are the frequently queried fields

	name: name of the index

	type: always json in this context

For example, a simple index named foo-index for a field named foo.

{
 "index": {
 "fields": ["foo"]
 },
 "name" : "foo-index",
 "type" : "json"
}

Optionally the design document attribute ddoc can be specified on the index
definition. A design document [http://guide.couchdb.org/draft/design.html] is
CouchDB construct designed to contain indexes. Indexes can be grouped into
design documents for efficiency but CouchDB recommends one index per design
document.

Tip

When defining an index it is a good practice to include the ddoc
attribute and value along with the index name. It is important to
include this attribute to ensure that you can update the index later
if needed. Also it gives you the ability to explicitly specify which
index to use on a query.

Here is another example of an index definition from the Marbles sample with
the index name indexOwner using multiple fields docType and owner
and includes the ddoc attribute:

{
 "index":{
 "fields":["docType","owner"] // Names of the fields to be queried
 },
 "ddoc":"indexOwnerDoc", // (optional) Name of the design document in which the index will be created.
 "name":"indexOwner",
 "type":"json"
}

In the example above, if the design document indexOwnerDoc does not already
exist, it is automatically created when the index is deployed. An index can be
constructed with one or more attributes specified in the list of fields and
any combination of attributes can be specified. An attribute can exist in
multiple indexes for the same docType. In the following example, index1
only includes the attribute owner, index2 includes the attributes
owner and color and index3 includes the attributes owner, color and
size. Also, notice each index definition has its own ddoc value, following
the CouchDB recommended practice.

{
 "index":{
 "fields":["owner"] // Names of the fields to be queried
 },
 "ddoc":"index1Doc", // (optional) Name of the design document in which the index will be created.
 "name":"index1",
 "type":"json"
}

{
 "index":{
 "fields":["owner", "color"] // Names of the fields to be queried
 },
 "ddoc":"index2Doc", // (optional) Name of the design document in which the index will be created.
 "name":"index2",
 "type":"json"
}

{
 "index":{
 "fields":["owner", "color", "size"] // Names of the fields to be queried
 },
 "ddoc":"index3Doc", // (optional) Name of the design document in which the index will be created.
 "name":"index3",
 "type":"json"
}

In general, you should model index fields to match the fields that will be used
in query filters and sorts. For more details on building an index in JSON
format refer to the CouchDB documentation [http://docs.couchdb.org/en/latest/api/database/find.html#db-index].

A final word on indexing, Fabric takes care of indexing the documents in the
database using a pattern called index warming. CouchDB does not typically
index new or updated documents until the next query. Fabric ensures that
indexes stay ‘warm’ by requesting an index update after every block of data is
committed. This ensures queries are fast because they do not have to index
documents before running the query. This process keeps the index current
and refreshed every time new records are added to the state database.

Add the index to your chaincode folder

Once you finalize an index, it is ready to be packaged with your chaincode for
deployment by being placed alongside it in the appropriate metadata folder.

If your chaincode installation and instantiation uses the Hyperledger
Fabric Node SDK, the JSON index files can be located in any folder as long
as it conforms to this directory structure [https://fabric-sdk-node.github.io/tutorial-metadata-chaincode.html].
During the chaincode installation using the client.installChaincode() API,
include the attribute (metadataPath) in the installation request [https://fabric-sdk-node.github.io/global.html#ChaincodeInstallRequest].
The value of the metadataPath is a string representing the absolute path to the
directory structure containing the JSON index file(s).

Alternatively, if you are using the
peer-commands to install and instantiate the chaincode, then the JSON
index files must be located under the path META-INF/statedb/couchdb/indexes
which is located inside the directory where the chaincode resides.

The Marbles sample [https://github.com/hyperledger/fabric-samples/tree/master/chaincode/marbles02/go] below illustrates how the index
is packaged with the chaincode which will be installed using the peer commands.

[image: Marbles Chaincode Index Package]

Start the network

Try it yourself

Before installing and instantiating the marbles chaincode, we need to start
up the BYFN network. For the sake of this tutorial, we want to operate
from a known initial state. The following command will kill any active
or stale docker containers and remove previously generated artifacts.
Therefore let’s run the following command to clean up any
previous environments:

cd fabric-samples/first-network
./byfn.sh down

Now start up the BYFN network with CouchDB by running the following command:

./byfn.sh up -c mychannel -s couchdb

This will create a simple Fabric network consisting of a single channel named
mychannel with two organizations (each maintaining two peer nodes) and an
ordering service while using CouchDB as the state database.

Install and instantiate the Chaincode

Client applications interact with the blockchain ledger through chaincode. As
such we need to install the chaincode on every peer that will
execute and endorse our transactions and instantiate the chaincode on the
channel. In the previous section, we demonstrated how to package the chaincode
so they should be ready for deployment.

Chaincode is installed onto a peer and then instantiated onto the channel using
peer-commands.

	Use the peer chaincode install [http://hyperledger-fabric.readthedocs.io/en/master/commands/peerchaincode.html?%20chaincode%20instantiate#peer-chaincode-install] command to install the Marbles chaincode on a peer.

Try it yourself

Assuming you have started the BYFN network, navigate into the CLI
container using the command:

docker exec -it cli bash

Use the following command to install the Marbles chaincode from the git
repository onto a peer in your BYFN network. The CLI container defaults
to using peer0 of org1:

peer chaincode install -n marbles -v 1.0 -p github.com/chaincode/marbles02/go

2. Issue the peer chaincode instantiate [http://hyperledger-fabric.readthedocs.io/en/master/commands/peerchaincode.html?%20chaincode%20instantiate#peer-chaincode-instantiate] command to instantiate the
chaincode on a channel.

Try it yourself

To instantiate the Marbles sample on the BYFN channel mychannel
run the following command:

export CHANNEL_NAME=mychannel
peer chaincode instantiate -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n marbles -v 1.0 -c '{"Args":["init"]}' -P "OR ('Org0MSP.peer','Org1MSP.peer')"

Verify index was deployed

Indexes will be deployed to each peer’s CouchDB state database once the
chaincode is both installed on the peer and instantiated on the channel. You
can verify that the CouchDB index was created successfully by examining the
peer log in the Docker container.

Try it yourself

To view the logs in the peer docker container,
open a new Terminal window and run the following command to grep for message
confirmation that the index was created.

docker logs peer0.org1.example.com 2>&1 | grep "CouchDB index"

You should see a result that looks like the following:

[couchdb] CreateIndex -> INFO 0be Created CouchDB index [indexOwner] in state database [mychannel_marbles] using design document [_design/indexOwnerDoc]

Note

If Marbles was not installed on the BYFN peer peer0.org1.example.com,
you may need to replace it with the name of a different peer where
Marbles was installed.

Query the CouchDB State Database

Now that the index has been defined in the JSON file and deployed alongside
the chaincode, chaincode functions can execute JSON queries against the CouchDB
state database, and thereby peer commands can invoke the chaincode functions.

Specifying an index name on a query is optional. If not specified, and an index
already exists for the fields being queried, the existing index will be
automatically used.

Tip

It is a good practice to explicitly include an index name on a
query using the use_index keyword. Without it, CouchDB may pick a
less optimal index. Also CouchDB may not use an index at all and you
may not realize it, at the low volumes during testing. Only upon
higher volumes you may realize slow performance because CouchDB is not
using an index and you assumed it was.

Build the query in chaincode

You can perform complex rich queries against the chaincode data values using
the CouchDB JSON query language within chaincode. As we explored above, the
marbles02 sample chaincode [https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02/go/marbles_chaincode.go]
includes an index and rich queries are defined in the functions - queryMarbles
and queryMarblesByOwner:

	queryMarbles –

Example of an ad hoc rich query. This is a query
where a (selector) string can be passed into the function. This query
would be useful to client applications that need to dynamically build
their own selectors at runtime. For more information on selectors refer
to CouchDB selector syntax [http://docs.couchdb.org/en/latest/api/database/find.html#find-selectors].

	queryMarblesByOwner –

Example of a parameterized query where the
query logic is baked into the chaincode. In this case the function accepts
a single argument, the marble owner. It then queries the state database for
JSON documents matching the docType of “marble” and the owner id using the
JSON query syntax.

Run the query using the peer command

In absence of a client application to test rich queries defined in chaincode,
peer commands can be used. Peer commands run from the command line inside the
docker container. We will customize the peer chaincode query [http://hyperledger-fabric.readthedocs.io/en/master/commands/peerchaincode.html?%20chaincode%20query#peer-chaincode-query]
command to use the Marbles index indexOwner and query for all marbles owned
by “tom” using the queryMarbles function.

Try it yourself

Before querying the database, we should add some data. Run the following
command in the peer container to create a marble owned by “tom”:

peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["initMarble","marble1","blue","35","tom"]}'

After an index has been deployed during chaincode instantiation, it will
automatically be utilized by chaincode queries. CouchDB can determine which
index to use based on the fields being queried. If an index exists for the
query criteria it will be used. However the recommended approach is to
specify the use_index keyword on the query. The peer command below is an
example of how to specify the index explicitly in the selector syntax by
including the use_index keyword:

// Rich Query with index name explicitly specified:
peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["queryMarbles", "{\"selector\":{\"docType\":\"marble\",\"owner\":\"tom\"}, \"use_index\":[\"_design/indexOwnerDoc\", \"indexOwner\"]}"]}'

Delving into the query command above, there are three arguments of interest:

	queryMarbles

Name of the function in the Marbles chaincode. Notice a shim [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim]
shim.ChaincodeStubInterface is used to access and modify the ledger. The
getQueryResultForQueryString() passes the queryString to the shim API getQueryResult().

func (t *SimpleChaincode) queryMarbles(stub shim.ChaincodeStubInterface, args []string) pb.Response {

 // 0
 // "queryString"
 if len(args) < 1 {
 return shim.Error("Incorrect number of arguments. Expecting 1")
 }

 queryString := args[0]

 queryResults, err := getQueryResultForQueryString(stub, queryString)
 if err != nil {
 return shim.Error(err.Error())
 }
 return shim.Success(queryResults)
}

	{"selector":{"docType":"marble","owner":"tom"}

This is an example of an ad hoc selector string which finds all documents
of type marble where the owner attribute has a value of tom.

	"use_index":["_design/indexOwnerDoc", "indexOwner"]

Specifies both the design doc name indexOwnerDoc and index name
indexOwner. In this example the selector query explicitly includes the
index name, specified by using the use_index keyword. Recalling the
index definition above Create an index, it contains a design doc,
"ddoc":"indexOwnerDoc". With CouchDB, if you plan to explicitly include
the index name on the query, then the index definition must include the
ddoc value, so it can be referenced with the use_index keyword.

The query runs successfully and the index is leveraged with the following results:

Query Result: [{"Key":"marble1", "Record":{"color":"blue","docType":"marble","name":"marble1","owner":"tom","size":35}}]

Query the CouchDB State Database With Pagination

When large result sets are returned by CouchDB queries, a set of APIs is
available which can be called by chaincode to paginate the list of results.
Pagination provides a mechanism to partition the result set by
specifying a pagesize and a start point – a bookmark which indicates
where to begin the result set. The client application iteratively invokes the
chaincode that executes the query until no more results are returned. For more information refer to
this topic on pagination with CouchDB [http://hyperledger-fabric.readthedocs.io/en/master/couchdb_as_state_database.html#couchdb-pagination].

We will use the Marbles sample [https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02/go/marbles_chaincode.go]
function queryMarblesWithPagination to demonstrate how
pagination can be implemented in chaincode and the client application.

	queryMarblesWithPagination –

Example of an ad hoc rich query with pagination. This is a query
where a (selector) string can be passed into the function similar to the
above example. In this case, a pageSize is also included with the query as
well as a bookmark.

In order to demonstrate pagination, more data is required. This example assumes
that you have already added marble1 from above. Run the following commands in
the peer container to create four more marbles owned by “tom”, to create a
total of five marbles owned by “tom”:

Try it yourself

peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["initMarble","marble2","yellow","35","tom"]}'
peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["initMarble","marble3","green","20","tom"]}'
peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["initMarble","marble4","purple","20","tom"]}'
peer chaincode invoke -o orderer.example.com:7050 --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["initMarble","marble5","blue","40","tom"]}'

In addition to the arguments for the query in the previous example,
queryMarblesWithPagination adds pagesize and bookmark. PageSize
specifies the number of records to return per query. The bookmark is an
“anchor” telling couchDB where to begin the page. (Each page of results returns
a unique bookmark.)

	queryMarblesWithPagination

Name of the function in the Marbles chaincode. Notice a shim [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim]
shim.ChaincodeStubInterface is used to access and modify the ledger. The
getQueryResultForQueryStringWithPagination() passes the queryString along

with the pagesize and bookmark to the shim API GetQueryResultWithPagination().

func (t *SimpleChaincode) queryMarblesWithPagination(stub shim.ChaincodeStubInterface, args []string) pb.Response {

 // 0
 // "queryString"
 if len(args) < 3 {
 return shim.Error("Incorrect number of arguments. Expecting 3")
 }

 queryString := args[0]
 //return type of ParseInt is int64
 pageSize, err := strconv.ParseInt(args[1], 10, 32)
 if err != nil {
 return shim.Error(err.Error())
 }
 bookmark := args[2]

 queryResults, err := getQueryResultForQueryStringWithPagination(stub, queryString, int32(pageSize), bookmark)
 if err != nil {
 return shim.Error(err.Error())
 }
 return shim.Success(queryResults)
}

The following example is a peer command which calls queryMarblesWithPagination
with a pageSize of 3 and no bookmark specified.

Tip

When no bookmark is specified, the query starts with the “first”
page of records.

Try it yourself

// Rich Query with index name explicitly specified and a page size of 3:
peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["queryMarblesWithPagination", "{\"selector\":{\"docType\":\"marble\",\"owner\":\"tom\"}, \"use_index\":[\"_design/indexOwnerDoc\", \"indexOwner\"]}","3",""]}'

The following response is received (carriage returns added for clarity), three
of the five marbles are returned because the pagsize was set to 3:

[{"Key":"marble1", "Record":{"color":"blue","docType":"marble","name":"marble1","owner":"tom","size":35}},
 {"Key":"marble2", "Record":{"color":"yellow","docType":"marble","name":"marble2","owner":"tom","size":35}},
 {"Key":"marble3", "Record":{"color":"green","docType":"marble","name":"marble3","owner":"tom","size":20}}]
[{"ResponseMetadata":{"RecordsCount":"3",
"Bookmark":"g1AAAABLeJzLYWBgYMpgSmHgKy5JLCrJTq2MT8lPzkzJBYqz5yYWJeWkGoOkOWDSOSANIFk2iCyIyVySn5uVBQAGEhRz"}}]

Note

Bookmarks are uniquely generated by CouchDB for each query and
represent a placeholder in the result set. Pass the
returned bookmark on the subsequent iteration of the query to
retrieve the next set of results.

The following is a peer command to call queryMarblesWithPagination with a
pageSize of 3. Notice this time, the query includes the bookmark returned
from the previous query.

Try it yourself

peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["queryMarblesWithPagination", "{\"selector\":{\"docType\":\"marble\",\"owner\":\"tom\"}, \"use_index\":[\"_design/indexOwnerDoc\", \"indexOwner\"]}","3","g1AAAABLeJzLYWBgYMpgSmHgKy5JLCrJTq2MT8lPzkzJBYqz5yYWJeWkGoOkOWDSOSANIFk2iCyIyVySn5uVBQAGEhRz"]}'

The following response is received (carriage returns added for clarity). The
last two records are retrieved:

[{"Key":"marble4", "Record":{"color":"purple","docType":"marble","name":"marble4","owner":"tom","size":20}},
 {"Key":"marble5", "Record":{"color":"blue","docType":"marble","name":"marble5","owner":"tom","size":40}}]
[{"ResponseMetadata":{"RecordsCount":"2",
"Bookmark":"g1AAAABLeJzLYWBgYMpgSmHgKy5JLCrJTq2MT8lPzkzJBYqz5yYWJeWkmoKkOWDSOSANIFk2iCyIyVySn5uVBQAGYhR1"}}]

The final command is a peer command to call queryMarblesWithPagination with
a pageSize of 3 and with the bookmark from the previous query.

Try it yourself

peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["queryMarblesWithPagination", "{\"selector\":{\"docType\":\"marble\",\"owner\":\"tom\"}, \"use_index\":[\"_design/indexOwnerDoc\", \"indexOwner\"]}","3","g1AAAABLeJzLYWBgYMpgSmHgKy5JLCrJTq2MT8lPzkzJBYqz5yYWJeWkmoKkOWDSOSANIFk2iCyIyVySn5uVBQAGYhR1"]}'

The following response is received (carriage returns added for clarity).
No records are returned, indicating that all pages have been retrieved:

[]
[{"ResponseMetadata":{"RecordsCount":"0",
"Bookmark":"g1AAAABLeJzLYWBgYMpgSmHgKy5JLCrJTq2MT8lPzkzJBYqz5yYWJeWkmoKkOWDSOSANIFk2iCyIyVySn5uVBQAGYhR1"}}]

For an example of how a client application can iterate over
the result sets using pagination, search for the getQueryResultForQueryStringWithPagination
function in the Marbles sample [https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02/go/marbles_chaincode.go].

Update an Index

It may be necessary to update an index over time. The same index may exist in
subsequent versions of the chaincode that gets installed. In order for an index
to be updated, the original index definition must have included the design
document ddoc attribute and an index name. To update an index definition,
use the same index name but alter the index definition. Simply edit the index
JSON file and add or remove fields from the index. Fabric only supports the
index type JSON, changing the index type is not supported. The updated
index definition gets redeployed to the peer’s state database when the chaincode
is installed and instantiated. Changes to the index name or ddoc attributes
will result in a new index being created and the original index remains
unchanged in CouchDB until it is removed.

Note

If the state database has a significant volume of data, it will take
some time for the index to be re-built, during which time chaincode
invokes that issue queries may fail or timeout.

Iterating on your index definition

If you have access to your peer’s CouchDB state database in a development
environment, you can iteratively test various indexes in support of
your chaincode queries. Any changes to chaincode though would require
redeployment. Use the CouchDB Fauxton interface [http://docs.couchdb.org/en/latest/fauxton/index.html] or a command
line curl utility to create and update indexes.

Note

The Fauxton interface is a web UI for the creation, update, and
deployment of indexes to CouchDB. If you want to try out this
interface, there is an example of the format of the Fauxton version
of the index in Marbles sample. If you have deployed the BYFN network
with CouchDB, the Fauxton interface can be loaded by opening a browser
and navigating to http://localhost:5984/_utils.

Alternatively, if you prefer not use the Fauxton UI, the following is an example
of a curl command which can be used to create the index on the database
mychannel_marbles:

// Index for docType, owner.
// Example curl command line to define index in the CouchDB channel_chaincode database

curl -i -X POST -H "Content-Type: application/json" -d
 "{\"index\":{\"fields\":[\"docType\",\"owner\"]},
 \"name\":\"indexOwner\",
 \"ddoc\":\"indexOwnerDoc\",
 \"type\":\"json\"}" http://hostname:port/mychannel_marbles/_index

Note

If you are using BYFN configured with CouchDB, replace hostname:port
with localhost:5984.

Delete an Index

Index deletion is not managed by Fabric tooling. If you need to delete an index,
manually issue a curl command against the database or delete it using the
Fauxton interface.

The format of the curl command to delete an index would be:

curl -X DELETE http://localhost:5984/{database_name}/_index/{design_doc}/json/{index_name} -H "accept: */*" -H "Host: localhost:5984"

To delete the index used in this tutorial, the curl command would be:

curl -X DELETE http://localhost:5984/mychannel_marbles/_index/indexOwnerDoc/json/indexOwner -H "accept: */*" -H "Host: localhost:5984"

 Videos

Videos

Refer to the Hyperledger Fabric channel on YouTube

 Operations Guides

Operations Guides

	Upgrading to the Newest Version of Fabric

	Updating a Channel Configuration

	Membership Service Providers (MSP)

	Channel Configuration (configtx)

	Endorsement policies

	Pluggable transaction endorsement and validation

	Access Control Lists (ACL)

	MSP Implementation with Identity Mixer

	Identity Mixer MSP configuration generator (idemixgen)

	The Operations Service

	Metrics Reference

	Error handling

	Logging Control

	Securing Communication With Transport Layer Security (TLS)

	Bringing up a Kafka-based Ordering Service

 Upgrading to the Newest Version of Fabric

Upgrading to the Newest Version of Fabric

At a high level, upgrading a Fabric network from v1.3 to v1.4 can be performed
by following these steps:

	Upgrade the binaries for the ordering service, the Fabric CA, and the peers.
These upgrades may be done in parallel.

	Upgrade client SDKs.

	(Optional) Upgrade the Kafka cluster.

To help understand this process, we’ve created the Upgrading Your Network Components
tutorial that will take you through most of the major upgrade steps, including
upgrading peers and orderers. We’ve included both a
script as well as the individual steps to achieve these upgrades.

Because our tutorial leverages the Building Your First Network (BYFN) sample, it has
certain limitations (it does not use Fabric CA, for example). Therefore we have
included a section at the end of the tutorial that will show how to upgrade
your CA, Kafka clusters, CouchDB, Zookeeper, vendored chaincode shims, and Node
SDK clients.

Because there are no new Capability Requirements in v1.4, the upgrade
process does not require any channel configuration transactions.

 Updating a Channel Configuration

Updating a Channel Configuration

What is a Channel Configuration?

Channel configurations contain all of the information relevant to the
administration of a channel. Most importantly, the channel configuration
specifies which organizations are members of channel, but it also includes other
channel-wide configuration information such as channel access policies and block
batch sizes.

This configuration is stored on the ledger in a block, and is therefore
known as a configuration (config) block. Configuration blocks contain a single
configuration. The first of these blocks is known as the “genesis block” and
contains the initial configuration required to bootstrap a channel. Each time
the configuration of a channel changes it is done through a new configuration
block, with the latest configuration block representing the current channel
configuration. Orderers and peers keep the current channel configuration in
memory to facilitate all channel operations such as cutting a new block and
validating block transactions.

Because configurations are stored in blocks, updating a config happens through a
process called a “configuration transaction” (even though the process is a
little different from a normal transaction). Updating a config is a process of
pulling the config, translating into a format that humans can read, modifying it
and then submitting it for approval.

For a more in-depth look at the process for pulling a config and translating it
into JSON, check out Adding an Org to a Channel.
In this doc, we’ll be focusing on the different ways you can edit a config and
the process for getting it signed.

Editing a Config

Channels are highly configurable, but not infinitely so. Different configuration
elements have different modification policies (which specify the group of
identities required to sign the config update).

To see the scope of what’s possible to change it’s important to look at a config
in JSON format. The Adding an Org to a Channel
tutorial generates one, so if you’ve gone through that doc you can simply refer to it.
For those who have not, we’ll provide one here (for ease of readability, it might be
helpful to put this config into a viewer that supports JSON folding, like atom or
Visual Studio).

Click here to see the config

 Membership Service Providers (MSP)

Membership Service Providers (MSP)

The document serves to provide details on the setup and best practices for MSPs.

Membership Service Provider (MSP) is a component that aims to offer an
abstraction of a membership operation architecture.

In particular, MSP abstracts away all cryptographic mechanisms and protocols
behind issuing and validating certificates, and user authentication. An
MSP may define their own notion of identity, and the rules by which those
identities are governed (identity validation) and authenticated (signature
generation and verification).

A Hyperledger Fabric blockchain network can be governed by one or more MSPs.
This provides modularity of membership operations, and interoperability
across different membership standards and architectures.

In the rest of this document we elaborate on the setup of the MSP
implementation supported by Hyperledger Fabric, and discuss best practices
concerning its use.

MSP Configuration

To setup an instance of the MSP, its configuration needs to be specified
locally at each peer and orderer (to enable peer, and orderer signing),
and on the channels to enable peer, orderer, client identity validation, and
respective signature verification (authentication) by and for all channel
members.

Firstly, for each MSP a name needs to be specified in order to reference that MSP
in the network (e.g. msp1, org2, and org3.divA). This is the name under
which membership rules of an MSP representing a consortium, organization or
organization division is to be referenced in a channel. This is also referred
to as the MSP Identifier or MSP ID. MSP Identifiers are required to be unique per MSP
instance. For example, shall two MSP instances with the same identifier be
detected at the system channel genesis, orderer setup will fail.

In the case of default implementation of MSP, a set of parameters need to be
specified to allow for identity (certificate) validation and signature
verification. These parameters are deduced by
RFC5280 [http://www.ietf.org/rfc/rfc5280.txt], and include:

	A list of self-signed (X.509) certificates to constitute the root of
trust

	A list of X.509 certificates to represent intermediate CAs this provider
considers for certificate validation; these certificates ought to be
certified by exactly one of the certificates in the root of trust;
intermediate CAs are optional parameters

	A list of X.509 certificates with a verifiable certificate path to
exactly one of the certificates of the root of trust to represent the
administrators of this MSP; owners of these certificates are authorized
to request changes to this MSP configuration (e.g. root CAs, intermediate CAs)

	A list of Organizational Units that valid members of this MSP should
include in their X.509 certificate; this is an optional configuration
parameter, used when, e.g., multiple organizations leverage the same
root of trust, and intermediate CAs, and have reserved an OU field for
their members

	A list of certificate revocation lists (CRLs) each corresponding to
exactly one of the listed (intermediate or root) MSP Certificate
Authorities; this is an optional parameter

	A list of self-signed (X.509) certificates to constitute the TLS root of
trust for TLS certificate.

	A list of X.509 certificates to represent intermediate TLS CAs this provider
considers; these certificates ought to be
certified by exactly one of the certificates in the TLS root of trust;
intermediate CAs are optional parameters.

Valid identities for this MSP instance are required to satisfy the following conditions:

	They are in the form of X.509 certificates with a verifiable certificate path to
exactly one of the root of trust certificates;

	They are not included in any CRL;

	And they list one or more of the Organizational Units of the MSP configuration
in the OU field of their X.509 certificate structure.

For more information on the validity of identities in the current MSP implementation,
we refer the reader to MSP Identity Validity Rules.

In addition to verification related parameters, for the MSP to enable
the node on which it is instantiated to sign or authenticate, one needs to
specify:

	The signing key used for signing by the node (currently only ECDSA keys are
supported), and

	The node’s X.509 certificate, that is a valid identity under the
verification parameters of this MSP.

It is important to note that MSP identities never expire; they can only be revoked
by adding them to the appropriate CRLs. Additionally, there is currently no
support for enforcing revocation of TLS certificates.

How to generate MSP certificates and their signing keys?

To generate X.509 certificates to feed its MSP configuration, the application
can use Openssl [https://www.openssl.org/]. We emphasize that in Hyperledger
Fabric there is no support for certificates including RSA keys.

Alternatively one can use cryptogen tool, whose operation is explained in
Getting Started.

Hyperledger Fabric CA [http://hyperledger-fabric-ca.readthedocs.io/en/latest/]
can also be used to generate the keys and certificates needed to configure an MSP.

MSP setup on the peer & orderer side

To set up a local MSP (for either a peer or an orderer), the administrator
should create a folder (e.g. $MY_PATH/mspconfig) that contains six subfolders
and a file:

	a folder admincerts to include PEM files each corresponding to an
administrator certificate

	a folder cacerts to include PEM files each corresponding to a root
CA’s certificate

	(optional) a folder intermediatecerts to include PEM files each
corresponding to an intermediate CA’s certificate

	(optional) a file config.yaml to configure the supported Organizational Units
and identity classifications (see respective sections below).

	(optional) a folder crls to include the considered CRLs

	a folder keystore to include a PEM file with the node’s signing key;
we emphasise that currently RSA keys are not supported

	a folder signcerts to include a PEM file with the node’s X.509
certificate

	(optional) a folder tlscacerts to include PEM files each corresponding to a TLS root
CA’s certificate

	(optional) a folder tlsintermediatecerts to include PEM files each
corresponding to an intermediate TLS CA’s certificate

In the configuration file of the node (core.yaml file for the peer, and
orderer.yaml for the orderer), one needs to specify the path to the
mspconfig folder, and the MSP Identifier of the node’s MSP. The path to the
mspconfig folder is expected to be relative to FABRIC_CFG_PATH and is provided
as the value of parameter mspConfigPath for the peer, and LocalMSPDir
for the orderer. The identifier of the node’s MSP is provided as a value of
parameter localMspId for the peer and LocalMSPID for the orderer.
These variables can be overridden via the environment using the CORE prefix for
peer (e.g. CORE_PEER_LOCALMSPID) and the ORDERER prefix for the orderer (e.g.
ORDERER_GENERAL_LOCALMSPID). Notice that for the orderer setup, one needs to
generate, and provide to the orderer the genesis block of the system channel.
The MSP configuration needs of this block are detailed in the next section.

Reconfiguration of a “local” MSP is only possible manually, and requires that
the peer or orderer process is restarted. In subsequent releases we aim to
offer online/dynamic reconfiguration (i.e. without requiring to stop the node
by using a node managed system chaincode).

Organizational Units

In order to configure the list of Organizational Units that valid members of this MSP should
include in their X.509 certificate, the config.yaml file
needs to specify the organizational unit identifiers. Here is an example:

OrganizationalUnitIdentifiers:
 - Certificate: "cacerts/cacert1.pem"
 OrganizationalUnitIdentifier: "commercial"
 - Certificate: "cacerts/cacert2.pem"
 OrganizationalUnitIdentifier: "administrators"

The above example declares two organizational unit identifiers: commercial and administrators.
An MSP identity is valid if it carries at least one of these organizational unit identifiers.
The Certificate field refers to the CA or intermediate CA certificate path
under which identities, having that specific OU, should be validated.
The path is relative to the MSP root folder and cannot be empty.

Identity Classification

The default MSP implementation allows to further classify identities into clients and peers, based on the OUs
of their x509 certificates.
An identity should be classified as a client if it submits transactions, queries peers, etc.
An identity should be classified as a peer if it endorses or commits transactions.
In order to define clients and peers of a given MSP, the config.yaml file
needs to be set appropriately. Here is an example:

NodeOUs:
 Enable: true
 ClientOUIdentifier:
 Certificate: "cacerts/cacert.pem"
 OrganizationalUnitIdentifier: "client"
 PeerOUIdentifier:
 Certificate: "cacerts/cacert.pem"
 OrganizationalUnitIdentifier: "peer"

As shown above, the NodeOUs.Enable is set to true, this enables the identify classification.
Then, client (peer) identifiers are defined by setting the following properties
for the NodeOUs.ClientOUIdentifier (NodeOUs.PeerOUIdentifier) key:

	OrganizationalUnitIdentifier: Set this to the value that matches the OU that
the x509 certificate of a client (peer) should contain.

	Certificate: Set this to the CA or intermediate CA under which client (peer) identities
should be validated. The field is relative to the MSP root folder. It can be empty, meaning
that the identity’s x509 certificate can be validated under any CA defined in the MSP configuration.

When the classification is enabled, MSP administrators need
to be clients of that MSP, meaning that their x509 certificates need to carry
the OU that identifies the clients.
Notice also that, an identity can be either a client or a peer.
The two classifications are mutually exclusive. If an identity is neither a client nor a peer,
the validation will fail.

Finally, notice that for upgraded environments the 1.1 channel capability
needs to be enabled before identify classification can be used.

Channel MSP setup

At the genesis of the system, verification parameters of all the MSPs that
appear in the network need to be specified, and included in the system
channel’s genesis block. Recall that MSP verification parameters consist of
the MSP identifier, the root of trust certificates, intermediate CA and admin
certificates, as well as OU specifications and CRLs.
The system genesis block is provided to the orderers at their setup phase,
and allows them to authenticate channel creation requests. Orderers would
reject the system genesis block, if the latter includes two MSPs with the same
identifier, and consequently the bootstrapping of the network would fail.

For application channels, the verification components of only the MSPs that
govern a channel need to reside in the channel’s genesis block. We emphasize
that it is the responsibility of the application to ensure that correct
MSP configuration information is included in the genesis blocks (or the
most recent configuration block) of a channel prior to instructing one or
more of their peers to join the channel.

When bootstrapping a channel with the help of the configtxgen tool, one can
configure the channel MSPs by including the verification parameters of MSP
in the mspconfig folder, and setting that path in the relevant section in
configtx.yaml.

Reconfiguration of an MSP on the channel, including announcements of the
certificate revocation lists associated to the CAs of that MSP is achieved
through the creation of a config_update object by the owner of one of the
administrator certificates of the MSP. The client application managed by the
admin would then announce this update to the channels in which this MSP appears.

Best Practices

In this section we elaborate on best practices for MSP
configuration in commonly met scenarios.

1) Mapping between organizations/corporations and MSPs

We recommend that there is a one-to-one mapping between organizations and MSPs.
If a different type of mapping is chosen, the following needs to be to
considered:

	One organization employing various MSPs. This corresponds to the
case of an organization including a variety of divisions each represented
by its MSP, either for management independence reasons, or for privacy reasons.
In this case a peer can only be owned by a single MSP, and will not recognize
peers with identities from other MSPs as peers of the same organization. The
implication of this is that peers may share through gossip organization-scoped
data with a set of peers that are members of the same subdivision, and NOT with
the full set of providers constituting the actual organization.

	Multiple organizations using a single MSP. This corresponds to a
case of a consortium of organizations that are governed by similar
membership architecture. One needs to know here that peers would propagate
organization-scoped messages to the peers that have an identity under the
same MSP regardless of whether they belong to the same actual organization.
This is a limitation of the granularity of MSP definition, and/or of the peer’s
configuration.

2) One organization has different divisions (say organizational units), to
which it wants to grant access to different channels.

Two ways to handle this:

	Define one MSP to accommodate membership for all organization’s members.
Configuration of that MSP would consist of a list of root CAs,
intermediate CAs and admin certificates; and membership identities would
include the organizational unit (OU) a member belongs to. Policies can then
be defined to capture members of a specific OU, and these policies may
constitute the read/write policies of a channel or endorsement policies of
a chaincode. A limitation of this approach is that gossip peers would
consider peers with membership identities under their local MSP as
members of the same organization, and would consequently gossip
with them organization-scoped data (e.g. their status).

	Defining one MSP to represent each division. This would involve specifying for each
division, a set of certificates for root CAs, intermediate CAs, and admin
Certs, such that there is no overlapping certification path across MSPs.
This would mean that, for example, a different intermediate CA per subdivision
is employed. Here the disadvantage is the management of more than one
MSPs instead of one, but this circumvents the issue present in the previous
approach. One could also define one MSP for each division by leveraging an OU
extension of the MSP configuration.

3) Separating clients from peers of the same organization.

In many cases it is required that the “type” of an identity is retrievable
from the identity itself (e.g. it may be needed that endorsements are
guaranteed to have derived by peers, and not clients or nodes acting solely
as orderers).

There is limited support for such requirements.

One way to allow for this separation is to create a separate intermediate
CA for each node type - one for clients and one for peers/orderers; and
configure two different MSPs - one for clients and one for peers/orderers.
Channels this organization should be accessing would need to include
both MSPs, while endorsement policies will leverage only the MSP that
refers to the peers. This would ultimately result in the organization
being mapped to two MSP instances, and would have certain consequences
on the way peers and clients interact.

Gossip would not be drastically impacted as all peers of the same organization
would still belong to one MSP. Peers can restrict the execution of certain
system chaincodes to local MSP based policies. For
example, peers would only execute “joinChannel” request if the request is
signed by the admin of their local MSP who can only be a client (end-user
should be sitting at the origin of that request). We can go around this
inconsistency if we accept that the only clients to be members of a
peer/orderer MSP would be the administrators of that MSP.

Another point to be considered with this approach is that peers
authorize event registration requests based on membership of request
originator within their local MSP. Clearly, since the originator of the
request is a client, the request originator is always deemed to belong
to a different MSP than the requested peer and the peer would reject the
request.

4) Admin and CA certificates.

It is important to set MSP admin certificates to be different than any of the
certificates considered by the MSP for root of trust, or intermediate CAs.
This is a common (security) practice to separate the duties of management of
membership components from the issuing of new certificates, and/or validation of existing ones.

5) Blacklisting an intermediate CA.

As mentioned in previous sections, reconfiguration of an MSP is achieved by
reconfiguration mechanisms (manual reconfiguration for the local MSP instances,
and via properly constructed config_update messages for MSP instances of a channel).
Clearly, there are two ways to ensure an intermediate CA considered in an MSP is no longer
considered for that MSP’s identity validation:

	Reconfigure the MSP to no longer include the certificate of that
intermediate CA in the list of trusted intermediate CA certs. For the
locally configured MSP, this would mean that the certificate of this CA is
removed from the intermediatecerts folder.

	Reconfigure the MSP to include a CRL produced by the root of trust
which denounces the mentioned intermediate CA’s certificate.

In the current MSP implementation we only support method (1) as it is simpler
and does not require blacklisting the no longer considered intermediate CA.

6) CAs and TLS CAs

MSP identities’ root CAs and MSP TLS certificates’ root CAs (and relative intermediate CAs)
need to be declared in different folders. This is to avoid confusion between
different classes of certificates. It is not forbidden to reuse the same
CAs for both MSP identities and TLS certificates but best practices suggest
to avoid this in production.

 Channel Configuration (configtx)

Channel Configuration (configtx)

Shared configuration for a Hyperledger Fabric blockchain network is
stored in a collection configuration transactions, one per channel. Each
configuration transaction is usually referred to by the shorter name
configtx.

Channel configuration has the following important properties:

	Versioned: All elements of the configuration have an associated
version which is advanced with every modification. Further, every
committed configuration receives a sequence number.

	Permissioned: Each element of the configuration has an associated
policy which governs whether or not modification to that element is
permitted. Anyone with a copy of the previous configtx (and no
additional info) may verify the validity of a new config based on
these policies.

	Hierarchical: A root configuration group contains sub-groups, and
each group of the hierarchy has associated values and policies. These
policies can take advantage of the hierarchy to derive policies at
one level from policies of lower levels.

Anatomy of a configuration

Configuration is stored as a transaction of type HeaderType_CONFIG
in a block with no other transactions. These blocks are referred to as
Configuration Blocks, the first of which is referred to as the
Genesis Block.

The proto structures for configuration are stored in
fabric/protos/common/configtx.proto. The Envelope of type
HeaderType_CONFIG encodes a ConfigEnvelope message as the
Payload data field. The proto for ConfigEnvelope is defined
as follows:

message ConfigEnvelope {
 Config config = 1;
 Envelope last_update = 2;
}

The last_update field is defined below in the Updates to
configuration section, but is only necessary when validating the
configuration, not reading it. Instead, the currently committed
configuration is stored in the config field, containing a Config
message.

message Config {
 uint64 sequence = 1;
 ConfigGroup channel_group = 2;
}

The sequence number is incremented by one for each committed
configuration. The channel_group field is the root group which
contains the configuration. The ConfigGroup structure is recursively
defined, and builds a tree of groups, each of which contains values and
policies. It is defined as follows:

message ConfigGroup {
 uint64 version = 1;
 map<string,ConfigGroup> groups = 2;
 map<string,ConfigValue> values = 3;
 map<string,ConfigPolicy> policies = 4;
 string mod_policy = 5;
}

Because ConfigGroup is a recursive structure, it has hierarchical
arrangement. The following example is expressed for clarity in golang
notation.

// Assume the following groups are defined
var root, child1, child2, grandChild1, grandChild2, grandChild3 *ConfigGroup

// Set the following values
root.Groups["child1"] = child1
root.Groups["child2"] = child2
child1.Groups["grandChild1"] = grandChild1
child2.Groups["grandChild2"] = grandChild2
child2.Groups["grandChild3"] = grandChild3

// The resulting config structure of groups looks like:
// root:
// child1:
// grandChild1
// child2:
// grandChild2
// grandChild3

Each group defines a level in the config hierarchy, and each group has
an associated set of values (indexed by string key) and policies (also
indexed by string key).

Values are defined by:

message ConfigValue {
 uint64 version = 1;
 bytes value = 2;
 string mod_policy = 3;
}

Policies are defined by:

message ConfigPolicy {
 uint64 version = 1;
 Policy policy = 2;
 string mod_policy = 3;
}

Note that Values, Policies, and Groups all have a version and a
mod_policy. The version of an element is incremented each time
that element is modified. The mod_policy is used to govern the
required signatures to modify that element. For Groups, modification is
adding or removing elements to the Values, Policies, or Groups maps (or
changing the mod_policy). For Values and Policies, modification is
changing the Value and Policy fields respectively (or changing the
mod_policy). Each element’s mod_policy is evaluated in the
context of the current level of the config. Consider the following
example mod policies defined at Channel.Groups["Application"] (Here,
we use the golang map reference syntax, so
Channel.Groups["Application"].Policies["policy1"] refers to the base
Channel group’s Application group’s Policies map’s
policy1 policy.)

	policy1 maps to Channel.Groups["Application"].Policies["policy1"]

	Org1/policy2 maps to
Channel.Groups["Application"].Groups["Org1"].Policies["policy2"]

	/Channel/policy3 maps to Channel.Policies["policy3"]

Note that if a mod_policy references a policy which does not exist,
the item cannot be modified.

Configuration updates

Configuration updates are submitted as an Envelope message of type
HeaderType_CONFIG_UPDATE. The Payload data of the
transaction is a marshaled ConfigUpdateEnvelope. The ConfigUpdateEnvelope
is defined as follows:

message ConfigUpdateEnvelope {
 bytes config_update = 1;
 repeated ConfigSignature signatures = 2;
}

The signatures field contains the set of signatures which authorizes
the config update. Its message definition is:

message ConfigSignature {
 bytes signature_header = 1;
 bytes signature = 2;
}

The signature_header is as defined for standard transactions, while
the signature is over the concatenation of the signature_header
bytes and the config_update bytes from the ConfigUpdateEnvelope
message.

The ConfigUpdateEnvelope config_update bytes are a marshaled
ConfigUpdate message which is defined as follows:

message ConfigUpdate {
 string channel_id = 1;
 ConfigGroup read_set = 2;
 ConfigGroup write_set = 3;
}

The channel_id is the channel ID the update is bound for, this is
necessary to scope the signatures which support this reconfiguration.

The read_set specifies a subset of the existing configuration,
specified sparsely where only the version field is set and no other
fields must be populated. The particular ConfigValue value or
ConfigPolicy policy fields should never be set in the
read_set. The ConfigGroup may have a subset of its map fields
populated, so as to reference an element deeper in the config tree. For
instance, to include the Application group in the read_set, its
parent (the Channel group) must also be included in the read set,
but, the Channel group does not need to populate all of the keys,
such as the Orderer group key, or any of the values or
policies keys.

The write_set specifies the pieces of configuration which are
modified. Because of the hierarchical nature of the configuration, a
write to an element deep in the hierarchy must contain the higher level
elements in its write_set as well. However, for any element in the
write_set which is also specified in the read_set at the same
version, the element should be specified sparsely, just as in the
read_set.

For example, given the configuration:

Channel: (version 0)
 Orderer (version 0)
 Application (version 3)
 Org1 (version 2)

To submit a configuration update which modifies Org1, the
read_set would be:

Channel: (version 0)
 Application: (version 3)

and the write_set would be

Channel: (version 0)
 Application: (version 3)
 Org1 (version 3)

When the CONFIG_UPDATE is received, the orderer computes the
resulting CONFIG by doing the following:

	Verifies the channel_id and read_set. All elements in the
read_set must exist at the given versions.

	Computes the update set by collecting all elements in the
write_set which do not appear at the same version in the
read_set.

	Verifies that each element in the update set increments the version
number of the element update by exactly 1.

	Verifies that the signature set attached to the
ConfigUpdateEnvelope satisfies the mod_policy for each
element in the update set.

	Computes a new complete version of the config by applying the update
set to the current config.

	Writes the new config into a ConfigEnvelope which includes the
CONFIG_UPDATE as the last_update field and the new config
encoded in the config field, along with the incremented
sequence value.

	Writes the new ConfigEnvelope into a Envelope of type
CONFIG, and ultimately writes this as the sole transaction in a
new configuration block.

When the peer (or any other receiver for Deliver) receives this
configuration block, it should verify that the config was appropriately
validated by applying the last_update message to the current config
and verifying that the orderer-computed config field contains the
correct new configuration.

Permitted configuration groups and values

Any valid configuration is a subset of the following configuration. Here
we use the notation peer.<MSG> to define a ConfigValue whose
value field is a marshaled proto message of name <MSG> defined
in fabric/protos/peer/configuration.proto. The notations
common.<MSG>, msp.<MSG>, and orderer.<MSG> correspond
similarly, but with their messages defined in
fabric/protos/common/configuration.proto,
fabric/protos/msp/mspconfig.proto, and
fabric/protos/orderer/configuration.proto respectively.

Note, that the keys {{org_name}} and {{consortium_name}}
represent arbitrary names, and indicate an element which may be repeated
with different names.

&ConfigGroup{
 Groups: map<string, *ConfigGroup> {
 "Application":&ConfigGroup{
 Groups:map<String, *ConfigGroup> {
 {{org_name}}:&ConfigGroup{
 Values:map<string, *ConfigValue>{
 "MSP":msp.MSPConfig,
 "AnchorPeers":peer.AnchorPeers,
 },
 },
 },
 },
 "Orderer":&ConfigGroup{
 Groups:map<String, *ConfigGroup> {
 {{org_name}}:&ConfigGroup{
 Values:map<string, *ConfigValue>{
 "MSP":msp.MSPConfig,
 },
 },
 },

 Values:map<string, *ConfigValue> {
 "ConsensusType":orderer.ConsensusType,
 "BatchSize":orderer.BatchSize,
 "BatchTimeout":orderer.BatchTimeout,
 "KafkaBrokers":orderer.KafkaBrokers,
 },
 },
 "Consortiums":&ConfigGroup{
 Groups:map<String, *ConfigGroup> {
 {{consortium_name}}:&ConfigGroup{
 Groups:map<string, *ConfigGroup> {
 {{org_name}}:&ConfigGroup{
 Values:map<string, *ConfigValue>{
 "MSP":msp.MSPConfig,
 },
 },
 },
 Values:map<string, *ConfigValue> {
 "ChannelCreationPolicy":common.Policy,
 }
 },
 },
 },
 },

 Values: map<string, *ConfigValue> {
 "HashingAlgorithm":common.HashingAlgorithm,
 "BlockHashingDataStructure":common.BlockDataHashingStructure,
 "Consortium":common.Consortium,
 "OrdererAddresses":common.OrdererAddresses,
 },
}

Orderer system channel configuration

The ordering system channel needs to define ordering parameters, and
consortiums for creating channels. There must be exactly one ordering
system channel for an ordering service, and it is the first channel to
be created (or more accurately bootstrapped). It is recommended never to
define an Application section inside of the ordering system channel
genesis configuration, but may be done for testing. Note that any member
with read access to the ordering system channel may see all channel
creations, so this channel’s access should be restricted.

The ordering parameters are defined as the following subset of config:

&ConfigGroup{
 Groups: map<string, *ConfigGroup> {
 "Orderer":&ConfigGroup{
 Groups:map<String, *ConfigGroup> {
 {{org_name}}:&ConfigGroup{
 Values:map<string, *ConfigValue>{
 "MSP":msp.MSPConfig,
 },
 },
 },

 Values:map<string, *ConfigValue> {
 "ConsensusType":orderer.ConsensusType,
 "BatchSize":orderer.BatchSize,
 "BatchTimeout":orderer.BatchTimeout,
 "KafkaBrokers":orderer.KafkaBrokers,
 },
 },
 },

Each organization participating in ordering has a group element under
the Orderer group. This group defines a single parameter MSP
which contains the cryptographic identity information for that
organization. The Values of the Orderer group determine how the
ordering nodes function. They exist per channel, so
orderer.BatchTimeout for instance may be specified differently on
one channel than another.

At startup, the orderer is faced with a filesystem which contains
information for many channels. The orderer identifies the system channel
by identifying the channel with the consortiums group defined. The
consortiums group has the following structure.

&ConfigGroup{
 Groups: map<string, *ConfigGroup> {
 "Consortiums":&ConfigGroup{
 Groups:map<String, *ConfigGroup> {
 {{consortium_name}}:&ConfigGroup{
 Groups:map<string, *ConfigGroup> {
 {{org_name}}:&ConfigGroup{
 Values:map<string, *ConfigValue>{
 "MSP":msp.MSPConfig,
 },
 },
 },
 Values:map<string, *ConfigValue> {
 "ChannelCreationPolicy":common.Policy,
 }
 },
 },
 },
 },
},

Note that each consortium defines a set of members, just like the
organizational members for the ordering orgs. Each consortium also
defines a ChannelCreationPolicy. This is a policy which is applied
to authorize channel creation requests. Typically, this value will be
set to an ImplicitMetaPolicy requiring that the new members of the
channel sign to authorize the channel creation. More details about
channel creation follow later in this document.

Application channel configuration

Application configuration is for channels which are designed for
application type transactions. It is defined as follows:

&ConfigGroup{
 Groups: map<string, *ConfigGroup> {
 "Application":&ConfigGroup{
 Groups:map<String, *ConfigGroup> {
 {{org_name}}:&ConfigGroup{
 Values:map<string, *ConfigValue>{
 "MSP":msp.MSPConfig,
 "AnchorPeers":peer.AnchorPeers,
 },
 },
 },
 },
 },
}

Just like with the Orderer section, each organization is encoded as
a group. However, instead of only encoding the MSP identity
information, each org additionally encodes a list of AnchorPeers.
This list allows the peers of different organizations to contact each
other for peer gossip networking.

The application channel encodes a copy of the orderer orgs and consensus
options to allow for deterministic updating of these parameters, so the
same Orderer section from the orderer system channel configuration
is included. However from an application perspective this may be largely
ignored.

Channel creation

When the orderer receives a CONFIG_UPDATE for a channel which does
not exist, the orderer assumes that this must be a channel creation
request and performs the following.

	The orderer identifies the consortium which the channel creation
request is to be performed for. It does this by looking at the
Consortium value of the top level group.

	The orderer verifies that the organizations included in the
Application group are a subset of the organizations included in
the corresponding consortium and that the ApplicationGroup is set
to version 1.

	The orderer verifies that if the consortium has members, that the new
channel also has application members (creation consortiums and
channels with no members is useful for testing only).

	The orderer creates a template configuration by taking the
Orderer group from the ordering system channel, and creating an
Application group with the newly specified members and specifying
its mod_policy to be the ChannelCreationPolicy as specified
in the consortium config. Note that the policy is evaluated in the
context of the new configuration, so a policy requiring ALL
members, would require signatures from all the new channel members,
not all the members of the consortium.

	The orderer then applies the CONFIG_UPDATE as an update to this
template configuration. Because the CONFIG_UPDATE applies
modifications to the Application group (its version is
1), the config code validates these updates against the
ChannelCreationPolicy. If the channel creation contains any other
modifications, such as to an individual org’s anchor peers, the
corresponding mod policy for the element will be invoked.

	The new CONFIG transaction with the new channel config is wrapped
and sent for ordering on the ordering system channel. After ordering,
the channel is created.

 Endorsement policies

Endorsement policies

Every chaincode has an endorsement policy which specifies the set of peers on
a channel that must execute chaincode and endorse the execution results in
order for the transaction to be considered valid. These endorsement policies
define the organizations (through their peers) who must “endorse” (i.e., approve
of) the execution of a proposal.

Note

Recall that state, represented by key-value pairs, is separate
from blockchain data. For more on this, check out our Ledger
documentation.

As part of the transaction validation step performed by the peers, each validating
peer checks to make sure that the transaction contains the appropriate number
of endorsements and that they are from the expected sources (both of these are
specified in the endorsement policy). The endorsements are also checked to make
sure they’re valid (i.e., that they are valid signatures from valid certificates).

Two ways to require endorsement

By default, endorsement policies are specified for a channel’s chaincode at
instantiation or upgrade time (that is, one endorsement policy covers all of the
state associated with a chaincode).

However, there are cases where it may be necessary for a particular state (a
particular key-value pair, in other words) to have a different endorsement policy.
This state-based endorsement allows the default chaincode-level endorsement
policies to be overridden by a different policy for the specified keys.

To illustrate the circumstances in which these two types of endorsement policies
might be used, consider a channel on which cars are being exchanged. The “creation”
— also known as “issuance” – of a car as an asset that can be traded (putting
the key-value pair that represents it into the world state, in other words) would
have to satisfy the chaincode-level endorsement policy. To see how to set a
chaincode-level endorsement policy, check out the section below.

If the car requires a specific endorsement policy, it can be defined either when
the car is created or afterwards. There are a number of reasons why it might
be necessary or preferable to set a state-specific endorsement policy. The car
might have historical importance or value that makes it necessary to have the
endorsement of a licensed appraiser. Also, the owner of the car (if they’re a
member of the channel) might also want to ensure that their peer signs off on a
transaction. In both cases, an endorsement policy is required for a particular
asset that is different from the default endorsement policies for the other
assets associated with that chaincode.

We’ll show you how to define a state-based endorsement policy in a subsequent
section. But first, let’s see how we set a chaincode-level endorsement policy.

Setting chaincode-level endorsement policies

Chaincode-level endorsement policies can be specified at instantiate time using
either the SDK (for some sample code on how to do this, click
here [https://github.com/hyperledger/fabric-sdk-node/blob/f8ffa90dc1b61a4a60a6fa25de760c647587b788/test/integration/e2e/e2eUtils.js#L178])
or in the peer CLI using the -P switch followed by the policy.

Note

Don’t worry about the policy syntax ('Org1.member', et all) right
now. We’ll talk more about the syntax in the next section.

For example:

peer chaincode instantiate -C <channelid> -n mycc -P "AND('Org1.member', 'Org2.member')"

This command deploys chaincode mycc (“my chaincode”) with the policy
AND('Org1.member', 'Org2.member') which would require that a member of both
Org1 and Org2 sign the transaction.

Notice that, if the identity classification is enabled (see Membership Service Providers (MSP)),
one can use the PEER role to restrict endorsement to only peers.

For example:

peer chaincode instantiate -C <channelid> -n mycc -P "AND('Org1.peer', 'Org2.peer')"

A new organization added to the channel after instantiation can query a chaincode
(provided the query has appropriate authorization as defined by channel policies
and any application level checks enforced by the chaincode) but will not be able
to execute or endorse the chaincode. The endorsement policy needs to be modified
to allow transactions to be committed with endorsements from the new organization.

Note

if not specified at instantiation time, the endorsement policy
defaults to “any member of the organizations in the channel”.
For example, a channel with “Org1” and “Org2” would have a default
endorsement policy of “OR(‘Org1.member’, ‘Org2.member’)”.

Endorsement policy syntax

As you can see above, policies are expressed in terms of principals
(“principals” are identities matched to a role). Principals are described as
'MSP.ROLE', where MSP represents the required MSP ID and ROLE
represents one of the four accepted roles: member, admin, client, and
peer.

Here are a few examples of valid principals:

	'Org0.admin': any administrator of the Org0 MSP

	'Org1.member': any member of the Org1 MSP

	'Org1.client': any client of the Org1 MSP

	'Org1.peer': any peer of the Org1 MSP

The syntax of the language is:

EXPR(E[, E...])

Where EXPR is either AND, OR, or OutOf, and E is either a
principal (with the syntax described above) or another nested call to EXPR.

	For example:

	
	AND('Org1.member', 'Org2.member', 'Org3.member') requests one signature
from each of the three principals.

	OR('Org1.member', 'Org2.member') requests one signature from either one
of the two principals.

	OR('Org1.member', AND('Org2.member', 'Org3.member')) requests either one
signature from a member of the Org1 MSP or one signature from a member
of the Org2 MSP and one signature from a member of the Org3 MSP.

	OutOf(1, 'Org1.member', 'Org2.member'), which resolves to the same thing
as OR('Org1.member', 'Org2.member').

	Similarly, OutOf(2, 'Org1.member', 'Org2.member') is equivalent to
AND('Org1.member', 'Org2.member'), and OutOf(2, 'Org1.member',
'Org2.member', 'Org3.member') is equivalent to OR(AND('Org1.member',
'Org2.member'), AND('Org1.member', 'Org3.member'), AND('Org2.member',
'Org3.member')).

Setting key-level endorsement policies

Setting regular chaincode-level endorsement policies is tied to the lifecycle of
the corresponding chaincode. They can only be set or modified when instantiating
or upgrading the corresponding chaincode on a channel.

In contrast, key-level endorsement policies can be set and modified in a more
granular fashion from within a chaincode. The modification is part of the
read-write set of a regular transaction.

The shim API provides the following functions to set and retrieve an endorsement
policy for/from a regular key.

Note

ep below stands for the “endorsement policy”, which can be expressed
either by using the same syntax described above or by using the
convenience function described below. Either method will generate a
binary version of the endorsement policy that can be consumed by the
basic shim API.

SetStateValidationParameter(key string, ep []byte) error
GetStateValidationParameter(key string) ([]byte, error)

For keys that are part of Private data in a collection the
following functions apply:

SetPrivateDataValidationParameter(collection, key string, ep []byte) error
GetPrivateDataValidationParameter(collection, key string) ([]byte, error)

To help set endorsement policies and marshal them into validation
parameter byte arrays, the shim provides convenience functions that allow the
chaincode developer to deal with endorsement policies in terms of the MSP
identifiers of organizations(KeyEndorsementPolicy [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim/ext/statebased#KeyEndorsementPolicy]):

type KeyEndorsementPolicy interface {
 // Policy returns the endorsement policy as bytes
 Policy() ([]byte, error)

 // AddOrgs adds the specified orgs to the list of orgs that are required
 // to endorse
 AddOrgs(roleType RoleType, organizations ...string) error

 // DelOrgs delete the specified channel orgs from the existing key-level endorsement
 // policy for this KVS key. If any org is not present, an error will be returned.
 DelOrgs(organizations ...string) error

 // ListOrgs returns an array of channel orgs that are required to endorse changes
 ListOrgs() ([]string)
}

For example, to set an endorsement policy for a key where two specific orgs are
required to endorse the key change, pass both org MSPIDs to AddOrgs(),
and then call Policy() to construct the endorsement policy byte array that
can be passed to SetStateValidationParameter().

Validation

At commit time, setting a value of a key is no different from setting the
endorsement policy of a key — both update the state of the key and are
validated based on the same rules.

	Validation
	no validation parameter set
	validation parameter set

	modify value
	check chaincode ep
	check key-level ep

	modify key-level ep
	check chaincode ep
	check key-level ep

As we discussed above, if a key is modified and no key-level endorsement policy
is present, the chaincode-level endorsement policy applies by default. This is
also true when a key-level endorsement policy is set for a key for the first time
— the new key-level endorsement policy must first be endorsed according to the
pre-existing chaincode-level endorsement policy.

If a key is modified and a key-level endorsement policy is present, the key-level
endorsement policy overrides the chaincode-level endorsement policy. In practice,
this means that the key-level endorsement policy can be either less restrictive
or more restrictive than the chaincode-level endorsement policy. Because the
chaincode-level endorsement policy must be satisfied in order to set a key-level
endorsement policy for the first time, no trust assumptions have been violated.

If a key’s endorsement policy is removed (set to nil), the chaincode-level
endorsement policy becomes the default again.

If a transaction modifies multiple keys with different associated key-level
endorsement policies, all of these policies need to be satisfied in order
for the transaction to be valid.

 Pluggable transaction endorsement and validation

Pluggable transaction endorsement and validation

Motivation

When a transaction is validated at time of commit, the peer performs various
checks before applying the state changes that come with the transaction itself:

	Validating the identities that signed the transaction.

	Verifying the signatures of the endorsers on the transaction.

	Ensuring the transaction satisfies the endorsement policies of the namespaces
of the corresponding chaincodes.

There are use cases which demand custom transaction validation rules different
from the default Fabric validation rules, such as:

	UTXO (Unspent Transaction Output): When the validation takes into account
whether the transaction doesn’t double spend its inputs.

	Anonymous transactions: When the endorsement doesn’t contain the identity
of the peer, but a signature and a public key are shared that can’t be linked
to the peer’s identity.

Pluggable endorsement and validation logic

Fabric allows for the implementation and deployment of custom endorsement and
validation logic into the peer to be associated with chaincode handling in a
pluggable manner. This logic can be either compiled into the peer as built in
selectable logic, or compiled and deployed alongside the peer as a
Golang plugin [https://golang.org/pkg/plugin/].

Recall that every chaincode is associated with its own endorsement and validation
logic at the time of chaincode instantiation. If the user doesn’t select one, the
default built-in logic is selected implicitly. A peer administrator may alter the
endorsement/validation logic that is selected by extending the peer’s local
configuration with the customization of the endorsement/validation logic which is
loaded and applied at peer startup.

Configuration

Each peer has a local configuration (core.yaml) that declares a mapping
between the endorsement/validation logic name and the implementation that is to
be run.

The default logic are called ESCC (with the “E” standing for endorsement) and
VSCC (validation), and they can be found in the peer local configuration in
the handlers section:

handlers:
 endorsers:
 escc:
 name: DefaultEndorsement
 validators:
 vscc:
 name: DefaultValidation

When the endorsement or validation implementation is compiled into the peer, the
name property represents the initialization function that is to be run in order
to obtain the factory that creates instances of the endorsement/validation logic.

The function is an instance method of the HandlerLibrary construct under
core/handlers/library/library.go and in order for custom endorsement or
validation logic to be added, this construct needs to be extended with any
additional methods.

Since this is cumbersome and poses a deployment challenge, one can also deploy
custom endorsement and validation as a Golang plugin by adding another property
under the name called library.

For example, if we have custom endorsement and validation logic which is
implemented as a plugin, we would have the following entries in the configuration
in core.yaml:

handlers:
 endorsers:
 escc:
 name: DefaultEndorsement
 custom:
 name: customEndorsement
 library: /etc/hyperledger/fabric/plugins/customEndorsement.so
 validators:
 vscc:
 name: DefaultValidation
 custom:
 name: customValidation
 library: /etc/hyperledger/fabric/plugins/customValidation.so

And we’d have to place the .so plugin files in the peer’s local file system.

Note

Hereafter, custom endorsement or validation logic implementation is
going to be referred to as “plugins”, even if they are compiled into
the peer.

Endorsement plugin implementation

To implement an endorsement plugin, one must implement the Plugin interface
found in core/handlers/endorsement/api/endorsement.go:

// Plugin endorses a proposal response
type Plugin interface {
 // Endorse signs the given payload(ProposalResponsePayload bytes), and optionally mutates it.
 // Returns:
 // The Endorsement: A signature over the payload, and an identity that is used to verify the signature
 // The payload that was given as input (could be modified within this function)
 // Or error on failure
 Endorse(payload []byte, sp *peer.SignedProposal) (*peer.Endorsement, []byte, error)

 // Init injects dependencies into the instance of the Plugin
 Init(dependencies ...Dependency) error
}

An endorsement plugin instance of a given plugin type (identified either by the
method name as an instance method of the HandlerLibrary or by the plugin .so
file path) is created for each channel by having the peer invoke the New
method in the PluginFactory interface which is also expected to be implemented
by the plugin developer:

// PluginFactory creates a new instance of a Plugin
type PluginFactory interface {
 New() Plugin
}

The Init method is expected to receive as input all the dependencies declared
under core/handlers/endorsement/api/, identified as embedding the Dependency
interface.

After the creation of the Plugin instance, the Init method is invoked on
it by the peer with the dependencies passed as parameters.

Currently Fabric comes with the following dependencies for endorsement plugins:

	SigningIdentityFetcher: Returns an instance of SigningIdentity based
on a given signed proposal:

// SigningIdentity signs messages and serializes its public identity to bytes
type SigningIdentity interface {
 // Serialize returns a byte representation of this identity which is used to verify
 // messages signed by this SigningIdentity
 Serialize() ([]byte, error)

 // Sign signs the given payload and returns a signature
 Sign([]byte) ([]byte, error)
}

	StateFetcher: Fetches a State object which interacts with the world
state:

// State defines interaction with the world state
type State interface {
 // GetPrivateDataMultipleKeys gets the values for the multiple private data items in a single call
 GetPrivateDataMultipleKeys(namespace, collection string, keys []string) ([][]byte, error)

 // GetStateMultipleKeys gets the values for multiple keys in a single call
 GetStateMultipleKeys(namespace string, keys []string) ([][]byte, error)

 // GetTransientByTXID gets the values private data associated with the given txID
 GetTransientByTXID(txID string) ([]*rwset.TxPvtReadWriteSet, error)

 // Done releases resources occupied by the State
 Done()
 }

Validation plugin implementation

To implement a validation plugin, one must implement the Plugin interface
found in core/handlers/validation/api/validation.go:

// Plugin validates transactions
type Plugin interface {
 // Validate returns nil if the action at the given position inside the transaction
 // at the given position in the given block is valid, or an error if not.
 Validate(block *common.Block, namespace string, txPosition int, actionPosition int, contextData ...ContextDatum) error

 // Init injects dependencies into the instance of the Plugin
 Init(dependencies ...Dependency) error
}

Each ContextDatum is additional runtime-derived metadata that is passed by
the peer to the validation plugin. Currently, the only ContextDatum that is
passed is one that represents the endorsement policy of the chaincode:

 // SerializedPolicy defines a serialized policy
type SerializedPolicy interface {
 validation.ContextDatum

 // Bytes returns the bytes of the SerializedPolicy
 Bytes() []byte
 }

A validation plugin instance of a given plugin type (identified either by the
method name as an instance method of the HandlerLibrary or by the plugin .so
file path) is created for each channel by having the peer invoke the New
method in the PluginFactory interface which is also expected to be implemented
by the plugin developer:

// PluginFactory creates a new instance of a Plugin
type PluginFactory interface {
 New() Plugin
}

The Init method is expected to receive as input all the dependencies declared
under core/handlers/validation/api/, identified as embedding the Dependency
interface.

After the creation of the Plugin instance, the Init method is invoked on
it by the peer with the dependencies passed as parameters.

Currently Fabric comes with the following dependencies for validation plugins:

	IdentityDeserializer: Converts byte representation of identities into
Identity objects that can be used to verify signatures signed by them, be
validated themselves against their corresponding MSP, and see whether they
satisfy a given MSP Principal. The full specification can be found in
core/handlers/validation/api/identities/identities.go.

	PolicyEvaluator: Evaluates whether a given policy is satisfied:

// PolicyEvaluator evaluates policies
type PolicyEvaluator interface {
 validation.Dependency

 // Evaluate takes a set of SignedData and evaluates whether this set of signatures satisfies
 // the policy with the given bytes
 Evaluate(policyBytes []byte, signatureSet []*common.SignedData) error
}

	StateFetcher: Fetches a State object which interacts with the world state:

// State defines interaction with the world state
type State interface {
 // GetStateMultipleKeys gets the values for multiple keys in a single call
 GetStateMultipleKeys(namespace string, keys []string) ([][]byte, error)

 // GetStateRangeScanIterator returns an iterator that contains all the key-values between given key ranges.
 // startKey is included in the results and endKey is excluded. An empty startKey refers to the first available key
 // and an empty endKey refers to the last available key. For scanning all the keys, both the startKey and the endKey
 // can be supplied as empty strings. However, a full scan should be used judiciously for performance reasons.
 // The returned ResultsIterator contains results of type *KV which is defined in protos/ledger/queryresult.
 GetStateRangeScanIterator(namespace string, startKey string, endKey string) (ResultsIterator, error)

 // GetStateMetadata returns the metadata for given namespace and key
 GetStateMetadata(namespace, key string) (map[string][]byte, error)

 // GetPrivateDataMetadata gets the metadata of a private data item identified by a tuple <namespace, collection, key>
 GetPrivateDataMetadata(namespace, collection, key string) (map[string][]byte, error)

 // Done releases resources occupied by the State
 Done()
}

Important notes

	Validation plugin consistency across peers: In future releases, the Fabric
channel infrastructure would guarantee that the same validation logic is used
for a given chaincode by all peers in the channel at any given blockchain
height in order to eliminate the chance of mis-configuration which would might
lead to state divergence among peers that accidentally run different
implementations. However, for now it is the sole responsibility of the system
operators and administrators to ensure this doesn’t happen.

	Validation plugin error handling: Whenever a validation plugin can’t
determine whether a given transaction is valid or not, because of some transient
execution problem like inability to access the database, it should return an
error of type ExecutionFailureError that is defined in core/handlers/validation/api/validation.go.
Any other error that is returned, is treated as an endorsement policy error
and marks the transaction as invalidated by the validation logic. However,
if an ExecutionFailureError is returned, the chain processing halts instead
of marking the transaction as invalid. This is to prevent state divergence
between different peers.

	Error handling for private metadata retrieval: In case a plugin retrieves
metadata for private data by making use of the StateFetcher interface,
it is important that errors are handled as follows: CollConfigNotDefinedError''
and ``InvalidCollNameError'', signalling that the specified collection does
not exist, should be handled as deterministic errors and should not lead the
plugin to return an ``ExecutionFailureError.

	Importing Fabric code into the plugin: Importing code that belongs to Fabric
other than protobufs as part of the plugin is highly discouraged, and can lead
to issues when the Fabric code changes between releases, or can cause inoperability
issues when running mixed peer versions. Ideally, the plugin code should only
use the dependencies given to it, and should import the bare minimum other
than protobufs.

 Access Control Lists (ACL)

Access Control Lists (ACL)

What is an Access Control List?

Note: This topic deals with access control and policies on a channel
administration level. To learn about access control within a chaincode, check out
our chaincode for developers tutorial.

Fabric uses access control lists (ACLs) to manage access to resources by associating
a policy — which specifies a rule that evaluates to true or false, given a set
of identities — with the resource. Fabric contains a number of default ACLs. In this
document, we’ll talk about how they’re formatted and how the defaults can be overridden.

But before we can do that, it’s necessary to understand a little about resources
and policies.

Resources

Users interact with Fabric by targeting a user chaincode,
system chaincode, or an events stream source.
As such, these endpoints are considered “resources” on which access control should be
exercised.

Application developers need to be aware of these resources and the default
policies associated with them. The complete list of these resources are found in
configtx.yaml. You can look at a sample configtx.yaml file here [http://github.com/hyperledger/fabric/blob/release-1.2/sampleconfig/configtx.yaml].

The resources named in configtx.yaml is an exhaustive list of all internal resources
currently defined by Fabric. The loose convention adopted there is <component>/<resource>.
So cscc/GetConfigBlock is the resource for the GetConfigBlock call in the CSCC
component.

Policies

Policies are fundamental to the way Fabric works because they allow the identity
(or set of identities) associated with a request to be checked against the policy
associated with the resource needed to fulfill the request. Endorsement policies
are used to determine whether a transaction has been appropriately endorsed. The
policies defined in the channel configuration are referenced as modification policies
as well as for access control, and are defined in the channel configuration itself.

Policies can be structured in one of two ways: as Signature policies or as an
ImplicitMeta policy.

Signature policies

These policies identify specific users who must sign in order for a policy
to be satisfied. For example:

Policies:
 MyPolicy:
 Type: Signature
 Rule: “Org1.Peer OR Org2.Peer”

This policy construct can be interpreted as: the policy named MyPolicy can
only be satisfied by the signature of an identity with role of “a peer from
Org1” or “a peer from Org2”.

Signature policies support arbitrary combinations of AND, OR, and NOutOf,
allowing the construction of extremely powerful rules like: “An admin of org A
and two other admins, or 11 of 20 org admins”.

ImplicitMeta policies

ImplicitMeta policies aggregate the result of policies deeper in the
configuration hierarchy that are ultimately defined by Signature policies. They
support default rules like “A majority of the organization admins”. These policies
use a different but still very simple syntax as compared to Signature policies:
<ALL|ANY|MAJORITY> <sub_policy>.

For example: ANY Readers or MAJORITY Admins.

Note that in the default policy configuration Admins have an operational role.
Policies that specify that only Admins — or some subset of Admins — have access
to a resource will tend to be for sensitive or operational aspects of the network
(such as instantiating chaincode on a channel). Writers will tend to be able to
propose ledger updates, such as a transaction, but will not typically have
administrative permissions. Readers have a passive role. They can access
information but do not have the permission to propose ledger updates nor do can
they perform administrative tasks. These default policies can be added to,
edited, or supplemented, for example by the new peer and client roles (if you
have NodeOU support).

Here’s an example of an ImplicitMeta policy structure:

Policies:
 AnotherPolicy:
 Type: ImplicitMeta
 Rule: "MAJORITY Admins"

Here, the policy AnotherPolicy can be satisfied by the MAJORITY of Admins,
where Admins is eventually being specified by lower level Signature policy.

Where is access control specified?

Access control defaults exist inside configtx.yaml, the file that configtxgen
uses to build channel configurations.

Access control can be updated one of two ways, either by editing configtx.yaml
itself, which will propagate the ACL change to any new channels, or by updating
access control in the channel configuration of a particular channel.

How ACLs are formatted in configtx.yaml

ACLs are formatted as a key-value pair consisting of a resource function name
followed by a string. To see what this looks like, reference this sample configtx.yaml file [https://github.com/hyperledger/fabric/blob/release-1.2/sampleconfig/configtx.yaml].

Two excerpts from this sample:

ACL policy for invoking chaincodes on peer
peer/Propose: /Channel/Application/Writers

ACL policy for sending block events
event/Block: /Channel/Application/Readers

These ACLs define that access to peer/Propose and event/Block resources
is restricted to identities satisfying the policy defined at the canonical path
/Channel/Application/Writers and /Channel/Application/Readers, respectively.

Updating ACL defaults in configtx.yaml

In cases where it will be necessary to override ACL defaults when bootstrapping
a network, or to change the ACLs before a channel has been bootstrapped, the
best practice will be to update configtx.yaml.

Let’s say you want to modify the peer/Propose ACL default — which specifies
the policy for invoking chaincodes on a peer – from /Channel/Application/Writers
to a policy called MyPolicy.

This is done by adding a policy called MyPolicy (it could be called anything,
but for this example we’ll call it MyPolicy). The policy is defined in the
Application.Policies section inside configtx.yaml and specifies a rule to be
checked to grant or deny access to a user. For this example, we’ll be creating a
Signature policy identifying SampleOrg.admin.

Policies: &ApplicationDefaultPolicies
 Readers:
 Type: ImplicitMeta
 Rule: "ANY Readers"
 Writers:
 Type: ImplicitMeta
 Rule: "ANY Writers"
 Admins:
 Type: ImplicitMeta
 Rule: "MAJORITY Admins"
 MyPolicy:
 Type: Signature
 Rule: "OR('SampleOrg.admin')"

Then, edit the Application: ACLs section inside configtx.yaml to change
peer/Propose from this:

peer/Propose: /Channel/Application/Writers

To this:

peer/Propose: /Channel/Application/MyPolicy

Once these fields have been changed in configtx.yaml, the configtxgen tool
will use the policies and ACLs defined when creating a channel creation
transaction. When appropriately signed and submitted by one of the admins of the
consortium members, a new channel with the defined ACLs and policies is created.

Once MyPolicy has been bootstrapped into the channel configuration, it can also
be referenced to override other ACL defaults. For example:

SampleSingleMSPChannel:
 Consortium: SampleConsortium
 Application:
 <<: *ApplicationDefaults
 ACLs:
 <<: *ACLsDefault
 event/Block: /Channel/Application/MyPolicy

This would restrict the ability to subscribe to block events to SampleOrg.admin.

If channels have already been created that want to use this ACL, they’ll have
to update their channel configurations one at a time using the following flow:

Updating ACL defaults in the channel config

If channels have already been created that want to use MyPolicy to restrict
access to peer/Propose — or if they want to create ACLs they don’t want
other channels to know about — they’ll have to update their channel
configurations one at a time through config update transactions.

Note: Channel configuration transactions are an involved process we won’t
delve into here. If you want to read more about them check out our document on
channel configuration updates and our “Adding an Org to a Channel” tutorial.

After pulling, translating, and stripping the configuration block of its metadata,
you would edit the configuration by adding MyPolicy under Application: policies,
where the Admins, Writers, and Readers policies already live.

"MyPolicy": {
 "mod_policy": "Admins",
 "policy": {
 "type": 1,
 "value": {
 "identities": [
 {
 "principal": {
 "msp_identifier": "SampleOrg",
 "role": "ADMIN"
 },
 "principal_classification": "ROLE"
 }
],
 "rule": {
 "n_out_of": {
 "n": 1,
 "rules": [
 {
 "signed_by": 0
 }
]
 }
 },
 "version": 0
 }
 },
 "version": "0"
},

Note in particular the msp_identifer and role here.

Then, in the ACLs section of the config, change the peer/Propose ACL from
this:

"peer/Propose": {
 "policy_ref": "/Channel/Application/Writers"

To this:

"peer/Propose": {
 "policy_ref": "/Channel/Application/MyPolicy"

Note: If you do not have ACLs defined in your channel configuration, you will
have to add the entire ACL structure.

Once the configuration has been updated, it will need to be submitted by the
usual channel update process.

Satisfying an ACL that requires access to multiple resources

If a member makes a request that calls multiple system chaincodes, all of the ACLs
for those system chaincodes must be satisfied.

For example, peer/Propose refers to any proposal request on a channel. If the
particular proposal requires access to two system chaincodes that requires an
identity satisfying Writers and one system chaincode that requires an identity
satisfying MyPolicy, then the member submitting the proposal must have an identity
that evaluates to “true” for both Writers and MyPolicy.

In the default configuration, Writers is a signature policy whose rule is
SampleOrg.member. In other words, “any member of my organization”. MyPolicy,
listed above, has a rule of SampleOrg.admin, or “any admin of my organization”.
To satisfy these ACLs, the member would have to be both an administrator and a
member of SampleOrg. By default, all administrators are members (though not all
administrators are members), but it is possible to overwrite these policies to
whatever you want them to be. As a result, it’s important to keep track of these
policies to ensure that the ACLs for peer proposals are not impossible to satisfy
(unless that is the intention).

Migration considerations for customers using the experimental ACL feature

Previously, the management of access control lists was done in an isolated_data
section of the channel creation transaction and updated via PEER_RESOURCE_UPDATE
transactions. Originally, it was thought that the resources tree would handle the
update of several functions that, ultimately, were handled in other ways, so
maintaining a separate parallel peer configuration tree was judged to be unnecessary.

Migration for customers using the experimental resources tree in v1.1 is possible.
Because the official v1.2 release does not support the old ACL methods, the network
operators should shut down all their peers. Then, they should upgrade them to v1.2,
submit a channel reconfiguration transaction which enables the v1.2 capability and
sets the desired ACLs, and then finally restart the upgraded peers. The restarted
peers will immediately consume the new channel configuration and enforce the ACLs as
desired.

 MSP Implementation with Identity Mixer

MSP Implementation with Identity Mixer

What is Idemix?

Idemix is a cryptographic protocol suite, which provides strong authentication as
well as privacy-preserving features such as anonymity, the ability to transact
without revealing the identity of the transactor, and unlinkability, the
ability of a single identity to send multiple transactions without revealing
that the transactions were sent by the same identity.

There are three actors involved in an Idemix flow: user, issuer, and
verifier.

[image: _images/idemix-overview.png]

	An issuer certifies a set of user’s attributes are issued in the form of a
digital certificate, hereafter called “credential”.

	The user later generates a “zero-knowledge proof [https://en.wikipedia.org/wiki/Zero-knowledge_proof]”
of possession of the credential and also selectively discloses only the
attributes the user chooses to reveal. The proof, because it is zero-knowledge,
reveals no additional information to the verifier, issuer, or anyone else.

As an example, suppose “Alice” needs to prove to Bob (a store clerk) that she has
a driver’s license issued to her by the DMV.

In this scenario, Alice is the user, the DMV is the issuer, and Bob is the
verifier. In order to prove to Bob that Alice has a driver’s license, she could
show it to him. However, Bob would then be able to see Alice’s name, address,
exact age, etc. — much more information than Bob needs to know.

Instead, Alice can use Idemix to generate a “zero-knowledge proof” for Bob, which
only reveals that she has a valid driver’s license and nothing else.

So from the proof:

	Bob does not learn any additional information about Alice other than the fact
that she has a valid license (anonymity).

	If Alice visits the store multiple times and generates a proof each time for Bob,
Bob would not be able to tell from the proof that it was the same person
(unlinkability).

Idemix authentication technology provides the trust model and security
guarantees that are similar to what is ensured by standard X.509 certificates but
with underlying cryptographic algorithms that efficiently provide advanced
privacy features including the ones described above. We’ll compare Idemix and
X.509 technologies in detail in the technical section below.

How to use Idemix

To understand how to use Idemix with Hyperledger Fabric, we need to see which
Fabric components correspond to the user, issuer, and verifier in Idemix.

	The Fabric Java SDK is the API for the user. In the future, other Fabric
SDKs will also support Idemix.

	Fabric provides two possible Idemix issuers:

	Fabric CA for production environments or development, and

	the idemixgen tool for development environments.

	The verifier is an Idemix MSP in Fabric.

In order to use Idemix in Hyperledger Fabric, the following three basic steps
are required:

[image: _images/idemix-three-steps.png]
Compare the roles in this image to the ones above.

	Consider the issuer.

Fabric CA (version 1.3 or later) has been enhanced to automatically function
as an Idemix issuer. When fabric-ca-server is started (or initialized via
the fabric-ca-server init command), the following two files are
automatically created in the home directory of the fabric-ca-server:
IssuerPublicKey and IssuerRevocationPublicKey. These files are
required in step 2.

For a development environment and if you are not using Fabric CA, you may use
``idemixgen``to create these files.

	Consider the verifier.

You need to create an Idemix MSP using the IssuerPublicKey and
IssuerRevocationPublicKey from step 1.

For example, consider the following excerpt from
configtx.yaml in the Hyperledger Java SDK sample [https://github.com/hyperledger/fabric-sdk-java/blob/master/src/test/fixture/sdkintegration/e2e-2Orgs/v1.3/configtx.yaml]:

- &Org1Idemix
 # defaultorg defines the organization which is used in the sampleconfig
 # of the fabric.git development environment
 name: idemixMSP1

 # id to load the msp definition as
 id: idemixMSPID1

 msptype: idemix
 mspdir: crypto-config/peerOrganizations/org3.example.com

The msptype is set to idemix and the contents of the mspdir
directory (crypto-config/peerOrganizations/org3.example.com/msp in this
example) contains the IssuerPublicKey and IssuerRevocationPublicKey
files.

Note that in this example, Org1Idemix represents the Idemix MSP for Org1
(not shown), which would also have an X509 MSP.

	Consider the user. Recall that the Java SDK is the API for the user.

There is only a single additional API call required in order to use Idemix
with the Java SDK: the idemixEnroll method of the
org.hyperledger.fabric_ca.sdk.HFCAClient class. For example, assume
hfcaClient is your HFCAClient object and x509Enrollment is your
org.hyperledger.fabric.sdk.Enrollment associated with your X509 certificate.

The following call will return an org.hyperledger.fabric.sdk.Enrollment
object associated with your Idemix credential.

IdemixEnrollment idemixEnrollment = hfcaClient.idemixEnroll(x509enrollment, "idemixMSPID1");

Note also that IdemixEnrollment implements the org.hyperledger.fabric.sdk.Enrollment
interface and can, therefore, be used in the same way that one uses the X509
enrollment object, except, of course, that this automatically provides the
privacy enhancing features of Idemix.

Idemix and chaincode

From a verifier perspective, there is one more actor to consider: chaincode.
What can chaincode learn about the transactor when an Idemix credential is used?

The cid (Client Identity) library [https://github.com/hyperledger/fabric/tree/master/core/chaincode/shim/ext/cid]
(for golang only) has been extended to support the GetAttributeValue function
when an Idemix credential is used. However, as mentioned in the “Current
limitations” section below, there are only two attributes which are disclosed in
the Idemix case: ou and role.

If Fabric CA is the credential issuer:

	the value of the ou attribute is the identity’s affiliation (e.g.
“org1.department1”);

	the value of the role attribute will be either ‘member’ or ‘admin’. A
value of ‘admin’ means that the identity is an MSP administrator. By default,
identities created by Fabric CA will return the ‘member’ role. In order to
create an ‘admin’ identity, register the identity with the role attribute
and a value of 2.

For an example of using the cid library to retrieve these attributes, see
this java SDK example [https://github.com/hyperledger/fabric-sdk-java/blob/master/src/test/fixture/sdkintegration/gocc/sampleIdemix/src/github.com/example_cc/example_cc.go].

Current limitations

The current version of Idemix does have a few limitations.

	Fixed set of attributes

It not yet possible to issue or use an Idemix credential with custom attributes.
Custom attributes will be supported in a future release.

The following four attributes are currently supported:

	Organizational Unit attribute (“ou”):

	Usage: same as X.509

	Type: String

	Revealed: always

	Role attribute (“role”):

	Usage: same as X.509

	Type: integer

	Revealed: always

	Enrollment ID attribute

	Usage: uniquely identify a user — same in all enrollment credentials that
belong to the same user (will be used for auditing in the future releases)

	Type: BIG

	Revealed: never in the signature, only when generating an authentication token for Fabric CA

	Revocation Handle attribute

	Usage: uniquely identify a credential (will be used for revocation in future releases)

	Type: integer

	Revealed: never

	Revocation is not yet supported

Although much of the revocation framework is in place as can be seen by the
presence of a revocation handle attribute mentioned above, revocation of an
Idemix credential is not yet supported.

	Peers do not use Idemix for endorsement

Currently, Idemix MSP is used by the peers only for signature verification.
Signing with Idemix is only done via Client SDK. More roles (including a
‘peer’ role) will be supported by Idemix MSP.

Technical summary

Comparing Idemix credentials to X.509 certificates

The certificate/credential concept and the issuance process are very similar in
Idemix and X.509 certs: a set of attributes is digitally signed with a signature
that cannot be forged and there is a secret key to which a credential is
cryptographically bound.

The main difference between a standard X.509 certificate and an Identity Mixer
credential is the signature scheme that is used to certify the attributes. The
signatures underlying the Identity Mixer system allow for efficient proofs of the
possession of a signature and the corresponding attributes without revealing the
signature and (selected) attribute values themselves. We use zero-knowledge proofs
to ensure that such “knowledge” or “information” is not revealed while ensuring
that the signature over some attributes is valid and the user is in possession
of the corresponding credential secret key.

Such proofs, like X.509 certificates, can be verified with the public key of
the authority that originally signed the credential and cannot be successfully
forged. Only the user who knows the credential secret key can generate the proofs
about the credential and its attributes.

With regard to unlinkability, when an X.509 certificate is presented, all attributes
have to be revealed to verify the certificate signature. This implies that all
certificate usages for signing transactions are linkable.

To avoid such linkability, fresh X.509 certificates need to be used every time,
which results in complex key management and communication and storage overhead.
Furthermore, there are cases where it is important that not even the CA issuing
the certificates is able to link all the transactions to the user.

Idemix helps to avoid linkability with respect to both the CA and verifiers,
since even the CA is not able to link proofs to the original credential. Neither
the issuer nor a verifier can tell whether two proofs were derived from the same
credential (or from two different ones).

More details on the concepts and features of the Identity Mixer technology are
described in the paper Concepts and Languages for Privacy-Preserving Attribute-Based Authentication [https://link.springer.com/chapter/10.1007%2F978-3-642-37282-7_4].

Topology Information

Given the above limitations, it is recommended to have only one Idemix-based MSP
per channel or, at the extreme, per network. Indeed, for example, having multiple Idemix-based MSPs
per channel would allow a party, reading the ledger of that channel, to tell apart
transactions signed by parties belonging to different Idemix-based MSPs. This is because,
each transaction leak the MSP-ID of the signer.
In other words, Idemix currently provides only anonymity of clients among the same organization (MSP).

In the future, Idemix could be extended to support anonymous hierarchies of Idemix-based
Certification Authorities whose certified credentials can be verified by using a unique public-key,
therefore achieving anonymity across organizations (MSPs).
This would allow multiple Idemix-based MSPs to coexist in the same channel.

In principal, a channel can be configured to have a single Idemix-based MSP and multiple
X.509-based MSPs. Of course, the interaction between these MSP can potential
leak information. An assessment of the leaked information need to be done case by case.wq

Underlying cryptographic protocols

Idemix technology is built from a blind signature scheme that supports multiple
messages and efficient zero-knowledge proofs of signature possession. All of the
cryptographic building blocks for Idemix were published at the top conferences
and journals and verified by the scientific community.

This particular Idemix implementation for Fabric uses a pairing-based
signature scheme that was briefly proposed by Camenisch and Lysyanskaya [https://link.springer.com/chapter/10.1007/978-3-540-28628-8_4]
and described in detail by Au et al. [https://link.springer.com/chapter/10.1007/11832072_8].
The ability to prove knowledge of a signature in a zero-knowledge proof
Camenisch et al. [https://eprint.iacr.org/2016/663.pdf] was used.

 Identity Mixer MSP configuration generator (idemixgen)

Identity Mixer MSP configuration generator (idemixgen)

This document describes the usage for the idemixgen utility, which can be
used to create configuration files for the identity mixer based MSP.
Two commands are available, one for creating a fresh CA key pair, and one
for creating an MSP config using a previously generated CA key.

Directory Structure

The idemixgen tool will create directories with the following structure:

- /ca/
 IssuerSecretKey
 IssuerPublicKey
 RevocationKey
- /msp/
 IssuerPublicKey
 RevocationPublicKey
- /user/
 SignerConfig

The ca directory contains the issuer secret key (including the revocation key) and should only be present
for a CA. The msp directory contains the information required to set up an
MSP verifying idemix signatures. The user directory specifies a default
signer.

CA Key Generation

CA (issuer) keys suitable for identity mixer can be created using command
idemixgen ca-keygen. This will create directories ca and msp in the
working directory.

Adding a Default Signer

After generating the ca and msp directories with
idemixgen ca-keygen, a default signer specified in the user directory
can be added to the config with idemixgen signerconfig.

$ idemixgen signerconfig -h
usage: idemixgen signerconfig [<flags>]

Generate a default signer for this Idemix MSP

Flags:
 -h, --help Show context-sensitive help (also try --help-long and --help-man).
 -u, --org-unit=ORG-UNIT The Organizational Unit of the default signer
 -a, --admin Make the default signer admin
 -e, --enrollment-id=ENROLLMENT-ID
 The enrollment id of the default signer
 -r, --revocation-handle=REVOCATION-HANDLE
 The handle used to revoke this signer

For example, we can create a default signer that is a member of organizational
unit “OrgUnit1”, with enrollment identity “johndoe”, revocation handle “1234”,
and that is an admin, with the following command:

idemixgen signerconfig -u OrgUnit1 --admin -e "johndoe" -r 1234

 The Operations Service

The Operations Service

The peer and the orderer host an HTTP server that offers a RESTful “operations”
API. This API is unrelated to the Fabric network services and is intended to be
used by operators, not administrators or “users” of the network.

The API exposes the following capabilities:

	Log level management

	Health checks

	Prometheus target for operational metrics (when configured)

Configuring the Operations Service

The operations service requires two basic pieces of configuration:

	The address and port to listen on.

	The TLS certificates and keys to use for authentication and encryption.
Note, these certificates should be generated by a separate and dedicated CA.
Do not use a CA that has generated certificates for any organizations
in any channels.

Peer

For each peer, the operations server can be configured in the operations
section of core.yaml:

operations:
 # host and port for the operations server
 listenAddress: 127.0.0.1:9443

 # TLS configuration for the operations endpoint
 tls:
 # TLS enabled
 enabled: true

 # path to PEM encoded server certificate for the operations server
 cert:
 file: tls/server.crt

 # path to PEM encoded server key for the operations server
 key:
 file: tls/server.key

 # require client certificate authentication to access all resources
 clientAuthRequired: false

 # paths to PEM encoded ca certificates to trust for client authentication
 clientRootCAs:
 files: []

The listenAddress key defines the host and port that the operation server
will listen on. If the server should listen on all addresses, the host portion
can be omitted.

The tls section is used to indicate whether or not TLS is enabled for the
operations service, the location of the service’s certificate and private key,
and the locations of certificate authority root certificates that should be
trusted for client authentication. When clientAuthRequired is true,
clients will be required to provide a certificate for authentication.

Orderer

For each orderer, the operations server can be configured in the Operations
section of orderer.yaml:

Operations:
 # host and port for the operations server
 ListenAddress: 127.0.0.1:8443

 # TLS configuration for the operations endpoint
 TLS:
 # TLS enabled
 Enabled: true

 # PrivateKey: PEM-encoded tls key for the operations endpoint
 PrivateKey: tls/server.key

 # Certificate governs the file location of the server TLS certificate.
 Certificate: tls/server.crt

 # Paths to PEM encoded ca certificates to trust for client authentication
 RootCAs: []

 # Require client certificate authentication to access all endpoints
 ClientAuthRequired: false

The ListenAddress key defines the host and port that the operations server
will listen on. If the server should listen on all addresses, the host portion
can be omitted.

The TLS section is used to indicate whether or not TLS is enabled for the
operations service, the location of the service’s certificate and private key,
and the locations of certificate authority root certificates that should be
trusted for client authentication. When ClientAuthRequired is true,
clients will be required to provide a certificate for authentication.

Operations Security

As the operations service is focused on operations and intentionally unrelated
to the Fabric network, it does not use the Membership Services Provider for
access control. Instead, the operations service relies entirely on mutual TLS with
client certificate authentication.

It is highly recommended to enable mutual TLS by setting the value of clientAuthRequired
to true in production environments. With this configuration, clients are
required to provide a valid certificate for authentication. If the client does
not provide a certificate or the service cannot verify the client’s certificate,
the request is rejected. Note that if clientAuthRequired is set to false,
clients do not need to provide a certificate; if they do, however, and the service
cannot verify the certificate, then the request will be rejected.

When TLS is disabled, authorization is bypassed and any client that can
connect to the operations endpoint will be able to use the API.

Log Level Management

The operations service provides a /logspec resource that operators can use to
manage the active logging spec for a peer or orderer. The resource is a
conventional REST resource and supports GET and PUT requests.

When a GET /logspec request is received by the operations service, it will
respond with a JSON payload that contains the current logging specification:

{"spec":"info"}

When a PUT /logspec request is received by the operations service, it will
read the body as a JSON payload. The payload must consist of a single attribute
named spec.

{"spec":"chaincode=debug:info"}

If the spec is activated successfully, the service will respond with a 204 "No Content"
response. If an error occurs, the service will respond with a 400 "Bad Request"
and an error payload:

{"error":"error message"}

Health Checks

The operations service provides a /healthz resource that operators can use to
help determine the liveness and health of peers and orderers. The resource is
a conventional REST resource that supports GET requests. The implementation is
intended to be compatible with the liveness probe model used by Kubernetes but
can be used in other contexts.

When a GET /healthz request is received, the operations service will call all
registered health checkers for the process. When all of the health checkers
return successfully, the operations service will respond with a 200 "OK" and a
JSON body:

{
 "status": "OK",
 "time": "2009-11-10T23:00:00Z"
}

If one or more of the health checkers returns an error, the operations service
will respond with a 503 "Service Unavailable" and a JSON body that includes
information about which health checker failed:

{
 "status": "Service Unavailable",
 "time": "2009-11-10T23:00:00Z",
 "failed_checks": [
 {
 "component": "docker",
 "reason": "failed to connect to Docker daemon: invalid endpoint"
 }
]
}

In the current version, the only health check that is registered is for Docker.
Future versions will be enhanced to add additional health checks.

When TLS is enabled, a valid client certificate is not required to use this
service unless requireClientAuth is set to true.

Metrics

Some components of the Fabric peer and orderer expose metrics that can help
provide insight into the behavior of the system. Operators and administrators
can use this information to better understand how the system is performing
over time.

Configuring Metrics

Fabric provides two ways to expose metrics: a pull model based on Prometheus
and a push model based on StatsD.

Prometheus

A typical Prometheus deployment scrapes metrics by requesting them from an HTTP
endpoint exposed by instrumented targets. As Prometheus is responsible for
requesting the metrics, it is considered a pull system.

When configured, a Fabric peer or orderer will present a /metrics resource
on the operations service.

Peer

A peer can be configured to expose a /metrics endpoint for Prometheus to
scrape by setting the metrics provider to prometheus in the metrics section
of core.yaml.

metrics:
 provider: prometheus

Orderer

An orderer can be configured to expose a /metrics endpoint for Prometheus to
scrape by setting the metrics provider to prometheus in the Metrics
section of orderer.yaml.

Metrics:
 Provider: prometheus

StatsD

StatsD is a simple statistics aggregation daemon. Metrics are sent to a
statsd daemon where they are collected, aggregated, and pushed to a backend
for visualization and alerting. As this model requires instrumented processes
to send metrics data to StatsD, this is considered a push system.

Peer

A peer can be configured to send metrics to StatsD by setting the metrics
provider to statsd in the metrics section of core.yaml. The statsd
subsection must also be configured with the address of the StatsD daemon, the
network type to use (tcp or udp), and how often to send the metrics. An
optional prefix may be specified to help differentiate the source of the
metrics — for example, differentiating metrics coming from separate peers —
that would be prepended to all generated metrics.

metrics:
 provider: statsd
 statsd:
 network: udp
 address: 127.0.0.1:8125
 writeInterval: 10s
 prefix: peer-0

Orderer

An orderer can be configured to send metrics to StatsD by setting the metrics
provider to statsd in the Metrics section of orderer.yaml. The Statsd
subsection must also be configured with the address of the StatsD daemon, the
network type to use (tcp or udp), and how often to send the metrics. An
optional prefix may be specified to help differentiate the source of the
metrics.

Metrics:
 Provider: statsd
 Statsd:
 Network: udp
 Address: 127.0.0.1:8125
 WriteInterval: 30s
 Prefix: org-orderer

For a look at the different metrics that are generated, check out
Metrics Reference.

 Metrics Reference

Metrics Reference

Prometheus Metrics

The following metrics are currently exported for consumption by Prometheus.

	Name
	Type
	Description
	Labels

	blockcutter_block_fill_duration
	histogram
	The time from first transaction enqueing to the block
being cut in seconds.
	channel

	broadcast_enqueue_duration
	histogram
	The time to enqueue a transaction in seconds.
	channel
type
status

	broadcast_processed_count
	counter
	The number of transactions processed.
	channel
type
status

	broadcast_validate_duration
	histogram
	The time to validate a transaction in seconds.
	channel
type
status

	chaincode_execute_timeouts
	counter
	The number of chaincode executions (Init or Invoke) that
have timed out.
	chaincode

	chaincode_launch_duration
	histogram
	The time to launch a chaincode.
	chaincode
success

	chaincode_launch_failures
	counter
	The number of chaincode launches that have failed.
	chaincode

	chaincode_launch_timeouts
	counter
	The number of chaincode launches that have timed out.
	chaincode

	chaincode_shim_request_duration
	histogram
	The time to complete chaincode shim requests.
	type
channel
chaincode
success

	chaincode_shim_requests_completed
	counter
	The number of chaincode shim requests completed.
	type
channel
chaincode
success

	chaincode_shim_requests_received
	counter
	The number of chaincode shim requests received.
	type
channel
chaincode

	consensus_kafka_batch_size
	gauge
	The mean batch size in bytes sent to topics.
	topic

	consensus_kafka_compression_ratio
	gauge
	The mean compression ratio (as percentage) for topics.
	topic

	consensus_kafka_incoming_byte_rate
	gauge
	Bytes/second read off brokers.
	broker_id

	consensus_kafka_outgoing_byte_rate
	gauge
	Bytes/second written to brokers.
	broker_id

	consensus_kafka_record_send_rate
	gauge
	The number of records per second sent to topics.
	topic

	consensus_kafka_records_per_request
	gauge
	The mean number of records sent per request to topics.
	topic

	consensus_kafka_request_latency
	gauge
	The mean request latency in ms to brokers.
	broker_id

	consensus_kafka_request_rate
	gauge
	Requests/second sent to brokers.
	broker_id

	consensus_kafka_request_size
	gauge
	The mean request size in bytes to brokers.
	broker_id

	consensus_kafka_response_rate
	gauge
	Requests/second sent to brokers.
	broker_id

	consensus_kafka_response_size
	gauge
	The mean response size in bytes from brokers.
	broker_id

	couchdb_processing_time
	histogram
	Time taken in seconds for the function to complete request
to CouchDB
	database
function_name
result

	deliver_blocks_sent
	counter
	The number of blocks sent by the deliver service.
	channel
filtered

	deliver_requests_completed
	counter
	The number of deliver requests that have been completed.
	channel
filtered
success

	deliver_requests_received
	counter
	The number of deliver requests that have been received.
	channel
filtered

	deliver_streams_closed
	counter
	The number of GRPC streams that have been closed for the
deliver service.
	

	deliver_streams_opened
	counter
	The number of GRPC streams that have been opened for the
deliver service.
	

	dockercontroller_chaincode_container_build_duration
	histogram
	The time to build a chaincode image in seconds.
	chaincode
success

	fabric_version
	gauge
	The active version of Fabric.
	version

	grpc_comm_conn_closed
	counter
	gRPC connections closed. Open minus closed is the active
number of connections.
	

	grpc_comm_conn_opened
	counter
	gRPC connections opened. Open minus closed is the active
number of connections.
	

	grpc_server_stream_messages_received
	counter
	The number of stream messages received.
	service
method

	grpc_server_stream_messages_sent
	counter
	The number of stream messages sent.
	service
method

	grpc_server_stream_request_duration
	histogram
	The time to complete a stream request.
	service
method
code

	grpc_server_stream_requests_completed
	counter
	The number of stream requests completed.
	service
method
code

	grpc_server_stream_requests_received
	counter
	The number of stream requests received.
	service
method

	grpc_server_unary_request_duration
	histogram
	The time to complete a unary request.
	service
method
code

	grpc_server_unary_requests_completed
	counter
	The number of unary requests completed.
	service
method
code

	grpc_server_unary_requests_received
	counter
	The number of unary requests received.
	service
method

	ledger_block_processing_time
	histogram
	Time taken in seconds for ledger block processing.
	channel

	ledger_blockchain_height
	gauge
	Height of the chain in blocks.
	channel

	ledger_blockstorage_commit_time
	histogram
	Time taken in seconds for committing the block and private
data to storage.
	channel

	ledger_statedb_commit_time
	histogram
	Time taken in seconds for committing block changes to
state db.
	channel

	ledger_transaction_count
	counter
	Number of transactions processed.
	channel
transaction_type
chaincode
validation_code

StatsD Metrics

The following metrics are currently emitted for consumption by StatsD. The
%{variable_name} nomenclature represents segments that vary based on
context.

For example, %{channel} will be replaced with the name of the channel
associated with the metric.

	Bucket
	Type
	Description

	blockcutter.block_fill_duration.%{channel}
	histogram
	The time from first transaction enqueing to the block
being cut in seconds.

	broadcast.enqueue_duration.%{channel}.%{type}.%{status}
	histogram
	The time to enqueue a transaction in seconds.

	broadcast.processed_count.%{channel}.%{type}.%{status}
	counter
	The number of transactions processed.

	broadcast.validate_duration.%{channel}.%{type}.%{status}
	histogram
	The time to validate a transaction in seconds.

	chaincode.execute_timeouts.%{chaincode}
	counter
	The number of chaincode executions (Init or Invoke) that
have timed out.

	chaincode.launch_duration.%{chaincode}.%{success}
	histogram
	The time to launch a chaincode.

	chaincode.launch_failures.%{chaincode}
	counter
	The number of chaincode launches that have failed.

	chaincode.launch_timeouts.%{chaincode}
	counter
	The number of chaincode launches that have timed out.

	chaincode.shim_request_duration.%{type}.%{channel}.%{chaincode}.%{success}
	histogram
	The time to complete chaincode shim requests.

	chaincode.shim_requests_completed.%{type}.%{channel}.%{chaincode}.%{success}
	counter
	The number of chaincode shim requests completed.

	chaincode.shim_requests_received.%{type}.%{channel}.%{chaincode}
	counter
	The number of chaincode shim requests received.

	consensus.kafka.batch_size.%{topic}
	gauge
	The mean batch size in bytes sent to topics.

	consensus.kafka.compression_ratio.%{topic}
	gauge
	The mean compression ratio (as percentage) for topics.

	consensus.kafka.incoming_byte_rate.%{broker_id}
	gauge
	Bytes/second read off brokers.

	consensus.kafka.outgoing_byte_rate.%{broker_id}
	gauge
	Bytes/second written to brokers.

	consensus.kafka.record_send_rate.%{topic}
	gauge
	The number of records per second sent to topics.

	consensus.kafka.records_per_request.%{topic}
	gauge
	The mean number of records sent per request to topics.

	consensus.kafka.request_latency.%{broker_id}
	gauge
	The mean request latency in ms to brokers.

	consensus.kafka.request_rate.%{broker_id}
	gauge
	Requests/second sent to brokers.

	consensus.kafka.request_size.%{broker_id}
	gauge
	The mean request size in bytes to brokers.

	consensus.kafka.response_rate.%{broker_id}
	gauge
	Requests/second sent to brokers.

	consensus.kafka.response_size.%{broker_id}
	gauge
	The mean response size in bytes from brokers.

	couchdb.processing_time.%{database}.%{function_name}.%{result}
	histogram
	Time taken in seconds for the function to complete request
to CouchDB

	deliver.blocks_sent.%{channel}.%{filtered}
	counter
	The number of blocks sent by the deliver service.

	deliver.requests_completed.%{channel}.%{filtered}.%{success}
	counter
	The number of deliver requests that have been completed.

	deliver.requests_received.%{channel}.%{filtered}
	counter
	The number of deliver requests that have been received.

	deliver.streams_closed
	counter
	The number of GRPC streams that have been closed for the
deliver service.

	deliver.streams_opened
	counter
	The number of GRPC streams that have been opened for the
deliver service.

	dockercontroller.chaincode_container_build_duration.%{chaincode}.%{success}
	histogram
	The time to build a chaincode image in seconds.

	fabric_version.%{version}
	gauge
	The active version of Fabric.

	grpc.comm.conn_closed
	counter
	gRPC connections closed. Open minus closed is the active
number of connections.

	grpc.comm.conn_opened
	counter
	gRPC connections opened. Open minus closed is the active
number of connections.

	grpc.server.stream_messages_received.%{service}.%{method}
	counter
	The number of stream messages received.

	grpc.server.stream_messages_sent.%{service}.%{method}
	counter
	The number of stream messages sent.

	grpc.server.stream_request_duration.%{service}.%{method}.%{code}
	histogram
	The time to complete a stream request.

	grpc.server.stream_requests_completed.%{service}.%{method}.%{code}
	counter
	The number of stream requests completed.

	grpc.server.stream_requests_received.%{service}.%{method}
	counter
	The number of stream requests received.

	grpc.server.unary_request_duration.%{service}.%{method}.%{code}
	histogram
	The time to complete a unary request.

	grpc.server.unary_requests_completed.%{service}.%{method}.%{code}
	counter
	The number of unary requests completed.

	grpc.server.unary_requests_received.%{service}.%{method}
	counter
	The number of unary requests received.

	ledger.block_processing_time.%{channel}
	histogram
	Time taken in seconds for ledger block processing.

	ledger.blockchain_height.%{channel}
	gauge
	Height of the chain in blocks.

	ledger.blockstorage_commit_time.%{channel}
	histogram
	Time taken in seconds for committing the block and private
data to storage.

	ledger.statedb_commit_time.%{channel}
	histogram
	Time taken in seconds for committing block changes to
state db.

	ledger.transaction_count.%{channel}.%{transaction_type}.%{chaincode}.%{validation_code}
	counter
	Number of transactions processed.

 Error handling

Error handling

General Overview

Hyperledger Fabric code should use the vendored package
github.com/pkg/errors in place of the standard error type provided by Go.
This package allows easy generation and display of stack traces with error
messages.

Usage Instructions

github.com/pkg/errors should be used in place of all calls to
fmt.Errorf() or errors.New(). Using this package will generate a
call stack that will be appended to the error message.

Using this package is simple and will only require easy tweaks to your code.

First, you’ll need to import github.com/pkg/errors.

Next, update all errors that are generated by your code to use one of the error
creation functions (errors.New(), errors.Errorf(), errors.WithMessage(),
errors.Wrap(), errors.Wrapf().

Note

See https://godoc.org/github.com/pkg/errors for complete documentation
of the available error creation function. Also, refer to the General guidelines
section below for more specific guidelines for using the package for Fabric
code.

Finally, change the formatting directive for any logger or fmt.Printf() calls
from %s to %+v to print the call stack along with the error message.

General guidelines for error handling in Hyperledger Fabric

	If you are servicing a user request, you should log the error and return it.

	If the error comes from an external source, such as a Go library or vendored
package, wrap the error using errors.Wrap() to generate a call stack for the
error.

	If the error comes from another Fabric function, add further context, if
desired, to the error message using errors.WithMessage() while leaving the
call stack unaffected.

	A panic should not be allowed to propagate to other packages.

Example program

The following example program provides a clear demonstration of using the
package:

package main

import (
 "fmt"

 "github.com/pkg/errors"
)

func wrapWithStack() error {
 err := createError()
 // do this when error comes from external source (go lib or vendor)
 return errors.Wrap(err, "wrapping an error with stack")
}
func wrapWithoutStack() error {
 err := createError()
 // do this when error comes from internal Fabric since it already has stack trace
 return errors.WithMessage(err, "wrapping an error without stack")
}
func createError() error {
 return errors.New("original error")
}

func main() {
 err := createError()
 fmt.Printf("print error without stack: %s\n\n", err)
 fmt.Printf("print error with stack: %+v\n\n", err)
 err = wrapWithoutStack()
 fmt.Printf("%+v\n\n", err)
 err = wrapWithStack()
 fmt.Printf("%+v\n\n", err)
}

 Logging Control

Logging Control

Overview

Logging in the peer and orderer is provided by the
common/flogging package. Chaincodes written in Go also use this
package if they use the logging methods provided by the shim.
This package supports

	Logging control based on the severity of the message

	Logging control based on the software logger generating the message

	Different pretty-printing options based on the severity of the
message

All logs are currently directed to stderr. Global and logger-level
control of logging by severity is provided for both users and developers.
There are currently no formalized rules for the types of information
provided at each severity level. When submitting bug reports, developers
may want to see full logs down to the DEBUG level.

In pretty-printed logs the logging level is indicated both by color and
by a four-character code, e.g, “ERRO” for ERROR, “DEBU” for DEBUG, etc. In
the logging context a logger is an arbitrary name (string) given by
developers to groups of related messages. In the pretty-printed example
below, the loggers ledgermgmt, kvledger, and peer are
generating logs.

	::

	2018-11-01 15:32:38.268 UTC [ledgermgmt] initialize -> INFO 002 Initializing ledger mgmt
2018-11-01 15:32:38.268 UTC [kvledger] NewProvider -> INFO 003 Initializing ledger provider
2018-11-01 15:32:38.342 UTC [kvledger] NewProvider -> INFO 004 ledger provider Initialized
2018-11-01 15:32:38.357 UTC [ledgermgmt] initialize -> INFO 005 ledger mgmt initialized
2018-11-01 15:32:38.357 UTC [peer] func1 -> INFO 006 Auto-detected peer address: 172.24.0.3:7051
2018-11-01 15:32:38.357 UTC [peer] func1 -> INFO 007 Returning peer0.org1.example.com:7051

An arbitrary number of loggers can be created at runtime, therefore there is
no “master list” of loggers, and logging control constructs can not check
whether logging loggers actually do or will exist.

Logging specification

The logging levels of the peer and orderer commands are controlled
by a logging specification, which is set via the FABRIC_LOGGING_SPEC
environment variable.

The full logging level specification is of the form

[<logger>[,<logger>...]=]<level>[:[<logger>[,<logger>...]=]<level>...]

Logging severity levels are specified using case-insensitive strings
chosen from

FATAL | PANIC | ERROR | WARNING | INFO | DEBUG

A logging level by itself is taken as the overall default. Otherwise,
overrides for individual or groups of loggers can be specified using the

<logger>[,<logger>...]=<level>

syntax. Examples of specifications:

info - Set default to INFO
warning:msp,gossip=warning:chaincode=info - Default WARNING; Override for msp, gossip, and chaincode
chaincode=info:msp,gossip=warning:warning - Same as above

Logging format

The logging format of the peer and orderer commands is controlled
via the FABRIC_LOGGING_FORMAT environment variable. This can be set to
a format string, such as the default

"%{color}%{time:2006-01-02 15:04:05.000 MST} [%{module}] %{shortfunc} -> %{level:.4s} %{id:03x}%{color:reset} %{message}"

to print the logs in a human-readable console format. It can be also set to
json to output logs in JSON format.

Go chaincodes

The standard mechanism to log within a chaincode application is to
integrate with the logging transport exposed to each chaincode instance
via the peer. The chaincode shim package provides APIs that allow a
chaincode to create and manage logging objects whose logs will be
formatted and interleaved consistently with the shim logs.

As independently executed programs, user-provided chaincodes may
technically also produce output on stdout/stderr. While naturally useful
for “devmode”, these channels are normally disabled on a production
network to mitigate abuse from broken or malicious code. However, it is
possible to enable this output even for peer-managed containers (e.g.
“netmode”) on a per-peer basis via the
CORE_VM_DOCKER_ATTACHSTDOUT=true configuration option.

Once enabled, each chaincode will receive its own logging channel keyed
by its container-id. Any output written to either stdout or stderr will
be integrated with the peer’s log on a per-line basis. It is not
recommended to enable this for production.

API

NewLogger(name string) *ChaincodeLogger - Create a logging object
for use by a chaincode

(c *ChaincodeLogger) SetLevel(level LoggingLevel) - Set the logging
level of the logger

(c *ChaincodeLogger) IsEnabledFor(level LoggingLevel) bool - Return
true if logs will be generated at the given level

LogLevel(levelString string) (LoggingLevel, error) - Convert a
string to a LoggingLevel

A LoggingLevel is a member of the enumeration

LogDebug, LogInfo, LogNotice, LogWarning, LogError, LogCritical

which can be used directly, or generated by passing a case-insensitive
version of the strings

DEBUG, INFO, NOTICE, WARNING, ERROR, CRITICAL

to the LogLevel API.

Formatted logging at various severity levels is provided by the
functions

(c *ChaincodeLogger) Debug(args ...interface{})
(c *ChaincodeLogger) Info(args ...interface{})
(c *ChaincodeLogger) Notice(args ...interface{})
(c *ChaincodeLogger) Warning(args ...interface{})
(c *ChaincodeLogger) Error(args ...interface{})
(c *ChaincodeLogger) Critical(args ...interface{})

(c *ChaincodeLogger) Debugf(format string, args ...interface{})
(c *ChaincodeLogger) Infof(format string, args ...interface{})
(c *ChaincodeLogger) Noticef(format string, args ...interface{})
(c *ChaincodeLogger) Warningf(format string, args ...interface{})
(c *ChaincodeLogger) Errorf(format string, args ...interface{})
(c *ChaincodeLogger) Criticalf(format string, args ...interface{})

The f forms of the logging APIs provide for precise control over the
formatting of the logs. The non-f forms of the APIs currently
insert a space between the printed representations of the arguments, and
arbitrarily choose the formats to use.

In the current implementation, the logs produced by the shim and a
ChaincodeLogger are timestamped, marked with the logger name and
severity level, and written to stderr. Note that logging level
control is currently based on the name provided when the
ChaincodeLogger is created. To avoid ambiguities, all
ChaincodeLogger should be given unique names other than “shim”. The
logger name will appear in all log messages created by the logger. The
shim logs as “shim”.

The default logging level for loggers within the Chaincode container can
be set in the
core.yaml [https://github.com/hyperledger/fabric/blob/master/sampleconfig/core.yaml]
file. The key chaincode.logging.level sets the default level for all
loggers within the Chaincode container. The key chaincode.logging.shim
overrides the default level for the shim logger.

Logging section for the chaincode container
logging:
 # Default level for all loggers within the chaincode container
 level: info
 # Override default level for the 'shim' logger
 shim: warning

The default logging level can be overridden by using environment
variables. CORE_CHAINCODE_LOGGING_LEVEL sets the default logging
level for all loggers. CORE_CHAINCODE_LOGGING_SHIM overrides the
level for the shim logger.

Go language chaincodes can also control the logging level of the
chaincode shim interface through the SetLoggingLevel API.

SetLoggingLevel(LoggingLevel level) - Control the logging level of
the shim

Below is a simple example of how a chaincode might create a private
logging object logging at the LogInfo level.

var logger = shim.NewLogger("myChaincode")

func main() {

 logger.SetLevel(shim.LogInfo)
 ...
}

 Securing Communication With Transport Layer Security (TLS)

Securing Communication With Transport Layer Security (TLS)

Fabric supports for secure communication between nodes using TLS. TLS communication
can use both one-way (server only) and two-way (server and client) authentication.

Configuring TLS for peers nodes

A peer node is both a TLS server and a TLS client. It is the former when another peer
node, application, or the CLI makes a connection to it and the latter when it makes
a connection to another peer node or orderer.

To enable TLS on a peer node set the following peer configuration properties:

	peer.tls.enabled = true

	peer.tls.cert.file = fully qualified path of the file that contains the TLS server
certificate

	peer.tls.key.file = fully qualified path of the file that contains the TLS server
private key

	peer.tls.rootcert.file = fully qualified path of the file that contains the
certificate chain of the certificate authority(CA) that issued TLS server certificate

By default, TLS client authentication is turned off when TLS is enabled on a peer node.
This means that the peer node will not verify the certificate of a client (another peer
node, application, or the CLI) during a TLS handshake. To enable TLS client authentication
on a peer node, set the peer configuration property peer.tls.clientAuthRequired to
true and set the peer.tls.clientRootCAs.files property to the CA chain file(s) that
contain(s) the CA certificate chain(s) that issued TLS certificates for your organization’s
clients.

By default, a peer node will use the same certificate and private key pair when acting as a
TLS server and client. To use a different certificate and private key pair for the client
side, set the peer.tls.clientCert.file and peer.tls.clientKey.file configuration
properties to the fully qualified path of the client certificate and key file,
respectively.

TLS with client authentication can also be enabled by setting the following environment
variables:

	CORE_PEER_TLS_ENABLED = true

	CORE_PEER_TLS_CERT_FILE = fully qualified path of the server certificate

	CORE_PEER_TLS_KEY_FILE = fully qualified path of the server private key

	CORE_PEER_TLS_ROOTCERT_FILE = fully qualified path of the CA chain file

	CORE_PEER_TLS_CLIENTAUTHREQUIRED = true

	CORE_PEER_TLS_CLIENTROOTCAS_FILES = fully qualified path of the CA chain file

	CORE_PEER_TLS_CLIENTCERT_FILE = fully qualified path of the client certificate

	CORE_PEER_TLS_CLIENTKEY_FILE = fully qualified path of the client key

When client authentication is enabled on a peer node, a client is required to send its
certificate during a TLS handshake. If the client does not send its certificate, the
handshake will fail and the peer will close the connection.

When a peer joins a channel, root CA certificate chains of the channel members are
read from the config block of the channel and are added to the TLS client and server
root CAs data structure. So, peer to peer communication, peer to orderer communication
should work seamlessly.

Configuring TLS for orderer nodes

To enable TLS on an orderer node, set the following orderer configuration properties:

	General.TLS.Enabled = true

	General.TLS.PrivateKey = fully qualified path of the file that contains the server
private key

	General.TLS.Certificate = fully qualified path of the file that contains the server
certificate

	General.TLS.RootCAs = fully qualified path of the file that contains the certificate
chain of the CA that issued TLS server certificate

By default, TLS client authentication is turned off on orderer, as is the case with peer.
To enable TLS client authentication, set the following config properties:

	General.TLS.ClientAuthRequired = true

	General.TLS.ClientRootCAs = fully qualified path of the file that contains the
certificate chain of the CA that issued the TLS server certificate

TLS with client authentication can also be enabled by setting the following environment
variables:

	ORDERER_GENERAL_TLS_ENABLED = true

	ORDERER_GENERAL_TLS_PRIVATEKEY = fully qualified path of the file that contains the
server private key

	ORDERER_GENERAL_TLS_CERTIFICATE = fully qualified path of the file that contains the
server certificate

	ORDERER_GENERAL_TLS_ROOTCAS = fully qualified path of the file that contains the
certificate chain of the CA that issued TLS server certificate

	ORDERER_GENERAL_TLS_CLIENTAUTHREQUIRED = true

	ORDERER_GENERAL_TLS_CLIENTROOTCAS = fully qualified path of the file that contains
the certificate chain of the CA that issued TLS server certificate

Configuring TLS for the peer CLI

The following environment variables must be set when running peer CLI commands against a
TLS enabled peer node:

	CORE_PEER_TLS_ENABLED = true

	CORE_PEER_TLS_ROOTCERT_FILE = fully qualified path of the file that contains cert chain
of the CA that issued the TLS server cert

If TLS client authentication is also enabled on the remote server, the following variables
must to be set in addition to those above:

	CORE_PEER_TLS_CLIENTAUTHREQUIRED = true

	CORE_PEER_TLS_CLIENTCERT_FILE = fully qualified path of the client certificate

	CORE_PEER_TLS_CLIENTKEY_FILE = fully qualified path of the client private key

When running a command that connects to orderer service, like peer channel <create|update|fetch>
or peer chaincode <invoke|instantiate>, following command line arguments must also be specified
if TLS is enabled on the orderer:

	–tls

	–cafile <fully qualified path of the file that contains cert chain of the orderer CA>

If TLS client authentication is enabled on the orderer, the following arguments must be specified
as well:

	–clientauth

	–keyfile <fully qualified path of the file that contains the client private key>

	–certfile <fully qualified path of the file that contains the client certificate>

Debugging TLS issues

Before debugging TLS issues, it is advisable to enable GRPC debug on both the TLS client
and the server side to get additional information. To enable GRPC debug, set the
environment variable FABRIC_LOGGING_SPEC to include grpc=debug. For example, to
set the default logging level to INFO and the GRPC logging level to DEBUG, set
the logging specification to grpc=debug:info.

If you see the error message remote error: tls: bad certificate on the client side, it
usually means that the TLS server has enabled client authentication and the server either did
not receive the correct client certificate or it received a client certificate that it does
not trust. Make sure the client is sending its certificate and that it has been signed by one
of the CA certificates trusted by the peer or orderer node.

If you see the error message remote error: tls: bad certificate in your chaincode logs,
ensure that your chaincode has been built using the chaincode shim provided with Fabric v1.1
or newer. If your chaincode does not contain a vendored copy of the shim, deleting the
chaincode container and restarting its peer will rebuild the chaincode container using the
current shim version.

 Bringing up a Kafka-based Ordering Service

Bringing up a Kafka-based Ordering Service

Caveat emptor

This document assumes that the reader knows how to set up a Kafka cluster and a ZooKeeper ensemble, and keep them secure for general usage by preventing unauthorized access. The sole purpose of this guide is to identify the steps you need to take so as to have a set of Hyperledger Fabric ordering service nodes (OSNs) use your Kafka cluster and provide an ordering service to your blockchain network.

Big picture

Each channel maps to a separate single-partition topic in Kafka. When an OSN receives transactions via the Broadcast RPC, it checks to make sure that the broadcasting client has permissions to write on the channel, then relays (i.e. produces) those transactions to the appropriate partition in Kafka. This partition is also consumed by the OSN which groups the received transactions into blocks locally, persists them in its local ledger, and serves them to receiving clients via the Deliver RPC. For low-level details, refer to the document that describes how we came to this design [https://docs.google.com/document/d/19JihmW-8blTzN99lAubOfseLUZqdrB6sBR0HsRgCAnY/edit] — Figure 8 is a schematic representation of the process described above.

Steps

Let K and Z be the number of nodes in the Kafka cluster and the ZooKeeper ensemble respectively:

	At a minimum, K should be set to 4. (As we will explain in Step 4 below, this is the minimum number of nodes necessary in order to exhibit crash fault tolerance, i.e. with 4 brokers, you can have 1 broker go down, all channels will continue to be writeable and readable, and new channels can be created.)

	Z will either be 3, 5, or 7. It has to be an odd number to avoid split-brain scenarios, and larger than 1 in order to avoid single point of failures. Anything beyond 7 ZooKeeper servers is considered an overkill.

Then proceed as follows:

	Orderers: Encode the Kafka-related information in the network’s genesis block. If you are using configtxgen, edit configtx.yaml —or pick a preset profile for the system channel’s genesis block— so that:

	Orderer.OrdererType is set to kafka.

	Orderer.Kafka.Brokers contains the address of at least two of the Kafka brokers in your cluster in IP:port notation. The list does not need to be exhaustive. (These are your bootstrap brokers.)

	Orderers: Set the maximum block size. Each block will have at most Orderer.AbsoluteMaxBytes bytes (not including headers), a value that you can set in configtx.yaml. Let the value you pick here be A and make note of it — it will affect how you configure your Kafka brokers in Step 6.

	Orderers: Create the genesis block. Use configtxgen. The settings you picked in Steps 3 and 4 above are system-wide settings, i.e. they apply across the network for all the OSNs. Make note of the genesis block’s location.

	Kafka cluster: Configure your Kafka brokers appropriately. Ensure that every Kafka broker has these keys configured:

	unclean.leader.election.enable = false — Data consistency is key in a blockchain environment. We cannot have a channel leader chosen outside of the in-sync replica set, or we run the risk of overwriting the offsets that the previous leader produced, and —as a result— rewrite the blockchain that the orderers produce.

	min.insync.replicas = M — Where you pick a value M such that 1 < M < N (see default.replication.factor below). Data is considered committed when it is written to at least M replicas (which are then considered in-sync and belong to the in-sync replica set, or ISR). In any other case, the write operation returns an error. Then:

	If up to N-M replicas —out of the N that the channel data is written to— become unavailable, operations proceed normally.

	If more replicas become unavailable, Kafka cannot maintain an ISR set of M, so it stops accepting writes. Reads work without issues. The channel becomes writeable again when M replicas get in-sync.

	default.replication.factor = N — Where you pick a value N such that N < K. A replication factor of N means that each channel will have its data replicated to N brokers. These are the candidates for the ISR set of a channel. As we noted in the min.insync.replicas section above, not all of these brokers have to be available all the time. N should be set strictly smaller to K because channel creations cannot go forward if less than N brokers are up. So if you set N = K, a single broker going down means that no new channels can be created on the blockchain network — the crash fault tolerance of the ordering service is non-existent.

Based on what we’ve described above, the minimum allowed values for M and N are 2 and 3 respectively. This configuration allows for the creation of new channels to go forward, and for all channels to continue to be writeable.

	message.max.bytes and replica.fetch.max.bytes should be set to a value larger than A, the value you picked in Orderer.AbsoluteMaxBytes in Step 4 above. Add some buffer to account for headers — 1 MiB is more than enough. The following condition applies:

Orderer.AbsoluteMaxBytes < replica.fetch.max.bytes <= message.max.bytes

(For completeness, we note that message.max.bytes should be strictly smaller to socket.request.max.bytes which is set by default to 100 MiB. If you wish to have blocks larger than 100 MiB you will need to edit the hard-coded value in brokerConfig.Producer.MaxMessageBytes in fabric/orderer/kafka/config.go and rebuild the binary from source. This is not advisable.)

	log.retention.ms = -1. Until the ordering service adds support for pruning of the Kafka logs, you should disable time-based retention and prevent segments from expiring. (Size-based retention —see log.retention.bytes— is disabled by default in Kafka at the time of this writing, so there’s no need to set it explicitly.)

	Orderers: Point each OSN to the genesis block. Edit General.GenesisFile in orderer.yaml so that it points to the genesis block created in Step 5 above. (While at it, ensure all other keys in that YAML file are set appropriately.)

	Orderers: Adjust polling intervals and timeouts. (Optional step.)

	The Kafka.Retry section in the orderer.yaml file allows you to adjust the frequency of the metadata/producer/consumer requests, as well as the socket timeouts. (These are all settings you would expect to see in a Kafka producer or consumer.)

	Additionally, when a new channel is created, or when an existing channel is reloaded (in case of a just-restarted orderer), the orderer interacts with the Kafka cluster in the following ways:

	It creates a Kafka producer (writer) for the Kafka partition that corresponds to the channel.

	It uses that producer to post a no-op CONNECT message to that partition.

	It creates a Kafka consumer (reader) for that partition.

If any of these steps fail, you can adjust the frequency with which they are repeated. Specifically they will be re-attempted every Kafka.Retry.ShortInterval for a total of Kafka.Retry.ShortTotal, and then every Kafka.Retry.LongInterval for a total of Kafka.Retry.LongTotal until they succeed. Note that the orderer will be unable to write to or read from a channel until all of the steps above have been completed successfully.

	Set up the OSNs and Kafka cluster so that they communicate over SSL. (Optional step, but highly recommended.) Refer to the Confluent guide [https://docs.confluent.io/2.0.0/kafka/ssl.html] for the Kafka cluster side of the equation, and set the keys under Kafka.TLS in orderer.yaml on every OSN accordingly.

	Bring up the nodes in the following order: ZooKeeper ensemble, Kafka cluster, ordering service nodes.

Additional considerations

	Preferred message size. In Step 4 above (see Steps section) you can also set the preferred size of blocks by setting the Orderer.Batchsize.PreferredMaxBytes key. Kafka offers higher throughput when dealing with relatively small messages; aim for a value no bigger than 1 MiB.

	Using environment variables to override settings. When using the sample Kafka and Zookeeper Docker images provided with Fabric (see images/kafka and images/zookeeper respectively), you can override a Kafka broker or a ZooKeeper server’s settings by using environment variables. Replace the dots of the configuration key with underscores — e.g. KAFKA_UNCLEAN_LEADER_ELECTION_ENABLE=false will allow you to override the default value of unclean.leader.election.enable. The same applies to the OSNs for their local configuration, i.e. what can be set in orderer.yaml. For example ORDERER_KAFKA_RETRY_SHORTINTERVAL=1s allows you to override the default value for Orderer.Kafka.Retry.ShortInterval.

Kafka Protocol Version Compatibility

Fabric uses the sarama client library [https://github.com/Shopify/sarama] and vendors a version of it that supports Kafka 0.10 to 1.0, yet is still known to work with older versions.

Using the Kafka.Version key in orderer.yaml, you can configure which version of the Kafka protocol is used to communicate with the Kafka cluster’s brokers. Kafka brokers are backward compatible with older protocol versions. Because of a Kafka broker’s backward compatibility with older protocol versions, upgrading your Kafka brokers to a new version does not require an update of the Kafka.Version key value, but the Kafka cluster might suffer a performance penalty [https://kafka.apache.org/documentation/#upgrade_11_message_format] while using an older protocol version.

Debugging

Set environment variable FABRIC_LOGGING_SPEC to DEBUG and set Kafka.Verbose to true in orderer.yaml .

 Commands Reference

Commands Reference

	peer

	peer chaincode

	peer channel

	peer version

	peer logging

	peer node

	configtxgen

	configtxlator

	cryptogen

	Service Discovery CLI

	Fabric-CA Commands

 peer

peer

Description

The peer command has five different subcommands, each of which allows
administrators to perform a specific set of tasks related to a peer. For
example, you can use the peer channel subcommand to join a peer to a channel,
or the peer chaincode command to deploy a smart contract chaincode to a
peer.

Syntax

The peer command has five different subcommands within it:

peer chaincode [option] [flags]
peer channel [option] [flags]
peer logging [option] [flags]
peer node [option] [flags]
peer version [option] [flags]

Each subcommand has different options available, and these are described in
their own dedicated topic. For brevity, we often refer to a command (peer), a
subcommand (channel), or subcommand option (fetch) simply as a command.

If a subcommand is specified without an option, then it will return some high
level help text as described in the --help flag below.

Flags

Each peer subcommand has a specific set of flags associated with it, many of
which are designated global because they can be used in all subcommand
options. These flags are described with the relevant peer subcommand.

The top level peer command has the following flag:

	--help

Use --help to get brief help text for any peer command. The --help flag
is very useful – it can be used to get command help, subcommand help, and
even option help.

For example

peer --help
peer channel --help
peer channel list --help

See individual peer subcommands for more detail.

Usage

Here is an example using the available flag on the peer command.

	Using the --help flag on the peer channel join command.

peer channel join --help

Joins the peer to a channel.

Usage:
 peer channel join [flags]

Flags:
 -b, --blockpath string Path to file containing genesis block
 -h, --help help for join

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint

This shows brief help syntax for the peer channel join command.

 peer chaincode

peer chaincode

The peer chaincode command allows administrators to perform chaincode
related operations on a peer, such as installing, instantiating, invoking,
packaging, querying, and upgrading chaincode.

Syntax

The peer chaincode command has the following subcommands:

	install

	instantiate

	invoke

	list

	package

	query

	signpackage

	upgrade

The different subcommand options (install, instantiate…) relate to the
different chaincode operations that are relevant to a peer. For example, use the
peer chaincode install subcommand option to install a chaincode on a peer, or
the peer chaincode query subcommand option to query a chaincode for the
current value on a peer’s ledger.

Each peer chaincode subcommand is described together with its options in its own
section in this topic.

Flags

Each peer chaincode subcommand has both a set of flags specific to an
individual subcommand, as well as a set of global flags that relate to all
peer chaincode subcommands. Not all subcommands would use these flags.
For instance, the query subcommand does not need the --orderer flag.

The individual flags are described with the relevant subcommand. The global
flags are

	--cafile <string>

Path to file containing PEM-encoded trusted certificate(s) for the ordering
endpoint

	--certfile <string>

Path to file containing PEM-encoded X509 public key to use for mutual TLS
communication with the orderer endpoint

	--keyfile <string>

Path to file containing PEM-encoded private key to use for mutual TLS
communication with the orderer endpoint

	-o or --orderer <string>

Ordering service endpoint specified as <hostname or IP address>:<port>

	--ordererTLSHostnameOverride <string>

The hostname override to use when validating the TLS connection to the orderer

	--tls

Use TLS when communicating with the orderer endpoint

	--transient <string>

Transient map of arguments in JSON encoding

peer chaincode install

Package the specified chaincode into a deployment spec and save it on the peer's path.

Usage:
 peer chaincode install [flags]

Flags:
 --connectionProfile string Connection profile that provides the necessary connection information for the network. Note: currently only supported for providing peer connection information
 -c, --ctor string Constructor message for the chaincode in JSON format (default "{}")
 -h, --help help for install
 -l, --lang string Language of chaincode, either "golang" (default), "node", or "java"
 -n, --name string Name of the chaincode
 -p, --path string Path to chaincode, for "golang" use relative path from $GOPATH/src, for "node" or "java" use absolute path
 --peerAddresses stringArray The addresses of the peers to connect to
 --tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root cert files of the peers to connect to. The order and number of certs specified should match the --peerAddresses flag
 -v, --version string Version of the chaincode specified in install/instantiate/upgrade commands

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint
 --transient string Transient map of arguments in JSON encoding

peer chaincode instantiate

Deploy the specified chaincode to the network.

Usage:
 peer chaincode instantiate [flags]

Flags:
 -C, --channelID string The channel on which this command should be executed
 --collections-config string The fully qualified path to the collection JSON file including the file name
 --connectionProfile string Connection profile that provides the necessary connection information for the network. Note: currently only supported for providing peer connection information
 -c, --ctor string Constructor message for the chaincode in JSON format (default "{}")
 -E, --escc string The name of the endorsement system chaincode to be used for this chaincode
 -h, --help help for instantiate
 -l, --lang string Language the chaincode is written in (default "golang")
 -n, --name string Name of the chaincode
 --peerAddresses stringArray The addresses of the peers to connect to
 -P, --policy string The endorsement policy associated to this chaincode
 --tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root cert files of the peers to connect to. The order and number of certs specified should match the --peerAddresses flag
 -v, --version string Version of the chaincode specified in install/instantiate/upgrade commands
 -V, --vscc string The name of the verification system chaincode to be used for this chaincode

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint
 --transient string Transient map of arguments in JSON encoding

peer chaincode invoke

Invoke the specified chaincode. It will try to commit the endorsed transaction to the network.

Usage:
 peer chaincode invoke [flags]

Flags:
 -C, --channelID string The channel on which this command should be executed
 --connectionProfile string Connection profile that provides the necessary connection information for the network. Note: currently only supported for providing peer connection information
 -c, --ctor string Constructor message for the chaincode in JSON format (default "{}")
 -h, --help help for invoke
 -n, --name string Name of the chaincode
 --peerAddresses stringArray The addresses of the peers to connect to
 --tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root cert files of the peers to connect to. The order and number of certs specified should match the --peerAddresses flag
 --waitForEvent Whether to wait for the event from each peer's deliver filtered service signifying that the 'invoke' transaction has been committed successfully
 --waitForEventTimeout duration Time to wait for the event from each peer's deliver filtered service signifying that the 'invoke' transaction has been committed successfully (default 30s)

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint
 --transient string Transient map of arguments in JSON encoding

peer chaincode list

Get the instantiated chaincodes in the channel if specify channel, or get installed chaincodes on the peer

Usage:
 peer chaincode list [flags]

Flags:
 -C, --channelID string The channel on which this command should be executed
 --connectionProfile string Connection profile that provides the necessary connection information for the network. Note: currently only supported for providing peer connection information
 -h, --help help for list
 --installed Get the installed chaincodes on a peer
 --instantiated Get the instantiated chaincodes on a channel
 --peerAddresses stringArray The addresses of the peers to connect to
 --tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root cert files of the peers to connect to. The order and number of certs specified should match the --peerAddresses flag

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint
 --transient string Transient map of arguments in JSON encoding

peer chaincode package

Package the specified chaincode into a deployment spec.

Usage:
 peer chaincode package [flags]

Flags:
 -s, --cc-package create CC deployment spec for owner endorsements instead of raw CC deployment spec
 -c, --ctor string Constructor message for the chaincode in JSON format (default "{}")
 -h, --help help for package
 -i, --instantiate-policy string instantiation policy for the chaincode
 -l, --lang string Language of chaincode, either "golang" (default), "node", or "java"
 -n, --name string Name of the chaincode
 -p, --path string Path to chaincode, for "golang" use relative path from $GOPATH/src, for "node" or "java" use absolute path
 -S, --sign if creating CC deployment spec package for owner endorsements, also sign it with local MSP
 -v, --version string Version of the chaincode specified in install/instantiate/upgrade commands

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint
 --transient string Transient map of arguments in JSON encoding

peer chaincode query

Get endorsed result of chaincode function call and print it. It won't generate transaction.

Usage:
 peer chaincode query [flags]

Flags:
 -C, --channelID string The channel on which this command should be executed
 --connectionProfile string Connection profile that provides the necessary connection information for the network. Note: currently only supported for providing peer connection information
 -c, --ctor string Constructor message for the chaincode in JSON format (default "{}")
 -h, --help help for query
 -x, --hex If true, output the query value byte array in hexadecimal. Incompatible with --raw
 -n, --name string Name of the chaincode
 --peerAddresses stringArray The addresses of the peers to connect to
 -r, --raw If true, output the query value as raw bytes, otherwise format as a printable string
 --tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root cert files of the peers to connect to. The order and number of certs specified should match the --peerAddresses flag

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint
 --transient string Transient map of arguments in JSON encoding

peer chaincode signpackage

Sign the specified chaincode package

Usage:
 peer chaincode signpackage [flags]

Flags:
 -h, --help help for signpackage

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint
 --transient string Transient map of arguments in JSON encoding

peer chaincode upgrade

Upgrade an existing chaincode with the specified one. The new chaincode will immediately replace the existing chaincode upon the transaction committed.

Usage:
 peer chaincode upgrade [flags]

Flags:
 -C, --channelID string The channel on which this command should be executed
 --collections-config string The fully qualified path to the collection JSON file including the file name
 --connectionProfile string Connection profile that provides the necessary connection information for the network. Note: currently only supported for providing peer connection information
 -c, --ctor string Constructor message for the chaincode in JSON format (default "{}")
 -E, --escc string The name of the endorsement system chaincode to be used for this chaincode
 -h, --help help for upgrade
 -l, --lang string Language of chaincode, either "golang" (default), "node", or "java"
 -n, --name string Name of the chaincode
 -p, --path string Path to chaincode, for "golang" use relative path from $GOPATH/src, for "node" or "java" use absolute path
 --peerAddresses stringArray The addresses of the peers to connect to
 -P, --policy string The endorsement policy associated to this chaincode
 --tlsRootCertFiles stringArray If TLS is enabled, the paths to the TLS root cert files of the peers to connect to. The order and number of certs specified should match the --peerAddresses flag
 -v, --version string Version of the chaincode specified in install/instantiate/upgrade commands
 -V, --vscc string The name of the verification system chaincode to be used for this chaincode

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint
 --transient string Transient map of arguments in JSON encoding

Example Usage

peer chaincode instantiate examples

Here are some examples of the peer chaincode instantiate command, which
instantiates the chaincode named mycc at version 1.0 on channel
mychannel:

	Using the --tls and --cafile global flags to instantiate the chaincode
in a network with TLS enabled:

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem
peer chaincode instantiate -o orderer.example.com:7050 --tls --cafile $ORDERER_CA -C mychannel -n mycc -v 1.0 -c '{"Args":["init","a","100","b","200"]}' -P "AND ('Org1MSP.peer','Org2MSP.peer')"

2018-02-22 16:33:53.324 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 001 Using default escc
2018-02-22 16:33:53.324 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 002 Using default vscc
2018-02-22 16:34:08.698 UTC [main] main -> INFO 003 Exiting.....

	Using only the command-specific options to instantiate the chaincode in a
network with TLS disabled:

peer chaincode instantiate -o orderer.example.com:7050 -C mychannel -n mycc -v 1.0 -c '{"Args":["init","a","100","b","200"]}' -P "AND ('Org1MSP.peer','Org2MSP.peer')"

2018-02-22 16:34:09.324 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 001 Using default escc
2018-02-22 16:34:09.324 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 002 Using default vscc
2018-02-22 16:34:24.698 UTC [main] main -> INFO 003 Exiting.....

peer chaincode invoke example

Here is an example of the peer chaincode invoke command:

	Invoke the chaincode named mycc at version 1.0 on channel mychannel
on peer0.org1.example.com:7051 and peer0.org2.example.com:7051 (the
peers defined by --peerAddresses), requesting to move 10 units from
variable a to variable b:

peer chaincode invoke -o orderer.example.com:7050 -C mychannel -n mycc --peerAddresses peer0.org1.example.com:7051 --peerAddresses peer0.org2.example.com:7051 -c '{"Args":["invoke","a","b","10"]}'

2018-02-22 16:34:27.069 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 001 Using default escc
2018-02-22 16:34:27.069 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 002 Using default vscc
.
.
.
2018-02-22 16:34:27.106 UTC [chaincodeCmd] chaincodeInvokeOrQuery -> DEBU 00a ESCC invoke result: version:1 response:<status:200 message:"OK" > payload:"\n \237mM\376? [\214\002 \332\204\035\275q\227\2132A\n\204&\2106\037W|\346#\3413\274\022Y\nE\022\024\n\004lscc\022\014\n\n\n\004mycc\022\002\010\003\022-\n\004mycc\022%\n\007\n\001a\022\002\010\003\n\007\n\001b\022\002\010\003\032\007\n\001a\032\00290\032\010\n\001b\032\003210\032\003\010\310\001\"\013\022\004mycc\032\0031.0" endorsement:<endorser:"\n\007Org1MSP\022\262\006-----BEGIN CERTIFICATE-----\nMIICLjCCAdWgAwIBAgIRAJYomxY2cqHA/fbRnH5a/bwwCgYIKoZIzj0EAwIwczEL\nMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xGTAXBgNVBAoTEG9yZzEuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh\nLm9yZzEuZXhhbXBsZS5jb20wHhcNMTgwMjIyMTYyODE0WhcNMjgwMjIwMTYyODE0\nWjBwMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN\nU2FuIEZyYW5jaXNjbzETMBEGA1UECxMKRmFicmljUGVlcjEfMB0GA1UEAxMWcGVl\ncjAub3JnMS5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABDEa\nWNNniN3qOCQL89BGWfY39f5V3o1pi//7JFDHATJXtLgJhkK5KosDdHuKLYbCqvge\n46u3AC16MZyJRvKBiw6jTTBLMA4GA1UdDwEB/wQEAwIHgDAMBgNVHRMBAf8EAjAA\nMCsGA1UdIwQkMCKAIN7dJR9dimkFtkus0R5pAOlRz5SA3FB5t8Eaxl9A7lkgMAoG\nCCqGSM49BAMCA0cAMEQCIC2DAsO9QZzQmKi8OOKwcCh9Gd01YmWIN3oVmaCRr8C7\nAiAlQffq2JFlbh6OWURGOko6RckizG8oVOldZG/Xj3C8lA==\n-----END CERTIFICATE-----\n" signature:"0D\002 \022_\342\350\344\231G&\237\n\244\375\302J\220l\302\345\210\335D\250y\253P\0214:\221e\332@\002 \000\254\361\224\247\210\214L\277\370\222\213\217\301\r\341v\227\265\277\336\256^\217\336\005y*\321\023\025\367" >
2018-02-22 16:34:27.107 UTC [chaincodeCmd] chaincodeInvokeOrQuery -> INFO 00b Chaincode invoke successful. result: status:200
2018-02-22 16:34:27.107 UTC [main] main -> INFO 00c Exiting.....

Here you can see that the invoke was submitted successfully based on the log
message:

2018-02-22 16:34:27.107 UTC [chaincodeCmd] chaincodeInvokeOrQuery -> INFO 00b Chaincode invoke successful. result: status:200

A successful response indicates that the transaction was submitted for ordering
successfully. The transaction will then be added to a block and, finally, validated
or invalidated by each peer on the channel.

peer chaincode list example

Here are some examples of the peer chaincode list command:

	Using the --installed flag to list the chaincodes installed on a peer.

peer chaincode list --installed

Get installed chaincodes on peer:
Name: mycc, Version: 1.0, Path: github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02, Id: 8cc2730fdafd0b28ef734eac12b29df5fc98ad98bdb1b7e0ef96265c3d893d61
2018-02-22 17:07:13.476 UTC [main] main -> INFO 001 Exiting.....

You can see that the peer has installed a chaincode called mycc which is at
version 1.0.

	Using the --instantiated in combination with the -C (channel ID) flag to
list the chaincodes instantiated on a channel.

peer chaincode list --instantiated -C mychannel

Get instantiated chaincodes on channel mychannel:
Name: mycc, Version: 1.0, Path: github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02, Escc: escc, Vscc: vscc
2018-02-22 17:07:42.969 UTC [main] main -> INFO 001 Exiting.....

You can see that chaincode mycc at version 1.0 is instantiated on
channel mychannel.

peer chaincode package example

Here is an example of the peer chaincode package command, which
packages the chaincode named mycc at version 1.1, creates the chaincode
deployment spec, signs the package using the local MSP, and outputs it as
ccpack.out:

 peer chaincode package ccpack.out -n mycc -p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02 -v 1.1 -s -S
 .
 .
 .
 2018-02-22 17:27:01.404 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 003 Using default escc
 2018-02-22 17:27:01.405 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 004 Using default vscc
 .
 .
 .
 2018-02-22 17:27:01.879 UTC [chaincodeCmd] chaincodePackage -> DEBU 011 Packaged chaincode into deployment spec of size <3426>, with args = [ccpack.out]
 2018-02-22 17:27:01.879 UTC [main] main -> INFO 012 Exiting.....

peer chaincode query example

Here is an example of the peer chaincode query command, which queries the
peer ledger for the chaincode named mycc at version 1.0 for the value of
variable a:

	You can see from the output that variable a had a value of 90 at the time of
the query.

peer chaincode query -C mychannel -n mycc -c '{"Args":["query","a"]}'

2018-02-22 16:34:30.816 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 001 Using default escc
2018-02-22 16:34:30.816 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 002 Using default vscc
Query Result: 90

peer chaincode signpackage example

Here is an example of the peer chaincode signpackage command, which accepts an
existing signed package and creates a new one with signature of the local MSP
appended to it.

peer chaincode signpackage ccwith1sig.pak ccwith2sig.pak
Wrote signed package to ccwith2sig.pak successfully
2018-02-24 19:32:47.189 EST [main] main -> INFO 002 Exiting.....

peer chaincode upgrade example

Here is an example of the peer chaincode upgrade command, which
upgrades the chaincode named mycc at version 1.0 on channel
mychannel to version 1.1, which contains a new variable c:

	Using the --tls and --cafile global flags to upgrade the chaincode
in a network with TLS enabled:

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem
peer chaincode upgrade -o orderer.example.com:7050 --tls --cafile $ORDERER_CA -C mychannel -n mycc -v 1.2 -c '{"Args":["init","a","100","b","200","c","300"]}' -P "AND ('Org1MSP.peer','Org2MSP.peer')"
.
.
.
2018-02-22 18:26:31.433 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 003 Using default escc
2018-02-22 18:26:31.434 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 004 Using default vscc
2018-02-22 18:26:31.435 UTC [chaincodeCmd] getChaincodeSpec -> DEBU 005 java chaincode enabled
2018-02-22 18:26:31.435 UTC [chaincodeCmd] upgrade -> DEBU 006 Get upgrade proposal for chaincode <name:"mycc" version:"1.1" >
.
.
.
2018-02-22 18:26:46.687 UTC [chaincodeCmd] upgrade -> DEBU 009 endorse upgrade proposal, get response <status:200 message:"OK" payload:"\n\004mycc\022\0031.1\032\004escc\"\004vscc*,\022\014\022\n\010\001\022\002\010\000\022\002\010\001\032\r\022\013\n\007Org1MSP\020\003\032\r\022\013\n\007Org2MSP\020\0032f\n \261g(^v\021\220\240\332\251\014\204V\210P\310o\231\271\036\301\022\032\205fC[|=\215\372\223\022 \311b\025?\323N\343\325\032\005\365\236\001XKj\004E\351\007\247\265fu\305j\367\331\275\253\307R\032 \014H#\014\272!#\345\306s\323\371\350\364\006.\000\356\230\353\270\263\215\217\303\256\220i^\277\305\214: \375\200zY\275\203}\375\244\205\035\340\226]l!uE\334\273\214\214\020\303\3474\360\014\234-\006\315B\031\022\010\022\006\010\001\022\002\010\000\032\r\022\013\n\007Org1MSP\020\001" >
.
.
.
2018-02-22 18:26:46.693 UTC [chaincodeCmd] upgrade -> DEBU 00c Get Signed envelope
2018-02-22 18:26:46.693 UTC [chaincodeCmd] chaincodeUpgrade -> DEBU 00d Send signed envelope to orderer
2018-02-22 18:26:46.908 UTC [main] main -> INFO 00e Exiting.....

	Using only the command-specific options to upgrade the chaincode in a
network with TLS disabled:

peer chaincode upgrade -o orderer.example.com:7050 -C mychannel -n mycc -v 1.2 -c '{"Args":["init","a","100","b","200","c","300"]}' -P "AND ('Org1MSP.peer','Org2MSP.peer')"
.
.
.
2018-02-22 18:28:31.433 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 003 Using default escc
2018-02-22 18:28:31.434 UTC [chaincodeCmd] checkChaincodeCmdParams -> INFO 004 Using default vscc
2018-02-22 18:28:31.435 UTC [chaincodeCmd] getChaincodeSpec -> DEBU 005 java chaincode enabled
2018-02-22 18:28:31.435 UTC [chaincodeCmd] upgrade -> DEBU 006 Get upgrade proposal for chaincode <name:"mycc" version:"1.1" >
.
.
.
2018-02-22 18:28:46.687 UTC [chaincodeCmd] upgrade -> DEBU 009 endorse upgrade proposal, get response <status:200 message:"OK" payload:"\n\004mycc\022\0031.1\032\004escc\"\004vscc*,\022\014\022\n\010\001\022\002\010\000\022\002\010\001\032\r\022\013\n\007Org1MSP\020\003\032\r\022\013\n\007Org2MSP\020\0032f\n \261g(^v\021\220\240\332\251\014\204V\210P\310o\231\271\036\301\022\032\205fC[|=\215\372\223\022 \311b\025?\323N\343\325\032\005\365\236\001XKj\004E\351\007\247\265fu\305j\367\331\275\253\307R\032 \014H#\014\272!#\345\306s\323\371\350\364\006.\000\356\230\353\270\263\215\217\303\256\220i^\277\305\214: \375\200zY\275\203}\375\244\205\035\340\226]l!uE\334\273\214\214\020\303\3474\360\014\234-\006\315B\031\022\010\022\006\010\001\022\002\010\000\032\r\022\013\n\007Org1MSP\020\001" >
.
.
.
2018-02-22 18:28:46.693 UTC [chaincodeCmd] upgrade -> DEBU 00c Get Signed envelope
2018-02-22 18:28:46.693 UTC [chaincodeCmd] chaincodeUpgrade -> DEBU 00d Send signed envelope to orderer
2018-02-22 18:28:46.908 UTC [main] main -> INFO 00e Exiting.....

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 peer channel

peer channel

The peer channel command allows administrators to perform channel related
operations on a peer, such as joining a channel or listing the channels to which
a peer is joined.

Syntax

The peer channel command has the following subcommands:

	create

	fetch

	getinfo

	join

	list

	signconfigtx

	update

peer channel

Operate a channel: create|fetch|join|list|update|signconfigtx|getinfo.

Usage:
 peer channel [command]

Available Commands:
 create Create a channel
 fetch Fetch a block
 getinfo get blockchain information of a specified channel.
 join Joins the peer to a channel.
 list List of channels peer has joined.
 signconfigtx Signs a configtx update.
 update Send a configtx update.

Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 -h, --help help for channel
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint

Use "peer channel [command] --help" for more information about a command.

peer channel create

Create a channel and write the genesis block to a file.

Usage:
 peer channel create [flags]

Flags:
 -c, --channelID string In case of a newChain command, the channel ID to create. It must be all lower case, less than 250 characters long and match the regular expression: [a-z][a-z0-9.-]*
 -f, --file string Configuration transaction file generated by a tool such as configtxgen for submitting to orderer
 -h, --help help for create
 --outputBlock string The path to write the genesis block for the channel. (default ./<channelID>.block)
 -t, --timeout duration Channel creation timeout (default 5s)

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint

peer channel fetch

Fetch a specified block, writing it to a file.

Usage:
 peer channel fetch <newest|oldest|config|(number)> [outputfile] [flags]

Flags:
 -c, --channelID string In case of a newChain command, the channel ID to create. It must be all lower case, less than 250 characters long and match the regular expression: [a-z][a-z0-9.-]*
 -h, --help help for fetch

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint

peer channel getinfo

get blockchain information of a specified channel. Requires '-c'.

Usage:
 peer channel getinfo [flags]

Flags:
 -c, --channelID string In case of a newChain command, the channel ID to create. It must be all lower case, less than 250 characters long and match the regular expression: [a-z][a-z0-9.-]*
 -h, --help help for getinfo

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint

peer channel join

Joins the peer to a channel.

Usage:
 peer channel join [flags]

Flags:
 -b, --blockpath string Path to file containing genesis block
 -h, --help help for join

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint

peer channel list

List of channels peer has joined.

Usage:
 peer channel list [flags]

Flags:
 -h, --help help for list

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint

peer channel signconfigtx

Signs the supplied configtx update file in place on the filesystem. Requires '-f'.

Usage:
 peer channel signconfigtx [flags]

Flags:
 -f, --file string Configuration transaction file generated by a tool such as configtxgen for submitting to orderer
 -h, --help help for signconfigtx

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint

peer channel update

Signs and sends the supplied configtx update file to the channel. Requires '-f', '-o', '-c'.

Usage:
 peer channel update [flags]

Flags:
 -c, --channelID string In case of a newChain command, the channel ID to create. It must be all lower case, less than 250 characters long and match the regular expression: [a-z][a-z0-9.-]*
 -f, --file string Configuration transaction file generated by a tool such as configtxgen for submitting to orderer
 -h, --help help for update

Global Flags:
 --cafile string Path to file containing PEM-encoded trusted certificate(s) for the ordering endpoint
 --certfile string Path to file containing PEM-encoded X509 public key to use for mutual TLS communication with the orderer endpoint
 --clientauth Use mutual TLS when communicating with the orderer endpoint
 --connTimeout duration Timeout for client to connect (default 3s)
 --keyfile string Path to file containing PEM-encoded private key to use for mutual TLS communication with the orderer endpoint
 -o, --orderer string Ordering service endpoint
 --ordererTLSHostnameOverride string The hostname override to use when validating the TLS connection to the orderer.
 --tls Use TLS when communicating with the orderer endpoint

Example Usage

peer channel create examples

Here’s an example that uses the --orderer global flag on the peer channel create command.

	Create a sample channel mychannel defined by the configuration transaction
contained in file ./createchannel.txn. Use the orderer at orderer.example.com:7050.

peer channel create -c mychannel -f ./createchannel.txn --orderer orderer.example.com:7050

2018-02-25 08:23:57.548 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and orderer connections initialized
2018-02-25 08:23:57.626 UTC [channelCmd] InitCmdFactory -> INFO 019 Endorser and orderer connections initialized
2018-02-25 08:23:57.834 UTC [channelCmd] readBlock -> INFO 020 Received block: 0
2018-02-25 08:23:57.835 UTC [main] main -> INFO 021 Exiting.....

Block 0 is returned indicating that the channel has been successfully created.

Here’s an example of the peer channel create command option.

	Create a new channel mychannel for the network, using the orderer at ip
address orderer.example.com:7050. The configuration update transaction
required to create this channel is defined the file ./createchannel.txn.
Wait 30 seconds for the channel to be created.

 peer channel create -c mychannel --orderer orderer.example.com:7050 -f ./createchannel.txn -t 30s

 2018-02-23 06:31:58.568 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and orderer connections initialized
 2018-02-23 06:31:58.669 UTC [channelCmd] InitCmdFactory -> INFO 019 Endorser and orderer connections initialized
 2018-02-23 06:31:58.877 UTC [channelCmd] readBlock -> INFO 020 Received block: 0
 2018-02-23 06:31:58.878 UTC [main] main -> INFO 021 Exiting.....

 ls -l

 -rw-r--r-- 1 root root 11982 Feb 25 12:24 mychannel.block

You can see that channel mychannel has been successfully created, as
indicated in the output where block 0 (zero) is added to the blockchain for
this channel and returned to the peer, where it is stored in the local
directory as mychannel.block.

Block zero is often called the genesis block as it provides the starting
configuration for the channel. All subsequent updates to the channel will be
captured as configuration blocks on the channel’s blockchain, each of which
supersedes the previous configuration.

peer channel fetch example

Here’s some examples of the peer channel fetch command.

	Using the newest option to retrieve the most recent channel block, and
store it in the file mychannel.block.

peer channel fetch newest mychannel.block -c mychannel --orderer orderer.example.com:7050

2018-02-25 13:10:16.137 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and orderer connections initialized
2018-02-25 13:10:16.144 UTC [channelCmd] readBlock -> INFO 00a Received block: 32
2018-02-25 13:10:16.145 UTC [main] main -> INFO 00b Exiting.....

ls -l

-rw-r--r-- 1 root root 11982 Feb 25 13:10 mychannel.block

You can see that the retrieved block is number 32, and that the information
has been written to the file mychannel.block.

	Using the (block number) option to retrieve a specific block – in this
case, block number 16 – and store it in the default block file.

peer channel fetch 16 -c mychannel --orderer orderer.example.com:7050

2018-02-25 13:46:50.296 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and orderer connections initialized
2018-02-25 13:46:50.302 UTC [channelCmd] readBlock -> INFO 00a Received block: 16
2018-02-25 13:46:50.302 UTC [main] main -> INFO 00b Exiting.....

ls -l

-rw-r--r-- 1 root root 11982 Feb 25 13:10 mychannel.block
-rw-r--r-- 1 root root 4783 Feb 25 13:46 mychannel_16.block

You can see that the retrieved block is number 16, and that the information
has been written to the default file mychannel_16.block.

For configuration blocks, the block file can be decoded using the
configtxlator command. See this command for an example
of decoded output. User transaction blocks can also be decoded, but a user
program must be written to do this.

peer channel getinfo example

Here’s an example of the peer channel getinfo command.

	Get information about the local peer for channel mychannel.

peer channel getinfo -c mychannel

2018-02-25 15:15:44.135 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and orderer connections initialized
Blockchain info: {"height":5,"currentBlockHash":"JgK9lcaPUNmFb5Mp1qe1SVMsx3o/22Ct4+n5tejcXCw=","previousBlockHash":"f8lZXoAn3gF86zrFq7L1DzW2aKuabH9Ow6SIE5Y04a4="}
2018-02-25 15:15:44.139 UTC [main] main -> INFO 006 Exiting.....

You can see that the latest block for channel mychannel is block 5. You
can also see the cryptographic hashes for the most recent blocks in the
channel’s blockchain.

peer channel join example

Here’s an example of the peer channel join command.

	Join a peer to the channel defined in the genesis block identified by the file
./mychannel.genesis.block. In this example, the channel block was
previously retrieved by the peer channel fetch command.

peer channel join -b ./mychannel.genesis.block

2018-02-25 12:25:26.511 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and orderer connections initialized
2018-02-25 12:25:26.571 UTC [channelCmd] executeJoin -> INFO 006 Successfully submitted proposal to join channel
2018-02-25 12:25:26.571 UTC [main] main -> INFO 007 Exiting.....

You can see that the peer has successfully made a request to join the channel.

peer channel list example

Here’s an example of the peer channel list command.

	List the channels to which a peer is joined.

peer channel list

2018-02-25 14:21:20.361 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and orderer connections initialized
Channels peers has joined:
mychannel
2018-02-25 14:21:20.372 UTC [main] main -> INFO 006 Exiting.....

You can see that the peer is joined to channel mychannel.

peer channel signconfigtx example

Here’s an example of the peer channel signconfigtx command.

	Sign the channel update transaction defined in the file
./updatechannel.txn. The example lists the configuration transaction file
before and after the command.

ls -l

-rw-r--r-- 1 anthonyodowd staff 284 25 Feb 18:16 updatechannel.tx

peer channel signconfigtx -f updatechannel.tx

2018-02-25 18:16:44.456 GMT [channelCmd] InitCmdFactory -> INFO 001 Endorser and orderer connections initialized
2018-02-25 18:16:44.459 GMT [main] main -> INFO 002 Exiting.....

ls -l

-rw-r--r-- 1 anthonyodowd staff 2180 25 Feb 18:16 updatechannel.tx

You can see that the peer has successfully signed the configuration
transaction by the increase in the size of the file updatechannel.tx from
284 bytes to 2180 bytes.

peer channel update example

Here’s an example of the peer channel update command.

	Update the channel mychannel using the configuration transaction defined in
the file ./updatechannel.txn. Use the orderer at ip address
orderer.example.com:7050 to send the configuration transaction to all peers
in the channel to update their copy of the channel configuration.

peer channel update -c mychannel -f ./updatechannel.txn -o orderer.example.com:7050

2018-02-23 06:32:11.569 UTC [channelCmd] InitCmdFactory -> INFO 003 Endorser and orderer connections initialized
2018-02-23 06:32:11.626 UTC [main] main -> INFO 010 Exiting.....

At this point, the channel mychannel has been successfully updated.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 peer version

peer version

The peer version command displays the version information of the peer. It
displays version, Commit SHA, Go version, OS/architecture, and chaincode
information. For example:

 peer:
 Version: 1.4.0
 Commit SHA: 0efc897
 Go version: go1.11.1
 OS/Arch: linux/amd64
 Chaincode:
 Base Image Version: 0.4.14
 Base Docker Namespace: hyperledger
 Base Docker Label: org.hyperledger.fabric
 Docker Namespace: hyperledger

Syntax

Print current version of the fabric peer server.

Usage:
 peer version [flags]

Flags:
 -h, --help help for version

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 peer logging

peer logging

The peer logging subcommand allows administrators to dynamically view and
configure the log levels of a peer.

Syntax

The peer logging command has the following subcommands:

	getlogspec

	setlogspec

and the following deprecated subcommands, which will be removed
in a future release:

	getlevel

	setlevel

	revertlevels

The different subcommand options (getlogspec, setlogspec, getlevel, setlevel,
and revertlevels) relate to the different logging operations that are relevant
to a peer.

Each peer logging subcommand is described together with its options in its own
section in this topic.

peer logging

Logging configuration: getlevel|setlevel|getlogspec|setlogspec|revertlevels.

Usage:
 peer logging [command]

Available Commands:
 getlevel Returns the logging level of the requested logger.
 getlogspec Returns the active log spec.
 revertlevels Reverts the logging spec to the peer's spec at startup.
 setlevel Adds the logger and log level to the current logging spec.
 setlogspec Sets the logging spec.

Flags:
 -h, --help help for logging

Use "peer logging [command] --help" for more information about a command.

peer logging getlevel

Returns the logging level of the requested logger. Note: the logger name should exactly match the name that is displayed in the logs.

Usage:
 peer logging getlevel <logger> [flags]

Flags:
 -h, --help help for getlevel

peer logging revertlevels

Reverts the logging spec to the peer's spec at startup.

Usage:
 peer logging revertlevels [flags]

Flags:
 -h, --help help for revertlevels

peer logging setlevel

Adds the logger and log level to the current logging specification.

Usage:
 peer logging setlevel <logger> <log level> [flags]

Flags:
 -h, --help help for setlevel

Example Usage

Get Level Usage

Here is an example of the peer logging getlevel command:

	To get the log level for logger peer:

peer logging getlevel peer

2018-11-01 14:18:11.276 UTC [cli.logging] getLevel -> INFO 001 Current log level for logger 'peer': INFO

Get Log Spec Usage

Here is an example of the peer logging getlogspec command:

	To get the active logging spec for the peer:

peer logging getlogspec

2018-11-01 14:21:03.591 UTC [cli.logging] getLogSpec -> INFO 001 Current logging spec: info

Set Level Usage

Here are some examples of the peer logging setlevel command:

	To set the log level for loggers matching logger name prefix gossip to
log level WARNING:

peer logging setlevel gossip warning
2018-11-01 14:21:55.509 UTC [cli.logging] setLevel -> INFO 001 Log level set for logger name/prefix 'gossip': WARNING

	To set the log level to ERROR for only the logger that exactly matches the
supplied name, append a period to the logger name:

peer logging setlevel gossip. error

2018-11-01 14:27:33.080 UTC [cli.logging] setLevel -> INFO 001 Log level set for logger name/prefix 'gossip.': ERROR

Set Log Spec Usage

Here is an example of the peer logging setlogspec command:

	To set the active logging spec for the peer where loggers that begin with
gossip and msp are set to log level WARNING and the default for all
other loggers is log level INFO:

peer logging setlogspec gossip=warning:msp=warning:info

2018-11-01 14:32:12.871 UTC [cli.logging] setLogSpec -> INFO 001 Current logging spec set to: gossip=warning:msp=warning:info

Note: there is only one active logging spec. Any previous spec, including
modules updated via ‘setlevel’, will no longer be applicable.

Revert Levels Usage

Here is an example of the peer logging revertlevels command:

	To revert the logging spec to the start-up value:

peer logging revertlevels

2018-11-01 14:37:12.402 UTC [cli.logging] revertLevels -> INFO 001 Logging spec reverted to the peer's spec at startup.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 peer node

peer node

The peer node command allows an administrator to start a peer node or check
the status of a peer node.

Syntax

The peer node command has the following subcommands:

	start

	status

peer node start

Starts a node that interacts with the network.

Usage:
 peer node start [flags]

Flags:
 -h, --help help for start
 -o, --orderer string Ordering service endpoint (default "orderer:7050")
 --peer-chaincodedev Whether peer in chaincode development mode

peer node status

Returns the status of the running node.

Usage:
 peer node status [flags]

Flags:
 -h, --help help for status

Example Usage

peer node start example

The following command:

peer node start --peer-chaincodedev

starts a peer node in chaincode development mode. Normally chaincode containers are started
and maintained by peer. However in chaincode development mode, chaincode is built and started by the user. This mode is useful during chaincode development phase for iterative development.
See more information on development mode in the chaincode tutorial.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 configtxgen

configtxgen

The configtxgen command allows users to create and inspect channel config
related artifacts. The content of the generated artifacts is dictated by the
contents of configtx.yaml.

Syntax

The configtxgen tool has no sub-commands, but supports flags which can be set
to accomplish a number of tasks.

configtxgen

Usage of configtxgen:
 -asOrg string
 Performs the config generation as a particular organization (by name), only including values in the write set that org (likely) has privilege to set
 -channelID string
 The channel ID to use in the configtx
 -configPath string
 The path containing the configuration to use (if set)
 -inspectBlock string
 Prints the configuration contained in the block at the specified path
 -inspectChannelCreateTx string
 Prints the configuration contained in the transaction at the specified path
 -outputAnchorPeersUpdate string
 Creates an config update to update an anchor peer (works only with the default channel creation, and only for the first update)
 -outputBlock string
 The path to write the genesis block to (if set)
 -outputCreateChannelTx string
 The path to write a channel creation configtx to (if set)
 -printOrg string
 Prints the definition of an organization as JSON. (useful for adding an org to a channel manually)
 -profile string
 The profile from configtx.yaml to use for generation. (default "SampleInsecureSolo")
 -version
 Show version information

Usage

Output a genesis block

Write a genesis block to genesis_block.pb for channel orderer-system-channel
for profile SampleSingleMSPSoloV1_1.

configtxgen -outputBlock genesis_block.pb -profile SampleSingleMSPSoloV1_1 -channelID orderer-system-channel

Output a channel creation tx

Write a channel creation transaction to create_chan_tx.pb for profile
SampleSingleMSPChannelV1_1.

configtxgen -outputCreateChannelTx create_chan_tx.pb -profile SampleSingleMSPChannelV1_1 -channelID application-channel-1

Inspect a genesis block

Print the contents of a genesis block named genesis_block.pb to the screen as
JSON.

configtxgen -inspectBlock genesis_block.pb

Inspect a channel creation tx

Print the contents of a channel creation tx named create_chan_tx.pb to the
screen as JSON.

configtxgen -inspectChannelCreateTx create_chan_tx.pb

Print an organization definition

Construct an organization definition based on the parameters such as MSPDir
from configtx.yaml and print it as JSON to the screen. (This output is useful
for channel reconfiguration workflows, such as adding a member).

configtxgen -printOrg Org1

Output anchor peer tx

Output a configuration update transaction to anchor_peer_tx.pb which sets the
anchor peers for organization Org1 as defined in profile
SampleSingleMSPChannelV1_1 based on configtx.yaml.

configtxgen -outputAnchorPeersUpdate anchor_peer_tx.pb -profile SampleSingleMSPChannelV1_1 -asOrg Org1

Configuration

The configtxgen tool’s output is largely controlled by the content of
configtx.yaml. This file is searched for at FABRIC_CFG_PATH and must be
present for configtxgen to operate.

This configuration file may be edited, or, individual properties may be
overridden by setting environment variables, such as
CONFIGTX_ORDERER_ORDERERTYPE=kafka.

For many configtxgen operations, a profile name must be supplied. Profiles
are a way to express multiple similar configurations in a single file. For
instance, one profile might define a channel with 3 orgs, and another might
define one with 4 orgs. To accomplish this without the length of the file
becoming burdensome, configtx.yaml depends on the standard YAML feature of
anchors and references. Base parts of the configuration are tagged with an
anchor like &OrdererDefaults and then merged into a profile with a reference
like <<: *OrdererDefaults. Note, when configtxgen is operating under a
profile, environment variable overrides do not need to include the profile
prefix and may be referenced relative to the root element of the profile. For
instance, do not specify
CONFIGTX_PROFILE_SAMPLEINSECURESOLO_ORDERER_ORDERERTYPE,
instead simply omit the profile specifics and use the CONFIGTX prefix
followed by the elements relative to the profile name such as
CONFIGTX_ORDERER_ORDERERTYPE.

Refer to the sample configtx.yaml shipped with Fabric for all possible
configuration options. You may find this file in the config directory of
the release artifacts tar, or you may find it under the sampleconfig folder
if you are building from source.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 configtxlator

configtxlator

The configtxlator command allows users to translate between protobuf and JSON
versions of fabric data structures and create config updates. The command may
either start a REST server to expose its functions over HTTP or may be utilized
directly as a command line tool.

Syntax

The configtxlator tool has five sub-commands, as follows:

	start

	proto_encode

	proto_decode

	compute_update

	version

configtxlator start

usage: configtxlator start [<flags>]

Start the configtxlator REST server

Flags:
 --help Show context-sensitive help (also try --help-long and
 --help-man).
 --hostname="0.0.0.0" The hostname or IP on which the REST server will listen
 --port=7059 The port on which the REST server will listen

configtxlator proto_encode

usage: configtxlator proto_encode --type=TYPE [<flags>]

Converts a JSON document to protobuf.

Flags:
 --help Show context-sensitive help (also try --help-long and
 --help-man).
 --type=TYPE The type of protobuf structure to encode to. For
 example, 'common.Config'.
 --input=/dev/stdin A file containing the JSON document.
 --output=/dev/stdout A file to write the output to.

configtxlator proto_decode

usage: configtxlator proto_decode --type=TYPE [<flags>]

Converts a proto message to JSON.

Flags:
 --help Show context-sensitive help (also try --help-long and
 --help-man).
 --type=TYPE The type of protobuf structure to decode from. For
 example, 'common.Config'.
 --input=/dev/stdin A file containing the proto message.
 --output=/dev/stdout A file to write the JSON document to.

configtxlator compute_update

usage: configtxlator compute_update --channel_id=CHANNEL_ID [<flags>]

Takes two marshaled common.Config messages and computes the config update which
transitions between the two.

Flags:
 --help Show context-sensitive help (also try --help-long and
 --help-man).
 --original=ORIGINAL The original config message.
 --updated=UPDATED The updated config message.
 --channel_id=CHANNEL_ID The name of the channel for this update.
 --output=/dev/stdout A file to write the JSON document to.

configtxlator version

usage: configtxlator version

Show version information

Flags:
 --help Show context-sensitive help (also try --help-long and --help-man).

Examples

Decoding

Decode a block named fabric_block.pb to JSON and print to stdout.

configtxlator proto_decode --input fabric_block.pb --type common.Block

Alternatively, after starting the REST server, the following curl command
performs the same operation through the REST API.

curl -X POST --data-binary @fabric_block.pb "${CONFIGTXLATOR_URL}/protolator/decode/common.Block"

Encoding

Convert a JSON document for a policy from stdin to a file named policy.pb.

configtxlator proto_encode --type common.Policy --output policy.pb

Alternatively, after starting the REST server, the following curl command
performs the same operation through the REST API.

curl -X POST --data-binary /dev/stdin "${CONFIGTXLATOR_URL}/protolator/encode/common.Policy" > policy.pb

Pipelines

Compute a config update from original_config.pb and modified_config.pb and decode it to JSON to stdout.

configtxlator compute_update --channel_id testchan --original original_config.pb --updated modified_config.pb | configtxlator proto_decode --type common.ConfigUpdate

Alternatively, after starting the REST server, the following curl commands
perform the same operations through the REST API.

curl -X POST -F channel=testchan -F "original=@original_config.pb" -F "updated=@modified_config.pb" "${CONFIGTXLATOR_URL}/configtxlator/compute/update-from-configs" | curl -X POST --data-binary /dev/stdin "${CONFIGTXLATOR_URL}/protolator/encode/common.ConfigUpdate"

Additional Notes

The tool name is a portmanteau of configtx and translator and is intended to
convey that the tool simply converts between different equivalent data
representations. It does not generate configuration. It does not submit or
retrieve configuration. It does not modify configuration itself, it simply
provides some bijective operations between different views of the configtx
format.

There is no configuration file configtxlator nor any authentication or
authorization facilities included for the REST server. Because configtxlator
does not have any access to data, key material, or other information which
might be considered sensitive, there is no risk to the owner of the server in
exposing it to other clients. However, because the data sent by a user to
the REST server might be confidential, the user should either trust the
administrator of the server, run a local instance, or operate via the CLI.

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 cryptogen

cryptogen

cryptogen is an utility for generating Hyperledger Fabric key material.
It is provided as a means of preconfiguring a network for testing purposes.
It would normally not be used in the operation of a production network.

Syntax

The cryptogen command has five subcommands, as follows:

	help

	generate

	showtemplate

	extend

	version

cryptogen help

usage: cryptogen [<flags>] <command> [<args> ...]

Utility for generating Hyperledger Fabric key material

Flags:
 --help Show context-sensitive help (also try --help-long and --help-man).

Commands:
 help [<command>...]
 Show help.

 generate [<flags>]
 Generate key material

 showtemplate
 Show the default configuration template

 version
 Show version information

 extend [<flags>]
 Extend existing network

cryptogen generate

usage: cryptogen generate [<flags>]

Generate key material

Flags:
 --help Show context-sensitive help (also try --help-long
 and --help-man).
 --output="crypto-config" The output directory in which to place artifacts
 --config=CONFIG The configuration template to use

cryptogen showtemplate

usage: cryptogen showtemplate

Show the default configuration template

Flags:
 --help Show context-sensitive help (also try --help-long and --help-man).

cryptogen extend

usage: cryptogen extend [<flags>]

Extend existing network

Flags:
 --help Show context-sensitive help (also try --help-long and
 --help-man).
 --input="crypto-config" The input directory in which existing network place
 --config=CONFIG The configuration template to use

cryptogen version

usage: cryptogen version

Show version information

Flags:
 --help Show context-sensitive help (also try --help-long and --help-man).

Usage

Here’s an example using the different available flags on the cryptogen extend
command.

 cryptogen extend --input="crypto-config" --config=config.yaml

 org3.example.com

Where config.yaml adds a new peer organization called org3.example.com

[image: Creative Commons License]
This work is licensed under a Creative Commons Attribution 4.0 International License.

 Service Discovery CLI

Service Discovery CLI

The discovery service has its own Command Line Interface (CLI) which
uses a YAML configuration file to persist properties such as certificate
and private key paths, as well as MSP ID.

The discover command has the following subcommands:

	saveConfig

	peers

	config

	endorsers

And the usage of the command is shown below:

usage: discover [<flags>] <command> [<args> ...]

Command line client for fabric discovery service

Flags:
 --help Show context-sensitive help (also try --help-long and --help-man).
 --configFile=CONFIGFILE Specifies the config file to load the configuration from
 --peerTLSCA=PEERTLSCA Sets the TLS CA certificate file path that verifies the TLS peer's certificate
 --tlsCert=TLSCERT (Optional) Sets the client TLS certificate file path that is used when the peer enforces client authentication
 --tlsKey=TLSKEY (Optional) Sets the client TLS key file path that is used when the peer enforces client authentication
 --userKey=USERKEY Sets the user's key file path that is used to sign messages sent to the peer
 --userCert=USERCERT Sets the user's certificate file path that is used to authenticate the messages sent to the peer
 --MSP=MSP Sets the MSP ID of the user, which represents the CA(s) that issued its user certificate

Commands:
 help [<command>...]
 Show help.

 peers [<flags>]
 Discover peers

 config [<flags>]
 Discover channel config

 endorsers [<flags>]
 Discover chaincode endorsers

 saveConfig
 Save the config passed by flags into the file specified by --configFile

Configuring external endpoints

Currently, to see peers in service discovery they need to have EXTERNAL_ENDPOINT
to be configured for them. Otherwise, Fabric assumes the peer should not be
disclosed.

To define these endpoints, you need to specify them in the core.yaml of the
peer, replacing the sample endpoint below with the ones of your peer.

CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer1.org1.example.com:7051

Persisting configuration

To persist the configuration, a config file name should be supplied via
the flag --configFile, along with the command saveConfig:

discover --configFile conf.yaml --peerTLSCA tls/ca.crt --userKey msp/keystore/ea4f6a38ac7057b6fa9502c2f5f39f182e320f71f667749100fe7dd94c23ce43_sk --userCert msp/signcerts/User1\@org1.example.com-cert.pem --MSP Org1MSP saveConfig

By executing the above command, configuration file would be created:

$ cat conf.yaml
version: 0
tlsconfig:
 certpath: ""
 keypath: ""
 peercacertpath: /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/users/User1@org1.example.com/tls/ca.crt
 timeout: 0s
signerconfig:
 mspid: Org1MSP
 identitypath: /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/users/User1@org1.example.com/msp/signcerts/User1@org1.example.com-cert.pem
 keypath: /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/users/User1@org1.example.com/msp/keystore/ea4f6a38ac7057b6fa9502c2f5f39f182e320f71f667749100fe7dd94c23ce43_sk

When the peer runs with TLS enabled, the discovery service on the peer
requires the client to connect to it with mutual TLS, which means it
needs to supply a TLS certificate. The peer is configured by default to
request (but not to verify) client TLS certificates, so supplying a TLS
certificate isn’t needed (unless the peer’s tls.clientAuthRequired is
set to true).

When the discovery CLI’s config file has a certificate path for
peercacertpath, but the certpath and keypath aren’t configured as
in the above - the discovery CLI generates a self-signed TLS certificate
and uses this to connect to the peer.

When the peercacertpath isn’t configured, the discovery CLI connects
without TLS , and this is highly not recommended, as the information is
sent over plaintext, un-encrypted.

Querying the discovery service

The discoveryCLI acts as a discovery client, and it needs to be executed
against a peer. This is done via specifying the --server flag. In
addition, the queries are channel-scoped, so the --channel flag must
be used.

The only query that doesn’t require a channel is the local membership
peer query, which by default can only be used by administrators of the
peer being queried.

The discover CLI supports all server-side queries:

	Peer membership query

	Configuration query

	Endorsers query

Let’s go over them and see how they should be invoked and parsed:

Peer membership query:

$ discover --configFile conf.yaml peers --channel mychannel --server peer0.org1.example.com:7051
[
 {
 "MSPID": "Org2MSP",
 "LedgerHeight": 5,
 "Endpoint": "peer0.org2.example.com:7051",
 "Identity": "-----BEGIN CERTIFICATE-----\nMIICKTCCAc+gAwIBAgIRANK4WBck5gKuzTxVQIwhYMUwCgYIKoZIzj0EAwIwczEL\nMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xGTAXBgNVBAoTEG9yZzIuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh\nLm9yZzIuZXhhbXBsZS5jb20wHhcNMTgwNjE3MTM0NTIxWhcNMjgwNjE0MTM0NTIx\nWjBqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN\nU2FuIEZyYW5jaXNjbzENMAsGA1UECxMEcGVlcjEfMB0GA1UEAxMWcGVlcjAub3Jn\nMi5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABJa0gkMRqJCi\nzmx+L9xy/ecJNvdAV2zmSx5Sf2qospVAH1MYCHyudDEvkiRuBPgmCdOdwJsE0g+h\nz0nZdKq6/X+jTTBLMA4GA1UdDwEB/wQEAwIHgDAMBgNVHRMBAf8EAjAAMCsGA1Ud\nIwQkMCKAIFZMuZfUtY6n2iyxaVr3rl+x5lU0CdG9x7KAeYydQGTMMAoGCCqGSM49\nBAMCA0gAMEUCIQC0M9/LJ7j3I9NEPQ/B1BpnJP+UNPnGO2peVrM/mJ1nVgIgS1ZA\nA1tsxuDyllaQuHx2P+P9NDFdjXx5T08lZhxuWYM=\n-----END CERTIFICATE-----\n",
 "Chaincodes": [
 "mycc"
]
 },
 {
 "MSPID": "Org2MSP",
 "LedgerHeight": 5,
 "Endpoint": "peer1.org2.example.com:7051",
 "Identity": "-----BEGIN CERTIFICATE-----\nMIICKDCCAc+gAwIBAgIRALnNJzplCrYy4Y8CjZtqL7AwCgYIKoZIzj0EAwIwczEL\nMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xGTAXBgNVBAoTEG9yZzIuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh\nLm9yZzIuZXhhbXBsZS5jb20wHhcNMTgwNjE3MTM0NTIxWhcNMjgwNjE0MTM0NTIx\nWjBqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN\nU2FuIEZyYW5jaXNjbzENMAsGA1UECxMEcGVlcjEfMB0GA1UEAxMWcGVlcjEub3Jn\nMi5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABNDopAkHlDdu\nq10HEkdxvdpkbs7EJyqv1clvCt/YMn1hS6sM+bFDgkJKalG7s9Hg3URF0aGpy51R\nU+4F9Muo+XajTTBLMA4GA1UdDwEB/wQEAwIHgDAMBgNVHRMBAf8EAjAAMCsGA1Ud\nIwQkMCKAIFZMuZfUtY6n2iyxaVr3rl+x5lU0CdG9x7KAeYydQGTMMAoGCCqGSM49\nBAMCA0cAMEQCIAR4fBmIBKW2jp0HbbabVepNtl1c7+6++riIrEBnoyIVAiBBvWmI\nyG02c5hu4wPAuVQMB7AU6tGSeYaWSAAo/ExunQ==\n-----END CERTIFICATE-----\n",
 "Chaincodes": [
 "mycc"
]
 },
 {
 "MSPID": "Org1MSP",
 "LedgerHeight": 5,
 "Endpoint": "peer0.org1.example.com:7051",
 "Identity": "-----BEGIN CERTIFICATE-----\nMIICKDCCAc6gAwIBAgIQP18LeXtEXGoN8pTqzXTHZTAKBggqhkjOPQQDAjBzMQsw\nCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNU2FuIEZy\nYW5jaXNjbzEZMBcGA1UEChMQb3JnMS5leGFtcGxlLmNvbTEcMBoGA1UEAxMTY2Eu\nb3JnMS5leGFtcGxlLmNvbTAeFw0xODA2MTcxMzQ1MjFaFw0yODA2MTQxMzQ1MjFa\nMGoxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYDVQQHEw1T\nYW4gRnJhbmNpc2NvMQ0wCwYDVQQLEwRwZWVyMR8wHQYDVQQDExZwZWVyMC5vcmcx\nLmV4YW1wbGUuY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEKeC/1Rg/ynSk\nNNItaMlaCDZOaQvxJEl6o3fqx1PVFlfXE4NarY3OO1N3YZI41hWWoXksSwJu/35S\nM7wMEzw+3KNNMEswDgYDVR0PAQH/BAQDAgeAMAwGA1UdEwEB/wQCMAAwKwYDVR0j\nBCQwIoAgcecTOxTes6rfgyxHH6KIW7hsRAw2bhP9ikCHkvtv/RcwCgYIKoZIzj0E\nAwIDSAAwRQIhAKiJEv79XBmr8gGY6kHrGL0L3sq95E7IsCYzYdAQHj+DAiBPcBTg\nRuA0//Kq+3aHJ2T0KpKHqD3FfhZZolKDkcrkwQ==\n-----END CERTIFICATE-----\n",
 "Chaincodes": [
 "mycc"
]
 },
 {
 "MSPID": "Org1MSP",
 "LedgerHeight": 5,
 "Endpoint": "peer1.org1.example.com:7051",
 "Identity": "-----BEGIN CERTIFICATE-----\nMIICJzCCAc6gAwIBAgIQO7zMEHlMfRhnP6Xt65jwtDAKBggqhkjOPQQDAjBzMQsw\nCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNU2FuIEZy\nYW5jaXNjbzEZMBcGA1UEChMQb3JnMS5leGFtcGxlLmNvbTEcMBoGA1UEAxMTY2Eu\nb3JnMS5leGFtcGxlLmNvbTAeFw0xODA2MTcxMzQ1MjFaFw0yODA2MTQxMzQ1MjFa\nMGoxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYDVQQHEw1T\nYW4gRnJhbmNpc2NvMQ0wCwYDVQQLEwRwZWVyMR8wHQYDVQQDExZwZWVyMS5vcmcx\nLmV4YW1wbGUuY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEoII9k8db/Q2g\nRHw5rk3SYw+OMFw9jNbsJJyC5ttJRvc12Dn7lQ8ZR9hW1vLQ3NtqO/couccDJcHg\nt47iHBNadaNNMEswDgYDVR0PAQH/BAQDAgeAMAwGA1UdEwEB/wQCMAAwKwYDVR0j\nBCQwIoAgcecTOxTes6rfgyxHH6KIW7hsRAw2bhP9ikCHkvtv/RcwCgYIKoZIzj0E\nAwIDRwAwRAIgGHGtRVxcFVeMQr9yRlebs23OXEECNo6hNqd/4ChLwwoCIBFKFd6t\nlL5BVzVMGQyXWcZGrjFgl4+fDrwjmMe+jAfa\n-----END CERTIFICATE-----\n",
 "Chaincodes": null
 }
]

As seen, this command outputs a JSON containing membership information
about all the peers in the channel that the peer queried possesses.

The Identity that is returned is the enrollment certificate of the
peer, and it can be parsed with a combination of jq and openssl:

$ discover --configFile conf.yaml peers --channel mychannel --server peer0.org1.example.com:7051 | jq .[0].Identity | sed "s/\\\n/\n/g" | sed "s/\"//g" | openssl x509 -text -noout
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 55:e9:3f:97:94:d5:74:db:e2:d6:99:3c:01:24:be:bf
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: C=US, ST=California, L=San Francisco, O=org2.example.com, CN=ca.org2.example.com
 Validity
 Not Before: Jun 9 11:58:28 2018 GMT
 Not After : Jun 6 11:58:28 2028 GMT
 Subject: C=US, ST=California, L=San Francisco, OU=peer, CN=peer0.org2.example.com
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:f5:69:7a:11:65:d9:85:96:65:b7:b7:1b:08:77:
 43:de:cb:ad:3a:79:ec:cc:2a:bc:d7:93:68:ae:92:
 1c:4b:d8:32:47:d6:3d:72:32:f1:f1:fb:26:e4:69:
 c2:eb:c9:45:69:99:78:d7:68:a9:77:09:88:c6:53:
 01:2a:c1:f8:c0
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Key Usage: critical
 Digital Signature
 X509v3 Basic Constraints: critical
 CA:FALSE
 X509v3 Authority Key Identifier:
 keyid:8E:58:82:C9:0A:11:10:A9:0B:93:03:EE:A0:54:42:F4:A3:EF:11:4C:82:B6:F9:CE:10:A2:1E:24:AB:13:82:A0

 Signature Algorithm: ecdsa-with-SHA256
 30:44:02:20:29:3f:55:2b:9f:7b:99:b2:cb:06:ca:15:3f:93:
 a1:3d:65:5c:7b:79:a1:7a:d1:94:50:f0:cd:db:ea:61:81:7a:
 02:20:3b:40:5b:60:51:3c:f8:0f:9b:fc:ae:fc:21:fd:c8:36:
 a3:18:39:58:20:72:3d:1a:43:74:30:f3:56:01:aa:26

Configuration query:

The configuration query returns a mapping from MSP IDs to orderer
endpoints, as well as the FabricMSPConfig which can be used to verify
all peer and orderer nodes by the SDK:

$ discover --configFile conf.yaml config --channel mychannel --server peer0.org1.example.com:7051
{
 "msps": {
 "OrdererOrg": {
 "name": "OrdererMSP",
 "root_certs": [
 "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNMekNDQWRhZ0F3SUJBZ0lSQU1pWkxUb3RmMHR6VTRzNUdIdkQ0UjR3Q2dZSUtvWkl6ajBFQXdJd2FURUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhGREFTQmdOVkJBb1RDMlY0WVcxd2JHVXVZMjl0TVJjd0ZRWURWUVFERXc1allTNWxlR0Z0CmNHeGxMbU52YlRBZUZ3MHhPREEyTURreE1UVTRNamhhRncweU9EQTJNRFl4TVRVNE1qaGFNR2t4Q3pBSkJnTlYKQkFZVEFsVlRNUk13RVFZRFZRUUlFd3BEWVd4cFptOXlibWxoTVJZd0ZBWURWUVFIRXcxVFlXNGdSbkpoYm1OcApjMk52TVJRd0VnWURWUVFLRXd0bGVHRnRjR3hsTG1OdmJURVhNQlVHQTFVRUF4TU9ZMkV1WlhoaGJYQnNaUzVqCmIyMHdXVEFUQmdjcWhrak9QUUlCQmdncWhrak9QUU1CQndOQ0FBUW9ySjVSamFTQUZRci9yc2xoMWdobnNCWEQKeDVsR1lXTUtFS1pDYXJDdkZBekE0bHUwb2NQd0IzNWJmTVN5bFJPVmdVdHF1ZU9IcFBNc2ZLNEFrWjR5bzE4dwpYVEFPQmdOVkhROEJBZjhFQkFNQ0FhWXdEd1lEVlIwbEJBZ3dCZ1lFVlIwbEFEQVBCZ05WSFJNQkFmOEVCVEFECkFRSC9NQ2tHQTFVZERnUWlCQ0JnbmZJd0pzNlBaWUZCclpZVkRpU05vSjNGZWNFWHYvN2xHL3QxVUJDbVREQUsKQmdncWhrak9QUVFEQWdOSEFEQkVBaUE5NGFkc21UK0hLalpFVVpnM0VkaWdSM296L3pEQkNhWUY3TEJUVXpuQgpEZ0lnYS9RZFNPQnk1TUx2c0lSNTFDN0N4UnR2NUM5V05WRVlmWk5SaGdXRXpoOD0KLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo="
],
 "admins": [
 "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNDVENDQWJDZ0F3SUJBZ0lRR2wzTjhaSzRDekRRQmZqYVpwMVF5VEFLQmdncWhrak9QUVFEQWpCcE1Rc3cKQ1FZRFZRUUdFd0pWVXpFVE1CRUdBMVVFQ0JNS1EyRnNhV1p2Y201cFlURVdNQlFHQTFVRUJ4TU5VMkZ1SUVaeQpZVzVqYVhOamJ6RVVNQklHQTFVRUNoTUxaWGhoYlhCc1pTNWpiMjB4RnpBVkJnTlZCQU1URG1OaExtVjRZVzF3CmJHVXVZMjl0TUI0WERURTRNRFl3T1RFeE5UZ3lPRm9YRFRJNE1EWXdOakV4TlRneU9Gb3dWakVMTUFrR0ExVUUKQmhNQ1ZWTXhFekFSQmdOVkJBZ1RDa05oYkdsbWIzSnVhV0V4RmpBVUJnTlZCQWNURFZOaGJpQkdjbUZ1WTJsegpZMjh4R2pBWUJnTlZCQU1NRVVGa2JXbHVRR1Y0WVcxd2JHVXVZMjl0TUZrd0V3WUhLb1pJemowQ0FRWUlLb1pJCnpqMERBUWNEUWdBRWl2TXQybVdiQ2FHb1FZaWpka1BRM1NuTGFkMi8rV0FESEFYMnRGNWthMTBteG1OMEx3VysKdmE5U1dLMmJhRGY5RDQ2TVROZ2gycnRhUitNWXFWRm84Nk5OTUVzd0RnWURWUjBQQVFIL0JBUURBZ2VBTUF3RwpBMVVkRXdFQi93UUNNQUF3S3dZRFZSMGpCQ1F3SW9BZ1lKM3lNQ2JPajJXQlFhMldGUTRramFDZHhYbkJGNy8rCjVSdjdkVkFRcGt3d0NnWUlLb1pJemowRUF3SURSd0F3UkFJZ2RIc0pUcGM5T01DZ3JPVFRLTFNnU043UWk3MWIKSWpkdzE4MzJOeXFQZnJ3Q0lCOXBhSlRnL2R5ckNhWUx1ZndUbUtFSnZZMEtXVzcrRnJTeG5CTGdzZjJpCi0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K"
],
 "crypto_config": {
 "signature_hash_family": "SHA2",
 "identity_identifier_hash_function": "SHA256"
 },
 "tls_root_certs": [
 "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNORENDQWR1Z0F3SUJBZ0lRZDdodzFIaHNZTXI2a25ETWJrZThTakFLQmdncWhrak9QUVFEQWpCc01Rc3cKQ1FZRFZRUUdFd0pWVXpFVE1CRUdBMVVFQ0JNS1EyRnNhV1p2Y201cFlURVdNQlFHQTFVRUJ4TU5VMkZ1SUVaeQpZVzVqYVhOamJ6RVVNQklHQTFVRUNoTUxaWGhoYlhCc1pTNWpiMjB4R2pBWUJnTlZCQU1URVhSc2MyTmhMbVY0CllXMXdiR1V1WTI5dE1CNFhEVEU0TURZd09URXhOVGd5T0ZvWERUSTRNRFl3TmpFeE5UZ3lPRm93YkRFTE1Ba0cKQTFVRUJoTUNWVk14RXpBUkJnTlZCQWdUQ2tOaGJHbG1iM0p1YVdFeEZqQVVCZ05WQkFjVERWTmhiaUJHY21GdQpZMmx6WTI4eEZEQVNCZ05WQkFvVEMyVjRZVzF3YkdVdVkyOXRNUm93R0FZRFZRUURFeEYwYkhOallTNWxlR0Z0CmNHeGxMbU52YlRCWk1CTUdCeXFHU000OUFnRUdDQ3FHU000OUF3RUhBMElBQk9ZZGdpNm53a3pYcTBKQUF2cTIKZU5xNE5Ybi85L0VRaU13Tzc1dXdpTWJVbklYOGM1N2NYU2dQdy9NMUNVUGFwNmRyMldvTjA3RGhHb1B6ZXZaMwp1aFdqWHpCZE1BNEdBMVVkRHdFQi93UUVBd0lCcGpBUEJnTlZIU1VFQ0RBR0JnUlZIU1VBTUE4R0ExVWRFd0VCCi93UUZNQU1CQWY4d0tRWURWUjBPQkNJRUlCcW0xZW9aZy9qSW52Z1ZYR2cwbzVNamxrd2tSekRlalAzZkplbW8KU1hBek1Bb0dDQ3FHU000OUJBTUNBMGNBTUVRQ0lEUG9FRkF5bFVYcEJOMnh4VEo0MVplaS9ZQWFvN29aL0tEMwpvTVBpQ3RTOUFpQmFiU1dNS3UwR1l4eXdsZkFwdi9CWitxUEJNS0JMNk5EQ1haUnpZZmtENEE9PQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg=="
]
 },
 "Org1MSP": {
 "name": "Org1MSP",
 "root_certs": [
 "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNSRENDQWVxZ0F3SUJBZ0lSQU1nN2VETnhwS0t0ZGl0TDRVNDRZMUl3Q2dZSUtvWkl6ajBFQXdJd2N6RUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhHVEFYQmdOVkJBb1RFRzl5WnpFdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekV1WlhoaGJYQnNaUzVqYjIwd0hoY05NVGd3TmpBNU1URTFPREk0V2hjTk1qZ3dOakEyTVRFMU9ESTQKV2pCek1Rc3dDUVlEVlFRR0V3SlZVekVUTUJFR0ExVUVDQk1LUTJGc2FXWnZjbTVwWVRFV01CUUdBMVVFQnhNTgpVMkZ1SUVaeVlXNWphWE5qYnpFWk1CY0dBMVVFQ2hNUWIzSm5NUzVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFCkF4TVRZMkV1YjNKbk1TNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUEKQk41d040THpVNGRpcUZSWnB6d3FSVm9JbWw1MVh0YWkzbWgzUXo0UEZxWkhXTW9lZ0ovUWRNKzF4L3RobERPcwpnbmVRcndGd216WGpvSSszaHJUSmRuU2pYekJkTUE0R0ExVWREd0VCL3dRRUF3SUJwakFQQmdOVkhTVUVDREFHCkJnUlZIU1VBTUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3S1FZRFZSME9CQ0lFSU9CZFFMRitjTVdhNmUxcDJDcE8KRXg3U0hVaW56VnZkNTVoTG03dzZ2NzJvTUFvR0NDcUdTTTQ5QkFNQ0EwZ0FNRVVDSVFDQyt6T1lHcll0ZTB4SgpSbDVYdUxjUWJySW9UeHpsRnJLZWFNWnJXMnVaSkFJZ0NVVGU5MEl4aW55dk4wUkh4UFhoVGNJTFdEZzdLUEJOCmVrNW5TRlh3Y0lZPQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg=="
],
 "admins": [
 "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNLakNDQWRDZ0F3SUJBZ0lRRTRFK0tqSHgwdTlzRSsxZUgrL1dOakFLQmdncWhrak9QUVFEQWpCek1Rc3cKQ1FZRFZRUUdFd0pWVXpFVE1CRUdBMVVFQ0JNS1EyRnNhV1p2Y201cFlURVdNQlFHQTFVRUJ4TU5VMkZ1SUVaeQpZVzVqYVhOamJ6RVpNQmNHQTFVRUNoTVFiM0puTVM1bGVHRnRjR3hsTG1OdmJURWNNQm9HQTFVRUF4TVRZMkV1CmIzSm5NUzVsZUdGdGNHeGxMbU52YlRBZUZ3MHhPREEyTURreE1UVTRNamhhRncweU9EQTJNRFl4TVRVNE1qaGEKTUd3eEN6QUpCZ05WQkFZVEFsVlRNUk13RVFZRFZRUUlFd3BEWVd4cFptOXlibWxoTVJZd0ZBWURWUVFIRXcxVApZVzRnUm5KaGJtTnBjMk52TVE4d0RRWURWUVFMRXdaamJHbGxiblF4SHpBZEJnTlZCQU1NRmtGa2JXbHVRRzl5Clp6RXVaWGhoYlhCc1pTNWpiMjB3V1RBVEJnY3Foa2pPUFFJQkJnZ3Foa2pPUFFNQkJ3TkNBQVFqK01MZk1ESnUKQ2FlWjV5TDR2TnczaWp4ZUxjd2YwSHo1blFrbXVpSnFETjRhQ0ZwVitNTTVablFEQmx1dWRyUS80UFA1Sk1WeQpreWZsQ3pJa2NCNjdvMDB3U3pBT0JnTlZIUThCQWY4RUJBTUNCNEF3REFZRFZSMFRBUUgvQkFJd0FEQXJCZ05WCkhTTUVKREFpZ0NEZ1hVQ3hmbkRGbXVudGFkZ3FUaE1lMGgxSXA4MWIzZWVZUzV1OE9yKzlxREFLQmdncWhrak8KUFFRREFnTklBREJGQWlFQXlJV21QcjlQakdpSk1QM1pVd05MRENnNnVwMlVQVXNJSzd2L2h3RVRra01DSUE0cQo3cHhQZy9VVldiamZYeE0wUCsvcTEzbXFFaFlYaVpTTXpoUENFNkNmCi0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K"
],
 "crypto_config": {
 "signature_hash_family": "SHA2",
 "identity_identifier_hash_function": "SHA256"
 },
 "tls_root_certs": [
 "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNTVENDQWUrZ0F3SUJBZ0lRZlRWTE9iTENVUjdxVEY3Z283UXgvakFLQmdncWhrak9QUVFEQWpCMk1Rc3cKQ1FZRFZRUUdFd0pWVXpFVE1CRUdBMVVFQ0JNS1EyRnNhV1p2Y201cFlURVdNQlFHQTFVRUJ4TU5VMkZ1SUVaeQpZVzVqYVhOamJ6RVpNQmNHQTFVRUNoTVFiM0puTVM1bGVHRnRjR3hsTG1OdmJURWZNQjBHQTFVRUF4TVdkR3h6ClkyRXViM0puTVM1bGVHRnRjR3hsTG1OdmJUQWVGdzB4T0RBMk1Ea3hNVFU0TWpoYUZ3MHlPREEyTURZeE1UVTQKTWpoYU1IWXhDekFKQmdOVkJBWVRBbFZUTVJNd0VRWURWUVFJRXdwRFlXeHBabTl5Ym1saE1SWXdGQVlEVlFRSApFdzFUWVc0Z1JuSmhibU5wYzJOdk1Sa3dGd1lEVlFRS0V4QnZjbWN4TG1WNFlXMXdiR1V1WTI5dE1SOHdIUVlEClZRUURFeFowYkhOallTNXZjbWN4TG1WNFlXMXdiR1V1WTI5dE1Ga3dFd1lIS29aSXpqMENBUVlJS29aSXpqMEQKQVFjRFFnQUVZbnp4bmMzVUpHS0ZLWDNUNmR0VGpkZnhJTVYybGhTVzNab0lWSW9mb04rWnNsWWp0d0g2ZXZXYgptTkZGQmRaYWExTjluaXRpbmxxbVVzTU1NQ2JieXFOZk1GMHdEZ1lEVlIwUEFRSC9CQVFEQWdHbU1BOEdBMVVkCkpRUUlNQVlHQkZVZEpRQXdEd1lEVlIwVEFRSC9CQVV3QXdFQi96QXBCZ05WSFE0RUlnUWdlVTAwNlNaUllUNDIKN1Uxb2YwL3RGdHUvRFVtazVLY3hnajFCaklJakduZ3dDZ1lJS29aSXpqMEVBd0lEU0FBd1JRSWhBSWpvcldJTwpRNVNjYjNoZDluRi9UamxWcmk1UHdTaDNVNmJaMFdYWEsxYzVBaUFlMmM5QmkyNFE1WjQ0aXQ1MkI5cm1hU1NpCkttM2NZVlY0cWJ6RFhMOHZYUT09Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K"
],
 "fabric_node_ous": {
 "enable": true,
 "client_ou_identifier": {
 "certificate": "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNSRENDQWVxZ0F3SUJBZ0lSQU1nN2VETnhwS0t0ZGl0TDRVNDRZMUl3Q2dZSUtvWkl6ajBFQXdJd2N6RUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhHVEFYQmdOVkJBb1RFRzl5WnpFdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekV1WlhoaGJYQnNaUzVqYjIwd0hoY05NVGd3TmpBNU1URTFPREk0V2hjTk1qZ3dOakEyTVRFMU9ESTQKV2pCek1Rc3dDUVlEVlFRR0V3SlZVekVUTUJFR0ExVUVDQk1LUTJGc2FXWnZjbTVwWVRFV01CUUdBMVVFQnhNTgpVMkZ1SUVaeVlXNWphWE5qYnpFWk1CY0dBMVVFQ2hNUWIzSm5NUzVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFCkF4TVRZMkV1YjNKbk1TNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUEKQk41d040THpVNGRpcUZSWnB6d3FSVm9JbWw1MVh0YWkzbWgzUXo0UEZxWkhXTW9lZ0ovUWRNKzF4L3RobERPcwpnbmVRcndGd216WGpvSSszaHJUSmRuU2pYekJkTUE0R0ExVWREd0VCL3dRRUF3SUJwakFQQmdOVkhTVUVDREFHCkJnUlZIU1VBTUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3S1FZRFZSME9CQ0lFSU9CZFFMRitjTVdhNmUxcDJDcE8KRXg3U0hVaW56VnZkNTVoTG03dzZ2NzJvTUFvR0NDcUdTTTQ5QkFNQ0EwZ0FNRVVDSVFDQyt6T1lHcll0ZTB4SgpSbDVYdUxjUWJySW9UeHpsRnJLZWFNWnJXMnVaSkFJZ0NVVGU5MEl4aW55dk4wUkh4UFhoVGNJTFdEZzdLUEJOCmVrNW5TRlh3Y0lZPQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==",
 "organizational_unit_identifier": "client"
 },
 "peer_ou_identifier": {
 "certificate": "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNSRENDQWVxZ0F3SUJBZ0lSQU1nN2VETnhwS0t0ZGl0TDRVNDRZMUl3Q2dZSUtvWkl6ajBFQXdJd2N6RUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhHVEFYQmdOVkJBb1RFRzl5WnpFdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekV1WlhoaGJYQnNaUzVqYjIwd0hoY05NVGd3TmpBNU1URTFPREk0V2hjTk1qZ3dOakEyTVRFMU9ESTQKV2pCek1Rc3dDUVlEVlFRR0V3SlZVekVUTUJFR0ExVUVDQk1LUTJGc2FXWnZjbTVwWVRFV01CUUdBMVVFQnhNTgpVMkZ1SUVaeVlXNWphWE5qYnpFWk1CY0dBMVVFQ2hNUWIzSm5NUzVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFCkF4TVRZMkV1YjNKbk1TNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUEKQk41d040THpVNGRpcUZSWnB6d3FSVm9JbWw1MVh0YWkzbWgzUXo0UEZxWkhXTW9lZ0ovUWRNKzF4L3RobERPcwpnbmVRcndGd216WGpvSSszaHJUSmRuU2pYekJkTUE0R0ExVWREd0VCL3dRRUF3SUJwakFQQmdOVkhTVUVDREFHCkJnUlZIU1VBTUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3S1FZRFZSME9CQ0lFSU9CZFFMRitjTVdhNmUxcDJDcE8KRXg3U0hVaW56VnZkNTVoTG03dzZ2NzJvTUFvR0NDcUdTTTQ5QkFNQ0EwZ0FNRVVDSVFDQyt6T1lHcll0ZTB4SgpSbDVYdUxjUWJySW9UeHpsRnJLZWFNWnJXMnVaSkFJZ0NVVGU5MEl4aW55dk4wUkh4UFhoVGNJTFdEZzdLUEJOCmVrNW5TRlh3Y0lZPQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==",
 "organizational_unit_identifier": "peer"
 }
 }
 },
 "Org2MSP": {
 "name": "Org2MSP",
 "root_certs": [
 "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNSRENDQWVxZ0F3SUJBZ0lSQUx2SWV2KzE4Vm9LZFR2V1RLNCtaZ2d3Q2dZSUtvWkl6ajBFQXdJd2N6RUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhHVEFYQmdOVkJBb1RFRzl5WnpJdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekl1WlhoaGJYQnNaUzVqYjIwd0hoY05NVGd3TmpBNU1URTFPREk0V2hjTk1qZ3dOakEyTVRFMU9ESTQKV2pCek1Rc3dDUVlEVlFRR0V3SlZVekVUTUJFR0ExVUVDQk1LUTJGc2FXWnZjbTVwWVRFV01CUUdBMVVFQnhNTgpVMkZ1SUVaeVlXNWphWE5qYnpFWk1CY0dBMVVFQ2hNUWIzSm5NaTVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFCkF4TVRZMkV1YjNKbk1pNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUEKQkhUS01aall0TDdnSXZ0ekN4Y2pMQit4NlZNdENzVW0wbExIcGtIeDFQaW5LUU1ybzFJWWNIMEpGVmdFempvSQpCcUdMYURyQmhWQkpoS1kwS21kMUJJZWpYekJkTUE0R0ExVWREd0VCL3dRRUF3SUJwakFQQmdOVkhTVUVDREFHCkJnUlZIU1VBTUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3S1FZRFZSME9CQ0lFSUk1WWdza0tFUkNwQzVNRDdxQlUKUXZTajd4Rk1ncmI1emhDaUhpU3JFNEtnTUFvR0NDcUdTTTQ5QkFNQ0EwZ0FNRVVDSVFDWnNSUjVBVU5KUjdJbwpQQzgzUCt1UlF1RmpUYS94eitzVkpZYnBsNEh1Z1FJZ0QzUlhuQWFqaGlPMU1EL1JzSC9JN2FPL1RuWUxkQUl6Cnd4VlNJenhQbWd3PQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg=="
],
 "admins": [
 "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNLVENDQWRDZ0F3SUJBZ0lRU1lpeE1vdmpoM1N2c25WMmFUOXl1REFLQmdncWhrak9QUVFEQWpCek1Rc3cKQ1FZRFZRUUdFd0pWVXpFVE1CRUdBMVVFQ0JNS1EyRnNhV1p2Y201cFlURVdNQlFHQTFVRUJ4TU5VMkZ1SUVaeQpZVzVqYVhOamJ6RVpNQmNHQTFVRUNoTVFiM0puTWk1bGVHRnRjR3hsTG1OdmJURWNNQm9HQTFVRUF4TVRZMkV1CmIzSm5NaTVsZUdGdGNHeGxMbU52YlRBZUZ3MHhPREEyTURreE1UVTRNamhhRncweU9EQTJNRFl4TVRVNE1qaGEKTUd3eEN6QUpCZ05WQkFZVEFsVlRNUk13RVFZRFZRUUlFd3BEWVd4cFptOXlibWxoTVJZd0ZBWURWUVFIRXcxVApZVzRnUm5KaGJtTnBjMk52TVE4d0RRWURWUVFMRXdaamJHbGxiblF4SHpBZEJnTlZCQU1NRmtGa2JXbHVRRzl5Clp6SXVaWGhoYlhCc1pTNWpiMjB3V1RBVEJnY3Foa2pPUFFJQkJnZ3Foa2pPUFFNQkJ3TkNBQVJFdStKc3l3QlQKdkFYUUdwT2FuS3ZkOVhCNlMxVGU4NTJ2L0xRODVWM1Rld0hlYXZXeGUydUszYTBvRHA5WDV5SlJ4YXN2b2hCcwpOMGJIRWErV1ZFQjdvMDB3U3pBT0JnTlZIUThCQWY4RUJBTUNCNEF3REFZRFZSMFRBUUgvQkFJd0FEQXJCZ05WCkhTTUVKREFpZ0NDT1dJTEpDaEVRcVF1VEErNmdWRUwwbys4UlRJSzIrYzRRb2g0a3F4T0NvREFLQmdncWhrak8KUFFRREFnTkhBREJFQWlCVUFsRStvbFBjMTZBMitmNVBRSmdTZFp0SjNPeXBieG9JVlhOdi90VUJ2QUlnVGFNcgo1K2k2TUxpaU9FZ0wzcWZSWmdkcG1yVm1SbHlIdVdabWE0NXdnaE09Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K"
],
 "crypto_config": {
 "signature_hash_family": "SHA2",
 "identity_identifier_hash_function": "SHA256"
 },
 "tls_root_certs": [
 "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNTakNDQWZDZ0F3SUJBZ0lSQUtoUFFxUGZSYnVpSktqL0JRanQ3RXN3Q2dZSUtvWkl6ajBFQXdJd2RqRUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhHVEFYQmdOVkJBb1RFRzl5WnpJdVpYaGhiWEJzWlM1amIyMHhIekFkQmdOVkJBTVRGblJzCmMyTmhMbTl5WnpJdVpYaGhiWEJzWlM1amIyMHdIaGNOTVRnd05qQTVNVEUxT0RJNFdoY05Namd3TmpBMk1URTEKT0RJNFdqQjJNUXN3Q1FZRFZRUUdFd0pWVXpFVE1CRUdBMVVFQ0JNS1EyRnNhV1p2Y201cFlURVdNQlFHQTFVRQpCeE1OVTJGdUlFWnlZVzVqYVhOamJ6RVpNQmNHQTFVRUNoTVFiM0puTWk1bGVHRnRjR3hsTG1OdmJURWZNQjBHCkExVUVBeE1XZEd4elkyRXViM0puTWk1bGVHRnRjR3hsTG1OdmJUQlpNQk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDkKQXdFSEEwSUFCRVIrMnREOWdkME9NTlk5Y20rbllZR2NUeWszRStCMnBsWWxDL2ZVdGdUU0QyZUVyY2kyWmltdQo5N25YeUIrM0NwNFJwVjFIVHdaR0JMbmNnbVIyb1J5alh6QmRNQTRHQTFVZER3RUIvd1FFQXdJQnBqQVBCZ05WCkhTVUVDREFHQmdSVkhTVUFNQThHQTFVZEV3RUIvd1FGTUFNQkFmOHdLUVlEVlIwT0JDSUVJUEN0V01JRFRtWC8KcGxseS8wNDI4eFRXZHlhazQybU9tbVNJSENCcnAyN0tNQW9HQ0NxR1NNNDlCQU1DQTBnQU1FVUNJUUNtN2xmVQpjbG91VHJrS2Z1YjhmdmdJTTU3QS85bW5IdzhpQnAycURtamZhUUlnSjkwcnRUV204YzVBbE93bFpyYkd0NWZMCjF6WXg5QW5DMTJBNnhOZDIzTG89Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K"
],
 "fabric_node_ous": {
 "enable": true,
 "client_ou_identifier": {
 "certificate": "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNSRENDQWVxZ0F3SUJBZ0lSQUx2SWV2KzE4Vm9LZFR2V1RLNCtaZ2d3Q2dZSUtvWkl6ajBFQXdJd2N6RUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhHVEFYQmdOVkJBb1RFRzl5WnpJdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekl1WlhoaGJYQnNaUzVqYjIwd0hoY05NVGd3TmpBNU1URTFPREk0V2hjTk1qZ3dOakEyTVRFMU9ESTQKV2pCek1Rc3dDUVlEVlFRR0V3SlZVekVUTUJFR0ExVUVDQk1LUTJGc2FXWnZjbTVwWVRFV01CUUdBMVVFQnhNTgpVMkZ1SUVaeVlXNWphWE5qYnpFWk1CY0dBMVVFQ2hNUWIzSm5NaTVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFCkF4TVRZMkV1YjNKbk1pNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUEKQkhUS01aall0TDdnSXZ0ekN4Y2pMQit4NlZNdENzVW0wbExIcGtIeDFQaW5LUU1ybzFJWWNIMEpGVmdFempvSQpCcUdMYURyQmhWQkpoS1kwS21kMUJJZWpYekJkTUE0R0ExVWREd0VCL3dRRUF3SUJwakFQQmdOVkhTVUVDREFHCkJnUlZIU1VBTUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3S1FZRFZSME9CQ0lFSUk1WWdza0tFUkNwQzVNRDdxQlUKUXZTajd4Rk1ncmI1emhDaUhpU3JFNEtnTUFvR0NDcUdTTTQ5QkFNQ0EwZ0FNRVVDSVFDWnNSUjVBVU5KUjdJbwpQQzgzUCt1UlF1RmpUYS94eitzVkpZYnBsNEh1Z1FJZ0QzUlhuQWFqaGlPMU1EL1JzSC9JN2FPL1RuWUxkQUl6Cnd4VlNJenhQbWd3PQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==",
 "organizational_unit_identifier": "client"
 },
 "peer_ou_identifier": {
 "certificate": "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNSRENDQWVxZ0F3SUJBZ0lSQUx2SWV2KzE4Vm9LZFR2V1RLNCtaZ2d3Q2dZSUtvWkl6ajBFQXdJd2N6RUwKTUFrR0ExVUVCaE1DVlZNeEV6QVJCZ05WQkFnVENrTmhiR2xtYjNKdWFXRXhGakFVQmdOVkJBY1REVk5oYmlCRwpjbUZ1WTJselkyOHhHVEFYQmdOVkJBb1RFRzl5WnpJdVpYaGhiWEJzWlM1amIyMHhIREFhQmdOVkJBTVRFMk5oCkxtOXlaekl1WlhoaGJYQnNaUzVqYjIwd0hoY05NVGd3TmpBNU1URTFPREk0V2hjTk1qZ3dOakEyTVRFMU9ESTQKV2pCek1Rc3dDUVlEVlFRR0V3SlZVekVUTUJFR0ExVUVDQk1LUTJGc2FXWnZjbTVwWVRFV01CUUdBMVVFQnhNTgpVMkZ1SUVaeVlXNWphWE5qYnpFWk1CY0dBMVVFQ2hNUWIzSm5NaTVsZUdGdGNHeGxMbU52YlRFY01Cb0dBMVVFCkF4TVRZMkV1YjNKbk1pNWxlR0Z0Y0d4bExtTnZiVEJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUEKQkhUS01aall0TDdnSXZ0ekN4Y2pMQit4NlZNdENzVW0wbExIcGtIeDFQaW5LUU1ybzFJWWNIMEpGVmdFempvSQpCcUdMYURyQmhWQkpoS1kwS21kMUJJZWpYekJkTUE0R0ExVWREd0VCL3dRRUF3SUJwakFQQmdOVkhTVUVDREFHCkJnUlZIU1VBTUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3S1FZRFZSME9CQ0lFSUk1WWdza0tFUkNwQzVNRDdxQlUKUXZTajd4Rk1ncmI1emhDaUhpU3JFNEtnTUFvR0NDcUdTTTQ5QkFNQ0EwZ0FNRVVDSVFDWnNSUjVBVU5KUjdJbwpQQzgzUCt1UlF1RmpUYS94eitzVkpZYnBsNEh1Z1FJZ0QzUlhuQWFqaGlPMU1EL1JzSC9JN2FPL1RuWUxkQUl6Cnd4VlNJenhQbWd3PQotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0tCg==",
 "organizational_unit_identifier": "peer"
 }
 }
 },
 "Org3MSP": {
 "name": "Org3MSP",
 "root_certs": [
 "CgJPVQoEUm9sZQoMRW5yb2xsbWVudElEChBSZXZvY2F0aW9uSGFuZGxlEkQKIKoEXcq/psdYnMKCiT79N+dS1hM8k+SuzU1blOgTuN++EiBe2m3E+FjWLuQGMNRGRrEVTMqTvC4A/5jvCLv2ja1sZxpECiDBbI0kwetxAwFzHwb1hi8TlkGW3OofvuVzfFt9VlewcRIgyvsxG5/THdWyKJTdNx8Gle2hoCbVF0Y1/DQESBjGOGciRAog25fMyWps+FLOjzj1vIsGUyO457ri3YMvmUcycIH2FvQSICTtzaFvSPUiDtNtAVz+uetuB9kfmjUdUSQxjyXULOm2IkQKIO8FKzwoWwu8Mo77GNqnKFGCZaJL9tlrkdTuEMu9ujzbEiA4xtzo8oo8oEhFVsl6010mNoj1VuI0Wmz4tvUgXolCIiJECiDZcZPuwk/uaJMuVph7Dy/icgnAtVYHShET41O0Eh3Q5BIgy5q9VMQrch9VW5yajhY8dH1uA593gKd5kBqGdLfiXzAiRAogAnUYq/kwKzFfmIm/W4nZxi1kjG2C8NRjsYYBkeAOQ6wSIGyX5GGmwgvxgXXehNWBfijyNIJALGRVhO8YtBqr+vnrKogBCiDHR1XQsDbpcBoZFJ09V97zsIKNVTxjUow7/wwC+tq3oBIgSWT/peiO2BI0DecypKfgMpVR8DWXl8ZHSrPISsL3Mc8aINem9+BOezLwFKCbtVH1KAHIRLyyiNP+TkIKW6x9RkThIiAbIJCYU6O02EB8uX6rqLU/1lHxV0vtWdIsKCTLx2EZmDJECiCPXeyUyFzPS3iFv8CQUOLCPZxf6buZS5JlM6EE/gCRaxIgmF9GKPLLmEoA77+AU3J8Iwnu9pBxnaHtUlyf/F9p30c6RAogG7ENKWlOZ4aF0HprqXAjl++Iao7/iE8xeVcKRlmfq1ASIGtmmavDAVS2bw3zClQd4ZBD2DrqCBO9NPOcLNB0IWeIQiCjxTdbmcuBNINZYWe+5fWyI1oY9LavKzDVkdh+miu26EogY2uJtJGfKrQQjy+pgf9FdPMUk+8PNUBtH9LCD4bos7JSIPl6m5lEP/PRAmBaeTQLXdbMxIthxM2gw+Zkc5+IJEWX"
],
 "intermediate_certs": [
 "CtgCCkQKIP0UVivtH8NlnRNrZuuu6jpaj2ZbEB4/secGS57MfbINEiDSJweLUMIQSW12jugBQG81lIQflJWvi7vi925u+PU/+xJECiDgOGdNbAiGSoHmTjKhT22fqUqYLIVh+JBHetm4kF4skhIg9XTWRkUqtsfYKENzPgm7ZUSmCHNF8xH7Vnhuc1EpAUgaINwSnJKofiMoyDRZwUBhgfwMH9DJzMccvRVW7IvLMe/cIiCnlRj+mfNVAJGKthLgQBB/JKM14NbUeutyJtTgrmDDiCogme25qGvxJfgQNnzldMMicVyiI6YMfnoThAUyqsTzyXkqIAAAKiCZ7bmoa/El+BA2fOV0wyJxXKIjpgx+ehOEBTKqxPPJeSogAAESIFYUenRvjbmEh+37YHJrvFJt4lGq9ShtJ4kEBrfHArPjGgNPVTEqA09VMTL0ARKIAQog/gwzULTJbCAoVg9XfCiROs4cU5oSv4Q80iYWtonAnvsSIE6mYFdzisBU21rhxjfYE7kk3Xjih9A1idJp7TSjfmorGiBwIEbnxUKjs3Z3DXUSTj5R78skdY1hWEjpCbSBvtwn/yIgBVTjvNOIwpBC7qZJKX6yn4tMvoCCGpiz4BKBEUqtBJsaZzBlAjBwZ4WXYOttkhsNA2r94gBfLUdx/4VhW4hwUImcztlau1T14UlNzJolCNkdiLc9CqsCMQD6OBkgDWGq9UlhkK9dJBzU+RElcZdSfVV1hDbbqt+lFRWOzzEkZ+BXCR1k3xybz+o="
],
 "admins": [
 "LS0tLS1CRUdJTiBQVUJMSUMgS0VZLS0tLS0KTUhZd0VBWUhLb1pJemowQ0FRWUZLNEVFQUNJRFlnQUVUYk13SEZteEpEMWR3SjE2K0hnVnRDZkpVRzdKK2FTYgorbkVvVmVkREVHYmtTc1owa1lraEpyYkx5SHlYZm15ZWV0ejFIUk1rWjRvMjdxRlMzTlVFb1J2QlM3RHJPWDJjCnZLaDRnbWhHTmlPbzRiWjFOVG9ZL2o3QnpqMFlMSXNlCi0tLS0tRU5EIFBVQkxJQyBLRVktLS0tLQo="
]
 }
 },
 "orderers": {
 "OrdererOrg": {
 "endpoint": [
 {
 "host": "orderer.example.com",
 "port": 7050
 }
]
 }
 }
}

It’s important to note that the certificates here are base64 encoded,
and thus should decoded in a manner similar to the following:

$ discover --configFile conf.yaml config --channel mychannel --server peer0.org1.example.com:7051 | jq .msps.OrdererOrg.root_certs[0] | sed "s/\"//g" | base64 --decode | openssl x509 -text -noout
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 c8:99:2d:3a:2d:7f:4b:73:53:8b:39:18:7b:c3:e1:1e
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: C=US, ST=California, L=San Francisco, O=example.com, CN=ca.example.com
 Validity
 Not Before: Jun 9 11:58:28 2018 GMT
 Not After : Jun 6 11:58:28 2028 GMT
 Subject: C=US, ST=California, L=San Francisco, O=example.com, CN=ca.example.com
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:28:ac:9e:51:8d:a4:80:15:0a:ff:ae:c9:61:d6:
 08:67:b0:15:c3:c7:99:46:61:63:0a:10:a6:42:6a:
 b0:af:14:0c:c0:e2:5b:b4:a1:c3:f0:07:7e:5b:7c:
 c4:b2:95:13:95:81:4b:6a:b9:e3:87:a4:f3:2c:7c:
 ae:00:91:9e:32
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment, Certificate Sign, CRL Sign
 X509v3 Extended Key Usage:
 Any Extended Key Usage
 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Subject Key Identifier:
 60:9D:F2:30:26:CE:8F:65:81:41:AD:96:15:0E:24:8D:A0:9D:C5:79:C1:17:BF:FE:E5:1B:FB:75:50:10:A6:4C
 Signature Algorithm: ecdsa-with-SHA256
 30:44:02:20:3d:e1:a7:6c:99:3f:87:2a:36:44:51:98:37:11:
 d8:a0:47:7a:33:ff:30:c1:09:a6:05:ec:b0:53:53:39:c1:0e:
 02:20:6b:f4:1d:48:e0:72:e4:c2:ef:b0:84:79:d4:2e:c2:c5:
 1b:6f:e4:2f:56:35:51:18:7d:93:51:86:05:84:ce:1f

Endorsers query:

To query for the endorsers of a chaincode call, additional flags need to
be supplied:

	The --chaincode flag is mandatory and it provides the chaincode
name(s). To query for a chaincode-to-chaincode invocation, one needs
to repeat the --chaincode flag with all the chaincodes.

	The --collection is used to specify private data collections that
are expected to used by the chaincode(s). To map from thechaincodes
passed via --chaincode to the collections, the following syntax
should be used: collection=CC:Collection1,Collection2,....

For example, to query for a chaincode invocation that results in both
cc1 and cc2 to be invoked, as well as writes to private data collection
col1 by cc2, one needs to specify:
--chaincode=cc1 --chaincode=cc2 --collection=cc2:col1

Below is the output of an endorsers query for chaincode mycc when
the endorsement policy is AND('Org1.peer', 'Org2.peer'):

$ discover --configFile conf.yaml endorsers --channel mychannel --server peer0.org1.example.com:7051 --chaincode mycc
[
 {
 "Chaincode": "mycc",
 "EndorsersByGroups": {
 "G0": [
 {
 "MSPID": "Org1MSP",
 "LedgerHeight": 5,
 "Endpoint": "peer0.org1.example.com:7051",
 "Identity": "-----BEGIN CERTIFICATE-----\nMIICKDCCAc+gAwIBAgIRANTiKfUVHVGnrYVzEy1ZSKIwCgYIKoZIzj0EAwIwczEL\nMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xGTAXBgNVBAoTEG9yZzEuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh\nLm9yZzEuZXhhbXBsZS5jb20wHhcNMTgwNjA5MTE1ODI4WhcNMjgwNjA2MTE1ODI4\nWjBqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN\nU2FuIEZyYW5jaXNjbzENMAsGA1UECxMEcGVlcjEfMB0GA1UEAxMWcGVlcjAub3Jn\nMS5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABD8jGz1l5Rrw\n5UWqAYnc4JrR46mCYwHhHFgwydccuytb00ouD4rECiBsCaeZFr5tODAK70jFOP/k\n/CtORCDPQ02jTTBLMA4GA1UdDwEB/wQEAwIHgDAMBgNVHRMBAf8EAjAAMCsGA1Ud\nIwQkMCKAIOBdQLF+cMWa6e1p2CpOEx7SHUinzVvd55hLm7w6v72oMAoGCCqGSM49\nBAMCA0cAMEQCIC3bacbDYphXfHrNULxpV/zwD08t7hJxNe8MwgP8/48fAiBiC0cr\nu99oLsRNCFB7R3egyKg1YYao0KWTrr1T+rK9Bg==\n-----END CERTIFICATE-----\n"
 }
],
 "G1": [
 {
 "MSPID": "Org2MSP",
 "LedgerHeight": 5,
 "Endpoint": "peer1.org2.example.com:7051",
 "Identity": "-----BEGIN CERTIFICATE-----\nMIICKDCCAc+gAwIBAgIRAIs6fFxk4Y5cJxSwTjyJ9A8wCgYIKoZIzj0EAwIwczEL\nMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xGTAXBgNVBAoTEG9yZzIuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh\nLm9yZzIuZXhhbXBsZS5jb20wHhcNMTgwNjA5MTE1ODI4WhcNMjgwNjA2MTE1ODI4\nWjBqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN\nU2FuIEZyYW5jaXNjbzENMAsGA1UECxMEcGVlcjEfMB0GA1UEAxMWcGVlcjEub3Jn\nMi5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABOVFyWVmKZ25\nxDYV3xZBDX4gKQ7rAZfYgOu1djD9EHccZhJVPsdwSjbRsvrfs9Z8mMuwEeSWq/cq\n0cGrMKR93vKjTTBLMA4GA1UdDwEB/wQEAwIHgDAMBgNVHRMBAf8EAjAAMCsGA1Ud\nIwQkMCKAII5YgskKERCpC5MD7qBUQvSj7xFMgrb5zhCiHiSrE4KgMAoGCCqGSM49\nBAMCA0cAMEQCIDJmxseFul1GZ26djKa6jZ6zYYf6hchNF5xxMRWXpCnuAiBMf6JZ\njZjVM9F/OidQ2SBR7OZyMAzgXc5nAabWZpdkuQ==\n-----END CERTIFICATE-----\n"
 },
 {
 "MSPID": "Org2MSP",
 "LedgerHeight": 5,
 "Endpoint": "peer0.org2.example.com:7051",
 "Identity": "-----BEGIN CERTIFICATE-----\nMIICJzCCAc6gAwIBAgIQVek/l5TVdNvi1pk8ASS+vzAKBggqhkjOPQQDAjBzMQsw\nCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNU2FuIEZy\nYW5jaXNjbzEZMBcGA1UEChMQb3JnMi5leGFtcGxlLmNvbTEcMBoGA1UEAxMTY2Eu\nb3JnMi5leGFtcGxlLmNvbTAeFw0xODA2MDkxMTU4MjhaFw0yODA2MDYxMTU4Mjha\nMGoxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYDVQQHEw1T\nYW4gRnJhbmNpc2NvMQ0wCwYDVQQLEwRwZWVyMR8wHQYDVQQDExZwZWVyMC5vcmcy\nLmV4YW1wbGUuY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE9Wl6EWXZhZZl\nt7cbCHdD3sutOnnszCq815NorpIcS9gyR9Y9cjLx8fsm5GnC68lFaZl412ipdwmI\nxlMBKsH4wKNNMEswDgYDVR0PAQH/BAQDAgeAMAwGA1UdEwEB/wQCMAAwKwYDVR0j\nBCQwIoAgjliCyQoREKkLkwPuoFRC9KPvEUyCtvnOEKIeJKsTgqAwCgYIKoZIzj0E\nAwIDRwAwRAIgKT9VK597mbLLBsoVP5OhPWVce3mhetGUUPDN2+phgXoCIDtAW2BR\nPPgPm/yu/CH9yDajGDlYIHI9GkN0MPNWAaom\n-----END CERTIFICATE-----\n"
 }
]
 },
 "Layouts": [
 {
 "quantities_by_group": {
 "G0": 1,
 "G1": 1
 }
 }
]
 }
]

Not using a configuration file

It is possible to execute the discovery CLI without having a
configuration file, and just passing all needed configuration as
commandline flags. The following is an example of a local peer membership
query which loads administrator credentials:

$ discover --peerTLSCA tls/ca.crt --userKey msp/keystore/cf31339d09e8311ac9ca5ed4e27a104a7f82f1e5904b3296a170ba4725ffde0d_sk --userCert msp/signcerts/Admin\@org1.example.com-cert.pem --MSP Org1MSP --tlsCert tls/client.crt --tlsKey tls/client.key peers --server peer0.org1.example.com:7051
[
 {
 "MSPID": "Org1MSP",
 "Endpoint": "peer1.org1.example.com:7051",
 "Identity": "-----BEGIN CERTIFICATE-----\nMIICJzCCAc6gAwIBAgIQO7zMEHlMfRhnP6Xt65jwtDAKBggqhkjOPQQDAjBzMQsw\nCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNU2FuIEZy\nYW5jaXNjbzEZMBcGA1UEChMQb3JnMS5leGFtcGxlLmNvbTEcMBoGA1UEAxMTY2Eu\nb3JnMS5leGFtcGxlLmNvbTAeFw0xODA2MTcxMzQ1MjFaFw0yODA2MTQxMzQ1MjFa\nMGoxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYDVQQHEw1T\nYW4gRnJhbmNpc2NvMQ0wCwYDVQQLEwRwZWVyMR8wHQYDVQQDExZwZWVyMS5vcmcx\nLmV4YW1wbGUuY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEoII9k8db/Q2g\nRHw5rk3SYw+OMFw9jNbsJJyC5ttJRvc12Dn7lQ8ZR9hW1vLQ3NtqO/couccDJcHg\nt47iHBNadaNNMEswDgYDVR0PAQH/BAQDAgeAMAwGA1UdEwEB/wQCMAAwKwYDVR0j\nBCQwIoAgcecTOxTes6rfgyxHH6KIW7hsRAw2bhP9ikCHkvtv/RcwCgYIKoZIzj0E\nAwIDRwAwRAIgGHGtRVxcFVeMQr9yRlebs23OXEECNo6hNqd/4ChLwwoCIBFKFd6t\nlL5BVzVMGQyXWcZGrjFgl4+fDrwjmMe+jAfa\n-----END CERTIFICATE-----\n",
 },
 {
 "MSPID": "Org1MSP",
 "Endpoint": "peer0.org1.example.com:7051",
 "Identity": "-----BEGIN CERTIFICATE-----\nMIICKDCCAc6gAwIBAgIQP18LeXtEXGoN8pTqzXTHZTAKBggqhkjOPQQDAjBzMQsw\nCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNU2FuIEZy\nYW5jaXNjbzEZMBcGA1UEChMQb3JnMS5leGFtcGxlLmNvbTEcMBoGA1UEAxMTY2Eu\nb3JnMS5leGFtcGxlLmNvbTAeFw0xODA2MTcxMzQ1MjFaFw0yODA2MTQxMzQ1MjFa\nMGoxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYDVQQHEw1T\nYW4gRnJhbmNpc2NvMQ0wCwYDVQQLEwRwZWVyMR8wHQYDVQQDExZwZWVyMC5vcmcx\nLmV4YW1wbGUuY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEKeC/1Rg/ynSk\nNNItaMlaCDZOaQvxJEl6o3fqx1PVFlfXE4NarY3OO1N3YZI41hWWoXksSwJu/35S\nM7wMEzw+3KNNMEswDgYDVR0PAQH/BAQDAgeAMAwGA1UdEwEB/wQCMAAwKwYDVR0j\nBCQwIoAgcecTOxTes6rfgyxHH6KIW7hsRAw2bhP9ikCHkvtv/RcwCgYIKoZIzj0E\nAwIDSAAwRQIhAKiJEv79XBmr8gGY6kHrGL0L3sq95E7IsCYzYdAQHj+DAiBPcBTg\nRuA0//Kq+3aHJ2T0KpKHqD3FfhZZolKDkcrkwQ==\n-----END CERTIFICATE-----\n",
 },
 {
 "MSPID": "Org2MSP",
 "Endpoint": "peer0.org2.example.com:7051",
 "Identity": "-----BEGIN CERTIFICATE-----\nMIICKTCCAc+gAwIBAgIRANK4WBck5gKuzTxVQIwhYMUwCgYIKoZIzj0EAwIwczEL\nMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xGTAXBgNVBAoTEG9yZzIuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh\nLm9yZzIuZXhhbXBsZS5jb20wHhcNMTgwNjE3MTM0NTIxWhcNMjgwNjE0MTM0NTIx\nWjBqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN\nU2FuIEZyYW5jaXNjbzENMAsGA1UECxMEcGVlcjEfMB0GA1UEAxMWcGVlcjAub3Jn\nMi5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABJa0gkMRqJCi\nzmx+L9xy/ecJNvdAV2zmSx5Sf2qospVAH1MYCHyudDEvkiRuBPgmCdOdwJsE0g+h\nz0nZdKq6/X+jTTBLMA4GA1UdDwEB/wQEAwIHgDAMBgNVHRMBAf8EAjAAMCsGA1Ud\nIwQkMCKAIFZMuZfUtY6n2iyxaVr3rl+x5lU0CdG9x7KAeYydQGTMMAoGCCqGSM49\nBAMCA0gAMEUCIQC0M9/LJ7j3I9NEPQ/B1BpnJP+UNPnGO2peVrM/mJ1nVgIgS1ZA\nA1tsxuDyllaQuHx2P+P9NDFdjXx5T08lZhxuWYM=\n-----END CERTIFICATE-----\n",
 },
 {
 "MSPID": "Org2MSP",
 "Endpoint": "peer1.org2.example.com:7051",
 "Identity": "-----BEGIN CERTIFICATE-----\nMIICKDCCAc+gAwIBAgIRALnNJzplCrYy4Y8CjZtqL7AwCgYIKoZIzj0EAwIwczEL\nMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xGTAXBgNVBAoTEG9yZzIuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh\nLm9yZzIuZXhhbXBsZS5jb20wHhcNMTgwNjE3MTM0NTIxWhcNMjgwNjE0MTM0NTIx\nWjBqMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN\nU2FuIEZyYW5jaXNjbzENMAsGA1UECxMEcGVlcjEfMB0GA1UEAxMWcGVlcjEub3Jn\nMi5leGFtcGxlLmNvbTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABNDopAkHlDdu\nq10HEkdxvdpkbs7EJyqv1clvCt/YMn1hS6sM+bFDgkJKalG7s9Hg3URF0aGpy51R\nU+4F9Muo+XajTTBLMA4GA1UdDwEB/wQEAwIHgDAMBgNVHRMBAf8EAjAAMCsGA1Ud\nIwQkMCKAIFZMuZfUtY6n2iyxaVr3rl+x5lU0CdG9x7KAeYydQGTMMAoGCCqGSM49\nBAMCA0cAMEQCIAR4fBmIBKW2jp0HbbabVepNtl1c7+6++riIrEBnoyIVAiBBvWmI\nyG02c5hu4wPAuVQMB7AU6tGSeYaWSAAo/ExunQ==\n-----END CERTIFICATE-----\n",
 }
]

 Fabric-CA Commands

Fabric-CA Commands

The Hyperledger Fabric CA is a Certificate Authority (CA) for Hyperledger Fabric.
The commands available for the fabric-ca client and fabric-ca server are described
in the links below.

Fabric-CA Client

The fabric-ca-client command allows you to manage identities (including attribute management)
and certificates (including renewal and revocation).

More information on fabric-ca-client commands can be found here [https://hyperledger-fabric-ca.readthedocs.io/en/release-1.1/clientcli.html#fabric-ca-client-s-cli].

Fabric-CA Server

The fabric-ca-server command allows you to initialize and start a server process which may host
one or more certificate authorities.

More information on fabric-ca-server commands can be found here [https://hyperledger-fabric-ca.readthedocs.io/en/release-1.1/servercli.html#fabric-ca-server-s-cli].

 Architecture Reference

Architecture Reference

	Architecture Origins

	Transaction Flow

	Hyperledger Fabric CA's User Guide [http://hyperledger-fabric-ca.readthedocs.io/en/latest]

	Hyperledger Fabric SDKs

	Service Discovery

	Channels

	Capability Requirements

	CouchDB as the State Database

	Peer channel-based event services

	Private Data

	Read-Write set semantics

	Gossip data dissemination protocol

 Architecture Origins

Architecture Origins

Note

This document represents the initial architectural proposal
for Hyperledger Fabric v1.0. While the Hyperledger Fabric
implementation has conceptually followed from the architectural
proposal, some details have been altered during the
implementation. The initial architectural proposal is
presented as originally prepared. For a more technically
accurate representation of the architecture, please see
Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains [https://arxiv.org/abs/1801.10228v2].

The Hyperledger Fabric architecture delivers the following advantages:

	Chaincode trust flexibility. The architecture separates trust
assumptions for chaincodes (blockchain applications) from trust
assumptions for ordering. In other words, the ordering service may be
provided by one set of nodes (orderers) and tolerate some of them to
fail or misbehave, and the endorsers may be different for each
chaincode.

	Scalability. As the endorser nodes responsible for particular
chaincode are orthogonal to the orderers, the system may scale
better than if these functions were done by the same nodes. In
particular, this results when different chaincodes specify disjoint
endorsers, which introduces a partitioning of chaincodes between
endorsers and allows parallel chaincode execution (endorsement).
Besides, chaincode execution, which can potentially be costly, is
removed from the critical path of the ordering service.

	Confidentiality. The architecture facilitates deployment of
chaincodes that have confidentiality requirements with respect to
the content and state updates of its transactions.

	Consensus modularity. The architecture is modular and allows
pluggable consensus (i.e., ordering service) implementations.

Part I: Elements of the architecture relevant to Hyperledger Fabric
v1

	System architecture

	Basic workflow of transaction endorsement

	Endorsement policies

Part II: Post-v1 elements of the architecture

	Ledger checkpointing (pruning)

1. System architecture

The blockchain is a distributed system consisting of many nodes that
communicate with each other. The blockchain runs programs called
chaincode, holds state and ledger data, and executes transactions. The
chaincode is the central element as transactions are operations invoked
on the chaincode. Transactions have to be “endorsed” and only endorsed
transactions may be committed and have an effect on the state. There may
exist one or more special chaincodes for management functions and
parameters, collectively called system chaincodes.

1.1. Transactions

Transactions may be of two types:

	Deploy transactions create new chaincode and take a program as
parameter. When a deploy transaction executes successfully, the
chaincode has been installed “on” the blockchain.

	Invoke transactions perform an operation in the context of
previously deployed chaincode. An invoke transaction refers to a
chaincode and to one of its provided functions. When successful, the
chaincode executes the specified function - which may involve
modifying the corresponding state, and returning an output.

As described later, deploy transactions are special cases of invoke
transactions, where a deploy transaction that creates new chaincode,
corresponds to an invoke transaction on a system chaincode.

Remark: This document currently assumes that a transaction either
creates new chaincode or invokes an operation provided by *one already
deployed chaincode. This document does not yet describe: a)
optimizations for query (read-only) transactions (included in v1), b)
support for cross-chaincode transactions (post-v1 feature).*

1.2. Blockchain datastructures

1.2.1. State

The latest state of the blockchain (or, simply, state) is modeled as a
versioned key-value store (KVS), where keys are names and values are
arbitrary blobs. These entries are manipulated by the chaincodes
(applications) running on the blockchain through put and get
KVS-operations. The state is stored persistently and updates to the
state are logged. Notice that versioned KVS is adopted as state model,
an implementation may use actual KVSs, but also RDBMSs or any other
solution.

More formally, state s is modeled as an element of a mapping
K -> (V X N), where:

	K is a set of keys

	V is a set of values

	N is an infinite ordered set of version numbers. Injective
function next: N -> N takes an element of N and returns the
next version number.

Both V and N contain a special element ⊥ (empty type), which is
in case of N the lowest element. Initially all keys are mapped to
(⊥, ⊥). For s(k)=(v,ver) we denote v by s(k).value,
and ver by s(k).version.

KVS operations are modeled as follows:

	put(k,v) for k ∈ K and v ∈ V, takes the blockchain
state s and changes it to s' such that
s'(k)=(v,next(s(k).version)) with s'(k')=s(k') for all
k'!=k.

	get(k) returns s(k).

State is maintained by peers, but not by orderers and clients.

State partitioning. Keys in the KVS can be recognized from their
name to belong to a particular chaincode, in the sense that only
transaction of a certain chaincode may modify the keys belonging to this
chaincode. In principle, any chaincode can read the keys belonging to
other chaincodes. Support for cross-chaincode transactions, that modify
the state belonging to two or more chaincodes is a post-v1 feature.

1.2.2 Ledger

Ledger provides a verifiable history of all successful state changes (we
talk about valid transactions) and unsuccessful attempts to change
state (we talk about invalid transactions), occurring during the
operation of the system.

Ledger is constructed by the ordering service (see Sec 1.3.3) as a
totally ordered hashchain of blocks of (valid or invalid)
transactions. The hashchain imposes the total order of blocks in a
ledger and each block contains an array of totally ordered transactions.
This imposes total order across all transactions.

Ledger is kept at all peers and, optionally, at a subset of orderers. In
the context of an orderer we refer to the Ledger as to
OrdererLedger, whereas in the context of a peer we refer to the
ledger as to PeerLedger. PeerLedger differs from the
OrdererLedger in that peers locally maintain a bitmask that tells
apart valid transactions from invalid ones (see Section XX for more
details).

Peers may prune PeerLedger as described in Section XX (post-v1
feature). Orderers maintain OrdererLedger for fault-tolerance and
availability (of the PeerLedger) and may decide to prune it at
anytime, provided that properties of the ordering service (see Sec.
1.3.3) are maintained.

The ledger allows peers to replay the history of all transactions and to
reconstruct the state. Therefore, state as described in Sec 1.2.1 is an
optional datastructure.

1.3. Nodes

Nodes are the communication entities of the blockchain. A “node” is only
a logical function in the sense that multiple nodes of different types
can run on the same physical server. What counts is how nodes are
grouped in “trust domains” and associated to logical entities that
control them.

There are three types of nodes:

	Client or submitting-client: a client that submits an actual
transaction-invocation to the endorsers, and broadcasts
transaction-proposals to the ordering service.

	Peer: a node that commits transactions and maintains the state
and a copy of the ledger (see Sec, 1.2). Besides, peers can have a
special endorser role.

	Ordering-service-node or orderer: a node running the
communication service that implements a delivery guarantee, such as
atomic or total order broadcast.

The types of nodes are explained next in more detail.

1.3.1. Client

The client represents the entity that acts on behalf of an end-user. It
must connect to a peer for communicating with the blockchain. The client
may connect to any peer of its choice. Clients create and thereby invoke
transactions.

As detailed in Section 2, clients communicate with both peers and the
ordering service.

1.3.2. Peer

A peer receives ordered state updates in the form of blocks from the
ordering service and maintain the state and the ledger.

Peers can additionally take up a special role of an endorsing peer,
or an endorser. The special function of an endorsing peer occurs
with respect to a particular chaincode and consists in endorsing a
transaction before it is committed. Every chaincode may specify an
endorsement policy that may refer to a set of endorsing peers. The
policy defines the necessary and sufficient conditions for a valid
transaction endorsement (typically a set of endorsers’ signatures), as
described later in Sections 2 and 3. In the special case of deploy
transactions that install new chaincode the (deployment) endorsement
policy is specified as an endorsement policy of the system chaincode.

1.3.3. Ordering service nodes (Orderers)

The orderers form the ordering service, i.e., a communication fabric
that provides delivery guarantees. The ordering service can be
implemented in different ways: ranging from a centralized service (used
e.g., in development and testing) to distributed protocols that target
different network and node fault models.

Ordering service provides a shared communication channel to clients
and peers, offering a broadcast service for messages containing
transactions. Clients connect to the channel and may broadcast messages
on the channel which are then delivered to all peers. The channel
supports atomic delivery of all messages, that is, message
communication with total-order delivery and (implementation specific)
reliability. In other words, the channel outputs the same messages to
all connected peers and outputs them to all peers in the same logical
order. This atomic communication guarantee is also called total-order
broadcast, atomic broadcast, or consensus in the context of
distributed systems. The communicated messages are the candidate
transactions for inclusion in the blockchain state.

Partitioning (ordering service channels). Ordering service may
support multiple channels similar to the topics of a
publish/subscribe (pub/sub) messaging system. Clients can connect to a
given channel and can then send messages and obtain the messages that
arrive. Channels can be thought of as partitions - clients connecting to
one channel are unaware of the existence of other channels, but clients
may connect to multiple channels. Even though some ordering service
implementations included with Hyperledger Fabric support multiple
channels, for simplicity of presentation, in the rest of this
document, we assume ordering service consists of a single channel/topic.

Ordering service API. Peers connect to the channel provided by the
ordering service, via the interface provided by the ordering service.
The ordering service API consists of two basic operations (more
generally asynchronous events):

TODO add the part of the API for fetching particular blocks under
client/peer specified sequence numbers.

	broadcast(blob): a client calls this to broadcast an arbitrary
message blob for dissemination over the channel. This is also
called request(blob) in the BFT context, when sending a request
to a service.

	deliver(seqno, prevhash, blob): the ordering service calls this
on the peer to deliver the message blob with the specified
non-negative integer sequence number (seqno) and hash of the most
recently delivered blob (prevhash). In other words, it is an
output event from the ordering service. deliver() is also
sometimes called notify() in pub-sub systems or commit() in
BFT systems.

Ledger and block formation. The ledger (see also Sec. 1.2.2)
contains all data output by the ordering service. In a nutshell, it is a
sequence of deliver(seqno, prevhash, blob) events, which form a hash
chain according to the computation of prevhash described before.

Most of the time, for efficiency reasons, instead of outputting
individual transactions (blobs), the ordering service will group (batch)
the blobs and output blocks within a single deliver event. In this
case, the ordering service must impose and convey a deterministic
ordering of the blobs within each block. The number of blobs in a block
may be chosen dynamically by an ordering service implementation.

In the following, for ease of presentation, we define ordering service
properties (rest of this subsection) and explain the workflow of
transaction endorsement (Section 2) assuming one blob per deliver
event. These are easily extended to blocks, assuming that a deliver
event for a block corresponds to a sequence of individual deliver
events for each blob within a block, according to the above mentioned
deterministic ordering of blobs within a block.

Ordering service properties

The guarantees of the ordering service (or atomic-broadcast channel)
stipulate what happens to a broadcasted message and what relations exist
among delivered messages. These guarantees are as follows:

	Safety (consistency guarantees): As long as peers are connected
for sufficiently long periods of time to the channel (they can
disconnect or crash, but will restart and reconnect), they will see
an identical series of delivered (seqno, prevhash, blob)
messages. This means the outputs (deliver() events) occur in the
same order on all peers and according to sequence number and carry
identical content (blob and prevhash) for the same sequence
number. Note this is only a logical order, and a
deliver(seqno, prevhash, blob) on one peer is not required to
occur in any real-time relation to deliver(seqno, prevhash, blob)
that outputs the same message at another peer. Put differently, given
a particular seqno, no two correct peers deliver different
prevhash or blob values. Moreover, no value blob is
delivered unless some client (peer) actually called
broadcast(blob) and, preferably, every broadcasted blob is only
delivered once.

Furthermore, the deliver() event contains the cryptographic hash
of the data in the previous deliver() event (prevhash). When
the ordering service implements atomic broadcast guarantees,
prevhash is the cryptographic hash of the parameters from the
deliver() event with sequence number seqno-1. This
establishes a hash chain across deliver() events, which is used
to help verify the integrity of the ordering service output, as
discussed in Sections 4 and 5 later. In the special case of the first
deliver() event, prevhash has a default value.

	Liveness (delivery guarantee): Liveness guarantees of the
ordering service are specified by a ordering service implementation.
The exact guarantees may depend on the network and node fault model.

In principle, if the submitting client does not fail, the ordering
service should guarantee that every correct peer that connects to the
ordering service eventually delivers every submitted transaction.

To summarize, the ordering service ensures the following properties:

	Agreement. For any two events at correct peers
deliver(seqno, prevhash0, blob0) and
deliver(seqno, prevhash1, blob1) with the same seqno,
prevhash0==prevhash1 and blob0==blob1;

	Hashchain integrity. For any two events at correct peers
deliver(seqno-1, prevhash0, blob0) and
deliver(seqno, prevhash, blob),
prevhash = HASH(seqno-1||prevhash0||blob0).

	No skipping. If an ordering service outputs
deliver(seqno, prevhash, blob) at a correct peer p, such that
seqno>0, then p already delivered an event
deliver(seqno-1, prevhash0, blob0).

	No creation. Any event deliver(seqno, prevhash, blob) at a
correct peer must be preceded by a broadcast(blob) event at some
(possibly distinct) peer;

	No duplication (optional, yet desirable). For any two events
broadcast(blob) and broadcast(blob'), when two events
deliver(seqno0, prevhash0, blob) and
deliver(seqno1, prevhash1, blob') occur at correct peers and
blob == blob', then seqno0==seqno1 and
prevhash0==prevhash1.

	Liveness. If a correct client invokes an event broadcast(blob)
then every correct peer “eventually” issues an event
deliver(*, *, blob), where * denotes an arbitrary value.

2. Basic workflow of transaction endorsement

In the following we outline the high-level request flow for a
transaction.

Remark: Notice that the following protocol *does not assume that
all transactions are deterministic, i.e., it allows for
non-deterministic transactions.*

2.1. The client creates a transaction and sends it to endorsing peers of its choice

To invoke a transaction, the client sends a PROPOSE message to a set
of endorsing peers of its choice (possibly not at the same time - see
Sections 2.1.2. and 2.3.). The set of endorsing peers for a given
chaincodeID is made available to client via peer, which in turn
knows the set of endorsing peers from endorsement policy (see Section
3). For example, the transaction could be sent to all endorsers of a
given chaincodeID. That said, some endorsers could be offline,
others may object and choose not to endorse the transaction. The
submitting client tries to satisfy the policy expression with the
endorsers available.

In the following, we first detail PROPOSE message format and then
discuss possible patterns of interaction between submitting client and
endorsers.

2.1.1. PROPOSE message format

The format of a PROPOSE message is <PROPOSE,tx,[anchor]>, where
tx is a mandatory and anchor optional argument explained in the
following.

	tx=<clientID,chaincodeID,txPayload,timestamp,clientSig>, where

	clientID is an ID of the submitting client,

	chaincodeID refers to the chaincode to which the transaction
pertains,

	txPayload is the payload containing the submitted transaction
itself,

	timestamp is a monotonically increasing (for every new
transaction) integer maintained by the client,

	clientSig is signature of a client on other fields of tx.

The details of txPayload will differ between invoke transactions
and deploy transactions (i.e., invoke transactions referring to a
deploy-specific system chaincode). For an invoke transaction,
txPayload would consist of two fields

	txPayload = <operation, metadata>, where
	operation denotes the chaincode operation (function) and
arguments,

	metadata denotes attributes related to the invocation.

For a deploy transaction, txPayload would consist of three
fields

	txPayload = <source, metadata, policies>, where
	source denotes the source code of the chaincode,

	metadata denotes attributes related to the chaincode and
application,

	policies contains policies related to the chaincode that
are accessible to all peers, such as the endorsement policy.
Note that endorsement policies are not supplied with
txPayload in a deploy transaction, but
txPayload of a deploy contains endorsement policy ID and
its parameters (see Section 3).

	anchor contains read version dependencies, or more
specifically, key-version pairs (i.e., anchor is a subset of
KxN), that binds or “anchors” the PROPOSE request to
specified versions of keys in a KVS (see Section 1.2.). If the client
specifies the anchor argument, an endorser endorses a transaction
only upon read version numbers of corresponding keys in its local
KVS match anchor (see Section 2.2. for more details).

Cryptographic hash of tx is used by all nodes as a unique
transaction identifier tid (i.e., tid=HASH(tx)). The client
stores tid in memory and waits for responses from endorsing peers.

2.1.2. Message patterns

The client decides on the sequence of interaction with endorsers. For
example, a client would typically send <PROPOSE, tx> (i.e., without
the anchor argument) to a single endorser, which would then produce
the version dependencies (anchor) which the client can later on use
as an argument of its PROPOSE message to other endorsers. As another
example, the client could directly send <PROPOSE, tx> (without
anchor) to all endorsers of its choice. Different patterns of
communication are possible and client is free to decide on those (see
also Section 2.3.).

2.2. The endorsing peer simulates a transaction and produces an endorsement signature

On reception of a <PROPOSE,tx,[anchor]> message from a client, the
endorsing peer epID first verifies the client’s signature
clientSig and then simulates a transaction. If the client specifies
anchor then endorsing peer simulates the transactions only upon read
version numbers (i.e., readset as defined below) of corresponding
keys in its local KVS match those version numbers specified by
anchor.

Simulating a transaction involves endorsing peer tentatively executing
a transaction (txPayload), by invoking the chaincode to which the
transaction refers (chaincodeID) and the copy of the state that the
endorsing peer locally holds.

As a result of the execution, the endorsing peer computes read version
dependencies (readset) and state updates (writeset), also
called MVCC+postimage info in DB language.

Recall that the state consists of key-value pairs. All key-value entries
are versioned; that is, every entry contains ordered version
information, which is incremented each time the value stored under
a key is updated. The peer that interprets the transaction records all
key-value pairs accessed by the chaincode, either for reading or for writing,
but the peer does not yet update its state. More specifically:

	Given state s before an endorsing peer executes a transaction,
for every key k read by the transaction, pair
(k,s(k).version) is added to readset.

	Additionally, for every key k modified by the transaction to the
new value v', pair (k,v') is added to writeset.
Alternatively, v' could be the delta of the new value to previous
value (s(k).value).

If a client specifies anchor in the PROPOSE message then client
specified anchor must equal readset produced by endorsing peer
when simulating the transaction.

Then, the peer forwards internally tran-proposal (and possibly
tx) to the part of its (peer’s) logic that endorses a transaction,
referred to as endorsing logic. By default, endorsing logic at a
peer accepts the tran-proposal and simply signs the
tran-proposal. However, endorsing logic may interpret arbitrary
functionality, to, e.g., interact with legacy systems with
tran-proposal and tx as inputs to reach the decision whether to
endorse a transaction or not.

If endorsing logic decides to endorse a transaction, it sends
<TRANSACTION-ENDORSED, tid, tran-proposal,epSig> message to the
submitting client(tx.clientID), where:

	tran-proposal := (epID,tid,chaincodeID,txContentBlob,readset,writeset),

where txContentBlob is chaincode/transaction specific
information. The intention is to have txContentBlob used as some
representation of tx (e.g., txContentBlob=tx.txPayload).

	epSig is the endorsing peer’s signature on tran-proposal

Else, in case the endorsing logic refuses to endorse the transaction, an
endorser may send a message (TRANSACTION-INVALID, tid, REJECTED)
to the submitting client.

Notice that an endorser does not change its state in this step, the
updates produced by transaction simulation in the context of endorsement
do not affect the state!

2.3. The submitting client collects an endorsement for a transaction and broadcasts it through ordering service

The submitting client waits until it receives “enough” messages and
signatures on (TRANSACTION-ENDORSED, tid, *, *) statements to
conclude that the transaction proposal is endorsed. As discussed in
Section 2.1.2., this may involve one or more round-trips of interaction
with endorsers.

The exact number of “enough” depend on the chaincode endorsement policy
(see also Section 3). If the endorsement policy is satisfied, the
transaction has been endorsed; note that it is not yet committed. The
collection of signed TRANSACTION-ENDORSED messages from endorsing
peers which establish that a transaction is endorsed is called an
endorsement and denoted by endorsement.

If the submitting client does not manage to collect an endorsement for a
transaction proposal, it abandons this transaction with an option to
retry later.

For transaction with a valid endorsement, we now start using the
ordering service. The submitting client invokes ordering service using
the broadcast(blob), where blob=endorsement. If the client does
not have capability of invoking ordering service directly, it may proxy
its broadcast through some peer of its choice. Such a peer must be
trusted by the client not to remove any message from the endorsement
or otherwise the transaction may be deemed invalid. Notice that,
however, a proxy peer may not fabricate a valid endorsement.

2.4. The ordering service delivers a transactions to the peers

When an event deliver(seqno, prevhash, blob) occurs and a peer has
applied all state updates for blobs with sequence number lower than
seqno, a peer does the following:

	It checks that the blob.endorsement is valid according to the
policy of the chaincode (blob.tran-proposal.chaincodeID) to which
it refers.

	In a typical case, it also verifies that the dependencies
(blob.endorsement.tran-proposal.readset) have not been violated
meanwhile. In more complex use cases, tran-proposal fields in
endorsement may differ and in this case endorsement policy (Section
3) specifies how the state evolves.

Verification of dependencies can be implemented in different ways,
according to a consistency property or “isolation guarantee” that is
chosen for the state updates. Serializability is a default isolation
guarantee, unless chaincode endorsement policy specifies a different
one. Serializability can be provided by requiring the version associated
with every key in the readset to be equal to that key’s version in
the state, and rejecting transactions that do not satisfy this
requirement.

	If all these checks pass, the transaction is deemed valid or
committed. In this case, the peer marks the transaction with 1 in
the bitmask of the PeerLedger, applies
blob.endorsement.tran-proposal.writeset to blockchain state (if
tran-proposals are the same, otherwise endorsement policy logic
defines the function that takes blob.endorsement).

	If the endorsement policy verification of blob.endorsement fails,
the transaction is invalid and the peer marks the transaction with 0
in the bitmask of the PeerLedger. It is important to note that
invalid transactions do not change the state.

Note that this is sufficient to have all (correct) peers have the same
state after processing a deliver event (block) with a given sequence
number. Namely, by the guarantees of the ordering service, all correct
peers will receive an identical sequence of
deliver(seqno, prevhash, blob) events. As the evaluation of the
endorsement policy and evaluation of version dependencies in readset
are deterministic, all correct peers will also come to the same
conclusion whether a transaction contained in a blob is valid. Hence,
all peers commit and apply the same sequence of transactions and update
their state in the same way.

[image: Illustration of the transaction flow (common-case path).]
Figure 1. Illustration of one possible transaction flow (common-case path).

3. Endorsement policies

3.1. Endorsement policy specification

An endorsement policy, is a condition on what endorses a
transaction. Blockchain peers have a pre-specified set of endorsement
policies, which are referenced by a deploy transaction that installs
specific chaincode. Endorsement policies can be parametrized, and these
parameters can be specified by a deploy transaction.

To guarantee blockchain and security properties, the set of endorsement
policies should be a set of proven policies with limited set of
functions in order to ensure bounded execution time (termination),
determinism, performance and security guarantees.

Dynamic addition of endorsement policies (e.g., by deploy
transaction on chaincode deploy time) is very sensitive in terms of
bounded policy evaluation time (termination), determinism, performance
and security guarantees. Therefore, dynamic addition of endorsement
policies is not allowed, but can be supported in future.

3.2. Transaction evaluation against endorsement policy

A transaction is declared valid only if it has been endorsed according
to the policy. An invoke transaction for a chaincode will first have to
obtain an endorsement that satisfies the chaincode’s policy or it will
not be committed. This takes place through the interaction between the
submitting client and endorsing peers as explained in Section 2.

Formally the endorsement policy is a predicate on the endorsement, and
potentially further state that evaluates to TRUE or FALSE. For deploy
transactions the endorsement is obtained according to a system-wide
policy (for example, from the system chaincode).

An endorsement policy predicate refers to certain variables. Potentially
it may refer to:

	keys or identities relating to the chaincode (found in the metadata
of the chaincode), for example, a set of endorsers;

	further metadata of the chaincode;

	elements of the endorsement and endorsement.tran-proposal;

	and potentially more.

The above list is ordered by increasing expressiveness and complexity,
that is, it will be relatively simple to support policies that only
refer to keys and identities of nodes.

The evaluation of an endorsement policy predicate must be
deterministic. An endorsement shall be evaluated locally by every peer
such that a peer does not need to interact with other peers, yet all
correct peers evaluate the endorsement policy in the same way.

3.3. Example endorsement policies

The predicate may contain logical expressions and evaluates to TRUE or
FALSE. Typically the condition will use digital signatures on the
transaction invocation issued by endorsing peers for the chaincode.

Suppose the chaincode specifies the endorser set
E = {Alice, Bob, Charlie, Dave, Eve, Frank, George}. Some example
policies:

	A valid signature from on the same tran-proposal from all members
of E.

	A valid signature from any single member of E.

	Valid signatures on the same tran-proposal from endorsing peers
according to the condition
(Alice OR Bob) AND (any two of: Charlie, Dave, Eve, Frank, George).

	Valid signatures on the same tran-proposal by any 5 out of the 7
endorsers. (More generally, for chaincode with n > 3f endorsers,
valid signatures by any 2f+1 out of the n endorsers, or by
any group of more than (n+f)/2 endorsers.)

	Suppose there is an assignment of “stake” or “weights” to the
endorsers, like
{Alice=49, Bob=15, Charlie=15, Dave=10, Eve=7, Frank=3, George=1},
where the total stake is 100: The policy requires valid signatures
from a set that has a majority of the stake (i.e., a group with
combined stake strictly more than 50), such as {Alice, X} with
any X different from George, or
{everyone together except Alice}. And so on.

	The assignment of stake in the previous example condition could be
static (fixed in the metadata of the chaincode) or dynamic (e.g.,
dependent on the state of the chaincode and be modified during the
execution).

	Valid signatures from (Alice OR Bob) on tran-proposal1 and valid
signatures from (any two of: Charlie, Dave, Eve, Frank, George)
on tran-proposal2, where tran-proposal1 and
tran-proposal2 differ only in their endorsing peers and state
updates.

How useful these policies are will depend on the application, on the
desired resilience of the solution against failures or misbehavior of
endorsers, and on various other properties.

4 (post-v1). Validated ledger and PeerLedger checkpointing (pruning)

4.1. Validated ledger (VLedger)

To maintain the abstraction of a ledger that contains only valid and
committed transactions (that appears in Bitcoin, for example), peers
may, in addition to state and Ledger, maintain the Validated Ledger (or
VLedger). This is a hash chain derived from the ledger by filtering out
invalid transactions.

The construction of the VLedger blocks (called here vBlocks) proceeds
as follows. As the PeerLedger blocks may contain invalid
transactions (i.e., transactions with invalid endorsement or with
invalid version dependencies), such transactions are filtered out by
peers before a transaction from a block becomes added to a vBlock. Every
peer does this by itself (e.g., by using the bitmask associated with
PeerLedger). A vBlock is defined as a block without the invalid
transactions, that have been filtered out. Such vBlocks are inherently
dynamic in size and may be empty. An illustration of vBlock construction
is given in the figure below.

[image: Illustration of vBlock formation]
Figure 2. Illustration of validated ledger block (vBlock) formation from ledger (PeerLedger) blocks.

vBlocks are chained together to a hash chain by every peer. More
specifically, every block of a validated ledger contains:

	The hash of the previous vBlock.

	vBlock number.

	An ordered list of all valid transactions committed by the peers
since the last vBlock was computed (i.e., list of valid transactions
in a corresponding block).

	The hash of the corresponding block (in PeerLedger) from which
the current vBlock is derived.

All this information is concatenated and hashed by a peer, producing the
hash of the vBlock in the validated ledger.

4.2. PeerLedger Checkpointing

The ledger contains invalid transactions, which may not necessarily be
recorded forever. However, peers cannot simply discard PeerLedger
blocks and thereby prune PeerLedger once they establish the
corresponding vBlocks. Namely, in this case, if a new peer joins the
network, other peers could not transfer the discarded blocks (pertaining
to PeerLedger) to the joining peer, nor convince the joining peer of
the validity of their vBlocks.

To facilitate pruning of the PeerLedger, this document describes a
checkpointing mechanism. This mechanism establishes the validity of
the vBlocks across the peer network and allows checkpointed vBlocks to
replace the discarded PeerLedger blocks. This, in turn, reduces
storage space, as there is no need to store invalid transactions. It
also reduces the work to reconstruct the state for new peers that join
the network (as they do not need to establish validity of individual
transactions when reconstructing the state by replaying PeerLedger,
but may simply replay the state updates contained in the validated
ledger).

4.2.1. Checkpointing protocol

Checkpointing is performed periodically by the peers every CHK blocks,
where CHK is a configurable parameter. To initiate a checkpoint, the
peers broadcast (e.g., gossip) to other peers message
<CHECKPOINT,blocknohash,blockno,stateHash,peerSig>, where
blockno is the current blocknumber and blocknohash is its
respective hash, stateHash is the hash of the latest state (produced
by e.g., a Merkle hash) upon validation of block blockno and
peerSig is peer’s signature on
(CHECKPOINT,blocknohash,blockno,stateHash), referring to the
validated ledger.

A peer collects CHECKPOINT messages until it obtains enough
correctly signed messages with matching blockno, blocknohash and
stateHash to establish a valid checkpoint (see Section 4.2.2.).

Upon establishing a valid checkpoint for block number blockno with
blocknohash, a peer:

	if blockno>latestValidCheckpoint.blockno, then a peer assigns
latestValidCheckpoint=(blocknohash,blockno),

	stores the set of respective peer signatures that constitute a valid
checkpoint into the set latestValidCheckpointProof,

	stores the state corresponding to stateHash to
latestValidCheckpointedState,

	(optionally) prunes its PeerLedger up to block number blockno
(inclusive).

4.2.2. Valid checkpoints

Clearly, the checkpointing protocol raises the following questions:
When can a peer prune its ``PeerLedger``? How many ``CHECKPOINT``
messages are “sufficiently many”?. This is defined by a checkpoint
validity policy, with (at least) two possible approaches, which may
also be combined:

	Local (peer-specific) checkpoint validity policy (LCVP). A local
policy at a given peer p may specify a set of peers which peer p
trusts and whose CHECKPOINT messages are sufficient to establish
a valid checkpoint. For example, LCVP at peer Alice may define that
Alice needs to receive CHECKPOINT message from Bob, or from
both Charlie and Dave.

	Global checkpoint validity policy (GCVP). A checkpoint validity
policy may be specified globally. This is similar to a local peer
policy, except that it is stipulated at the system (blockchain)
granularity, rather than peer granularity. For instance, GCVP may
specify that:
	each peer may trust a checkpoint if confirmed by 11 different
peers.

	in a specific deployment in which every orderer is collocated with
a peer in the same machine (i.e., trust domain) and where up to
f orderers may be (Byzantine) faulty, each peer may trust a
checkpoint if confirmed by f+1 different peers collocated with
orderers.

 Transaction Flow

Transaction Flow

This document outlines the transactional mechanics that take place during a standard asset
exchange. The scenario includes two clients, A and B, who are buying and selling
radishes. They each have a peer on the network through which they send their
transactions and interact with the ledger.

[image: _images/step0.png]
Assumptions

This flow assumes that a channel is set up and running. The application user
has registered and enrolled with the organization’s certificate authority (CA)
and received back necessary cryptographic material, which is used to authenticate
to the network.

The chaincode (containing a set of key value pairs representing the initial
state of the radish market) is installed on the peers and instantiated on the
channel. The chaincode contains logic defining a set of transaction
instructions and the agreed upon price for a radish. An endorsement policy has
also been set for this chaincode, stating that both peerA and peerB must endorse
any transaction.

[image: _images/step1.png]

	Client A initiates a transaction

What’s happening? - Client A is sending a request to purchase radishes. The
request targets peerA and peerB, who are respectively representative of
Client A and Client B. The endorsement policy states that both peers must endorse
any transaction, therefore the request goes to peerA and peerB.

Next, the transaction proposal is constructed. An application leveraging a supported
SDK (Node, Java, Python) utilizes one of the available API’s which generates a
transaction proposal. The proposal is a request to invoke a chaincode function
so that data can be read and/or written to the ledger (i.e. write new key value
pairs for the assets). The SDK serves as a shim to package the transaction proposal
into the properly architected format (protocol buffer over gRPC) and takes the user’s
cryptographic credentials to produce a unique signature for this transaction proposal.

[image: _images/step2.png]

	Endorsing peers verify signature & execute the transaction

The endorsing peers verify (1) that the transaction proposal is well formed,
(2) it has not been submitted already in the past (replay-attack protection),
(3) the signature is valid (using MSP), and (4) that the
submitter (Client A, in the example) is properly authorized to perform
the proposed operation on that channel (namely, each endorsing peer ensures that
the submitter satisfies the channel’s Writers policy).
The endorsing peers take the transaction proposal inputs as
arguments to the invoked chaincode’s function. The chaincode is then
executed against the current state database to produce transaction
results including a response value, read set, and write set. No updates are
made to the ledger at this point. The set of these values, along with the
endorsing peer’s signature is passed back as a “proposal response” to the SDK
which parses the payload for the application to consume.

Note

The MSP is a peer component that allows peers to verify
transaction requests arriving from clients and to sign transaction
results (endorsements). The writing policy is defined at channel
creation time and determines which users are entitled to submit a
transaction to that channel.

[image: _images/step3.png]

	Proposal responses are inspected

The application verifies the endorsing peer signatures and compares the proposal
responses to determine if the proposal responses are the same. If the chaincode only queried
the ledger, the application would inspect the query response and would typically not
submit the transaction to Ordering Service. If the client application intends to submit the
transaction to Ordering Service to update the ledger, the application determines if the specified
endorsement policy has been fulfilled before submitting (i.e. did peerA and peerB both endorse).
The architecture is such that even if an application chooses not to inspect responses or otherwise
forwards an unendorsed transaction, the endorsement policy will still be enforced by peers
and upheld at the commit validation phase.

[image: _images/step4.png]

	Client assembles endorsements into a transaction

The application “broadcasts” the transaction proposal and response within a
“transaction message” to the Ordering Service. The transaction will contain the
read/write sets, the endorsing peers signatures and the Channel ID. The
Ordering Service does not need to inspect the entire content of a transaction in order to perform
its operation, it simply receives
transactions from all channels in the network, orders them chronologically by
channel, and creates blocks of transactions per channel.

[image: _images/step5.png]

	Transaction is validated and committed

The blocks of transactions are “delivered” to all peers on the channel. The
transactions within the block are validated to ensure endorsement policy is
fulfilled and to ensure that there have been no changes to ledger state for read
set variables since the read set was generated by the transaction execution.
Transactions in the block are tagged as being valid or invalid.

[image: _images/step6.png]

	Ledger updated

Each peer appends the block to the channel’s chain, and for each valid transaction
the write sets are committed to current state database. An event is emitted, to
notify the client application that the transaction (invocation) has been
immutably appended to the chain, as well as notification of whether the
transaction was validated or invalidated.

Note: See the sequence diagram to better understand the
transaction flow.

 Hyperledger Fabric SDKs

Hyperledger Fabric SDKs

Hyperledger Fabric intends to offer a number of SDKs for a wide variety of
programming languages. The first two delivered are the Node.js and Java
SDKs. We hope to provide Python, REST and Go SDKs in a subsequent release.

	Hyperledger Fabric Node SDK documentation [https://fabric-sdk-node.github.io/].

	Hyperledger Fabric Java SDK documentation [https://github.com/hyperledger/fabric-sdk-java].

 Service Discovery

Service Discovery

Why do we need service discovery?

In order to execute chaincode on peers, submit transactions to orderers, and to
be updated about the status of transactions, applications connect to an API
exposed by an SDK.

However, the SDK needs a lot of information in order to allow applications to
connect to the relevant network nodes. In addition to the CA and TLS certificates
of the orderers and peers on the channel – as well as their IP addresses and port
numbers – it must know the relevant endorsement policies as well as which peers
have the chaincode installed (so the application knows which peers to send chaincode
proposals to).

Prior to v1.2, this information was statically encoded. However, this implementation
is not dynamically reactive to network changes (such as the addition of peers who have
installed the relevant chaincode, or peers that are temporarily offline). Static
configurations also do not allow applications to react to changes of the
endorsement policy itself (as might happen when a new organization joins a channel).

In addition, the client application has no way of knowing which peers have updated
ledgers and which do not. As a result, the application might submit proposals to
peers whose ledger data is not in sync with the rest of the network, resulting
in transaction being invalidated upon commit and wasting resources as a consequence.

The discovery service improves this process by having the peers compute
the needed information dynamically and present it to the SDK in a consumable
manner.

How service discovery works in Fabric

The application is bootstrapped knowing about a group of peers which are
trusted by the application developer/administrator to provide authentic responses
to discovery queries. A good candidate peer to be used by the client application
is one that is in the same organization. Note that in order for peers to be known
to the discovery service, they must have an EXTERNAL_ENDPOINT defined. To see
how to do this, check out our Service Discovery CLI documentation.

The application issues a configuration query to the discovery service and obtains
all the static information it would have otherwise needed to communicate with the
rest of the nodes of the network. This information can be refreshed at any point
by sending a subsequent query to the discovery service of a peer.

The service runs on peers – not on the application – and uses the network metadata
information maintained by the gossip communication layer to find out which peers
are online. It also fetches information, such as any relevant endorsement policies,
from the peer’s state database.

With service discovery, applications no longer need to specify which peers they
need endorsements from. The SDK can simply send a query to the discovery service
asking which peers are needed given a channel and a chaincode ID. The discovery
service will then compute a descriptor comprised of two objects:

	Layouts: a list of groups of peers and a corresponding amount of peers from
each group which should be selected.

	Group to peer mapping: from the groups in the layouts to the peers of the
channel. In practice, each group would most likely be peers that represent
individual organizations, but because the service API is generic and ignorant of
organizations this is just a “group”.

The following is an example of a descriptor from the evaluation of a policy of
AND(Org1, Org2) where there are two peers in each of the organizations.

Layouts: [
 QuantitiesByGroup: {
 “Org1”: 1,
 “Org2”: 1,
 }
],
EndorsersByGroups: {
 “Org1”: [peer0.org1, peer1.org1],
 “Org2”: [peer0.org2, peer1.org2]
}

In other words, the endorsement policy requires a signature from one peer in Org1
and one peer in Org2. And it provides the names of available peers in those orgs who
can endorse (peer0 and peer1 in both Org1 and in Org2).

The SDK then selects a random layout from the list. In the example above, the
endorsement policy is Org1 AND Org2. If instead it was an OR policy, the SDK
would randomly select either Org1 or Org2, since a signature from a peer from either
Org would satisfy the policy.

After the SDK has selected a layout, it selects from the peers in the layout based on a
criteria specified on the client side (the SDK can do this because it has access to
metadata like ledger height). For example, it can prefer peers with higher ledger heights
over others – or to exclude peers that the application has discovered to be offline
– according to the number of peers from each group in the layout. If no single
peer is preferable based on the criteria, the SDK will randomly select from the peers
that best meet the criteria.

Capabilities of the discovery service

The discovery service can respond to the following queries:

	Configuration query: Returns the MSPConfig of all organizations in the channel
along with the orderer endpoints of the channel.

	Peer membership query: Returns the peers that have joined the channel.

	Endorsement query: Returns an endorsement descriptor for given chaincode(s) in
a channel.

	Local peer membership query: Returns the local membership information of the
peer that responds to the query. By default the client needs to be an administrator
for the peer to respond to this query.

Special requirements

When the peer is running with TLS enabled the client must provide a TLS certificate when connecting
to the peer. If the peer isn’t configured to verify client certificates (clientAuthRequired is false), this TLS certificate
can be self-signed.

 Channels

Channels

A Hyperledger Fabric channel is a private “subnet” of communication between
two or more specific network members, for the purpose of conducting private and
confidential transactions. A channel is defined by members (organizations),
anchor peers per member, the shared ledger, chaincode application(s) and the ordering service
node(s). Each transaction on the network is executed on a channel, where each
party must be authenticated and authorized to transact on that channel.
Each peer that joins a channel, has its own identity given by a membership services provider (MSP),
which authenticates each peer to its channel peers and services.

To create a new channel, the client SDK calls configuration system chaincode
and references properties such as anchor peers, and members (organizations).
This request creates a genesis block for the channel ledger, which stores configuration
information about the channel policies, members and anchor peers. When adding a
new member to an existing channel, either this genesis block, or if applicable,
a more recent reconfiguration block, is shared with the new member.

Note

See the Channel Configuration (configtx) section for more details on the properties
and proto structures of config transactions.

The election of a leading peer for each member on a channel determines which
peer communicates with the ordering service on behalf of the member. If no
leader is identified, an algorithm can be used to identify the leader. The consensus
service orders transactions and delivers them, in a block, to each leading peer,
which then distributes the block to its member peers, and across the channel,
using the gossip protocol.

Although any one anchor peer can belong to multiple channels, and therefore
maintain multiple ledgers, no ledger data can pass from one channel to another.
This separation of ledgers, by channel, is defined and implemented by
configuration chaincode, the identity membership service and the gossip data
dissemination protocol. The dissemination of data, which includes information on
transactions, ledger state and channel membership, is restricted to peers with
verifiable membership on the channel. This isolation of peers and ledger data,
by channel, allows network members that require private and confidential
transactions to coexist with business competitors and other restricted members,
on the same blockchain network.

 Capability Requirements

Capability Requirements

Because Fabric is a distributed system that will usually involve multiple
organizations (sometimes in different countries or even continents), it is
possible (and typical) that many different versions of Fabric code will exist in
the network. Nevertheless, it’s vital that networks process transactions in the
same way so that everyone has the same view of the current network state.

This means that every network – and every channel within that network – must
define a set of what we call “capabilities” to be able to participate in
processing transactions. For example, Fabric v1.1 introduces new MSP role types
of “Peer” and “Client”. However, if a v1.0 peer does not understand these new
role types, it will not be able to appropriately evaluate an endorsement policy
that references them. This means that before the new role types may be used, the
network must agree to enable the v1.1 channel capability requirement,
ensuring that all peers come to the same decision.

Only binaries which support the required capabilities will be able to participate in the
channel, and newer binary versions will not enable new validation logic until the
corresponding capability is enabled. In this way, capability requirements ensure that
even with disparate builds and versions, it is not possible for the network to suffer a
state fork.

Defining Capability Requirements

Capability requirements are defined per channel in the channel configuration (found
in the channel’s most recent configuration block). The channel configuration contains
three locations, each of which defines a capability of a different type.

	Capability Type
	Canonical Path
	JSON Path

	Channel
	/Channel/Capabilities
	.channel_group.values.Capabilities

	Orderer
	/Channel/Orderer/Capabilities
	.channel_group.groups.Orderer.values.Capabilities

	Application
	/Channel/Application/Capabilities
	.channel_group.groups.Application.values.
Capabilities

	Channel: these capabilities apply to both peer and orderers and are located in
the root Channel group.

	Orderer: apply to orderers only and are located in the Orderer group.

	Application: apply to peers only and are located in the Application group.

The capabilities are broken into these groups in order to align with the existing
administrative structure. Updating orderer capabilities is something the ordering orgs
would manage independent of the application orgs. Similarly, updating application
capabilities is something only the application admins would manage. By splitting the
capabilities between “Orderer” and “Application”, a hypothetical network could run a
v1.6 ordering service while supporting a v1.3 peer application network.

However, some capabilities cross both the ‘Application’ and ‘Orderer’ groups. As we
saw earlier, adding a new MSP role type is something both the orderer and application
admins agree to and need to recognize. The orderer must understand the meaning
of MSP roles in order to allow the transactions to pass through ordering, while
the peers must understand the roles in order to validate the transaction. These
kinds of capabilities – which span both the application and orderer components
– are defined in the top level “Channel” group.

Note

It is possible that the channel capabilities are defined to be at version
v1.3 while the orderer and application capabilities are defined to be at
version 1.1 and v1.4, respectively. Enabling a capability at the “Channel”
group level does not imply that this same capability is available at the
more specific “Orderer” and “Application” group levels.

Setting Capabilities

Capabilities are set as part of the channel configuration (either as part of the
initial configuration – which we’ll talk about in a moment – or as part of a
reconfiguration).

Note

We have a two documents that talk through different aspects of channel
reconfigurations. First, we have a tutorial that will take you through
the process of Adding an Org to a Channel. And we also have a document that
talks through Updating a Channel Configuration which gives an overview of the
different kinds of updates that are possible as well as a fuller look
at the signature process.

Because new channels copy the configuration of the Orderer System Channel by
default, new channels will automatically be configured to work with the orderer
and channel capabilities of the Orderer System Channel and the application
capabilities specified by the channel creation transaction. Channels that already
exist, however, must be reconfigured.

The schema for the Capabilities value is defined in the protobuf as:

message Capabilities {
 map<string, Capability> capabilities = 1;
}

message Capability { }

As an example, rendered in JSON:

{
 "capabilities": {
 "V1_1": {}
 }
}

Capabilities in an Initial Configuration

In the configtx.yaml file distributed in the config directory of the release
artifacts, there is a Capabilities section which enumerates the possible capabilities
for each capability type (Channel, Orderer, and Application).

The simplest way to enable capabilities is to pick a v1.1 sample profile and customize
it for your network. For example:

SampleSingleMSPSoloV1_1:
 Capabilities:
 <<: *GlobalCapabilities
 Orderer:
 <<: *OrdererDefaults
 Organizations:
 - *SampleOrg
 Capabilities:
 <<: *OrdererCapabilities
 Consortiums:
 SampleConsortium:
 Organizations:
 - *SampleOrg

Note that there is a Capabilities section defined at the root level (for the channel
capabilities), and at the Orderer level (for orderer capabilities). The sample above uses
a YAML reference to include the capabilities as defined at the bottom of the YAML.

When defining the orderer system channel there is no Application section, as those
capabilities are defined during the creation of an application channel. To define a new
channel’s application capabilities at channel creation time, the application admins should
model their channel creation transaction after the SampleSingleMSPChannelV1_1 profile.

SampleSingleMSPChannelV1_1:
 Consortium: SampleConsortium
 Application:
 Organizations:
 - *SampleOrg
 Capabilities:
 <<: *ApplicationCapabilities

Here, the Application section has a new element Capabilities which references the
ApplicationCapabilities section defined at the end of the YAML.

Note

The capabilities for the Channel and Orderer sections are inherited from
the definition in the ordering system channel and are automatically included
by the orderer during the process of channel creation.

 CouchDB as the State Database

CouchDB as the State Database

State Database options

State database options include LevelDB and CouchDB. LevelDB is the default key-value state
database embedded in the peer process. CouchDB is an optional alternative external state database.
Like the LevelDB key-value store, CouchDB can store any binary data that is modeled in chaincode
(CouchDB attachment functionality is used internally for non-JSON binary data). But as a JSON
document store, CouchDB additionally enables rich query against the chaincode data, when chaincode
values (e.g. assets) are modeled as JSON data.

Both LevelDB and CouchDB support core chaincode operations such as getting and setting a key
(asset), and querying based on keys. Keys can be queried by range, and composite keys can be
modeled to enable equivalence queries against multiple parameters. For example a composite
key of owner,asset_id can be used to query all assets owned by a certain entity. These key-based
queries can be used for read-only queries against the ledger, as well as in transactions that
update the ledger.

If you model assets as JSON and use CouchDB, you can also perform complex rich queries against the
chaincode data values, using the CouchDB JSON query language within chaincode. These types of
queries are excellent for understanding what is on the ledger. Proposal responses for these types
of queries are typically useful to the client application, but are not typically submitted as
transactions to the ordering service. In fact, there is no guarantee the result set is stable
between chaincode execution and commit time for rich queries, and therefore rich queries
are not appropriate for use in update transactions, unless your application can guarantee the
result set is stable between chaincode execution time and commit time, or can handle potential
changes in subsequent transactions. For example, if you perform a rich query for all assets
owned by Alice and transfer them to Bob, a new asset may be assigned to Alice by another
transaction between chaincode execution time and commit time, and you would miss this “phantom”
item.

CouchDB runs as a separate database process alongside the peer, therefore there are additional
considerations in terms of setup, management, and operations. You may consider starting with the
default embedded LevelDB, and move to CouchDB if you require the additional complex rich queries.
It is a good practice to model chaincode asset data as JSON, so that you have the option to perform
complex rich queries if needed in the future.

Note

The key for a CouchDB JSON document cannot begin with an underscore (“_”). Also, a JSON
document cannot use the following field names at the top level. These are reserved for internal use.

	Any field beginning with an underscore, "_"

	~version

Using CouchDB from Chaincode

Chaincode queries

Most of the chaincode shim APIs [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#ChaincodeStubInterface]
can be utilized with either LevelDB or CouchDB state database, e.g. GetState, PutState,
GetStateByRange, GetStateByPartialCompositeKey. Additionally when you utilize CouchDB as
the state database and model assets as JSON in chaincode, you can perform rich queries against
the JSON in the state database by using the GetQueryResult API and passing a CouchDB query string.
The query string follows the CouchDB JSON query syntax [http://docs.couchdb.org/en/2.1.1/api/database/find.html].

The marbles02 fabric sample [https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02/go/marbles_chaincode.go]
demonstrates use of CouchDB queries from chaincode. It includes a queryMarblesByOwner() function
that demonstrates parameterized queries by passing an owner id into chaincode. It then queries the
state data for JSON documents matching the docType of “marble” and the owner id using the JSON query
syntax:

{"selector":{"docType":"marble","owner":<OWNER_ID>}}

CouchDB pagination

Fabric supports paging of query results for rich queries and range based queries.
APIs supporting pagination allow the use of page size and bookmarks to be used for
both range and rich queries.

If a pagesize is specified using the paginated query APIs (GetStateByRangeWithPagination,
GetStateByPartialCompositeKeyWithPagination(), and GetQueryResultWithPagination()),
a set of results will be returned along with a bookmark. The bookmark can be used
with a follow on query to receive the next “page” of results.

All chaincode queries are bound by totalQueryLimit (default 100000)
from core.yaml. This is the maximum number of results that chaincode
will iterate through and return to the client, in order to avoid accidental
or malicious long-running queries.

An example using pagination is included in the Using CouchDB tutorial.

Note

Regardless of whether chaincode uses paginated queries or not, the peer will
query CouchDB in batches based on internalQueryLimit (default 1000)
from core.yaml. This behavior ensures reasonably sized result sets are
passed between the peer and CouchDB, and is transparent to chaincode and
requires no additional configuration.

CouchDB indexes

Indexes in CouchDB are required in order to make JSON queries efficient and are required for
any JSON query with a sort. Indexes can be packaged alongside chaincode in a
/META-INF/statedb/couchdb/indexes directory. Each index must be defined in its own
text file with extension *.json with the index definition formatted in JSON following the
CouchDB index JSON syntax [http://docs.couchdb.org/en/2.1.1/api/database/find.html#db-index].
For example, to support the above marble query, a sample index on the docType and owner
fields is provided:

{"index":{"fields":["docType","owner"]},"ddoc":"indexOwnerDoc", "name":"indexOwner","type":"json"}

The sample index can be found here [https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02/go/META-INF/statedb/couchdb/indexes/indexOwner.json].

Any index in the chaincode’s META-INF/statedb/couchdb/indexes directory
will be packaged up with the chaincode for deployment. When the chaincode is
both installed on a peer and instantiated on one of the peer’s channels, the
index will automatically be deployed to the peer’s channel and chaincode
specific state database (if it has been configured to use CouchDB). If you
install the chaincode first and then instantiate the chaincode on the channel,
the index will be deployed at chaincode instantiation time. If the
chaincode is already instantiated on a channel and you later install the
chaincode on a peer, the index will be deployed at chaincode installation
time.

Upon deployment, the index will automatically be utilized by chaincode queries. CouchDB can automatically
determine which index to use based on the fields being used in a query. Alternatively, in the
selector query the index can be specified using the use_index keyword.

The same index may exist in subsequent versions of the chaincode that gets installed. To change the
index, use the same index name but alter the index definition. Upon installation/instantiation, the index
definition will get re-deployed to the peer’s state database.

If you have a large volume of data already, and later install the chaincode, the index creation upon
installation may take some time. Similarly, if you have a large volume of data already and instantiate
a subsequent version of the chaincode, the index creation may take some time. Avoid calling chaincode
functions that query the state database at these times as the chaincode query may time out while the
index is getting initialized. During transaction processing, the indexes will automatically get refreshed
as blocks are committed to the ledger.

CouchDB Configuration

CouchDB is enabled as the state database by changing the stateDatabase configuration option from
goleveldb to CouchDB. Additionally, the couchDBAddress needs to configured to point to the
CouchDB to be used by the peer. The username and password properties should be populated with
an admin username and password if CouchDB is configured with a username and password. Additional
options are provided in the couchDBConfig section and are documented in place. Changes to the
core.yaml will be effective immediately after restarting the peer.

You can also pass in docker environment variables to override core.yaml values, for example
CORE_LEDGER_STATE_STATEDATABASE and CORE_LEDGER_STATE_COUCHDBCONFIG_COUCHDBADDRESS.

Below is the stateDatabase section from core.yaml:

state:
 # stateDatabase - options are "goleveldb", "CouchDB"
 # goleveldb - default state database stored in goleveldb.
 # CouchDB - store state database in CouchDB
 stateDatabase: goleveldb
 # Limit on the number of records to return per query
 totalQueryLimit: 10000
 couchDBConfig:
 # It is recommended to run CouchDB on the same server as the peer, and
 # not map the CouchDB container port to a server port in docker-compose.
 # Otherwise proper security must be provided on the connection between
 # CouchDB client (on the peer) and server.
 couchDBAddress: couchdb:5984
 # This username must have read and write authority on CouchDB
 username:
 # The password is recommended to pass as an environment variable
 # during start up (e.g. LEDGER_COUCHDBCONFIG_PASSWORD).
 # If it is stored here, the file must be access control protected
 # to prevent unintended users from discovering the password.
 password:
 # Number of retries for CouchDB errors
 maxRetries: 3
 # Number of retries for CouchDB errors during peer startup
 maxRetriesOnStartup: 10
 # CouchDB request timeout (unit: duration, e.g. 20s)
 requestTimeout: 35s
 # Limit on the number of records per each CouchDB query
 # Note that chaincode queries are only bound by totalQueryLimit.
 # Internally the chaincode may execute multiple CouchDB queries,
 # each of size internalQueryLimit.
 internalQueryLimit: 1000
 # Limit on the number of records per CouchDB bulk update batch
 maxBatchUpdateSize: 1000
 # Warm indexes after every N blocks.
 # This option warms any indexes that have been
 # deployed to CouchDB after every N blocks.
 # A value of 1 will warm indexes after every block commit,
 # to ensure fast selector queries.
 # Increasing the value may improve write efficiency of peer and CouchDB,
 # but may degrade query response time.
 warmIndexesAfterNBlocks: 1

CouchDB hosted in docker containers supplied with Hyperledger Fabric have the
capability of setting the CouchDB username and password with environment
variables passed in with the COUCHDB_USER and COUCHDB_PASSWORD environment
variables using Docker Compose scripting.

For CouchDB installations outside of the docker images supplied with Fabric,
the
local.ini file of that installation [http://docs.couchdb.org/en/2.1.1/config/intro.html#configuration-files]
must be edited to set the admin username and password.

Docker compose scripts only set the username and password at the creation of
the container. The local.ini file must be edited if the username or password
is to be changed after creation of the container.

Note

CouchDB peer options are read on each peer startup.

Good practices for queries

Avoid using chaincode for queries that will result in a scan of the entire
CouchDB database. Full length database scans will result in long response
times and will degrade the performance of your network. You can take some of
the following steps to avoid long queries:

	When using JSON queries:

	Be sure to create indexes in the chaincode package.

	Avoid query operators such as $or, $in and $regex, which lead
to full database scans.

	For range queries, composite key queries, and JSON queries:

	Utilize paging support (as of v1.3) instead of one large result set.

	If you want to build a dashboard or collect aggregate data as part of your
application, you can query an off-chain database that replicates the data
from your blockchain network. This will allow you to query and analyze the
blockchain data in a data store optimized for your needs, without degrading
the performance of your network or disrupting transactions. To achieve this,
applications may use block or chaincode events to write transaction data
to an off-chain database or analytics engine. For each block received, the block
listener application would iterate through the block transactions and build a
data store using the key/value writes from each valid transaction’s rwset.
The Peer channel-based event services provide replayable events to ensure the
integrity of downstream data stores.

 Peer channel-based event services

Peer channel-based event services

General overview

In previous versions of Fabric, the peer event service was known as the event
hub. This service sent events any time a new block was added to the peer’s
ledger, regardless of the channel to which that block pertained, and it was only
accessible to members of the organization running the eventing peer (i.e., the
one being connected to for events).

Starting with v1.1, there are two new services which provide events. These services use an
entirely different design to provide events on a per-channel basis. This means
that registration for events occurs at the level of the channel instead of the peer,
allowing for fine-grained control over access to the peer’s data. Requests to
receive events are accepted from identities outside of the peer’s organization (as
defined by the channel configuration). This also provides greater reliability and a
way to receive events that may have been missed (whether due to a connectivity issue
or because the peer is joining a network that has already been running).

Available services

	Deliver

This service sends entire blocks that have been committed to the ledger. If
any events were set by a chaincode, these can be found within the
ChaincodeActionPayload of the block.

	DeliverFiltered

This service sends “filtered” blocks, minimal sets of information about blocks
that have been committed to the ledger. It is intended to be used in a network
where owners of the peers wish for external clients to primarily receive
information about their transactions and the status of those transactions. If
any events were set by a chaincode, these can be found within the
FilteredChaincodeAction of the filtered block.

Note

The payload of chaincode events will not be included in filtered blocks.

How to register for events

Registration for events from either service is done by sending an envelope
containing a deliver seek info message to the peer that contains the desired start
and stop positions, the seek behavior (block until ready or fail if not ready).
There are helper variables SeekOldest and SeekNewest that can be used to
indicate the oldest (i.e. first) block or the newest (i.e. last) block on the ledger.
To have the services send events indefinitely, the SeekInfo message should
include a stop position of MAXINT64.

Note

If mutual TLS is enabled on the peer, the TLS certificate hash must be
set in the envelope’s channel header.

By default, both services use the Channel Readers policy to determine whether
to authorize requesting clients for events.

Overview of deliver response messages

The event services send back DeliverResponse messages.

Each message contains one of the following:

	status – HTTP status code. Both services will return the appropriate failure
code if any failure occurs; otherwise, it will return 200 - SUCCESS once
the service has completed sending all information requested by the SeekInfo
message.

	block – returned only by the Deliver service.

	filtered block – returned only by the DeliverFiltered service.

A filtered block contains:

	channel ID.

	number (i.e. the block number).

	array of filtered transactions.

	transaction ID.

	type (e.g. ENDORSER_TRANSACTION, CONFIG.

	transaction validation code.

	
	filtered transaction actions.

	
	
	array of filtered chaincode actions.

	
	chaincode event for the transaction (with the payload nilled out).

SDK event documentation

For further details on using the event services, refer to the SDK documentation. [https://fabric-sdk-node.github.io/tutorial-channel-events.html]

 Private Data

Private Data

Note

This topic assumes an understanding of the conceptual material in the
documentation on private data.

Private data collection definition

A collection definition contains one or more collections, each having a policy
definition listing the organizations in the collection, as well as properties
used to control dissemination of private data at endorsement time and,
optionally, whether the data will be purged.

The collection definition gets deployed to the channel at the time of chaincode
instantiation (or upgrade). If using the peer CLI to instantiate the chaincode, the
collection definition file is passed to the chaincode instantiation
using the --collections-config flag. If using a client SDK, check the SDK
documentation [https://fabric-sdk-node.github.io/] for information on providing the collection
definition.

Collection definitions are composed of five properties:

	name: Name of the collection.

	policy: The private data collection distribution policy defines which
organizations’ peers are allowed to persist the collection data expressed using
the Signature policy syntax, with each member being included in an OR
signature policy list. To support read/write transactions, the private data
distribution policy must define a broader set of organizations than the chaincode
endorsement policy, as peers must have the private data in order to endorse
proposed transactions. For example, in a channel with ten organizations,
five of the organizations might be included in a private data collection
distribution policy, but the endorsement policy might call for any three
of the organizations to endorse.

	requiredPeerCount: Minimum number of peers (across authorized organizations)
that each endorsing peer must successfully disseminate private data to before the
peer signs the endorsement and returns the proposal response back to the client.
Requiring dissemination as a condition of endorsement will ensure that private data
is available in the network even if the endorsing peer(s) become unavailable. When
requiredPeerCount is 0, it means that no distribution is required,
but there may be some distribution if maxPeerCount is greater than zero. A
requiredPeerCount of 0 would typically not be recommended, as it could
lead to loss of private data in the network if the endorsing peer(s) becomes unavailable.
Typically you would want to require at least some distribution of the private
data at endorsement time to ensure redundancy of the private data on multiple
peers in the network.

	maxPeerCount: For data redundancy purposes, the maximum number of other
peers (across authorized organizations) that each endorsing peer will attempt
to distribute the private data to. If an endorsing peer becomes unavailable between
endorsement time and commit time, other peers that are collection members but who
did not yet receive the private data at endorsement time, will be able to pull
the private data from peers the private data was disseminated to. If this value
is set to 0, the private data is not disseminated at endorsement time,
forcing private data pulls against endorsing peers on all authorized peers at
commit time.

	blockToLive: Represents how long the data should live on the private
database in terms of blocks. The data will live for this specified number of
blocks on the private database and after that it will get purged, making this
data obsolete from the network. To keep private data indefinitely, that is, to
never purge private data, set the blockToLive property to 0.

	memberOnlyRead: a value of true indicates that peers automatically
enforce that only clients belonging to one of the collection member organizations
are allowed read access to private data. If a client from a non-member org
attempts to execute a chaincode function that performs a read of a private data,
the chaincode invocation is terminated with an error. Utilize a value of
false if you would like to encode more granular access control within
individual chaincode functions.

Here is a sample collection definition JSON file, containing an array of two
collection definitions:

[
 {
 "name": "collectionMarbles",
 "policy": "OR('Org1MSP.member', 'Org2MSP.member')",
 "requiredPeerCount": 0,
 "maxPeerCount": 3,
 "blockToLive":1000000,
 "memberOnlyRead": true
 },
 {
 "name": "collectionMarblePrivateDetails",
 "policy": "OR('Org1MSP.member')",
 "requiredPeerCount": 0,
 "maxPeerCount": 3,
 "blockToLive":3,
 "memberOnlyRead": true
 }
]

This example uses the organizations from the BYFN sample network, Org1 and
Org2 . The policy in the collectionMarbles definition authorizes both
organizations to the private data. This is a typical configuration when the
chaincode data needs to remain private from the ordering service nodes. However,
the policy in the collectionMarblePrivateDetails definition restricts access
to a subset of organizations in the channel (in this case Org1). In a real
scenario, there would be many organizations in the channel, with two or more
organizations in each collection sharing private data between them.

Endorsement

Since private data is not included in the transactions that get submitted to
the ordering service, and therefore not included in the blocks that get distributed
to all peers in a channel, the endorsing peer plays an important role in
disseminating private data to other peers of authorized organizations. This ensures
the availability of private data in the channel’s collection, even if endorsing
peers become unavailable after their endorsement. To assist with this dissemination,
the maxPeerCount and requiredPeerCount properties in the collection definition
control the degree of dissemination at endorsement time.

If the endorsing peer cannot successfully disseminate the private data to at least
the requiredPeerCount, it will return an error back to the client. The endorsing
peer will attempt to disseminate the private data to peers of different organizations,
in an effort to ensure that each authorized organization has a copy of the private
data. Since transactions are not committed at chaincode execution time, the endorsing
peer and recipient peers store a copy of the private data in a local transient store
alongside their blockchain until the transaction is committed.

How private data is committed

When authorized peers do not have a copy of the private data in their transient
data store at commit time (either because they were not an endorsing peer or because
they did not receive the private data via dissemination at endorsement time),
they will attempt to pull the private data from another authorized
peer, for a configurable amount of time based on the peer property
peer.gossip.pvtData.pullRetryThreshold in the peer configuration core.yaml
file.

Note

The peers being asked for private data will only return the private data
if the requesting peer is a member of the collection as defined by the
private data dissemination policy.

Considerations when using pullRetryThreshold:

	If the requesting peer is able to retrieve the private data within the
pullRetryThreshold, it will commit the transaction to its ledger
(including the private data hash), and store the private data in its
state database, logically separated from other channel state data.

	If the requesting peer is not able to retrieve the private data within
the pullRetryThreshold, it will commit the transaction to it’s blockchain
(including the private data hash), without the private data.

	If the peer was entitled to the private data but it is missing, then
that peer will not be able to endorse future transactions that reference
the missing private data - a chaincode query for a key that is missing will
be detected (based on the presence of the key’s hash in the state database),
and the chaincode will receive an error.

Therefore, it is important to set the requiredPeerCount and maxPeerCount
properties large enough to ensure the availability of private data in your
channel. For example, if each of the endorsing peers become unavailable
before the transaction commits, the requiredPeerCount and maxPeerCount
properties will have ensured the private data is available on other peers.

Note

For collections to work, it is important to have cross organizational
gossip configured correctly. Refer to our documentation on Gossip data dissemination protocol,
paying particular attention to the section on “anchor peers”.

Referencing collections from chaincode

A set of shim APIs [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim]
are available for setting and retrieving private data.

The same chaincode data operations can be applied to channel state data and
private data, but in the case of private data, a collection name is specified
along with the data in the chaincode APIs, for example
PutPrivateData(collection,key,value) and GetPrivateData(collection,key).

A single chaincode can reference multiple collections.

How to pass private data in a chaincode proposal

Since the chaincode proposal gets stored on the blockchain, it is also important
not to include private data in the main part of the chaincode proposal. A special
field in the chaincode proposal called the transient field can be used to pass
private data from the client (or data that chaincode will use to generate private
data), to chaincode invocation on the peer. The chaincode can retrieve the
transient field by calling the GetTransient() API [https://github.com/hyperledger/fabric/blob/8b3cbda97e58d1a4ff664219244ffd1d89d7fba8/core/chaincode/shim/interfaces.go#L315-L321].
This transient field gets excluded from the channel transaction.

Reconciliation

Starting in v1.4, a background process allows peers who are part of a collection
to receive data they were entitled to receive but did not yet receive — because of
a network failure, for example — by keeping track of private data that was “missing”
at the time of block commit. The peer will periodically attempt to fetch the private
data from other collection member peers that are expected to have it.

This “reconciliation” also applies to peers of new organizations that are added to
an existing collection. The same background process described above
will also attempt to fetch private data that was committed before they joined
the collection.

Note that this private data reconciliation feature only works on peers running
v1.4 or later of Fabric.

Access control for private data

Until version 1.3, access control to private data based on collection membership
was enforced for peers only. Access control based on the organization of the
chaincode proposal submitter was required to be encoded in chaincode logic.
Starting in v1.4 a collection configuration option memberOnlyRead can
automatically enforce access control based on the organization of the chaincode
proposal submitter. For more information about collection
configuration definitions and how to set them, refer back to the
Private data collection definition section of this topic.

Note

If you would like more granular access control, you can set
memberOnlyRead to false. You can then apply your own access
control logic in chaincode, for example by calling the GetCreator()
chaincode API or using the client identity
chaincode library [https://github.com/hyperledger/fabric/tree/master/core/chaincode/shim/ext/cid] .

Considerations when using private data

Querying Private Data

Private collection data can be queried just like normal channel data, using
shim APIs:

	GetPrivateDataByRange(collection, startKey, endKey string)

	GetPrivateDataByPartialCompositeKey(collection, objectType string, keys []string)

And for the CouchDB state database, JSON content queries can be passed using the
shim API:

	GetPrivateDataQueryResult(collection, query string)

Limitations:

	Clients that call chaincode that executes range or rich JSON queries should be aware
that they may receive a subset of the result set, if the peer they query has missing
private data, based on the explanation in Private Data Dissemination section
above. Clients can query multiple peers and compare the results to
determine if a peer may be missing some of the result set.

	Chaincode that executes range or rich JSON queries and updates data in a single
transaction is not supported, as the query results cannot be validated on the peers
that don’t have access to the private data, or on peers that are missing the
private data that they have access to. If a chaincode invocation both queries
and updates private data, the proposal request will return an error. If your application
can tolerate result set changes between chaincode execution and validation/commit time,
then you could call one chaincode function to perform the query, and then call a second
chaincode function to make the updates. Note that calls to GetPrivateData() to retrieve
individual keys can be made in the same transaction as PutPrivateData() calls, since
all peers can validate key reads based on the hashed key version.

Using Indexes with collections

The topic CouchDB as the State Database describes indexes that can be
applied to the channel’s state database to enable JSON content queries, by
packaging indexes in a META-INF/statedb/couchdb/indexes directory at chaincode
installation time. Similarly, indexes can also be applied to private data
collections, by packaging indexes in a META-INF/statedb/couchdb/collections/<collection_name>/indexes
directory. An example index is available here [https://github.com/hyperledger/fabric-samples/blob/master/chaincode/marbles02_private/go/META-INF/statedb/couchdb/collections/collectionMarbles/indexes/indexOwner.json].

Private Data Purging

To keep private data indefinitely, that is, to never purge private data,
set blockToLive property to 0.

Recall that prior to commit, peers store private data in a local
transient data store. This data automatically gets purged when the transaction
commits. But if a transaction was never submitted to the channel and
therefore never committed, the private data would remain in each peer’s
transient store. This data is purged from the transient store after a
configurable number blocks by using the peer’s
peer.gossip.pvtData.transientstoreMaxBlockRetention property in the peer
core.yaml file.

Upgrading a collection definition

If a collection is referenced by a chaincode, the chaincode will use the prior
collection definition unless a new collection definition is specified at upgrade
time. If a collection configuration is specified during the upgrade, a definition
for each of the existing collections must be included, and you can add new
collection definitions.

Collection updates becomes effective when a peer commits the block that
contains the chaincode upgrade transaction. Note that collections cannot be
deleted, as there may be prior private data hashes on the channel’s blockchain
that cannot be removed.

 Read-Write set semantics

Read-Write set semantics

This document discusses the details of the current implementation about
the semantics of read-write sets.

Transaction simulation and read-write set

During simulation of a transaction at an endorser, a read-write set
is prepared for the transaction. The read set contains a list of
unique keys and their committed versions that the transaction reads
during simulation. The write set contains a list of unique keys
(though there can be overlap with the keys present in the read set) and
their new values that the transaction writes. A delete marker is set (in
the place of new value) for the key if the update performed by the
transaction is to delete the key.

Further, if the transaction writes a value multiple times for a key,
only the last written value is retained. Also, if a transaction reads a
value for a key, the value in the committed state is returned even if
the transaction has updated the value for the key before issuing the
read. In another words, Read-your-writes semantics are not supported.

As noted earlier, the versions of the keys are recorded only in the read
set; the write set just contains the list of unique keys and their
latest values set by the transaction.

There could be various schemes for implementing versions. The minimal
requirement for a versioning scheme is to produce non-repeating
identifiers for a given key. For instance, using monotonically
increasing numbers for versions can be one such scheme. In the current
implementation, we use a blockchain height based versioning scheme in
which the height of the committing transaction is used as the latest
version for all the keys modified by the transaction. In this scheme,
the height of a transaction is represented by a tuple (txNumber is the
height of the transaction within the block). This scheme has many
advantages over the incremental number scheme - primarily, it enables
other components such as statedb, transaction simulation and validation
for making efficient design choices.

Following is an illustration of an example read-write set prepared by
simulation of a hypothetical transaction. For the sake of simplicity, in
the illustrations, we use the incremental numbers for representing the
versions.

<TxReadWriteSet>
 <NsReadWriteSet name="chaincode1">
 <read-set>
 <read key="K1", version="1">
 <read key="K2", version="1">
 </read-set>
 <write-set>
 <write key="K1", value="V1"
 <write key="K3", value="V2"
 <write key="K4", isDelete="true"
 </write-set>
 </NsReadWriteSet>
<TxReadWriteSet>

Additionally, if the transaction performs a range query during
simulation, the range query as well as its results will be added to the
read-write set as query-info.

Transaction validation and updating world state using read-write set

A committer uses the read set portion of the read-write set for
checking the validity of a transaction and the write set portion of the
read-write set for updating the versions and the values of the affected
keys.

In the validation phase, a transaction is considered valid if the
version of each key present in the read set of the transaction matches
the version for the same key in the world state - assuming all the
preceding valid transactions (including the preceding transactions
in the same block) are committed (committed-state). An additional
validation is performed if the read-write set also contains one or more
query-info.

This additional validation should ensure that no key has been
inserted/deleted/updated in the super range (i.e., union of the ranges)
of the results captured in the query-info(s). In other words, if we
re-execute any of the range queries (that the transaction performed
during simulation) during validation on the committed-state, it should
yield the same results that were observed by the transaction at the time
of simulation. This check ensures that if a transaction observes phantom
items during commit, the transaction should be marked as invalid. Note
that the this phantom protection is limited to range queries (i.e.,
GetStateByRange function in the chaincode) and not yet implemented
for other queries (i.e., GetQueryResult function in the chaincode).
Other queries are at risk of phantoms, and should therefore only be used
in read-only transactions that are not submitted to ordering, unless the
application can guarantee the stability of the result set between
simulation and validation/commit time.

If a transaction passes the validity check, the committer uses the write
set for updating the world state. In the update phase, for each key
present in the write set, the value in the world state for the same key
is set to the value as specified in the write set. Further, the version
of the key in the world state is changed to reflect the latest version.

Example simulation and validation

This section helps with understanding the semantics through an example
scenario. For the purpose of this example, the presence of a key, k,
in the world state is represented by a tuple (k,ver,val) where
ver is the latest version of the key k having val as its
value.

Now, consider a set of five transactions T1, T2, T3, T4, and T5, all
simulated on the same snapshot of the world state. The following snippet
shows the snapshot of the world state against which the transactions are
simulated and the sequence of read and write activities performed by
each of these transactions.

World state: (k1,1,v1), (k2,1,v2), (k3,1,v3), (k4,1,v4), (k5,1,v5)
T1 -> Write(k1, v1'), Write(k2, v2')
T2 -> Read(k1), Write(k3, v3')
T3 -> Write(k2, v2'')
T4 -> Write(k2, v2'''), read(k2)
T5 -> Write(k6, v6'), read(k5)

Now, assume that these transactions are ordered in the sequence of
T1,..,T5 (could be contained in a single block or different blocks)

	T1 passes validation because it does not perform any read.
Further, the tuple of keys k1 and k2 in the world state are
updated to (k1,2,v1'), (k2,2,v2')

	T2 fails validation because it reads a key, k1, which was
modified by a preceding transaction - T1

	T3 passes the validation because it does not perform a read.
Further the tuple of the key, k2, in the world state is updated
to (k2,3,v2'')

	T4 fails the validation because it reads a key, k2, which was
modified by a preceding transaction T1

	T5 passes validation because it reads a key, k5, which was
not modified by any of the preceding transactions

Note: Transactions with multiple read-write sets are not yet supported.

 Gossip data dissemination protocol

Gossip data dissemination protocol

Hyperledger Fabric optimizes blockchain network performance, security,
and scalability by dividing workload across transaction execution
(endorsing and committing) peers and transaction ordering nodes. This
decoupling of network operations requires a secure, reliable and
scalable data dissemination protocol to ensure data integrity and
consistency. To meet these requirements, Fabric implements a
gossip data dissemination protocol.

Gossip protocol

Peers leverage gossip to broadcast ledger and channel data in a scalable fashion.
Gossip messaging is continuous, and each peer on a channel is
constantly receiving current and consistent ledger data from multiple
peers. Each gossiped message is signed, thereby allowing Byzantine participants
sending faked messages to be easily identified and the distribution of the
message(s) to unwanted targets to be prevented. Peers affected by delays, network
partitions, or other causes resulting in missed blocks will eventually be
synced up to the current ledger state by contacting peers in possession of these
missing blocks.

The gossip-based data dissemination protocol performs three primary functions on
a Fabric network:

	Manages peer discovery and channel membership, by continually
identifying available member peers, and eventually detecting peers that have
gone offline.

	Disseminates ledger data across all peers on a channel. Any peer with data
that is out of sync with the rest of the channel identifies the
missing blocks and syncs itself by copying the correct data.

	Bring newly connected peers up to speed by allowing peer-to-peer state
transfer update of ledger data.

Gossip-based broadcasting operates by peers receiving messages from
other peers on the channel, and then forwarding these messages to a number of
randomly selected peers on the channel, where this number is a configurable
constant. Peers can also exercise a pull mechanism rather than waiting for
delivery of a message. This cycle repeats, with the result of channel
membership, ledger and state information continually being kept current and in
sync. For dissemination of new blocks, the leader peer on the channel pulls
the data from the ordering service and initiates gossip dissemination to peers
in its own organization.

Leader election

The leader election mechanism is used to elect one peer per organization
which will maintain connection with the ordering service and initiate distribution of
newly arrived blocks across the peers of its own organization. Leveraging leader election
provides the system with the ability to efficiently utilize the bandwidth of the ordering
service. There are two possible modes of operation for a leader election module:

	Static — a system administrator manually configures a peer in an organization to
be the leader.

	Dynamic — peers execute a leader election procedure to select one peer in an
organization to become leader.

Static leader election

Static leader election allows you to manually define one or more peers within an
organization as leader peers. Please note, however, that having too many peers connect
to the ordering service may result in inefficient use of bandwidth. To enable static
leader election mode, configure the following parameters within the section of core.yaml:

peer:
 # Gossip related configuration
 gossip:
 useLeaderElection: false
 orgLeader: true

Alternatively these parameters could be configured and overridden with environmental variables:

export CORE_PEER_GOSSIP_USELEADERELECTION=false
export CORE_PEER_GOSSIP_ORGLEADER=true

Note

The following configuration will keep peer in stand-by mode, i.e.
peer will not try to become a leader:

export CORE_PEER_GOSSIP_USELEADERELECTION=false
export CORE_PEER_GOSSIP_ORGLEADER=false

	Setting CORE_PEER_GOSSIP_USELEADERELECTION and CORE_PEER_GOSSIP_USELEADERELECTION
with true value is ambiguous and will lead to an error.

	In static configuration organization admin is responsible to provide high availability
of the leader node in case for failure or crashes.

Dynamic leader election

Dynamic leader election enables organization peers to elect one peer which will
connect to the ordering service and pull out new blocks. This leader is elected
for an organization’s peers independently.

A dynamically elected leader sends heartbeat messages to the rest of the peers
as an evidence of liveness. If one or more peers don’t receive heartbeats updates
during a set period of time, they will elect a new leader.

In the worst case scenario of a network partition, there will be more than one
active leader for organization to guarantee resiliency and availability to allow
an organization’s peers to continue making progress. After the network partition
has been healed, one of the leaders will relinquish its leadership. In
a steady state with no network partitions, there will be
only one active leader connecting to the ordering service.

Following configuration controls frequency of the leader heartbeat messages:

peer:
 # Gossip related configuration
 gossip:
 election:
 leaderAliveThreshold: 10s

In order to enable dynamic leader election, the following parameters need to be configured
within core.yaml:

peer:
 # Gossip related configuration
 gossip:
 useLeaderElection: true
 orgLeader: false

Alternatively these parameters could be configured and overridden with environment variables:

export CORE_PEER_GOSSIP_USELEADERELECTION=true
export CORE_PEER_GOSSIP_ORGLEADER=false

Anchor peers

Anchor peers are used by gossip to make sure peers in different organizations
know about each other.

When a configuration block that contains an update to the anchor peers is committed,
peers reach out to the anchor peers and learn from them about all of the peers known
to the anchor peer(s). Once at least one peer from each organization has contacted an
anchor peer, the anchor peer learns about every peer in the channel. Since gossip
communication is constant, and because peers always ask to be told about the existence
of any peer they don’t know about, a common view of membership can be established for
a channel.

For example, let’s assume we have three organizations—A, B, C— in the channel
and a single anchor peer—peer0.orgC— defined for organization C. When peer1.orgA
(from organization A) contacts peer0.orgC, it will tell it about peer0.orgA. And
when at a later time peer1.orgB contacts peer0.orgC, the latter would tell the
former about peer0.orgA. From that point forward, organizations A and B would
start exchanging membership information directly without any assistance from
peer0.orgC.

As communication across organizations depends on gossip in order to work, there must
be at least one anchor peer defined in the channel configuration. It is strongly
recommended that every organization provides its own set of anchor peers for high
availability and redundancy. Note that the anchor peer does not need to be the
same peer as the leader peer.

External and internal endpoints

In order for gossip to work effectively, peers need to be able to obtain the
endpoint information of peers in their own organization as well as from peers in
other organizations.

When a peer is bootstrapped it will use peer.gossip.bootstrap in its
core.yaml to advertise itself and exchange membership information, building
a view of all available peers within its own organization.

The peer.gossip.bootstrap property in the core.yaml of the peer is
used to bootstrap gossip within an organization. If you are using gossip, you
will typically configure all the peers in your organization to point to an initial set of
bootstrap peers (you can specify a space-separated list of peers). The internal
endpoint is usually auto-computed by the peer itself or just passed explicitly
via core.peer.address in core.yaml. If you need to overwrite this value,
you can export CORE_PEER_GOSSIP_ENDPOINT as an environment variable.

Bootstrap information is similarly required to establish communication across
organizations. The initial cross-organization bootstrap information is provided
via the “anchor peers” setting described above. If you want to make other peers
in your organization known to other organizations, you need to set the
peer.gossip.externalendpoint in the core.yaml of your peer.
If this is not set, the endpoint information of the peer will not be broadcast
to peers in other organizations.

To set these properties, issue:

export CORE_PEER_GOSSIP_BOOTSTRAP=<a list of peer endpoints within the peer's org>
export CORE_PEER_GOSSIP_EXTERNALENDPOINT=<the peer endpoint, as known outside the org>

Gossip messaging

Online peers indicate their availability by continually broadcasting “alive”
messages, with each containing the public key infrastructure (PKI) ID and the
signature of the sender over the message. Peers maintain channel membership by collecting
these alive messages; if no peer receives an alive message from a specific peer,
this “dead” peer is eventually purged from channel membership. Because “alive”
messages are cryptographically signed, malicious peers can never impersonate
other peers, as they lack a signing key authorized by a root certificate
authority (CA).

In addition to the automatic forwarding of received messages, a state
reconciliation process synchronizes world state across peers on each
channel. Each peer continually pulls blocks from other peers on the channel,
in order to repair its own state if discrepancies are identified. Because fixed
connectivity is not required to maintain gossip-based data dissemination, the
process reliably provides data consistency and integrity to the shared ledger,
including tolerance for node crashes.

Because channels are segregated, peers on one channel cannot message or
share information on any other channel. Though any peer can belong
to multiple channels, partitioned messaging prevents blocks from being disseminated
to peers that are not in the channel by applying message routing policies based
on a peers’ channel subscriptions.

Note

1. Security of point-to-point messages are handled by the peer TLS layer, and do
not require signatures. Peers are authenticated by their certificates,
which are assigned by a CA. Although TLS certs are also used, it is
the peer certificates that are authenticated in the gossip layer. Ledger blocks
are signed by the ordering service, and then delivered to the leader peers on a channel.

2. Authentication is governed by the membership service provider for the
peer. When the peer connects to the channel for the first time, the
TLS session binds with the membership identity. This essentially
authenticates each peer to the connecting peer, with respect to
membership in the network and channel.

 Frequently Asked Questions

Frequently Asked Questions

Endorsement

Endorsement architecture:

	Question:	How many peers in the network need to endorse a transaction?

	Answer:	The number of peers required to endorse a transaction is driven by the
endorsement policy that is specified at chaincode deployment time.

	Question:	Does an application client need to connect to all peers?

	Answer:	Clients only need to connect to as many peers as are required by the
endorsement policy for the chaincode.

Security & Access Control

	Question:	How do I ensure data privacy?

	Answer:	There are various aspects to data privacy. First, you can segregate your
network into channels, where each channel represents a subset of participants
that are authorized to see the data for the chaincodes that are deployed to
that channel.

Second, you can use private-data to keep ledger data private from
other organizations on the channel. A private data collection allows a
defined subset of organizations on a channel the ability to endorse, commit,
or query private data without having to create a separate channel.
Other participants on the channel receive only a hash of the data.
For more information refer to the Using Private Data in Fabric tutorial.
Note that the key concepts topic also explains when to use private data instead of a channel.

Third, as an alternative to Fabric hashing the data using private data,
the client application can hash or encrypt the data before calling
chaincode. If you hash the data then you will need to provide a means to
share the source data. If you encrypt the data then you will need to provide
a means to share the decryption keys.

Fourth, you can restrict data access to certain roles in your organization, by
building access control into the chaincode logic.

Fifth, ledger data at rest can be encrypted via file system encryption on the
peer, and data in-transit is encrypted via TLS.

	Question:	Do the orderers see the transaction data?

	Answer:	No, the orderers only order transactions, they do not open the transactions.
If you do not want the data to go through the orderers at all, then utilize
the private data feature of Fabric. Alternatively, you can hash or encrypt
the data in the client application before calling chaincode. If you encrypt
the data then you will need to provide a means to share the decryption keys.

Application-side Programming Model

	Question:	How do application clients know the outcome of a transaction?

	Answer:	The transaction simulation results are returned to the client by the
endorser in the proposal response. If there are multiple endorsers, the
client can check that the responses are all the same, and submit the results
and endorsements for ordering and commitment. Ultimately the committing peers
will validate or invalidate the transaction, and the client becomes
aware of the outcome via an event, that the SDK makes available to the
application client.

	Question:	How do I query the ledger data?

	Answer:	Within chaincode you can query based on keys. Keys can be queried by range,
and composite keys can be modeled to enable equivalence queries against
multiple parameters. For example a composite key of (owner,asset_id) can be
used to query all assets owned by a certain entity. These key-based queries
can be used for read-only queries against the ledger, as well as in
transactions that update the ledger.

If you model asset data as JSON in chaincode and use CouchDB as the state
database, you can also perform complex rich queries against the chaincode
data values, using the CouchDB JSON query language within chaincode. The
application client can perform read-only queries, but these responses are
not typically submitted as part of transactions to the ordering service.

	Question:	How do I query the historical data to understand data provenance?

	Answer:	The chaincode API GetHistoryForKey() will return history of
values for a key.

	Question:	How to guarantee the query result is correct, especially when the peer being
queried may be recovering and catching up on block processing?

	Answer:	The client can query multiple peers, compare their block heights, compare
their query results, and favor the peers at the higher block heights.

Chaincode (Smart Contracts and Digital Assets)

	Question:	Does Hyperledger Fabric support smart contract logic?

	Answer:	Yes. We call this feature Chaincode. It is our interpretation of the
smart contract method/algorithm, with additional features.

A chaincode is programmatic code deployed on the network, where it is
executed and validated by chain validators together during the consensus
process. Developers can use chaincodes to develop business contracts,
asset definitions, and collectively-managed decentralized applications.

	Question:	How do I create a business contract?

	Answer:	There are generally two ways to develop business contracts: the first way is
to code individual contracts into standalone instances of chaincode; the
second way, and probably the more efficient way, is to use chaincode to
create decentralized applications that manage the life cycle of one or
multiple types of business contracts, and let end users instantiate
instances of contracts within these applications.

	Question:	How do I create assets?

	Answer:	Users can use chaincode (for business rules) and membership service (for
digital tokens) to design assets, as well as the logic that manages them.

There are two popular approaches to defining assets in most blockchain
solutions: the stateless UTXO model, where account balances are encoded
into past transaction records; and the account model, where account
balances are kept in state storage space on the ledger.

Each approach carries its own benefits and drawbacks. This blockchain
technology does not advocate either one over the other. Instead, one of our
first requirements was to ensure that both approaches can be easily
implemented.

	Question:	Which languages are supported for writing chaincode?

	Answer:	Chaincode can be written in any programming language and executed in
containers. Currently, Golang, node.js and java chaincode are supported.

It is also possible to build Hyperledger Fabric applications using
Hyperledger Composer [https://hyperledger.github.io/composer/].

	Question:	Does the Hyperledger Fabric have native currency?

	Answer:	No. However, if you really need a native currency for your chain network,
you can develop your own native currency with chaincode. One common attribute
of native currency is that some amount will get transacted (the chaincode
defining that currency will get called) every time a transaction is processed
on its chain.

Differences in Most Recent Releases

	Question:	Where can I find what are the highlighted differences between releases?

	Answer:	The differences between any subsequent releases are provided together with
the Releases.

	Question:	Where to get help for the technical questions not answered above?

	Answer:	Please use StackOverflow [https://stackoverflow.com/questions/tagged/hyperledger].

Ordering Service

	Question:	I have an ordering service up and running and want to switch consensus
algorithms. How do I do that?

	Answer:	This is explicitly not supported.

	Question:	What is the orderer system channel?

	Answer:	The orderer system channel (sometimes called ordering system channel) is the
channel the orderer is initially bootstrapped with. It is used to orchestrate
channel creation. The orderer system channel defines consortia and the initial
configuration for new channels. At channel creation time, the organization
definition in the consortium, the /Channel group’s values and policies, as
well as the /Channel/Orderer group’s values and policies, are all combined
to form the new initial channel definition.

	Question:	If I update my application channel, should I update my orderer system
channel?

	Answer:	Once an application channel is created, it is managed independently of any
other channel (including the orderer system channel). Depending on the
modification, the change may or may not be desirable to port to other
channels. In general, MSP changes should be synchronized across all channels,
while policy changes are more likely to be specific to a particular channel.

	Question:	Can I have an organization act both in an ordering and application role?

	Answer:	Although this is possible, it is a highly discouraged configuration. By
default the /Channel/Orderer/BlockValidation policy allows any valid
certificate of the ordering organizations to sign blocks. If an organization
is acting both in an ordering and application role, then this policy should be
updated to restrict block signers to the subset of certificates authorized for
ordering.

	Question:	I want to write a consensus implementation for Fabric. Where do I begin?

	Answer:	A consensus plugin needs to implement the Consenter and Chain
interfaces defined in the consensus package [https://github.com/hyperledger/fabric/blob/master/orderer/consensus/consensus.go]. There are two plugins built
against these interfaces already: solo [https://github.com/hyperledger/fabric/tree/master/orderer/consensus/solo] and kafka [https://github.com/hyperledger/fabric/tree/master/orderer/consensus/kafka]. You can study them to take
cues for your own implementation. The ordering service code can be found under
the orderer package [https://github.com/hyperledger/fabric/tree/master/orderer].

	Question:	I want to change my ordering service configurations, e.g. batch timeout,
after I start the network, what should I do?

	Answer:	This falls under reconfiguring the network. Please consult the topic on
configtxlator.

Solo

	Question:	How can I deploy Solo in production?

	Answer:	Solo is not intended for production. It is not, and will never be, fault
tolerant.

Kafka

	Question:	How do I remove a node from the ordering service?

	Answer:	This is a two step-process:

	Add the node’s certificate to the relevant orderer’s MSP CRL to prevent peers/clients from connecting to it.

	Prevent the node from connecting to the Kafka cluster by leveraging standard Kafka access control measures such as TLS CRLs, or firewalling.

	Question:	I have never deployed a Kafka/ZK cluster before, and I want to use the
Kafka-based ordering service. How do I proceed?

	Answer:	The Hyperledger Fabric documentation assumes the reader generally has the
operational expertise to setup, configure, and manage a Kafka cluster
(see Caveat emptor). If you insist on proceeding without such expertise,
you should complete, at a minimum, the first 6 steps of the
Kafka Quickstart guide [https://kafka.apache.org/quickstart] before experimenting with the Kafka-based ordering
service. You can also consult this sample configuration file [https://github.com/hyperledger/fabric/blob/release-1.1/bddtests/dc-orderer-kafka.yml] for a brief
explanation of the sensible defaults for Kafka/ZooKeeper.

	Question:	Where can I find a Docker composition for a network that uses the
Kafka-based ordering service?

	Answer:	Consult the end-to-end CLI example [https://github.com/hyperledger/fabric/blob/release-1.3/examples/e2e_cli/docker-compose-e2e.yaml].

	Question:	Why is there a ZooKeeper dependency in the Kafka-based ordering service?

	Answer:	Kafka uses it internally for coordination between its brokers.

	Question:	I’m trying to follow the BYFN example and get a “service unavailable” error,
what should I do?

	Answer:	Check the ordering service’s logs. A “Rejecting deliver request because of
consenter error” log message is usually indicative of a connection problem
with the Kafka cluster. Ensure that the Kafka cluster is set up properly, and
is reachable by the ordering service’s nodes.

BFT

	Question:	When is a BFT version of the ordering service going to be available?

	Answer:	No date has been set. We are working towards a release during the 1.x cycle,
i.e. it will come with a minor version upgrade in Fabric. Track FAB-33 [https://jira.hyperledger.org/browse/FAB-33] for
updates.

 Contributions Welcome!

Contributions Welcome!

We welcome contributions to Hyperledger in many forms, and
there’s always plenty to do!

First things first, please review the Hyperledger Code of
Conduct [https://wiki.hyperledger.org/community/hyperledger-project-code-of-conduct]
before participating. It is important that we keep things civil.

Project Governance

Hyperledger Fabric is managed under an open governance model as described in
our charter [https://www.hyperledger.org/about/charter]. Projects and
sub-projects are lead by a set of maintainers. New sub-projects can
designate an initial set of maintainers that will be approved by the
top-level project’s existing maintainers when the project is first
approved.

Maintainers

The Fabric project is lead by the project’s top level maintainers.
The maintainers are responsible for reviewing and merging all patches submitted
for review, and they guide the overall technical direction of the project within
the guidelines established by the Hyperledger Technical Steering Committee (TSC).

Becoming a maintainer

The project’s maintainers will, from time-to-time, consider
adding or removing a maintainer. An existing maintainer can submit a
change set to the MAINTAINERS.rst file. A nominated
Contributor may become a Maintainer by a majority approval of the proposal
by the existing Maintainers. Once approved, the change set is then merged
and the individual is added to (or alternatively, removed from) the maintainers
group. Maintainers may be removed by explicit resignation, for prolonged
inactivity (3 or more months), or for some infraction of the code of conduct [https://wiki.hyperledger.org/community/hyperledger-project-code-of-conduct]
or by consistently demonstrating poor judgement. A maintainer removed for
inactivity should be restored following a sustained resumption of contributions
and reviews (a month or more) demonstrating a renewed commitment to the project.

Release cadence

The Fabric maintainers have settled on a quarterly (approximately) release
cadence (see releases [https://github.com/hyperledger/fabric#releases]).
We are also actively considering adopting an LTS (long term support) release
process, though the details of this are still being worked out by the
maintainers. Follow the discussion on the #fabric-maintainers channel in Chat.

Making Feature/Enhancement Proposals

First, take time to review
JIRA [https://jira.hyperledger.org/issues/?filter=12524]
to be sure that there isn’t already an open (or recently closed) proposal for the
same function. If there isn’t, to make a proposal we recommend that you open a
JIRA Epic or Story, whichever seems to best fit the circumstance and
link or inline a “one pager” of the proposal that states what the feature would
do and, if possible, how it might be implemented. It would help also to make a
case for why the feature should be added, such as identifying specific use
case(s) for which the feature is needed and a case for what the benefit would be
should the feature be implemented. Once the JIRA issue is created, and the
“one pager” either attached, inlined in the description field, or a link to a
publicly accessible document is added to the description, send an introductory
email to the fabric@lists.hyperledger.org mailing list linking the
JIRA issue, and soliciting feedback.

Discussion of the proposed feature should be conducted in the JIRA issue itself,
so that we have a consistent pattern within our community as to where to find
design discussion.

Getting the support of three or more of the Hyperledger Fabric maintainers for
the new feature will greatly enhance the probability that the feature’s related
CRs will be included in a subsequent release.

Maintainers meeting

The maintainers hold a bi-weekly meeting every other Wednesday at 9 am ET
on Zoom [https://zoom.us/my/hyperledger.community]. Please see the
community calendar [https://wiki.hyperledger.org/community/calendar-public-meetings]
for details.

The purpose of the maintainers meeting is to plan for and review the progress of
releases, and to discuss the technical and operational direction of the project
and sub-projects.

New feature/enhancement proposals as described above should be presented to a
maintainers meeting for consideration, feedback and acceptance.

Release roadmap

The Fabric release roadmap of epics is maintained in
JIRA [https://jira.hyperledger.org/secure/Dashboard.jspa?selectPageId=10104].

Communications

We use RocketChat [https://chat.hyperledger.org/] for communication
and Google Hangouts™ for screen sharing between developers. Our
development planning and prioritization is done in
JIRA [https://jira.hyperledger.org], and we take longer running
discussions/decisions to the mailing
list [https://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric].

Contribution guide

Install prerequisites

Before we begin, if you haven’t already done so, you may wish to check that
you have all the prerequisites installed on the platform(s)
on which you’ll be developing blockchain applications and/or operating
Hyperledger Fabric.

Getting a Linux Foundation account

In order to participate in the development of the Hyperledger Fabric
project, you will need a Linux Foundation
account. You will need to use your LF ID to
access to all the Hyperledger community development tools, including
Gerrit [https://gerrit.hyperledger.org],
Jira [https://jira.hyperledger.org] and the
Wiki [https://wiki.hyperledger.org/start] (for editing, only).

Getting help

If you are looking for something to work on, or need some expert
assistance in debugging a problem or working out a fix to an issue, our
community [https://www.hyperledger.org/community] is always eager to
help. We hang out on
Chat [https://chat.hyperledger.org/channel/fabric/], IRC
(#hyperledger on freenode.net) and the mailing
lists [https://lists.hyperledger.org/]. Most of us don’t bite :grin:
and will be glad to help. The only silly question is the one you don’t
ask. Questions are in fact a great way to help improve the project as
they highlight where our documentation could be clearer.

Reporting bugs

If you are a user and you have found a bug, please submit an issue using
JIRA [https://jira.hyperledger.org/secure/Dashboard.jspa?selectPageId=10104].
Before you create a new JIRA issue, please try to search the existing items to
be sure no one else has previously reported it. If it has been previously
reported, then you might add a comment that you also are interested in seeing
the defect fixed.

Note

If the defect is security-related, please follow the Hyperledger
security bug reporting process [https://wiki.hyperledger.org/security].

If it has not been previously reported, create a new JIRA. Please try to provide
sufficient information for someone else to reproduce the
issue. One of the project’s maintainers should respond to your issue within 24
hours. If not, please bump the issue with a comment and request that it be
reviewed. You can also post to the relevant Hyperledger Fabric channel in
Hyperledger Chat [https://chat.hyperledger.org]. For example, a doc bug should
be broadcast to #fabric-documentation, a database bug to #fabric-ledger,
and so on…

Submitting your fix

If you just submitted a JIRA for a bug you’ve discovered, and would like to
provide a fix, we would welcome that gladly! Please assign the JIRA issue to
yourself, then you can submit a change request (CR).

Note

If you need help with submitting your first CR, we have created a
brief tutorial for you.

Fixing issues and working stories

Review the issues
list [https://jira.hyperledger.org/issues/?filter=10580] and find
something that interests you. You could also check the
“help-wanted” [https://jira.hyperledger.org/issues/?filter=10147]
list. It is wise to start with something relatively straight forward and
achievable, and that no one is already assigned. If no one is assigned,
then assign the issue to yourself. Please be considerate and rescind the
assignment if you cannot finish in a reasonable time, or add a comment
saying that you are still actively working the issue if you need a
little more time.

Reviewing submitted Change Requests (CRs)

Another way to contribute and learn about Hyperledger Fabric is to help the
maintainers with the review of the CRs that are open. Indeed
maintainers have the difficult role of having to review all the CRs
that are being submitted and evaluate whether they should be merged or
not. You can review the code and/or documentation changes, test the
changes, and tell the submitters and maintainers what you think. Once
your review and/or test is complete just reply to the CR with your
findings, by adding comments and/or voting. A comment saying something
like “I tried it on system X and it works” or possibly “I got an error
on system X: xxx ” will help the maintainers in their evaluation. As a
result, maintainers will be able to process CRs faster and everybody
will gain from it.

Just browse through the open CRs on Gerrit [https://gerrit.hyperledger.org/r/#/q/status:open] to get started.

Setting up development environment

Next, try building the project in your local
development environment to ensure that everything is set up correctly.

What makes a good change request?

	One change at a time. Not five, not three, not ten. One and only one.
Why? Because it limits the blast area of the change. If we have a
regression, it is much easier to identify the culprit commit than if
we have some composite change that impacts more of the code.

	Include a link to the JIRA story for the change. Why? Because a) we
want to track our velocity to better judge what we think we can
deliver and when and b) because we can justify the change more
effectively. In many cases, there should be some discussion around a
proposed change and we want to link back to that from the change
itself.

	Include unit and integration tests (or changes to existing tests)
with every change. This does not mean just happy path testing,
either. It also means negative testing of any defensive code that it
correctly catches input errors. When you write code, you are
responsible to test it and provide the tests that demonstrate that
your change does what it claims. Why? Because without this we have no
clue whether our current code base actually works.

	Unit tests should have NO external dependencies. You should be able
to run unit tests in place with go test or equivalent for the
language. Any test that requires some external dependency (e.g. needs
to be scripted to run another component) needs appropriate mocking.
Anything else is not unit testing, it is integration testing by
definition. Why? Because many open source developers do Test Driven
Development. They place a watch on the directory that invokes the
tests automagically as the code is changed. This is far more
efficient than having to run a whole build between code changes. See
this definition [http://artofunittesting.com/definition-of-a-unit-test/]
of unit testing for a good set of criteria to keep in mind for writing
effective unit tests.

	Minimize the lines of code per CR. Why? Maintainers have day jobs,
too. If you send a 1,000 or 2,000 LOC change, how long do you think
it takes to review all of that code? Keep your changes to < 200-300
LOC, if possible. If you have a larger change, decompose it into
multiple independent changes. If you are adding a bunch of new
functions to fulfill the requirements of a new capability, add them
separately with their tests, and then write the code that uses them
to deliver the capability. Of course, there are always exceptions. If
you add a small change and then add 300 LOC of tests, you will be
forgiven;-) If you need to make a change that has broad impact or a
bunch of generated code (protobufs, etc.). Again, there can be
exceptions.

Note

Large change requests, e.g. those with more than 300 LOC are more likely
than not going to receive a -2, and you’ll be asked to refactor the
change to conform with this guidance.

	Do not stack change requests (e.g. submit a CR from the same local branch
as your previous CR) unless they are related. This will minimize merge
conflicts and allow changes to be merged more quickly. If you stack requests
your subsequent requests may be held up because of review comments in the
preceding requests.

	Write a meaningful commit message. Include a meaningful 55 (or less)
character title, followed by a blank line, followed by a more
comprehensive description of the change. Each change MUST include the JIRA
identifier corresponding to the change (e.g. [FAB-1234]). This can be
in the title but should also be in the body of the commit message. See the
complete requirements for an acceptable change
request.

Note

That Gerrit will automatically create a hyperlink to the JIRA item.
e.g.

[FAB-1234] fix foobar() panic

Fix [FAB-1234] added a check to ensure that when foobar(foo string)
is called, that there is a non-empty string argument.

Finally, be responsive. Don’t let a change request fester with review
comments such that it gets to a point that it requires a rebase. It only
further delays getting it merged and adds more work for you - to
remediate the merge conflicts.

Legal stuff

Note: Each source file must include a license header for the Apache
Software License 2.0. See the template of the license header [https://github.com/hyperledger/fabric/blob/master/docs/source/dev-setup/headers.txt].

We have tried to make it as easy as possible to make contributions. This
applies to how we handle the legal aspects of contribution. We use the
same approach—the Developer’s Certificate of Origin 1.1
(DCO) [https://github.com/hyperledger/fabric/blob/master/docs/source/DCO1.1.txt]—that the Linux® Kernel
community [https://elinux.org/Developer_Certificate_Of_Origin] uses
to manage code contributions.

We simply ask that when submitting a patch for review, the developer
must include a sign-off statement in the commit message.

Here is an example Signed-off-by line, which indicates that the
submitter accepts the DCO:

Signed-off-by: John Doe <john.doe@example.com>

You can include this automatically when you commit a change to your
local git repository using git commit -s.

Related Topics

	Maintainers

	Using Jira to understand current work items

	Setting up the development environment

	Building Hyperledger Fabric

	Building outside of Vagrant

	Configuration

	Requesting a Linux Foundation Account

	Working with Gerrit

	Reviewing Using Gerrit

	Viewing Pending Changes

	Submitting a Change to Gerrit

	Reviewing a Change

	Gerrit Recommended Practices

	Coding guidelines

	Generating gRPC code

	Adding or updating Go packages

 Maintainers

Maintainers

Active Maintainers

	Name
	Gerrit
	GitHub
	Chat
	email

	Alessandro Sorniotti
	ale-linux
	ale-linux
	aso
	ale.linux@sopit.net

	Artem Barger
	c0rwin
	c0rwin
	c0rwin
	bartem@il.ibm.com

	Binh Nguyen
	binhn
	binhn
	binhn
	binh1010010110@gmail.com

	Chris Ferris
	ChristopherFerris
	christo4ferris
	cbf
	chris.ferris@gmail.com

	Dave Enyeart
	denyeart
	denyeart
	dave.enyeart
	enyeart@us.ibm.com

	Gari Singh
	mastersingh24
	mastersingh24
	garisingh
	gari.r.singh@gmail.com

	Greg Haskins
	greg.haskins
	ghaskins
	ghaskins
	gregory.haskins@gmail.com

	Jason Yellick
	jyellick
	jyellick
	jyellick
	jyellick@us.ibm.com

	Jonathan Levi
	JonathanLevi
	hacera
	JonathanLevi
	jonathan@hacera.com

	Keith Smith
	smithbk
	smithbk
	smithbk
	bksmith@us.ibm.com

	Kostas Christidis
	kchristidis
	kchristidis
	kostas
	kostas@gmail.com

	Manish Sethi
	manish-sethi
	manish-sethi
	manish-sethi
	manish.sethi@gmail.com

	Matthew Sykes
	sykesm
	sykesm
	sykesm
	sykesmat@us.ibm.com

	Srinivasan Muralidharan
	muralisr
	muralisrini
	muralisr
	srinivasan.muralidharan99@gmail.com

	Yacov Manevich
	yacovm
	yacovm
	yacovm
	yacovm@il.ibm.com

Release Managers

	Name
	Gerrit
	GitHub
	Chat
	email

	Chris Ferris
	ChristopherFerris
	christo4ferris
	cbf
	chris.ferris@gmail.com

	Dave Enyeart
	denyeart
	denyeart
	dave.enyeart
	enyeart@us.ibm.com

	Gari Singh
	mastersingh24
	mastersingh24
	garisingh
	gari.r.singh@gmail.com

Retired Maintainers

	Gabor Hosszu
	hgabre
	gabre
	hgabor
	gabor@digitalasset.com

	Sheehan Anderson
	sheehan
	srderson
	sheehan
	sranderson@gmail.com

	Tamas Blummer
	TamasBlummer
	tamasblummer
	tamas
	tamas@digitalasset.com

	Jim Zhang
	jimthematrix
	jimthematrix
	jimthematrix
	jim_the_matrix@hotmail.com

	Yaoguo Jiang
	jiangyaoguo
	jiangyaoguo
	jiangyaoguo
	jiangyaoguo@gmail.com

 Using Jira to understand current work items

Using Jira to understand current work items

This document has been created to give further insight into the work in
progress towards the Hyperledger Fabric v1 architecture based on the
community roadmap. The requirements for the roadmap are being tracked in
Jira [https://jira.hyperledger.org/].

It was determined to organize in sprints to better track and show a
prioritized order of items to be implemented based on feedback received.
We’ve done this via boards. To see these boards and the priorities click
on Boards -> Manage Boards:

[image: Jira boards]
Jira boards

Now on the left side of the screen click on All boards:

[image: Jira boards]
Jira boards

On this page you will see all the public (and restricted) boards that
have been created. If you want to see the items with current sprint
focus, click on the boards where the column labeled Visibility is
All Users and the column Board type is labeled Scrum. For
example the Board Name Consensus:

[image: Jira boards]
Jira boards

When you click on Consensus under Board name you will be directed to
a page that contains the following columns:

[image: Jira boards]
Jira boards

The meanings to these columns are as follows:

	Backlog – list of items slated for the current sprint (sprints are
defined in 2 week iterations), but are not currently in progress

	In progress – items currently being worked by someone in the
community.

	In Review – items waiting to be reviewed and merged in Gerrit

	Done – items merged and complete in the sprint.

If you want to see all items in the backlog for a given feature set,
click on the stacked rows on the left navigation of the screen:

[image: Jira boards]
Jira boards

This shows you items slated for the current sprint at the top, and all
items in the backlog at the bottom. Items are listed in priority order.

If there is an item you are interested in working on, want more
information or have questions, or if there is an item that you feel
needs to be in higher priority, please add comments directly to the Jira
item. All feedback and help is very much appreciated.

 Setting up the development environment

Setting up the development environment

Overview

Prior to the v1.0.0 release, the development environment utilized Vagrant
running an Ubuntu image, which in turn launched Docker containers as a
means of ensuring a consistent experience for developers who might be
working with varying platforms, such as macOS, Windows, Linux, or
whatever. Advances in Docker have enabled native support on the most
popular development platforms: macOS and Windows. Hence, we have
reworked our build to take full advantage of these advances. While we
still maintain a Vagrant based approach that can be used for older
versions of macOS and Windows that Docker does not support, we strongly
encourage that the non-Vagrant development setup be used.

Note that while the Vagrant-based development setup could not be used in
a cloud context, the Docker-based build does support cloud platforms
such as AWS, Azure, Google and IBM to name a few. Please follow the
instructions for Ubuntu builds, below.

Prerequisites

	Git client [https://git-scm.com/downloads]

	Go [https://golang.org/dl/] - version 1.11.x

	(macOS)
Xcode [https://itunes.apple.com/us/app/xcode/id497799835?mt=12]
must be installed

	Docker [https://www.docker.com/get-docker] - 17.06.2-ce or later

	Docker Compose [https://docs.docker.com/compose/] - 1.14.0 or later

	Pip [https://pip.pypa.io/en/stable/installing/]

	(macOS) you may need to install gnutar, as macOS comes with bsdtar
as the default, but the build uses some gnutar flags. You can use
Homebrew to install it as follows:

brew install gnu-tar --with-default-names

	(macOS) Libtool [https://www.gnu.org/software/libtool/]. You can use
Homebrew to install it as follows:

brew install libtool

	(only if using Vagrant) - Vagrant [https://www.vagrantup.com/] -
1.9 or later

	(only if using Vagrant) -
VirtualBox [https://www.virtualbox.org/] - 5.0 or later

	BIOS Enabled Virtualization - Varies based on hardware

	Note: The BIOS Enabled Virtualization may be within the CPU or
Security settings of the BIOS

pip

pip install --upgrade pip

Steps

Set your GOPATH

Make sure you have properly setup your Host’s GOPATH environment
variable [https://github.com/golang/go/wiki/GOPATH]. This allows for
both building within the Host and the VM.

In case you installed Go into a different location from the standard one
your Go distribution assumes, make sure that you also set GOROOT
environment variable [https://golang.org/doc/install#install].

Note to Windows users

If you are running Windows, before running any git clone commands,
run the following command.

git config --get core.autocrlf

If core.autocrlf is set to true, you must set it to false by
running

git config --global core.autocrlf false

If you continue with core.autocrlf set to true, the
vagrant up command will fail with the error:

./setup.sh: /bin/bash^M: bad interpreter: No such file or directory

Cloning the Hyperledger Fabric source

Since Hyperledger Fabric is written in Go, you’ll need to
clone the source repository to your $GOPATH/src directory. If your $GOPATH
has multiple path components, then you will want to use the first one.
There’s a little bit of setup needed:

cd $GOPATH/src
mkdir -p github.com/hyperledger
cd github.com/hyperledger

Recall that we are using Gerrit for source control, which has its
own internal git repositories. Hence, we will need to clone from
Gerrit.
For brevity, the command is as follows:

git clone ssh://LFID@gerrit.hyperledger.org:29418/fabric && scp -p -P 29418 LFID@gerrit.hyperledger.org:hooks/commit-msg fabric/.git/hooks/

Note: Of course, you would want to replace LFID with your own
Linux Foundation ID.

Bootstrapping the VM using Vagrant

If you are planning on using the Vagrant developer environment, the
following steps apply. Again, we recommend against its use except for
developers that are limited to older versions of macOS and Windows that
are not supported by Docker for Mac or Windows.

cd $GOPATH/src/github.com/hyperledger/fabric/devenv
vagrant up

Go get coffee… this will take a few minutes. Once complete, you should
be able to ssh into the Vagrant VM just created.

vagrant ssh

Once inside the VM, you can find the source under
$GOPATH/src/github.com/hyperledger/fabric. It is also mounted as
/hyperledger.

Building Hyperledger Fabric

Once you have all the dependencies installed, and have cloned the
repository, you can proceed to build and test Hyperledger
Fabric.

Notes

NOTE: Any time you change any of the files in your local fabric
directory (under $GOPATH/src/github.com/hyperledger/fabric), the
update will be instantly available within the VM fabric directory.

NOTE: If you intend to run the development environment behind an
HTTP Proxy, you need to configure the guest so that the provisioning
process may complete. You can achieve this via the vagrant-proxyconf
plugin. Install with vagrant plugin install vagrant-proxyconf and
then set the VAGRANT_HTTP_PROXY and VAGRANT_HTTPS_PROXY environment
variables before you execute vagrant up. More details are
available here: https://github.com/tmatilai/vagrant-proxyconf/

NOTE: The first time you run this command it may take quite a while
to complete (it could take 30 minutes or more depending on your
environment) and at times it may look like it’s not doing anything. As
long you don’t get any error messages just leave it alone, it’s all
good, it’s just cranking.

NOTE to Windows 10 Users: There is a known problem with vagrant on
Windows 10 (see
hashicorp/vagrant#6754 [https://github.com/hashicorp/vagrant/issues/6754]).
If the vagrant up command fails it may be because you do not have
the Microsoft Visual C++ Redistributable package installed. You can
download the missing package at the following address:
http://www.microsoft.com/en-us/download/details.aspx?id=8328

NOTE: The inclusion of the miekg/pkcs11 package introduces
an external dependency on the ltdl.h header file during
a build of fabric. Please ensure your libtool and libltdl-dev packages
are installed. Otherwise, you may get a ltdl.h header missing error.
You can download the missing package by command:
sudo apt-get install -y build-essential git make curl unzip g++ libtool.

 Building Hyperledger Fabric

Building Hyperledger Fabric

The following instructions assume that you have already set up your
development environment.

To build Hyperledger Fabric:

cd $GOPATH/src/github.com/hyperledger/fabric
make dist-clean all

Running the unit tests

Before running the unit tests, a PKCS #11 cryptographic token implementation
must be installed and configured. The PKCS #11 API is used by the bccsp
component of Fabric to interact with devices, such as hardware security modules
(HSMs), that store cryptographic information and perform cryptographic
computations. For test environments, SoftHSM can be used to satisfy this
requirement.

SoftHSM can be installed with the following commands:

sudo apt install libsofthsm2 # Ubuntu
sudo yum install softhsm # CentOS
brew install softhsm # macOS

Once SoftHSM is installed, additional configuration may be required. For
example, the default configuration file stores token data in a system directory
that unprivileged users are unable to write to.

Configuration typically involves copying /etc/softhsm2.conf to
$HOME/.config/softhsm2/softhsm2.conf and changing directories.tokendir
to an appropriate location. Please see the man page for softhsm2.conf for
details.

After SoftHSM has been configured, the following command can be used to
initialize the required token:

	::

	softhsm2-util –init-token –slot 0 –label “ForFabric” –so-pin 1234 –pin 98765432

If the test cannot find libsofthsm2.so in your environment, specify its path,
the PIN and the label of the token through environment variables. For example,
on macOS:

	::

	export PKCS11_LIB=”/usr/local/Cellar/softhsm/2.5.0/lib/softhsm/libsofthsm2.so”
export PKCS11_PIN=98765432
export PKCS11_LABEL=”ForFabric”

Use the following sequence to run all unit tests:

cd $GOPATH/src/github.com/hyperledger/fabric
make unit-test

To run a subset of tests, set the TEST_PKGS environment variable.
Specify a list of packages (separated by space), for example:

export TEST_PKGS="github.com/hyperledger/fabric/core/ledger/..."
make unit-test

To run a specific test use the -run RE flag where RE is a regular
expression that matches the test case name. To run tests with verbose
output use the -v flag. For example, to run the TestGetFoo test
case, change to the directory containing the foo_test.go and
call/execute

go test -v -run=TestGetFoo

Running Node.js Client SDK Unit Tests

You must also run the Node.js unit tests to ensure that the Node.js
client SDK is not broken by your changes. To run the Node.js unit tests,
follow the instructions
here [https://github.com/hyperledger/fabric-sdk-node/blob/master/README.md].

Building outside of Vagrant

It is possible to build the project and run peers outside of Vagrant.
Generally speaking, one has to ‘translate’ the vagrant setup
file [https://github.com/hyperledger/fabric/blob/master/devenv/setup.sh]
to the platform of your choice.

Building on Z

To make building on Z easier and faster, this
script [https://github.com/hyperledger/fabric/blob/master/devenv/setupRHELonZ.sh]
is provided (which is similar to the setup
file [https://github.com/hyperledger/fabric/blob/master/devenv/setup.sh]
provided for vagrant). This script has been tested only on RHEL 7.2 and
has some assumptions one might want to re-visit (firewall settings,
development as root user, etc.). It is however sufficient for
development in a personally-assigned VM instance.

To get started, from a freshly installed OS:

sudo su
yum install git
mkdir -p $HOME/git/src/github.com/hyperledger
cd $HOME/git/src/github.com/hyperledger
git clone http://gerrit.hyperledger.org/r/fabric
source fabric/devenv/setupRHELonZ.sh

From this point, you can proceed as described above for the Vagrant
development environment.

cd $GOPATH/src/github.com/hyperledger/fabric
make peer unit-test

Building on Power Platform

Development and build on Power (ppc64le) systems is done outside of
vagrant as outlined here. For ease
of setting up the dev environment on Ubuntu, invoke this
script [https://github.com/hyperledger/fabric/blob/master/devenv/setupUbuntuOnPPC64le.sh]
as root. This script has been validated on Ubuntu 16.04 and assumes
certain things (like, development system has OS repositories in place,
firewall setting etc) and in general can be improvised further.

To get started on Power server installed with Ubuntu, first ensure you
have properly setup your Host’s GOPATH environment
variable [https://github.com/golang/go/wiki/GOPATH]. Then, execute
the following commands to build the fabric code:

mkdir -p $GOPATH/src/github.com/hyperledger
cd $GOPATH/src/github.com/hyperledger
git clone http://gerrit.hyperledger.org/r/fabric
sudo ./fabric/devenv/setupUbuntuOnPPC64le.sh
cd $GOPATH/src/github.com/hyperledger/fabric
make dist-clean all

Building on Centos 7

You will have to build CouchDB from source because there is no package
available from the distribution. If you are planning a multi-orderer
arrangement, you will also need to install Apache Kafka from source.
Apache Kafka includes both Zookeeper and Kafka executables and
supporting artifacts.

export GOPATH={directory of your choice}
mkdir -p $GOPATH/src/github.com/hyperledger
FABRIC=$GOPATH/src/github.com/hyperledger/fabric
git clone https://github.com/hyperledger/fabric $FABRIC
cd $FABRIC
git checkout master # <-- only if you want the master branch
export PATH=$GOPATH/bin:$PATH
make native

If you are not trying to build for docker, you only need the natives.

Configuration

Configuration utilizes the viper [https://github.com/spf13/viper]
and cobra [https://github.com/spf13/cobra] libraries.

There is a core.yaml file that contains the configuration for the
peer process. Many of the configuration settings can be overridden on
the command line by setting ENV variables that match the configuration
setting, but by prefixing with ‘CORE_’. For example, logging level
manipulation through the environment is shown below:

CORE_PEER_LOGGING_LEVEL=CRITICAL peer

 Requesting a Linux Foundation Account

Requesting a Linux Foundation Account

Contributions to the Hyperledger Fabric code base require a
Linux Foundation [https://linuxfoundation.org/]
account — follow the steps below to create one if you don’t
already have one.

Creating a Linux Foundation ID

	Go to the Linux Foundation ID
website [https://identity.linuxfoundation.org/].

	Select the option I need to create a Linux Foundation ID, and fill
out the form that appears.

	Wait a few minutes, then look for an email message with the subject line:
“Validate your Linux Foundation ID email”.

	Open the received URL to validate your email address.

	Verify that your browser displays the message
You have successfully validated your e-mail address.

	Access Gerrit by selecting Sign In, and use your new
Linux Foundation account ID to sign in.

Configuring Gerrit to Use SSH

Gerrit uses SSH to interact with your Git client. If you already have an SSH
key pair, you can skip the part of this section that explains how to generate one.

What follows explains how to generate an SSH key pair in a Linux environment —
follow the equivalent steps on your OS.

First, create an SSH key pair with the command:

ssh-keygen -t rsa -C "John Doe john.doe@example.com"

Note: This will ask you for a password to protect the private key as
it generates a unique key. Please keep this password private, and DO NOT
enter a blank password.

The generated SSH key pair can be found in the files ~/.ssh/id_rsa and
~/.ssh/id_rsa.pub.

Next, add the private key in the id_rsa file to your key ring, e.g.:

ssh-add ~/.ssh/id_rsa

Finally, add the public key of the generated key pair to the Gerrit server,
with the following steps:

	Go to
Gerrit [https://gerrit.hyperledger.org/r/#/admin/projects/fabric].

	Click on your account name in the upper right corner.

	From the pop-up menu, select Settings.

	On the left side menu, click on SSH Public Keys.

	Paste the contents of your public key ~/.ssh/id_rsa.pub and click
Add key.

Note: The id_rsa.pub file can be opened with any text editor.
Ensure that all the contents of the file are selected, copied and pasted
into the Add SSH key window in Gerrit.

Note: The SSH key generation instructions operate on the assumption
that you are using the default naming. It is possible to generate
multiple SSH keys and to name the resulting files differently. See the
ssh-keygen [https://en.wikipedia.org/wiki/Ssh-keygen] documentation
for details on how to do that. Once you have generated non-default keys,
you need to configure SSH to use the correct key for Gerrit. In that
case, you need to create a ~/.ssh/config file modeled after the one
below.

host gerrit.hyperledger.org
 HostName gerrit.hyperledger.org
 IdentityFile ~/.ssh/id_rsa_hyperledger_gerrit
 User <LFID>

where <LFID> is your Linux Foundation ID and the value of IdentityFile is the
name of the public key file you generated.

Warning: Potential Security Risk! Do not copy your private key
~/.ssh/id_rsa. Use only the public ~/.ssh/id_rsa.pub.

Checking Out the Source Code

Once you’ve set up SSH as explained in the previous section, you can clone
the source code repository with the command:

git clone ssh://<LFID>@gerrit.hyperledger.org:29418/fabric fabric

You have now successfully checked out a copy of the source code to your
local machine.

 Working with Gerrit

Working with Gerrit

Follow these instructions to collaborate on Hyperledger Fabric
through the Gerrit review system.

Please be sure that you are subscribed to the mailing
list [https://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric]
and of course, you can reach out on
chat [https://chat.hyperledger.org/] if you need help.

Gerrit assigns the following roles to users:

	Submitters: May submit changes for consideration, review other
code changes, and make recommendations for acceptance or rejection by
voting +1 or -1, respectively.

	Maintainers: May approve or reject changes based upon feedback
from reviewers voting +2 or -2, respectively.

	Builders: (e.g. Jenkins) May use the build automation
infrastructure to verify the change.

Maintainers should be familiar with the review
process. However, anyone is welcome to (and
encouraged!) review changes, and hence may find that document of value.

Git-review

There’s a very useful tool for working with Gerrit called
git-review [https://www.mediawiki.org/wiki/Gerrit/git-review]. This
command-line tool can automate most of the ensuing sections for you. Of
course, reading the information below is also highly recommended so that
you understand what’s going on behind the scenes.

Getting deeper into Gerrit

A comprehensive walk-through of Gerrit is beyond the scope of this
document. There are plenty of resources available on the Internet. A
good summary can be found
here [https://www.mediawiki.org/wiki/Gerrit/Tutorial]. We have also
provided a set of Best Practices that you may
find helpful.

Working with a local clone of the repository

To work on something, whether a new feature or a bugfix:

	Open the Gerrit Projects
page [https://gerrit.hyperledger.org/r/#/admin/projects/]

	Select the project you wish to work on.

	Open a terminal window and clone the project locally using the
Clone with git hook URL. Be sure that ssh is also selected,
as this will make authentication much simpler:

git clone ssh://LFID@gerrit.hyperledger.org:29418/fabric && scp -p -P 29418 LFID@gerrit.hyperledger.org:hooks/commit-msg fabric/.git/hooks/

Note

If you are cloning the fabric project repository, you will
want to clone it to the $GOPATH/src/github.com/hyperledger
directory so that it will build, and so that you can use it
with the Vagrant development environment.

	Create a descriptively-named branch off of your cloned repository

cd fabric
git checkout -b issue-nnnn

	Commit your code. For an in-depth discussion of creating an effective
commit, please read this document on submitting changes.

git commit -s -a

Then input precise and readable commit msg and submit.

	Any code changes that affect documentation should be accompanied by
corresponding changes (or additions) to the documentation and tests.
This will ensure that if the merged PR is reversed, all traces of the
change will be reversed as well.

Submitting a Change

Currently, Gerrit is the only method to submit a change for review.

Note

Please review the guidelines for making and
submitting a change.

Using git review

Note

if you prefer, you can use the git-review
tool instead of the following. e.g.

Add the following section to .git/config, and replace <USERNAME>
with your gerrit id.

[remote "gerrit"]
 url = ssh://<USERNAME>@gerrit.hyperledger.org:29418/fabric.git
 fetch = +refs/heads/*:refs/remotes/gerrit/*

Then submit your change with git review.

$ cd <your code dir>
$ git review

When you update your patch, you can commit with git commit --amend,
and then repeat the git review command.

Not using git review

See the directions for building the source code.

When a change is ready for submission, Gerrit requires that the change
be pushed to a special branch. The name of this special branch contains
a reference to the final branch where the code should reside, once
accepted.

For the Hyperledger Fabric repository, the special branch is called
refs/for/master.

To push the current local development branch to the gerrit server, open
a terminal window at the root of your cloned repository:

cd <your clone dir>
git push origin HEAD:refs/for/master

If the command executes correctly, the output should look similar to
this:

Counting objects: 3, done.
Writing objects: 100% (3/3), 306 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
remote: Processing changes: new: 1, refs: 1, done
remote:
remote: New Changes:
remote: https://gerrit.hyperledger.org/r/6 Test commit
remote:
To ssh://LFID@gerrit.hyperledger.org:29418/fabric
* [new branch] HEAD -> refs/for/master

The gerrit server generates a link where the change can be tracked.

Reviewing Using Gerrit

	Add: This button allows the change submitter to manually add
names of people who should review a change; start typing a name and
the system will auto-complete based on the list of people registered
and with access to the system. They will be notified by email that
you are requesting their input.

	Abandon: This button is available to the submitter only; it
allows a committer to abandon a change and remove it from the merge
queue.

	Change-ID: This ID is generated by Gerrit (or system). It becomes
useful when the review process determines that your commit(s) have to
be amended. You may submit a new version; and if the same Change-ID
header (and value) are present, Gerrit will remember it and present
it as another version of the same change.

	Status: Currently, the example change is in review status, as
indicated by “Needs Verified” in the upper-left corner. The list of
Reviewers will all emit their opinion, voting +1 if they agree to the
merge, -1 if they disagree. Gerrit users with a Maintainer role can
agree to the merge or refuse it by voting +2 or -2 respectively.

Notifications are sent to the email address in your commit message’s
Signed-off-by line. Visit your Gerrit
dashboard [https://gerrit.hyperledger.org/r/#/dashboard/self], to
check the progress of your requests.

The history tab in Gerrit will show you the in-line comments and the
author of the review.

Viewing Pending Changes

Find all pending changes by clicking on the All --> Changes link in
the upper-left corner, or open this
link [https://gerrit.hyperledger.org/r/#/q/project:fabric].

If you collaborate in multiple projects, you may wish to limit searching
to the specific branch through the search bar in the upper-right side.

Add the filter project:fabric to limit the visible changes to only
those from Hyperledger Fabric.

List all current changes you submitted, or list just those changes in
need of your input by clicking on My --> Changes or open this
link [https://gerrit.hyperledger.org/r/#/dashboard/self]

 Submitting a Change to Gerrit

Submitting a Change to Gerrit

Carefully review the following before submitting a change to the
Hyperledger Fabric code base. These guidelines apply to developers that
are new to open source, as well as to experienced open source developers.

Change Requirements

This section contains guidelines for submitting code changes for review.
For more information on how to submit a change using Gerrit, please see
Working with Gerrit.

All changes to Hyperledger Fabric are submitted as Git commits via Gerrit.
Each commit must contain:

	a short and descriptive subject line that is 55 characters or fewer,
followed by a blank line,

	a change description with the logic or reasoning for your changes,
followed by a blank line,

	a Signed-off-by line, followed by a colon (Signed-off-by:), and

	a Change-Id identifier line, followed by a colon (Change-Id:). Gerrit
won’t accept patches without this identifier.

A commit with the above details is considered well-formed.

Note

You don’t need to supply the Change-Id identifier for a new
commit; this is added automatically by the commit-msg
Git hook associated with the repository.
If you subsequently amend your commit and resubmit it,
using the same Change-Id value as the initial commit will
guarantee that Gerrit will recognize that subsequent commit
as an amended commit with respect to the earlier one.

All changes and topics sent to Gerrit must be well-formed.
In addition to the above mandatory content in a commit, a commit message
should include:

	what the change does,

	why you chose that approach, and

	how you know it works — for example, which tests you ran.

Commits must build cleanly when applied on
top of each other, thus avoiding breaking bisectability. Each commit
should address a single identifiable JIRA issue and should be logically
self-contained. For example, one commit might fix whitespace issues,
another commit might rename a function, while a third commit could
change some code’s functionality.

A well-formed commit is illustrated below in detail:

[FAB-XXXX] purpose of commit, no more than 55 characters

You can add more details here in several paragraphs, but please keep
each line less than 80 characters long.

Change-Id: IF7b6ac513b2eca5f2bab9728ebd8b7e504d3cebe1
Signed-off-by: Your Name <commit-sender@email.address>

The name in the Signed-off-by: line and your email must match the change
authorship information. Make sure your personal .gitconfig file is set up
correctly.

When a change is included in the set to enable other changes, but it
will not be part of the final set, please let the reviewers know this.

Check that your change request is validated by the CI process

To ensure stability of the code and limit possible regressions, we use
a Continuous Integration (CI) process based on Jenkins which triggers
a build on several platforms and runs tests against every change
request being submitted. It is your responsibility to check that your
CR passes these tests. No CR will ever be merged if it fails the
tests and you shouldn’t expect anybody to pay attention to your CRs
until they pass the CI tests.

To check on the status of the CI process, simply look at your CR on
Gerrit, following the URL that was given to you as the result of the
push in the previous step. The History section at the bottom of the
page will display a set of actions taken by “Hyperledger Jobbuilder”
corresponding to the CI process being executed.

Upon completion, “Hyperledger Jobbuilder” will add to the CR a +1
vote if successful and a -1 vote otherwise.

In case of failure, explore the logs linked from the CR History. If
you spot a problem with your CR, amend your commit and push it to
update it, which will automatically kick off the CI process again.

If you see nothing wrong with your CR, it might be that the CI process
simply failed for some reason unrelated to your change. In that case
you may want to restart the CI process by posting a reply to your CR
with the simple content “reverify”. Check the CI management page [https://github.com/hyperledger/ci-management/blob/master/docs/source/fabric_ci_process.rst]
for additional information and options on this.

 Reviewing a Change

Reviewing a Change

	Click on a link for incoming or outgoing review.

	The details of the change and its current status are loaded:

	Status: Displays the current status of the change. In the example
below, the status reads: Needs Verified.

	Reply: Click on this button after reviewing to add a final review
message and a score, -1, 0 or +1.

	Patch Sets: If multiple revisions of a patch exist, this button
enables navigation among revisions to see the changes. By default,
the most recent revision is presented.

	Download: This button brings up another window with multiple
options to download or checkout the current changeset. The button on
the right copies the line to your clipboard. You can easily paste it
into your git interface to work with the patch as you prefer.

Underneath the commit information, the files that have been changed by
this patch are displayed.

	Click on a filename to review it. Select the code base to
differentiate against. The default is Base and it will generally
be what is needed.

	The review page presents the changes made to the file. At the top of
the review, the presentation shows some general navigation options.
Navigate through the patch set using the arrows on the top right
corner. It is possible to go to the previous or next file in the set
or to return to the main change screen. Click on the yellow sticky
pad to add comments to the whole file.

The focus of the page is on the comparison window. The changes made are
presented in green on the right versus the base version on the left.
Double click to highlight the text within the actual change to provide
feedback on a specific section of the code. Press c once the code is
highlighted to add comments to that section.

	After adding the comment, it is saved as a Draft.

	Once you have reviewed all files and provided feedback, click the
green up arrow at the top right to return to the main change page.
Click the Reply button, write some final comments, and submit
your score for the patch set. Click Post to submit the review of
each reviewed file, as well as your final comment and score. Gerrit
sends an email to the change-submitter and all listed reviewers.
Finally, it logs the review for future reference. All individual
comments are saved as Draft until the Post button is clicked.

 Gerrit Recommended Practices

Gerrit Recommended Practices

This document presents some best practices to help you use Gerrit more
effectively. The intent is to show how content can be submitted easily.
Use the recommended practices to reduce your troubleshooting time and
improve participation in the community.

Browsing the Git Tree

Visit
Gerrit [https://gerrit.hyperledger.org/r/#/admin/projects/fabric]
then select Projects --> List --> SELECT-PROJECT --> Branches.
Select the branch that interests you, click on gitweb located on the
right-hand side. Now, gitweb loads your selection on the Git web
interface and redirects appropriately.

Watching a Project

Visit
Gerrit [https://gerrit.hyperledger.org/r/#/admin/projects/fabric],
then select Settings, located on the top right corner. Select
Watched Projects and then add any projects that interest you.

Commit Messages

Gerrit follows the Git commit message format. Ensure the headers are at
the bottom and don’t contain blank lines between one another. The
following example shows the format and content expected in a commit
message:

Brief (no more than 55 chars) one line description.

Elaborate summary of the changes made referencing why (motivation), what
was changed and how it was tested. Note also any changes to
documentation made to remain consistent with the code changes, wrapping
text at 72 chars/line.

Jira: FAB-100

Change-Id: LONGHEXHASH

Signed-off-by: Your Name your.email@example.org

AnotherExampleHeader: An Example of another Value

The Gerrit server provides a precommit hook to autogenerate the
Change-Id which is one time use.

Recommended reading: How to Write a Git Commit
Message [https://chris.beams.io/posts/git-commit/]

Avoid Pushing Untested Work to a Gerrit Server

To avoid pushing untested work to Gerrit.

Check your work at least three times before pushing your change to
Gerrit. Be mindful of what information you are publishing.

Keeping Track of Changes

	Set Gerrit to send you emails:

	Gerrit will add you to the email distribution list for a change if a
developer adds you as a reviewer, or if you comment on a specific
Patch Set.

	Opening a change in Gerrit’s review interface is a quick way to
follow that change.

	Watch projects in the Gerrit projects section at Gerrit, select
at least New Changes, New Patch Sets, All Comments and Submitted
Changes.

Always track the projects you are working on; also see the
feedback/comments mailing list to learn and help others ramp up.

Topic branches

Topic branches are temporary branches that you push to commit a set of
logically-grouped dependent commits:

To push changes from REMOTE/master tree to Gerrit for being reviewed
as a topic in TopicName use the following command as an example:

$ git push REMOTE HEAD:refs/for/master/TopicName

The topic will show up in the review UI and in the
Open Changes List. Topic branches will disappear from the master
tree when its content is merged.

Creating a Cover Letter for a Topic

You may decide whether or not you’d like the cover letter to appear in
the history.

	To make a cover letter that appears in the history, use this command:

git commit --allow-empty

Edit the commit message, this message then becomes the cover letter. The
command used doesn’t change any files in the source tree.

	To make a cover letter that doesn’t appear in the history follow
these steps:

	
Put the empty commit at the end of your commits list so it can be
ignored

without having to rebase.

	Now add your commits

git commit ...
git commit ...
git commit ...

	Finally, push the commits to a topic branch. The following command is
an example:

git push REMOTE HEAD:refs/for/master/TopicName

If you already have commits but you want to set a cover letter, create
an empty commit for the cover letter and move the commit so it becomes
the last commit on the list. Use the following command as an example:

git rebase -i HEAD~#Commits

Be careful to uncomment the commit before moving it. #Commits is the
sum of the commits plus your new cover letter.

Finding Available Topics

$ ssh -p 29418 gerrit.hyperledger.org gerrit query \ status:open project:fabric branch:master \
| grep topic: | sort -u

	gerrit.hyperledger.org [https://gerrit.hyperledger.org] Is the current URL where the project is
hosted.

	status Indicates the topic’s current status: open , merged,
abandoned, draft, merge conflict.

	project Refers to the current name of the project, in this case
fabric.

	branch The topic is searched at this branch.

	topic The name of an specific topic, leave it blank to include them
all.

	sort Sorts the found topics, in this case by update (-u).

Downloading or Checking Out a Change

In the review UI, on the top right corner, the Download link
provides a list of commands and hyperlinks to checkout or download diffs
or files.

We recommend the use of the git review plugin. The steps to install
git review are beyond the scope of this document. Refer to the git
review
documentation [https://wiki.openstack.org/wiki/Documentation/HowTo/FirstTimers]
for the installation process.

To check out a specific change using Git, the following command usually
works:

git review -d CHANGEID

If you don’t have Git-review installed, the following commands will do
the same thing:

git fetch REMOTE refs/changes/NN/CHANGEIDNN/VERSION \ && git checkout FETCH_HEAD

For example, for the 4th version of change 2464, NN is the first two
digits (24):

git fetch REMOTE refs/changes/24/2464/4 \ && git checkout FETCH_HEAD

Using Draft Branches

You can use draft branches to add specific reviewers before you
publishing your change. The Draft Branches are pushed to
refs/drafts/master/TopicName

The next command ensures a local branch is created:

git checkout -b BRANCHNAME

The next command pushes your change to the drafts branch under
TopicName:

git push REMOTE HEAD:refs/drafts/master/TopicName

Using Sandbox Branches

You can create your own branches to develop features. The branches are
pushed to the refs/sandbox/USERNAME/BRANCHNAME location.

These commands ensure the branch is created in Gerrit’s server.

git checkout -b sandbox/USERNAME/BRANCHNAME
git push --set-upstream REMOTE HEAD:refs/heads/sandbox/USERNAME/BRANCHNAME

Usually, the process to create content is:

	develop the code,

	break the information into small commits,

	submit changes,

	apply feedback,

	rebase.

The next command pushes forcibly without review:

git push REMOTE sandbox/USERNAME/BRANCHNAME

You can also push forcibly with review:

git push REMOTE HEAD:ref/for/sandbox/USERNAME/BRANCHNAME

Updating the Version of a Change

During the review process, you might be asked to update your change. It
is possible to submit multiple versions of the same change. Each version
of the change is called a patch set.

Always maintain the Change-Id that was assigned. For example, there
is a list of commits, c0…c7, which were submitted as a topic
branch:

git log REMOTE/master..master

c0
...
c7

git push REMOTE HEAD:refs/for/master/SOMETOPIC

After you get reviewers’ feedback, there are changes in c3 and
c4 that must be fixed. If the fix requires rebasing, rebasing
changes the commit Ids, see the
rebasing [https://git-scm.com/book/en/v2/Git-Branching-Rebasing]
section for more information. However, you must keep the same Change-Id
and push the changes again:

git push REMOTE HEAD:refs/for/master/SOMETOPIC

This new push creates a patches revision, your local history is then
cleared. However you can still access the history of your changes in
Gerrit on the review UI section, for each change.

It is also permitted to add more commits when pushing new versions.

Rebasing

Rebasing is usually the last step before pushing changes to Gerrit; this
allows you to make the necessary Change-Ids. The Change-Ids must be
kept the same.

	squash: mixes two or more commits into a single one.

	reword: changes the commit message.

	edit: changes the commit content.

	reorder: allows you to interchange the order of the commits.

	rebase: stacks the commits on top of the master.

Rebasing During a Pull

Before pushing a rebase to your master, ensure that the history has a
consecutive order.

For example, your REMOTE/master has the list of commits from a0
to a4; Then, your changes c0…c7 are on top of a4; thus:

git log --oneline REMOTE/master..master

a0
a1
a2
a3
a4
c0
c1
...
c7

If REMOTE/master receives commits a5, a6 and a7. Pull
with a rebase as follows:

git pull --rebase REMOTE master

This pulls a5-a7 and re-apply c0-c7 on top of them:

$ git log --oneline REMOTE/master..master
a0
...
a7
c0
c1
...
c7

Getting Better Logs from Git

Use these commands to change the configuration of Git in order to
produce better logs:

git config log.abbrevCommit true

The command above sets the log to abbreviate the commits’ hash.

git config log.abbrev 5

The command above sets the abbreviation length to the last 5 characters
of the hash.

git config format.pretty oneline

The command above avoids the insertion of an unnecessary line before the
Author line.

To make these configuration changes specifically for the current Git
user, you must add the path option --global to config as
follows:

 Coding guidelines

Coding guidelines

Coding Golang

We code in Go™ and strictly follow the best
practices [https://golang.org/doc/effective_go.html] and will not
accept any deviations. You must run the following tools against your Go
code and fix all errors and warnings: -
golint [https://github.com/golang/lint] - go
vet [https://golang.org/cmd/vet/] -
goimports [https://godoc.org/golang.org/x/tools/cmd/goimports]

API Documentation

The API documentation for Hyperledger Fabric’s Golang APIs is available
in GoDoc [https://godoc.org/github.com/hyperledger/fabric].

Generating gRPC code

If you modify any .proto files, run the following command to
generate/update the respective .pb.go files.

cd $GOPATH/src/github.com/hyperledger/fabric
make protos

Adding or updating Go packages

Hyperledger Fabric uses Go Vendoring for package
management. This means that all required packages reside in the
$GOPATH/src/github.com/hyperledger/fabric/vendor folder. Go will use
packages in this folder instead of the GOPATH when the go install or
go build commands are executed. To manage the packages in the
vendor folder, we use
dep [https://golang.github.io/dep/].

 Glossary

Glossary

Terminology is important, so that all Hyperledger Fabric users and developers
agree on what we mean by each specific term. What is a smart contract for
example. The documentation will reference the glossary as needed, but feel free
to read the entire thing in one sitting if you like; it’s pretty enlightening!

Anchor Peer

Used by gossip to make sure peers in different organizations know about each other.

When a configuration block that contains an update to the anchor peers is committed,
peers reach out to the anchor peers and learn from them about all of the peers known
to the anchor peer(s). Once at least one peer from each organization has contacted an
anchor peer, the anchor peer learns about every peer in the channel. Since gossip
communication is constant, and because peers always ask to be told about the existence
of any peer they don’t know about, a common view of membership can be established for
a channel.

For example, let’s assume we have three organizations—A, B, C— in the channel
and a single anchor peer—peer0.orgC— defined for organization C. When peer1.orgA
(from organization A) contacts peer0.orgC, it will tell it about peer0.orgA. And
when at a later time peer1.orgB contacts peer0.orgC, the latter would tell the
former about peer0.orgA. From that point forward, organizations A and B would
start exchanging membership information directly without any assistance from
peer0.orgC.

As communication across organizations depends on gossip in order to work, there must
be at least one anchor peer defined in the channel configuration. It is strongly
recommended that every organization provides its own set of anchor peers for high
availability and redundancy.

ACL

An ACL, or Access Control List, associates access to specific peer
resources (such as system chaincode APIs or event services) to a Policy
(which specifies how many and what types of organizations or roles are
required). The ACL is part of a channel’s configuration. It is therefore
persisted in the channel’s configuration blocks, and can be updated using the
standard configuration update mechanism.

An ACL is formatted as a list of key-value pairs, where the key identifies
the resource whose access we wish to control, and the value identifies the
channel policy (group) that is allowed to access it. For example
lscc/GetDeploymentSpec: /Channel/Application/Readers
defines that the access to the life cycle chaincode GetDeploymentSpec API
(the resource) is accessible by identities which satisfy the
/Channel/Application/Readers policy.

A set of default ACLs is provided in the configtx.yaml file which is
used by configtxgen to build channel configurations. The defaults can be set
in the top level “Application” section of configtx.yaml or overridden
on a per profile basis in the “Profiles” section.

Block

[image: A Block]
Block B1 is linked to block B0. Block B2 is linked to block B1.

A block contains an ordered set of transactions. It is cryptographically linked
to the preceding block, and in turn it is linked to be subsequent blocks. The
first block in such a chain of blocks is called the genesis block. Blocks
are created by the ordering system, and validated by peers.

Chain

[image: Blockchain]
Blockchain B contains blocks 0, 1, 2.

The ledger’s chain is a transaction log structured as hash-linked blocks of
transactions. Peers receive blocks of transactions from the ordering service, mark
the block’s transactions as valid or invalid based on endorsement policies and
concurrency violations, and append the block to the hash chain on the peer’s
file system.

Chaincode

See Smart-Contract.

Channel

[image: A Channel]
Channel C connects application A1, peer P2 and ordering service O1.

A channel is a private blockchain overlay which allows for data
isolation and confidentiality. A channel-specific ledger is shared across the
peers in the channel, and transacting parties must be properly authenticated to
a channel in order to interact with it. Channels are defined by a
Configuration-Block.

Commit

Each Peer on a channel validates ordered blocks of
transactions and then commits (writes/appends) the blocks to its replica of the
channel Ledger. Peers also mark each transaction in each block
as valid or invalid.

Concurrency Control Version Check

Concurrency Control Version Check is a method of keeping state in sync across
peers on a channel. Peers execute transactions in parallel, and before commitment
to the ledger, peers check that the data read at execution time has not changed.
If the data read for the transaction has changed between execution time and
commitment time, then a Concurrency Control Version Check violation has
occurred, and the transaction is marked as invalid on the ledger and values
are not updated in the state database.

Configuration Block

Contains the configuration data defining members and policies for a system
chain (ordering service) or channel. Any configuration modifications to a
channel or overall network (e.g. a member leaving or joining) will result
in a new configuration block being appended to the appropriate chain. This
block will contain the contents of the genesis block, plus the delta.

Consensus

A broader term overarching the entire transactional flow, which serves to generate
an agreement on the order and to confirm the correctness of the set of transactions
constituting a block.

Consortium

A consortium is a collection of non-orderer organizations on the blockchain
network. These are the organizations that form and join channels and that own
peers. While a blockchain network can have multiple consortia, most blockchain
networks have a single consortium. At channel creation time, all organizations
added to the channel must be part of a consortium. However, an organization
that is not defined in a consortium may be added to an existing channel.

Current State

See World-State.

Dynamic Membership

Hyperledger Fabric supports the addition/removal of members, peers, and ordering service
nodes, without compromising the operationality of the overall network. Dynamic
membership is critical when business relationships adjust and entities need to
be added/removed for various reasons.

Endorsement

Refers to the process where specific peer nodes execute a chaincode transaction and return
a proposal response to the client application. The proposal response includes the
chaincode execution response message, results (read set and write set), and events,
as well as a signature to serve as proof of the peer’s chaincode execution.
Chaincode applications have corresponding endorsement policies, in which the endorsing
peers are specified.

Endorsement policy

Defines the peer nodes on a channel that must execute transactions attached to a
specific chaincode application, and the required combination of responses (endorsements).
A policy could require that a transaction be endorsed by a minimum number of
endorsing peers, a minimum percentage of endorsing peers, or by all endorsing
peers that are assigned to a specific chaincode application. Policies can be
curated based on the application and the desired level of resilience against
misbehavior (deliberate or not) by the endorsing peers. A transaction that is submitted
must satisfy the endorsement policy before being marked as valid by committing peers.
A distinct endorsement policy for install and instantiate transactions is also required.

Hyperledger Fabric CA

Hyperledger Fabric CA is the default Certificate Authority component, which
issues PKI-based certificates to network member organizations and their users.
The CA issues one root certificate (rootCert) to each member and one enrollment
certificate (ECert) to each authorized user.

Genesis Block

The configuration block that initializes the ordering service, or serves as the
first block on a chain.

Gossip Protocol

The gossip data dissemination protocol performs three functions:
1) manages peer discovery and channel membership;
2) disseminates ledger data across all peers on the channel;
3) syncs ledger state across all peers on the channel.
Refer to the Gossip topic for more details.

Initialize

A method to initialize a chaincode application.

Install

The process of placing a chaincode on a peer’s file system.

Instantiate

The process of starting and initializing a chaincode application on a specific channel.
After instantiation, peers that have the chaincode installed can accept chaincode
invocations.

Invoke

Used to call chaincode functions. A client application invokes chaincode by
sending a transaction proposal to a peer. The peer will execute the chaincode
and return an endorsed proposal response to the client application. The client
application will gather enough proposal responses to satisfy an endorsement policy,
and will then submit the transaction results for ordering, validation, and commit.
The client application may choose not to submit the transaction results. For example
if the invoke only queried the ledger, the client application typically would not
submit the read-only transaction, unless there is desire to log the read on the ledger
for audit purpose. The invoke includes a channel identifier, the chaincode function to
invoke, and an array of arguments.

Leading Peer

Each Organization can own multiple peers on each channel that
they subscribe to. One or more of these peers should serve as the leading peer
for the channel, in order to communicate with the network ordering service on
behalf of the organization. The ordering service delivers blocks to the
leading peer(s) on a channel, who then distribute them to other peers within
the same organization.

Ledger

[image: A Ledger]
A Ledger, ‘L’

A ledger consists of two distinct, though related, parts – a “blockchain” and
the “state database”, also known as “world state”. Unlike other ledgers,
blockchains are immutable – that is, once a block has been added to the
chain, it cannot be changed. In contrast, the “world state” is a database
containing the current value of the set of key-value pairs that have been added,
modified or deleted by the set of validated and committed transactions in the
blockchain.

It’s helpful to think of there being one logical ledger for each channel in
the network. In reality, each peer in a channel maintains its own copy of the
ledger – which is kept consistent with every other peer’s copy through a
process called consensus. The term Distributed Ledger Technology
(DLT) is often associated with this kind of ledger – one that is logically
singular, but has many identical copies distributed across a set of network
nodes (peers and the ordering service).

Member

See Organization.

Membership Service Provider

[image: An MSP]
An MSP, ‘ORG.MSP’

The Membership Service Provider (MSP) refers to an abstract component of the
system that provides credentials to clients, and peers for them to participate
in a Hyperledger Fabric network. Clients use these credentials to authenticate
their transactions, and peers use these credentials to authenticate transaction
processing results (endorsements). While strongly connected to the transaction
processing components of the systems, this interface aims to have membership
services components defined, in such a way that alternate implementations of
this can be smoothly plugged in without modifying the core of transaction
processing components of the system.

Membership Services

Membership Services authenticates, authorizes, and manages identities on a
permissioned blockchain network. The membership services code that runs in peers
and orderers both authenticates and authorizes blockchain operations. It is a
PKI-based implementation of the Membership Services Provider (MSP) abstraction.

Ordering Service

A defined collective of nodes that orders transactions into a block. The ordering
service exists independent of the peer processes and orders transactions on a
first-come-first-serve basis for all channel’s on the network. The ordering service is
designed to support pluggable implementations beyond the out-of-the-box SOLO and Kafka varieties.
The ordering service is a common binding for the overall network; it contains the cryptographic
identity material tied to each Member.

Organization

[image: An Organization]
An organization, ‘ORG’

Also known as “members”, organizations are invited to join the blockchain network
by a blockchain service provider. An organization is joined to a network by adding its
Membership Service Provider (MSP) to the network. The MSP defines how other members of the
network may verify that signatures (such as those over transactions) were generated by a valid
identity, issued by that organization. The particular access rights of identities within an MSP
are governed by policies which are also agreed upon when the organization is joined to the
network. An organization can be as large as a multi-national corporation or as small as an
individual. The transaction endpoint of an organization is a Peer. A collection of organizations
form a Consortium. While all of the organizations on a network are members, not every organization
will be part of a consortium.

Peer

[image: A Peer]
A peer, ‘P’

A network entity that maintains a ledger and runs chaincode containers in order to perform
read/write operations to the ledger. Peers are owned and maintained by members.

Policy

Policies are expressions composed of properties of digital identities, for
example: Org1.Peer OR Org2.Peer. They are used to restrict access to
resources on a blockchain network. For instance, they dictate who can read from
or write to a channel, or who can use a specific chaincode API via an ACL.
Policies may be defined in configtx.yaml prior to bootstrapping an ordering
service or creating a channel, or they can be specified when instantiating
chaincode on a channel. A default set of policies ship in the sample
configtx.yaml which will be appropriate for most networks.

Private Data

Confidential data that is stored in a private database on each authorized peer,
logically separate from the channel ledger data. Access to this data is
restricted to one or more organizations on a channel via a private data
collection definition. Unauthorized organizations will have a hash of the
private data on the channel ledger as evidence of the transaction data. Also,
for further privacy, hashes of the private data go through the
Ordering-Service, not the private data itself, so this keeps private data
confidential from Orderer.

Private Data Collection (Collection)

Used to manage confidential data that two or more organizations on a channel
want to keep private from other organizations on that channel. The collection
definition describes a subset of organizations on a channel entitled to store
a set of private data, which by extension implies that only these organizations
can transact with the private data.

Proposal

A request for endorsement that is aimed at specific peers on a channel. Each
proposal is either an instantiate or an invoke (read/write) request.

Query

A query is a chaincode invocation which reads the ledger current state but does
not write to the ledger. The chaincode function may query certain keys on the ledger,
or may query for a set of keys on the ledger. Since queries do not change ledger state,
the client application will typically not submit these read-only transactions for ordering,
validation, and commit. Although not typical, the client application can choose to
submit the read-only transaction for ordering, validation, and commit, for example if the
client wants auditable proof on the ledger chain that it had knowledge of specific ledger
state at a certain point in time.

Software Development Kit (SDK)

The Hyperledger Fabric client SDK provides a structured environment of libraries
for developers to write and test chaincode applications. The SDK is fully
configurable and extensible through a standard interface. Components, including
cryptographic algorithms for signatures, logging frameworks and state stores,
are easily swapped in and out of the SDK. The SDK provides APIs for transaction
processing, membership services, node traversal and event handling.

Currently, the two officially supported SDKs are for Node.js and Java, while three
more – Python, Go and REST – are not yet official but can still be downloaded
and tested.

Smart Contract

A smart contract is code – invoked by a client application external to the
blockchain network – that manages access and modifications to a set of
key-value pairs in the World State. In Hyperledger Fabric, smart
contracts are referred to as chaincode. Smart contract chaincode is installed
onto peer nodes and instantiated to one or more channels.

State Database

Current state data is stored in a state database for efficient reads and queries
from chaincode. Supported databases include levelDB and couchDB.

System Chain

Contains a configuration block defining the network at a system level. The
system chain lives within the ordering service, and similar to a channel, has
an initial configuration containing information such as: MSP information, policies,
and configuration details. Any change to the overall network (e.g. a new org
joining or a new ordering node being added) will result in a new configuration block
being added to the system chain.

The system chain can be thought of as the common binding for a channel or group
of channels. For instance, a collection of financial institutions may form a
consortium (represented through the system chain), and then proceed to create
channels relative to their aligned and varying business agendas.

Transaction

[image: A Transaction]
A transaction, ‘T’

Invoke or instantiate results that are submitted for ordering, validation, and commit.
Invokes are requests to read/write data from the ledger. Instantiate is a request to
start and initialize a chaincode on a channel. Application clients gather invoke or
instantiate responses from endorsing peers and package the results and endorsements
into a transaction that is submitted for ordering, validation, and commit.

World State

[image: Current State]
The World State, ‘W’

Also known as the “current state”, the world state is a component of the
HyperLedger Fabric Ledger. The world state represents the latest values
for all keys included in the chain transaction log. Chaincode executes
transaction proposals against world state data because the world state provides
direct access to the latest value of these keys rather than having to calculate
them by traversing the entire transaction log. The world state will change
every time the value of a key changes (for example, when the ownership of a
car – the “key” – is transferred from one owner to another – the
“value”) or when a new key is added (a car is created). As a result, the world
state is critical to a transaction flow, since the current state of a key-value
pair must be known before it can be changed. Peers commit the latest values to
the ledger world state for each valid transaction included in a processed block.

 Releases

Releases

Hyperledger Fabric releases are documented on the Fabric github page [https://github.com/hyperledger/fabric#releases].

 Still Have Questions?

Still Have Questions?

We try to maintain a comprehensive set of documentation for various
audiences. However, we realize that often there are questions that
remain unanswered. For any technical questions relating to Hyperledger
Fabric not answered here, please use
StackOverflow [https://stackoverflow.com/questions/tagged/hyperledger-fabric].
Another approach to getting your questions answered to send an email to
the mailing
list [https://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric]
(hyperledger-fabric@lists.hyperledger.org), or ask your questions on
RocketChat [https://chat.hyperledger.org/] (an alternative to Slack)
on the #fabric or #fabric-questions channel.

Note

Please, when asking about problems you are facing tell us
about the environment in which you are experiencing those
problems including the OS, which version of Docker you are
using, etc.

 Status

Status

Hyperledger Fabric is in the Active state. For more information on the history of this project see our wiki page [https://wiki.hyperledger.org/projects/fabric#history]. Information on what Active entails can be found in
the Hyperledger Project Lifecycle document [https://wiki.hyperledger.org/community/project-lifecycle].

 Index

Index

 Ledger

Ledger

The ledger is the sequenced, tamper-resistant record of all state transitions. State
transitions are a result of chaincode invocations (“transactions”) submitted by participating
parties. Each transaction results in a set of asset key-value pairs that are committed to the
ledger as creates, updates, or deletes.

The ledger is comprised of a blockchain (‘chain’) to store the immutable, sequenced record in
blocks, as well as a state database to maintain current state. There is one ledger per
channel. Each peer maintains a copy of the ledger for each channel of which they are a member.

Chain

The chain is a transaction log, structured as hash-linked blocks, where each block contains a
sequence of N transactions. The block header includes a hash of the block’s transactions, as
well as a hash of the prior block’s header. In this way, all transactions on the ledger are
sequenced and cryptographically linked together. In other words, it is not possible to tamper with
the ledger data, without breaking the hash links. The hash of the latest block represents every
transaction that has come before, making it possible to ensure that all peers are in a consistent
and trusted state.

The chain is stored on the peer file system (either local or attached storage), efficiently
supporting the append-only nature of the blockchain workload.

State Database

The ledger’s current state data represents the latest values for all keys ever included in the chain
transaction log. Since current state represents all latest key values known to the channel, it is
sometimes referred to as World State.

Chaincode invocations execute transactions against the current state data. To make these
chaincode interactions extremely efficient, the latest values of all keys are stored in a state
database. The state database is simply an indexed view into the chain’s transaction log, it can
therefore be regenerated from the chain at any time. The state database will automatically get
recovered (or generated if needed) upon peer startup, before transactions are accepted.

State database options include LevelDB and CouchDB. LevelDB is the default state database
embedded in the peer process and stores chaincode data as key-value pairs. CouchDB is an optional
alternative external state database that provides addition query support when your chaincode data
is modeled as JSON, permitting rich queries of the JSON content. See
CouchDB as the State Database for more information on CouchDB.

Transaction Flow

At a high level, the transaction flow consists of a transaction proposal sent by an application
client to specific endorsing peers. The endorsing peers verify the client signature, and execute
a chaincode function to simulate the transaction. The output is the chaincode results,
a set of key-value versions that were read in the chaincode (read set), and the set of keys/values
that were written in chaincode (write set). The proposal response gets sent back to the client
along with an endorsement signature.

The client assembles the endorsements into a transaction payload and broadcasts it to an ordering
service. The ordering service delivers ordered transactions as blocks to all peers on a channel.

Before committal, peers will validate the transactions. First, they will check the endorsement
policy to ensure that the correct allotment of the specified peers have signed the results, and they
will authenticate the signatures against the transaction payload.

Secondly, peers will perform a versioning check against the transaction read set, to ensure
data integrity and protect against threats such as double-spending. Hyperledger Fabric has concurrency
control whereby transactions execute in parallel (by endorsers) to increase throughput, and upon
commit (by all peers) each transaction is verified to ensure that no other transaction has modified
data it has read. In other words, it ensures that the data that was read during chaincode execution
has not changed since execution (endorsement) time, and therefore the execution results are still
valid and can be committed to the ledger state database. If the data that was read has been changed
by another transaction, then the transaction in the block is marked as invalid and is not applied to
the ledger state database. The client application is alerted, and can handle the error or retry as
appropriate.

See the Transaction Flow, Read-Write set semantics, and CouchDB as the State Database topics for a deeper
dive on transaction structure, concurrency control, and the state DB.

 MSP Identity Validity Rules

MSP Identity Validity Rules

As mentioned in MSP description, MSPs may be configured with a set of root
certificate authorities (rCAs), and optionally a set of intermediate
certificate authorities (iCAs). An MSP’s iCA certificates must be signed
by exactly one of the MSP’s rCAs or iCAs.
An MSP’s configuration may contain a certificate revocation list, or CRL.
If any of the MSP’s root certificate authorities are listed in the CRL,
then the MSP’s configuration must not include any iCA that is also included
in the CRL, or the MSP setup will fail.

Each rCA is the root of a certification tree. That is,
each rCA may be the signer of the certificates of one or more iCAs, and these
iCAs will be the signer either of other iCAs or of user-certificates.
Here are a few examples:

 rCA1 rCA2 rCA3
 / \ | |
 iCA1 iCA2 iCA3 id
 / \ | |
iCA11 iCA12 id id
 |
id

The default MPS implementation accepts as valid identities X.509 certificates
signed by the appropriate authorities. In the diagram above,
only certificates signed by iCA11, iCA12, iCA2, iCA3, and rCA3
will be considered valid. Certificates signed by internal nodes will be rejected.

Notice that the validity of a certificate is also affected, in a similar
way, if one or more organizational units are specified in the MSP configuration.
Recall that an organizational unit is specified in an MSP configuration
as a pair of two values, say (parent-cert, ou-string) representing the
certificate authority that certifies that organizational unit, and the
actual organizational unit identifier, respectively.
If a certificate C is signed by an iCA or rCA
for which an organizational unit has been specified in the MSP configuration,
then C is considered valid if, among other requirements, it includes
ou-string as part of its OU field.

 Using dev mode

Using dev mode

Normally chaincodes are started and maintained by peer. However in “dev”
mode, chaincode is built and started by the user. This mode is useful
during chaincode development phase for rapid code/build/run/debug cycle
turnaround.

To keep this a realistic “dev” environment, we are going to keep it “out
of the box” - with one exception: we create two channels to show how the
single running instance can be accessed from multiple channels.

	Note: Make sure peer is not using TLS when running in dev mode.

All commands are executed from the fabric folder.

Start the orderer

ORDERER_GENERAL_GENESISPROFILE=SampleDevModeSolo orderer

The above starts the orderer in the local environment the orderer
configuration as defined in sampleconfig/orderer.yaml with the
genesisprofile directive overridden to use the SampleDevModeSolo profile
for bootstrapping the network.

Start the peer in dev mode

peer node start --peer-chaincodedev=true

The above command starts the peer using the default sampleconfig/msp
MSP. The --peer-chaincodedev=true puts it in “dev” mode.

Create channels ch1 and ch2

Generate the transactions for creating the channels using configtxgen tool.

configtxgen -channelID ch1 -outputCreateChannelTx ch1.tx -profile SampleSingleMSPChannel
configtxgen -channelID ch2 -outputCreateChannelTx ch2.tx -profile SampleSingleMSPChannel

where SampleSingleMSPChannel is a channel profile in sampleconfig/configtx.yaml

peer channel create -o 127.0.0.1:7050 -c ch1 -f ch1.tx
peer channel create -o 127.0.0.1:7050 -c ch2 -f ch2.tx

Above assumes orderer is reachable on 127.0.0.1:7050. The orderer
now is tracking channels ch1 and ch2 for the default configuration.

peer channel join -b ch1.block
peer channel join -b ch2.block

The peer has now joined channels ch1 and ch2.

Start the chaincode

cd examples/chaincode/go/chaincode_example02/cmd
go build -o example02
CORE_CHAINCODE_LOGLEVEL=debug CORE_PEER_ADDRESS=127.0.0.1:7052 CORE_CHAINCODE_ID_NAME=mycc:0 ./example02

The chaincode is started with peer and chaincode logs indicating successful registration with the peer.
Note that at this stage the chaincode is not associated with any channel. This is done in subsequent steps
using the instantiate command.

Use the chaincode

Even though you are in --peer-chaincodedev mode, you still have to install the chaincode so the life-cycle system
chaincode can go through its checks normally. This requirement may be removed in future when in --peer-chaincodedev
mode.

peer chaincode install -n mycc -v 0 -p github.com/hyperledger/fabric/examples/chaincode/go/example02/cmd

Once installed, the chaincode is ready to be instantiated.

peer chaincode instantiate -n mycc -v 0 -c '{"Args":["init","a","100","b","200"]}' -o 127.0.0.1:7050 -C ch1

peer chaincode instantiate -n mycc -v 0 -c '{"Args":["init","a","100","b","200"]}' -o 127.0.0.1:7050 -C ch2

The above instantiates the chaincode with the two channels. With default
settings it might take a few seconds for the transactions to be
committed.

peer chaincode invoke -n mycc -c '{"Args":["invoke","a","b","10"]}' -o 127.0.0.1:7050 -C ch1
peer chaincode invoke -n mycc -c '{"Args":["invoke","a","b","10"]}' -o 127.0.0.1:7050 -C ch2

The above invoke the chaincode over the two channels.

Finally, query the chaincode on the two channels.

peer chaincode query -n mycc -c '{"Args":["query","a"]}' -o 127.0.0.1:7050 -C ch1
peer chaincode query -n mycc -c '{"Args":["query","a"]}' -o 127.0.0.1:7050 -C ch2

 Policies in Hyperledger Fabric

Policies in Hyperledger Fabric

Configuration for a Hyperledger Fabric blockchain network is managed by
policies. These policies generally reside in the channel configuration.
The primary purpose of this document is to explain how policies are
defined in and interact with the channel configuration. However,
policies may also be specified in some other places, such as chaincodes,
so this information may be of interest outside the scope of channel
configuration.

What is a Policy?

At its most basic level, a policy is a function which accepts as input a
set of signed data and evaluates successfully, or returns an error
because some aspect of the signed data did not satisfy the policy.

More concretely, policies test whether the signer or signers of some
data meet some condition required for those signatures to be considered
‘valid’. This is useful for determining that the correct parties have
agreed to a transaction, or change.

For example a policy may define any of the following: * Administrators
from 2 out 5 possible different organizations must sign. * Any member
from any organization must sign. * Two specific certificates must both
sign.

Of course these are only examples, and other more powerful rules can be
constructed.

Policy Types

There are presently two different types of policies implemented:

	SignaturePolicy: This policy type is the most powerful, and
specifies the policy as a combination of evaluation rules for MSP
Principals. It supports arbitrary combinations of AND, OR, and
NOutOf, allowing the construction of extremely powerful rules like:
“An admin of org A and 2 other admins, or 11 of 20 org admins”.

	ImplicitMetaPolicy: This policy type is less flexible than
SignaturePolicy, and is only valid in the context of configuration.
It aggregates the result of evaluating policies deeper in the
configuration hierarchy, which are ultimately defined by
SignaturePolicies. It supports good default rules like “A majority of
the organization admin policies”.

Policies are encoded in a common.Policy message as defined in
fabric/protos/common/policies.proto. They are defined by the
following message:

message Policy {
 enum PolicyType {
 UNKNOWN = 0; // Reserved to check for proper initialization
 SIGNATURE = 1;
 MSP = 2;
 IMPLICIT_META = 3;
 }
 int32 type = 1; // For outside implementors, consider the first 1000 types reserved, otherwise one of PolicyType
 bytes policy = 2;
}

To encode the policy, simply pick the policy type of either
SIGNATURE or IMPLICIT_META, set it to the type field, and
marshal the corresponding policy implementation proto to policy.

Configuration and Policies

The channel configuration is expressed as a hierarchy of configuration
groups, each of which has a set of values and policies associated with
them. For a validly configured application channel with two application
organizations and one ordering organization, the configuration looks
minimally as follows:

Channel:
 Policies:
 Readers
 Writers
 Admins
 Groups:
 Orderer:
 Policies:
 Readers
 Writers
 Admins
 Groups:
 OrdereringOrganization1:
 Policies:
 Readers
 Writers
 Admins
 Application:
 Policies:
 Readers
-----------> Writers
 Admins
 Groups:
 ApplicationOrganization1:
 Policies:
 Readers
 Writers
 Admins
 ApplicationOrganization2:
 Policies:
 Readers
 Writers
 Admins

Consider the Writers policy referred to with the -------> mark in
the above example. This policy may be referred to by the shorthand
notation /Channel/Application/Writers. Note that the elements
resembling directory components are group names, while the last
component resembling a file basename is the policy name.

Different components of the system will refer to these policy names. For
instance, to call Deliver on the orderer, the signature on the
request must satisfy the /Channel/Readers policy. However, to gossip
a block to a peer will require that the /Channel/Application/Readers
policy be satisfied.

By setting these different policies, the system can be configured with
rich access controls.

Constructing a SignaturePolicy

As with all policies, the SignaturePolicy is expressed as protobuf.

message SignaturePolicyEnvelope {
 int32 version = 1;
 SignaturePolicy policy = 2;
 repeated MSPPrincipal identities = 3;
}

message SignaturePolicy {
 message NOutOf {
 int32 N = 1;
 repeated SignaturePolicy policies = 2;
 }
 oneof Type {
 int32 signed_by = 1;
 NOutOf n_out_of = 2;
 }
}

The outer SignaturePolicyEnvelope defines a version (currently only
0 is supported), a set of identities expressed as
MSPPrincipals , and a policy which defines the policy rule,
referencing the identities by index. For more details on how to
specify MSP Principals, see the MSP Principals section.

The SignaturePolicy is a recursive data structure which either
represents a single signature requirement from a specific
MSPPrincipal, or a collection of SignaturePolicys, requiring
that N of them are satisfied.

For example:

SignaturePolicyEnvelope{
 version: 0,
 policy: SignaturePolicy{
 n_out_of: NOutOf{
 N: 2,
 policies: [
 SignaturePolicy{ signed_by: 0 },
 SignaturePolicy{ signed_by: 1 },
],
 },
 },
 identities: [mspP1, mspP2],
}

This defines a signature policy over MSP Principals mspP1 and
mspP2. It requires both that there is a signature satisfying
mspP1 and a signature satisfying mspP2.

As another more complex example:

SignaturePolicyEnvelope{
 version: 0,
 policy: SignaturePolicy{
 n_out_of: NOutOf{
 N: 2,
 policies: [
 SignaturePolicy{ signed_by: 0 },
 SignaturePolicy{
 n_out_of: NOutOf{
 N: 1,
 policies: [
 SignaturePolicy{ signed_by: 1 },
 SignaturePolicy{ signed_by: 2 },
],
 },
 },
],
 },
 },
 identities: [mspP1, mspP2, mspP3],
}

This defines a signature policy over MSP Principals mspP1,
mspP2, and mspP3. It requires one signature which satisfies
mspP0, and another signature which either satisfies mspP2 or
mspP3.

Hopefully it is clear that complicated and relatively arbitrary logic
may be expressed using the SignaturePolicy policy type. For code which
constructs signature policies, consult
fabric/common/cauthdsl/cauthdsl_builder.go.

Limitations: When evaluating a signature policy against a signature set,
signatures are ‘consumed’, in the order in which they appear, regardless of
whether they satisfy multiple policy principals.

For example. Consider a policy which requires

2 of [org1.Member, org1.Admin]

The naive intent of this policy is to require that both an admin, and a member
sign. For the signature set

[org1.MemberSignature, org1.AdminSignature]

the policy evaluates to true, just as expected. However, consider the
signature set

[org1.AdminSignature, org1.MemberSignature]

This signature set does not satisfy the policy. This failure is because when
org1.AdminSignature satisfies the org1.Member role it is considered
‘consumed’ by the org1.Member requirement. Because the org1.Admin
principal cannot be satisfied by the org1.MemberSignature, the policy
evaluates to false.

To avoid this pitfall, identities should be specified from most privileged to
least privileged in the policy identities specification, and signatures should
be ordered from least privileged to most privileged in the signature set.

MSP Principals

The MSP Principal is a generalized notion of cryptographic identity.
Although the MSP framework is designed to work with types of
cryptography other than X.509, for the purposes of this document, the
discussion will assume that the underlying MSP implementation is the
default MSP type, based on X.509 cryptography.

An MSP Principal is defined in fabric/protos/msp_principal.proto as
follows:

message MSPPrincipal {

 enum Classification {
 ROLE = 0;
 ORGANIZATION_UNIT = 1;
 IDENTITY = 2;
 }

 Classification principal_classification = 1;

 bytes principal = 2;
}

The principal_classification must be set to either ROLE or
IDENTITY. The ORGANIZATIONAL_UNIT is at the time of this writing
not implemented.

In the case of IDENTITY the principal field is set to the bytes
of a certificate literal.

However, more commonly the ROLE type is used, as it allows the
principal to match many different certs issued by the MSP’s certificate
authority.

In the case of ROLE, the principal is a marshaled MSPRole
message defined as follows:

message MSPRole {
 string msp_identifier = 1;

 enum MSPRoleType {
 MEMBER = 0; // Represents an MSP Member
 ADMIN = 1; // Represents an MSP Admin
 CLIENT = 2; // Represents an MSP Client
 PEER = 3; // Represents an MSP Peer
 }

 MSPRoleType role = 2;
}

The msp_identifier is set to the ID of the MSP (as defined by the
MSPConfig proto in the channel configuration for an org) which will
evaluate the signature, and the Role is set to either MEMBER,
ADMIN, CLIENT or PEER. In particular:

	MEMBER matches any certificate issued by the MSP.

	ADMIN matches certificates enumerated as admin in the MSP definition.

	CLIENT (PEER) matches certificates that carry the client (peer) Organizational unit.

(see MSP Documentation [http://hyperledger-fabric.readthedocs.io/en/latest/msp.html])

Constructing an ImplicitMetaPolicy

The ImplicitMetaPolicy is only validly defined in the context of
channel configuration. It is Implicit because it is constructed
implicitly based on the current configuration, and it is Meta
because its evaluation is not against MSP principals, but rather against
other policies. It is defined in fabric/protos/common/policies.proto
as follows:

message ImplicitMetaPolicy {
 enum Rule {
 ANY = 0; // Requires any of the sub-policies be satisfied, if no sub-policies exist, always returns true
 ALL = 1; // Requires all of the sub-policies be satisfied
 MAJORITY = 2; // Requires a strict majority (greater than half) of the sub-policies be satisfied
 }
 string sub_policy = 1;
 Rule rule = 2;
}

For example, consider a policy defined at /Channel/Readers as

ImplicitMetaPolicy{
 rule: ANY,
 sub_policy: "foo",
}

This policy will implicitly select the sub-groups of /Channel, in
this case, Application and Orderer, and retrieve the policy of
name foo, to give the policies /Channel/Application/foo and
/Channel/Orderer/foo. Then, when the policy is evaluated, it will
check to see if ANY of those two policies evaluate without error.
Had the rule been ALL it would require both.

Consider another policy defined at /Channel/Application/Writers
where there are 3 application orgs defined, OrgA, OrgB, and
OrgC.

ImplicitMetaPolicy{
 rule: MAJORITY,
 sub_policy: "bar",
}

In this case, the policies collected would be
/Channel/Application/OrgA/bar, /Channel/Application/OrgB/bar,
and /Channel/Application/OrgC/bar. Because the rule requires a
MAJORITY, this policy will require that 2 of the three
organization’s bar policies are satisfied.

Policy Defaults

The configtxgen tool creates default policies as follows:

/Channel/Readers : ImplicitMetaPolicy for ANY of /Channel/*/Readers
/Channel/Writers : ImplicitMetaPolicy for ANY of /Channel/*/Writers
/Channel/Admins : ImplicitMetaPolicy for MAJORITY of /Channel/*/Admins

/Channel/Application/Readers : ImplicitMetaPolicy for ANY of /Channel/Application/*/Readers
/Channel/Application/Writers : ImplicitMetaPolicy for ANY of /Channel/Application/*/Writers
/Channel/Application/Admins : ImplicitMetaPolicy for MAJORITY of /Channel/Application/*/Admins

/Channel/Orderer/Readers : ImplicitMetaPolicy for ANY of /Channel/Orderer/*/Readers
/Channel/Orderer/Writers : ImplicitMetaPolicy for ANY of /Channel/Orderer/*/Writers
/Channel/Orderer/Admins : ImplicitMetaPolicy for MAJORITY of /Channel/Orderer/*/Admins

Here * represents either Orderer, or Application, and this is repeated for each org
/Channel/*/Org/Readers : SignaturePolicy for 1 of MSP Principal Org Member
/Channel/*/Org/Writers : SignaturePolicy for 1 of MSP Principal Org Member
/Channel/*/Org/Admins : SignaturePolicy for 1 of MSP Principal Org Admin

Note that policies higher in the hierarchy are all defined as
ImplicitMetaPolicys while leaf nodes necessarily are defined as
SignaturePolicys. This set of defaults works nicely because the
ImplicitMetaPolicies do not need to be redefined as the number of
organizations change, and the individual organizations may pick their
own rules and thresholds for what is means to be a Reader, Writer, and
Admin.

 Security Model

Security Model

[WIP]

Hyperledger Fabric allows for different organizations and participants
in a common network to utilize their own certificate authority, and as a
byproduct, implement varying cryptographic algorithms for
signing/verifying/identity attestation. This is done through an MSP
process running on both the ordering service and channel levels.

Membership service provider (MSP): A set of cryptographic mechanisms and
protocols for issuing and validating certificates and identities
throughout the blockchain network. Identities issued in the scope of a
membership service provider can be evaluated within that membership
service provider’s rules validation policies.

 Chaincode

Chaincode

[WIP]

The widely-used term, smart contract, is referred to as “chaincode” in
Hyperledger Fabric.

Self-executing logic that encodes the rules for specific types of
network transactions. Chaincode (currently written in Go) is
installed and instantiated onto a channel’s peers by an appropriately
authorized member. End users then invoke chaincode through a client-side
application that interfaces with a network peer. Chaincode runs network
transactions, which if validated, are appended to the shared ledger and
modify world state.

 Submitting your first change request (CR)

Submitting your first change request (CR)

We are using
Gerrit [https://gerrit.hyperledger.org/r/#/admin/projects/fabric] to
manage code contributions and reviews. If you are unfamiliar with Gerrit,
please review this document before proceeding.

Note

Gerrit has a reputation of having a clunky user experience. However,
the Google team has been working on improving this, and they have
added a “New UI” option that will allow you to work with their new
and much improved UX. See the link at the bottom of the Fabric
Gerrit page, linked above.

[image: _images/NewGerritUI.png]

Setting up your SSH key

Before you can submit a change set for review, you will need to register your
public SSH key. Login to
Gerrit [https://gerrit.hyperledger.org] with your
LFID, and click on your name in the upper
right-hand corner of your browser window and then click ‘Settings’.

[image: _images/Settings.png]
In the left-hand margin, you should see a link for ‘SSH Public Keys’.

[image: _images/SSHKeys.png]
Press the Add Key... button

[image: _images/AddSSH1.png]
Copy-n-paste your public SSH key [https://help.github.com/articles/generating-an-ssh-key/] into
the window and press ‘Add’.

[image: _images/AddSSH2.png]

Sandbox

We have created the
lf-sandbox project [https://gerrit.hyperledger.org/r/#/admin/projects/lf-sandbox,branches],
to allow you to familiarize yourself with using Gerrit. We’ll use that project
in our tutorial for submitting your first CR.

Clone your project

First step is to clone your project to your laptop or development server.
Navigate your browser to the Gerrit Projects [https://gerrit.hyperledger.org/r/#/admin/projects/]
page and scroll down to the lf-sandbox project.

[image: _images/lf-sandbox.png]
The project page will provide you with the full git clone command needed to
clone the project. Select the clone with commit-msg hook option and copy the
command to the clipboard.

[image: _images/GitCloneCmd.png]
Now, in a terminal window on your laptop, paste and run the command. e.g.

git clone ssh://foobar@gerrit.hyperledger.org:29418/lf-sandbox && scp -p -P 29418 foobar@gerrit.hyperledger.org:hooks/commit-msg lf-sandbox/.git/hooks/

Checkout a development branch

Now that you have cloned the repository, change directory to the lf-sandbox
directory. Now let’s make a change. First, let’s create a new branch in which
to work:

git checkout -b <newbranchname>

Now let’s modify a file. Pick a file, any file and make a change. You can also
add a new file or delete an existing file. Don’t be shy, this is just a
sandbox.

Committing your change

Once you’ve made your change, check to see what the current status is.

git status
On branch foo
Untracked files:
 (use "git add <file>..." to include in what will be committed)

 README.md

nothing added to commit but untracked files present (use "git add" to track)

Now let’s add the changed file to the list of files tracked by git.

git add .

Now let’s commit that change.

git commit -s

This will open up an editing session using your favorite command-line editor
where you will fill in a commit message. Add a commit message.

Note

Note that for the Hyperledger Fabric project(s) we would have a
title line that includes the JIRA number of the issue to which the
change request applies. Please review the
guidelines for change requests.

FAB-1234

I made a change

Signed-off-by: John Doe <john.doe@example.com>

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch foo
Changes to be committed:
new file: README.md
#

Submitting your change request

Once you have saved the commit message, you can push the change request
to Gerrit. Here, we have a couple of options.

The first option is to use the full git syntax.

git push origin HEAD:refs/for/master

This will yield results something like the following:

Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 340 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1)
remote: Processing changes: new: 1, refs: 1, done
remote: Missing issue-id in commit message
remote: Commit 539d9a1fe036f332db87d37b49cea705bdf6e432 not associated to any issue
remote:
remote: Hint: insert one or more issue-id anywhere in the commit message.
remote: Issue-ids are strings matching ([A-Z][A-Z0-9]{1,9}-\d+)
remote: and are pointing to existing tickets on its-jira Issue-Tracker
remote:
remote: New Changes:
remote: https://gerrit.hyperledger.org/r/16157 I made a change
remote:
To ssh://gerrit.hyperledger.org:29418/lf-sandbox
 * [new branch] HEAD -> refs/for/master

The second option,
git review [https://www.mediawiki.org/wiki/Gerrit/git-review] simplifies
things a bit. The link above will provide info on how to install and setup
git-review.

Once installed and configured, you can submit your change with git review.

$ git review

Check that your change request is validated by the CI process

To ensure stability of the code and limit possible regressions, we use
a Continuous Integration (CI) process based on Jenkins which triggers
a build on several platforms and runs tests against every change
request being submitted. It is your responsibility to check that your
CR passes these tests. No CR will ever be merged if it fails the
tests and you shouldn’t expect anybody to pay attention to your CRs
until they pass the CI tests.

To check on the status of the CI process, simply look at your CR on
Gerrit, following the URL that was given to you as the result of the
push in the previous step. The History section at the bottom of the
page will display a set of actions taken by “Hyperledger Jobbuilder”
corresponding to the CI process being executed.

Upon completion, “Hyperledger Jobbuilder” will add to the CR a +1
vote if successful and a -1 vote otherwise.

In case of failure, explore the logs linked from the CR History. If
you spot a problem with your CR and want to modify it, proceed to the
following section.

If you see nothing wrong with your CR it might be that the CI process
simply failed for some reason unrelated to your change. In that case
you may want to restart the CI process by posting a reply to your CR
with the simple content “reverify”. Check the CI management page [https://github.com/hyperledger/ci-management/blob/master/docs/source/fabric_ci_process.rst]
for additional information and options on this.

Modifying your change request

If you need to update your patch, say to address a review comment, or to fix
something affecting CI, you can commit revised changes with

git commit --amend

and then repeat the git review or full syntax as before. Then
check the results of the CI process that gets triggered as a result.

Should you have further questions, please don’t hesitate to ask on the mailing
list or rocket chat.

 Understanding the Fabcar Network

Understanding the Fabcar Network

Fabcar was designed to leverage a network stripped down to only the components
necessary to run an application. And even with that level of simplification,
the ./startFabric.sh script takes care of the installation and
configuration not baked into the network itself.

Obscuring the underpinnings of the network to that degree is fine for the
majority of application developers. They don’t necessarily need to know how
network components actually work in detail in order to create their app.

But for those who do want to know about the fun stuff going on under the covers,
let’s go through how applications connect to the network and
how they propose queries and updates on a more granular level, as well
as point out the differences between a small scale test network like Fabcar and
how apps will usually end up working in the real world.

We’ll also point you to where you can get detailed information about how Fabric
networks are created and how a transaction flow works beyond the scope of the
role an application plays.

Components of the Fabcar Network

Fabcar uses the “basic-network” sample as its limited development network. It
consists of a single peer node configured to use CouchDB as the state database,
a single “solo” ordering node, a certificate authority (CA) and a CLI container
for executing commands.

For detailed information on these components and what they do, refer to
Building Your First Network.

These components are bootstrapped by the ./startFabric.sh script, which
also:

	creates a channel and joins the peer to the channel

	installs the fabcar smart contract onto the peer’s file system and instantiates it on the channel (instantiate starts a container)

	calls the initLedger function to populate the channel ledger with 10 unique cars

These operations would typically be done by an organizational or peer admin.
The script uses the CLI to execute these commands, however there is support in
the SDK as well. Refer to the Hyperledger Fabric Node SDK repo [https://github.com/hyperledger/fabric-sdk-node] for example scripts.

How an Application Interacts with the Network

Applications use APIs to invoke smart contracts. These smart contracts are
hosted in the network and identified by name and version. For example, our
chaincode container is titled - dev-peer0.org1.example.com-fabcar-1.0 -
where the name is fabcar, the version is 1.0, and the peer it is running
against is dev-peer0.org1.example.com.

APIs are accessible with an SDK. For purposes of this exercise, we’re using the
Hyperledger Fabric Node SDK [https://fabric-sdk-node.github.io/] though
there is also a Java SDK and CLI that can be used to drive transactions.
SDKs encapsulate all access to the ledger by allowing an application to
communicate with smart contracts, run queries, or receive ledger updates. These APIs use
several different network addresses and are run with a set of input parameters.

Smart contracts are installed by a peer administrator and then instantiated on a
channel by an identity fulfilling the chaincode’s instantiation policy, which by
default is comprised of channel administrators. The instantiation of
the smart contract follows the same transaction flow as a normal invocation - endorse,
order, validate, commit - and is a prerequisite to interacting with a chaincode
container. The script that launched our simplified Fabcar test network took care
of the installation and instantiation for us.

Query

Queries are the simplest kind of invocation: a call and response. The most common query
will interrogate the state database for the current value associated
with a key (GetState). However, the chaincode shim interface [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#ChaincodeStub]
also allows for different types of Get calls (e.g. GetHistoryForKey or GetCreator).

In our example, the peer holds a hash chain of all transactions and maintains
chaincode state through use of a state database, which in our case is a CouchDB container. CouchDB
provides the added functionality of rich queries, contingent upon the chaincode data (key/val pairs)
being modeled as JSON. When we call the GetState API in our smart contract, we
are retrieving the JSON value associated with a car from the CouchDB state database.

Queries are constructed by identifying a peer, a chaincode, a channel and a set of
inputs (e.g. the key) for an available chaincode function and then utilizing the
chain.queryByChaincode API to send the query to the peer. The corresponding
value to the supplied inputs is returned to the application client as a response.

Updates

Ledger updates start with an application generating a transaction proposal. As with
query, a request is constructed to identify a peer, chaincode, channel, function, and
set of inputs for the transaction. The program then calls the
channel.SendTransactionProposal API to send the transaction proposal to the
peer(s) for endorsement.

The network (i.e. the endorsing peer(s)) returns a proposal response, which the
application uses to build and sign a transaction request. This request is sent
to the ordering service by calling the channel.sendTransaction API. The
ordering service bundles the transaction into a block and delivers it to all
peers on a channel for validation (the Fabcar network has only one peer and one channel).

Finally the application uses the Peer channel-based event services to register for events
associated with a specific transaction ID so that the application can be notified
about the fate of a transaction (i.e. valid or invalid).

For More Information

To learn more about how a transaction flow works beyond the scope of an
application, check out Transaction Flow.

To get started developing chaincode, read Chaincode for Developers.

For more information on how endorsement policies work, check out
Endorsement policies.

For a deeper dive into the architecture of Hyperledger Fabric, check out
Architecture Origins.

 Install Xcode

Install Xcode

If your Mac OS is running Mojave, you will need to install Xcode.

	Install Xcode from this website [https://developer.apple.com/xcode/].

	Accept the Terms and Conditions.

	Ensure that the Xcode app is in the /Applications directory. Do not put it
in /Users/{user}/Applications).

	Point xcode-select to the Xcode app Developer directory using the
following command:

 sudo xcode-select -s /Applications/Xcode.app/Contents/Developer

Note: Make sure your Xcode application path is correct.

	Xcode: /Applications/Xcode.app/Contents/Developer

	Xcode-beta: /Applications/Xcode-beta.app/Contents/Developer

_images/blocks-3.png
sub
client

PeerLedger Validated ledger
block seqNo=blckNo block

blobT [seqNO) b ckNo

DIODT [11
\blob2 r— X2 Genesis block
DIOD3 | 3¢ -

Validated Ledger (VL)
PeerlLedger

peer
Verify endorsement, readset

Block O] 1f OK then apoly uriteset
forming Else invalid transaction (blob)

ordering service

orderers

_images/commercial_paper.diagram.1.png
MagnetoCorp

Isabella

PaperNet

Balaji

DigiBank

_images/Smart_Contract.png
written to
the ledger

updating
transaction

V —
V —
Vv —_—

* Smart contract

_images/basic_network.png
i
Il

_images/commercial_paper.diagram.10.png
00 Ppapercontract.js — contract

EXPLORER Js papercontractjs X @ m -
2

4 OPEN EDITORS

2 e :
X J5 papercontractjs b g |, pofine commercial paper smart contract by extending Fabric Contry
4 CONTRACT 29 x 5
> ledger-api 30w -
2 IS 31 class CommercialPaperContract extends Contract {
Js paperjs 2
- 33 constructor() {
papercontract.js 34 // Unique namespace when multiple contracts per chaincode f i
Js paperlist.js 35 super('org.papernet.commercialpaper');
> test 36 ¥
& editorconfig el
- 38 %
© eslintignore 39 * Define a custom context for commercial paper
@ eslintrejs e «
@3 npmignore 41 createContext() {
35 indexjs a2 return new CommercialPaperContext();
: a3 }
{} package.json -
45 Ik
46 * Instantiate to perforn any setup of the ledger that might be
47 * @paran {Context} ctx the transaction context
48 */
49 async instantiate(ctx) {
50 // No inplementation required with this example
51 // It could be where data migration is performed, if necess:
52 console. Log('Instantiate the contract’
53 }
54
55 Ik
- 56 * Tssue comercial paper

P issue-fab-12322* & ©0A 0 Ln51,Col 54 Spaces:4 UTF-8 LF JavaScript ©[off] @ A

_images/ledger.diagram.4.png
(block number) 2

H2

Block header

C H 2 (current block hash)

Block number

CH2

Hash of current block
transactions

P H 1 (previous block hash)

PH1

Copy of hash from
previous block

V2 is detailed view of H2

_images/commercial_paper.diagram.11.png
EXPLORER

4 OPEN EDITORS

X s issue.js

4 APPLICATION

» node_modules

(Ml @ .eslintrcjs
Js addToWallet.js

issue.js

() package-lockjson
{) package.json

» OUTLINE
issue-fab-12322*

@ Q0A0

35 issue.js
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79
20

issue.js —application

x <«

// Connect to gateway using application specified parameters
console. log('Connect to Fabric gateway.');

await gateway.connect(connectionProfile, connectionOptions);

7/ Access PaperNet network
console. log('Use network channel: mychannel.'

const network = await gateway.getNetwork('mychannel');

// Get addressability to commercial paper contract
console. log('Use org.papernet.commercialpaper smart contract.')

const contract = await network.getContract("papercontract', ‘or(

// issue commercial paper
console. log('Submit commercial paper issue transaction.

const issueResponse = await contract.submitTransaction('issue’,

1/ process response
console. log('Process issue transaction response.');

let paper = CommercialPaper. fromBuffer (issueResponse);

console. log(" ${paper. issuer} commercial paper : ${paper.paperNui
console. log('Transaction complete.');

catch (error) {

S TR PO L T A P S PP S PP LAWY

Ln1,Col1 Spaces:2 UTF-8 LF JavaScript ©[of] @ A

_images/ledger.diagram.6.png
key=CAR3, value={color: yellow, make: Volkswagen, model: Passat, owner: Max} version=0
key=CAR?, value={color: green, make: Hyundai, model: Tucson, owner: Jin Soo} version=0
key=CARL, value={color: red, make: Ford, model: Mustang, owner: Brad} version=0
key=CARO, value={color: blue, make: Toyota, model: Prius, owner: Tomoko} version=0

(genesis)

_images/ledger.diagram.5.png
H4

T4 Transaction
H4 Header
sS4 Signature
P4 Proposal
R4 Response
E4 Endorsements

V4 is detailed view of T4

_images/membership.diagram.2.png
Local MSP
ORG2.MSP

Local MSP
ORGLMSP

ORG2.MSP

ORG1.MSP
Global MSPs

ORGL.MSP
Global MSP

Blockchain Network

Channel

Membership
Services Provider

Peer

Orderer

28800

Certificate Authority

_images/lf-sandbox.png
fabric-test
fabric-test-resources
homebrew-fabric

4 # hyperledger
issue-bot /
If-sandbox
slack-archive

Hyperledger Fabric Tests

Fabric Test Resources

Hyperledger Homebrew Tap

This is a placeholder project. Nothing to see.

Watches GitHub repos for issues, comments that they should be filed in
Linux Foundation Gerrit Sandbox

Archive of former Slack instance

_images/membership.diagram.4.png
\ORGL.M82
\RootCAs
RCAL
\IntCAs

peer's local
filesystem

Local copy of
channel policy

instantiate

peer'slocal
filesystem

instantiate,.

ORG1.MSP

ORG2.MSP

Global MSPs

Channel policy

Local copy of
channel policy

_images/membership.diagram.3.png
Single set of members

ORG2.MSP.NATIONAL Members for national sales

(ORG2.MSP.INTERNATIONAL Members for international sales

ORG2.MSP.GOVERNMENT Members for government sales

_images/network.diagram.1.png

_images/membership.diagram.5.png
Organizational Keystore
Units Certificates (private
Intermediate eys) s cas

cAs Administrators Certificates Root CAs

_images/ledger.diagram.3.png
Ledger world state

{key=CAR1, value=Audi} version=0

{key= CAR2, value = {type: BMW, color: red, owner: Jane}} version=0

{key=K, value =V }
version=0

A ledger state with
key=K. It contains a set
of facts expressed as a
simple value, V. The
state is at version 0.

{key=K, value = {KV} }
version=0

A ledger state with
key=K. It contains a set
of facts expressed as a
set of key-value pairs
{KV}. The state is at
version 0.

_images/ledger.diagram.2.png
Blockchain

Block

B0

Block header

DO

Block data

(genesis)

Transaction

Block metadata

H2 is chained to H1

_images/SideDB-org1.png
publicsite

PIGEESGE
Collection: Marbles
name, color, size, owner

Private State
Collection: MarblesPrivateData
price

publesite

POGESGE
Collection: Marbles
name, color, size owner

Private State
Colection: MarblesPrivateData
price

_images/SideDB-org2.png
publicsite publestate

POGESGE
Collection: Marbles
name, color, size owner

PIGEESGE
Collection: Marbles
name, color, size, owner

_images/SSHKeys.png
71 LINUX FOUNDATION COLLABOR/

i)y HYPERLEDGER PROJECT

All my Projects reople
List General Branches Ta

Settings

Profile Username

Pref Full Name
references Email Address

Diff Preferences Registered

Edit Preferences Account ID

Watched Projects
Contact Information | _—"

SSH Public Key®&™ |

GPG Public Keys
Identities
Groups

_images/Settings.png
RA | Jenkins | Nexus | Wiki | Mailing lists | Sign-off Rules
Changes v IEFETZ

Christopher Ferris -

Christopher Ferris

Settings Sign Out

_images/identity.diagram.11.png
Certificate

Authority

issue signed
certificates

_images/identity.diagram.1.png
RCA signs ICAL ICAL signs ICA2 ICA2 signs ICA3.
certificate. certificate. certificate.

RCA signs
own
certificate

Yellow certificates Green certificates Blue certficates Grey certficates
signed by RCA signed by ICAL signed by ICA2 signed by ICA3

_images/identity.diagram.6.png
A--

_images/identity.diagram.12.png
Certificate
Revocation List

Certificate
Authority

[

Impersonating
Principal

present
revoked
certificate

_images/identity.diagram.8.png
o Trancises, Groral exorple.com, Cinea.ozal xarglescon

Mary Morrs

Subject: Ceis, STichigen, Ledetroit, O-Mitchasll Cars, CU-Mamsfacturing, C-Wary Moreis/UID-123456

/ ey
L ey Rigorienn: sa-ecticrey
e

XS093 Ky Usage: critical
Blattal Siamatare, fey Encipnermert, Cortificate Sian, CAL Sign

50903 xtanied foy Soarer

50003 Eubsece oy ldeneiciors

_images/identity.diagram.7.png
Certificate L
Principal

request certificate

\

Certificate
Revocation List

D issue certificate

Digital
Certificate

_images/ledger.diagram.1.png
Ledger

World state

Blockchain

L comprises Band W

—
P

H
h

B determines W

_images/identity.diagram.9.png
Marys @ g version

original ———

document of document
maco maco
SeEm S
Mo e Tree: Toat
Mary is a man with a man with
e e
e Ea @
ritvem st
Signature
xomzgs | @-m (asvRZQgl)

verified as authentic

Tampered using public key

version of
document

e L vas
going to St

Ives, I met
= man with

eight cats;

acn cac

had seven .
i Signature

(X13vRZQql41)
xim20gss | @ incorrect according to

public key

_images/idemix-overview.png
ldentity Mixer Overview

issue

X present
credentials

proof

_images/hyperledger_fabric_logo_color.png
~ :, HYPERLEDGER

X% EABRIC

_images/idemix-three-steps.png
ldentity Mixer In Hyperledger Fabric

Idemix

Fabric CA or

idemixgen
(Issuer)

Fabric MSP
(Verifier)

issue

) present
credentials

proof

3

Fabric Java SDK
(User)

- ——

_images/network.diagram.7.png

_images/network.diagram.9.png

_images/network.diagram.8.png
CA4

_images/peers.diagram.10.png
A e e

T o e

Blockchain Chaincode
Network

Channel . Orderer
Peer Ledger

Transaction T

Tl R2 E2

Transaction T1,
response R2

proposal P endorsed with E2
Ledger

transaction Principal PA (P1,P2)
T1 flows on communicates via

channel C

channel C.

_images/peers.diagram.1.png
Blockchain
network

Peer node

Smart contract
(aka chaincode)

Ledger

16080

_images/peers.diagram.12.png
Blockchain peer
Network

Channel Orderer
Ledger Block B

Ledger L1 has
blockchain with
blocks BO, B1

Block B1 contains
transactions
T1,T2,T3..

Block B1 flows
on channel C

9 :::..a

Principal PA (P1,
P2) communicates
via channel C.

_images/peers.diagram.11.png
(11 eve)
[e

flows on channel
C

communicates
via channel C.

Blockchain peer
Network
- Block B1 . Orderer
Transaction T1,
response R2a © Channel
endorsed with E2
o Block B1 contains
2 transactions
- T1,T2,T3..
! Ledger Principal PA
1 transaction T1 (P1,P2)

_images/peers.diagram.3.png

_images/peers.diagram.2.png

_images/peers.diagram.4.png

_images/network.diagram.12.png

_images/network.diagram.11.png

_images/network.diagram.15.png

_images/network.diagram.14.png

_images/network.diagram.2.png
CA4

_images/network.diagram.2.1.png

_images/network.diagram.4.png
g
o

CA4

_images/network.diagram.3.png

_images/network.diagram.6.png
CA4

_images/network.diagram.5.png

_images/network.diagram.10.png
CA4

_images/current_network.png

_images/develop.diagram.10.png
MagnetoCorp DigiBank

———————— PaperNet
cAL cA2

MsP

ID1: MagnetoCorp.member
1D4: DigiBank.member

Appl [-------- e Ty App2
Isabella i Balaji
-------- BondNet
Walletl Wallet2
D1 e b4
ID1: MagnetoCorp.member
D2 1D2: MagnetoCorp.admin
1D3

_images/develop.diagram.1.png
MagnetoCorp

Issue

DigiBank

Buy/sell
Redeem

BigFund

Buy/sell
Redeem

Buy/sell

e p— BrokerHouse
Buy/sell HedzeMati
PaperNet Redeorn edgeMatic
RateM

notify

_images/develop.diagram.12.png
Ed)

File

Memory

HSM

Database

_images/develop.diagram.11.png
wallet 1

ID label 1

ID label 2

certificate 1

certificate 2

private key 1

private key 2

L{metadata 1

metadata 2

issue

CA1l

issue

1
ID label n

certificate n

issue

CAx

_images/commercial_paper.diagram.6.png
MagnetoCorp

Administrator
»|

console

paper
contract

development copy on

local machine’s file system

PaperNet
___________ MagnetoCorp
peer
paper | getState ledger
-~ >
contract ["putstate database
L 7
installed
version

_images/commercial_paper.diagram.5.png
MagnetoCorp

Administrator
console

Application

CA

PaperNet

Chaincode
container

peer

orderer

paper
contract

database

DigiBank

Administrator
console

Application

_images/commercial_paper.diagram.8.png
MagnetoCorp PaperNet

distribute
Orderer ————@————

1
|
'

v

Chaincode

Isabella @

container
submit propose/endorse
issue fF--TToo- »| MagnetoCorp
P gateway [¢-------------(3 }-------------H
application [€------- peerl
response | e N]
* (:) aper
(:) i retrieve c:n:)ract
|

wallet

_images/commercial_paper.diagram.7.png
MagnetoCorp PaperNet

@

create

Chaincode
container

O

Administrator | __instantiate {
console

MagnetoCorp
peer

paper
contract

L7

_images/couchdb_tutorial_pkg_example.png
& hyperledger / fabric-samples ow
< Code [1Pullrequests 0 Lii Insights

Branch: master ~ | fabric-samples / chaincode / marbles02 / go /
This branch is 10 commits ahead, 2 commits behind release-1.1.

[FAB-8621] Remove Marbles index json data wrapper =

B META-INF/statedb/couchdb/indexes [FAB-8621] Remove Marbles index json data wrapper

[) marbles_chaincode.go [FAB-7834] Add couchdb index to marbles02 sample

_images/consensus.png
I||
T

I||
I

I||
I

I||
I

_images/commercial_paper.diagram.2.png
https://github.com/hyperledger/fabric-samples

fabric-samples
GitHub
repository
idownload
v

Local machine
(MacOSs, Linux)

_images/commercial_paper.diagram.12.png
EXPLORER

» OUTLINE
issue-fab-12322*

Js addToWallet.js

() package-lockjson
{) package.json
35 redeem.js M 5

buy.js — application

s buyjs x s redeem.js QR

10

4 OPEN EDITORS

17

X 5 buy.js M 18
Js redeem.js M 19
4APPLL.) W O & 20
» node_modules s
@ eslintrc.js »

24
25
26
27
28

30
31
32
33
34
35
36
37
38
39
a0
a1
42
43
a4
a5
a6
47
@ Q0A0

const fs = require('fs'
const yaml = require(*js-yanl');

const { FileSystemWallet, Gateway } = require('fabric-network');
const CommercialPaper = require('../contract/lib/paper.js');

/1 A wallet stores a collection of identities for use
const wallet = new FileSystemWallet('../identity/user/balaji/wallet

// Main program function
async function main() {

// A gateway defines the peers used to access Fabric networks
const gateway = new Gateway();

// Main try/catch block
try {

// Specify userName for network access
// const userName = ‘isabella.issuer@magnetocorp.con';
const userName = ‘Admin@orgl.example.com';

// Load connection profile; will be used to locate a gateway
let connectionProfile = yaml.safeLoad(fs. readFileSync('../gatew:

// Set connection options; identity and wallet
let connectionOptions = {

identity: userName,

wallet: wallet,

discovery: { enabled:false, aslocalhost: true }

Ln24,Col1 Spaces:2 UTF-8 LF JavaScript

_images/commercial_paper.diagram.4.png
MagnetoCorp

Administrator
console

basic network

CA

peer

ledger
database

orderer

_images/commercial_paper.diagram.3.png
basic network

CA

peer

ledger
database

orderer

_images/AppConceptsOverview.png
Blockchain Network

-

Application Developer
Identity ,"
!
o0 o N ':l v — i
—a= > ‘= |
o Run smart contracts I v \ 4
Application |
< ! Smart contract 0 H H
Receive ledger updates \
' ledger

_images/GitCloneCmd.png
1 LINUX FOUNDATION COLLABORATIVE PROJECTS

HYPERLEDGER PROJECT Accoul
All My Projects reople vocumentation Search term

List General Branches Tags Access Dashboards

Select this option

Project If-sandbox

Clone | Clone with commit-msg hook | anonymous http | http | ssh |
git clone ssh://ChristopherFerris@gerrit.hyperledger.org:29418/1f..
Description

Linux Foundation Gerrit Sandbox Copy to clipboard

_images/AddSSH1.png
1 LINUX FOUNDATION COLLABORATIVE PROJECTS

7 HYPERLEDGER PROJECT

Al my Projects reopie vocumentation
List General Branches Tags Access Dashboards

Settings
) Statog Algorithm Key
Profile
sh-rsa AAAAB3NzaClyc2EAAA
Preferences

Delete | Add Key ...

Diff Preferences
Edit Preferences Server Host Key

_images/AddSSH2.png
1 LINUX FOUNDATION COLLABORATIVE PROJECTS

&%) HYPERLEDGER PROJECT Account signup / ma

Al My Projects reopie vocumentation Search term
List General Branches Tags Access Dashboards

Settings

Profile Status Algorithm Key
=] ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAACAQ...cXZ2ng8Q==

Preferences o

Diff Preferences

Edit Preferences Add SSH Public Key
Watched Projects » How to Generate an SSH Key

Contact Information
SSH Public Keys
GPG Public Keys
Identities

Groups

Paste public SSH key here

Press Add button

/

Clear | Add | Close

_images/glossary.channel.png

_images/glossary.msp.png

_images/glossary.ledger.png

_images/glossary.peer.png

_images/glossary.organization.png

_images/glossary.worldstate.png

_images/glossary.transaction.png

_images/future_net.png
n---

IIle

--=-

A -

_images/flow-4.png
tx=<clientiD,
chaincodelD,
txPayload,
timestamp,
clientsig>

Collect —

LR:;Z?:S;?I:I—;NDORSED // Simulate/Execute tx
Sign TRANSACTION-ENDORSED
endorsement that { ‘/® o

satisfies
endorsementPolicy

(chaincodelD) @

®

broadcast(endorsement) —

921AI9s Suliaplo

Verify endorsement, readset
If OK
apply writeset to state

endorsing endorsing endorsing H (committing)

client(C) peer(EP1) peer (EP2) peer (EP3) peer (CP1)

orderers

_images/glossary.blockchain.png

_images/glossary.block.png
(genesis)

_images/NewGerritUI.png
~

Powered bv Gerrit Code Review (2.14.2) | New Ul | Press '?' to view kevboard shoricuts

_images/PrivateDataConcept-1.png
Private data collections

(PDC)

Distributor Farmer

A

Shipper

PDC2

Distributor Wholesaler

Wholesaler Fataliec

Shipper

_images/Jira3.png
Consensus
Sprint 2

QUICKFILTERS: ~ Only My Issues Recently Updated

® 9 days remaining

Backiog In Progress In review Done

_images/Jira4.png
JIRA Dashboards ~

Consensus
Backlo:
= g
D] Q | QUICKFI
oo

v Sprint2 3iss

SNOISY3A

26/Sep/16 8:0(

$0Id3

_images/RunningtheSample.png
VAN

createCar

queryAllCars

Application queryCarProperties

updateCarColor o ||

updateCarOwner

Smart contract ledger

_images/PrivateDataConcept-2.png
Authorized Peer |
— —
hash(id), hashecret value)

Prvate Stare
K1, secret value

Unauthorized Peer

channel1

Peerl

_images/PrivateDataConcept-3.png
Distributor-Farmer-
Shipper

private State
Distributor-Wholesaler

channel1.

_images/develop.diagram.4.png
buy

A

redeem

issued redeemed

_images/develop.diagram.35.png
MagnetoCorp DigiBank

(2c)

'
i
i
:
i
Connection '
CA1 profile |
MagnetoCorp MSsp i
|
. i
! I_____(g_e_‘§‘lsf'£’_'”_f9)__ Peer2 Ordererl| ! |Orderer2 Peer7
: ' MagnetoCorp MagnetoCorp | 1 DigiBank DigiBank
|
20) i :
i

- 1

channel: papernet

-=-
“issue”
8 application Gateway

Isabella

Peer8

DigiBank

Peer9
DigiBank

Peer3
MagnetoCorp

Peerl

MagnetoCorp

Wallet -

_images/develop.diagram.6.png
redeem

Issuer: MagnetoCorp Issuer: MagnetoCorp Issuer: MagnetoCorp
Paper: 00001 Paper: 00001 Paper: 00001
Owner: MagnetoCorp Owner: DigiBank Owner: MagnetoCorp

(nil) Issue date: 31 May 2020 Issue date: 31 May 2020 Issue date: 31 May 2020
Maturity date: 30 Nov 2020 Maturity date: 30 Nov 2020 Maturity date: 30 Nov 2020
Face value: 5M USD Face value: 5M USD Face value: 5M USD
Current state: issued Current state: trading Current state: redeemed

_images/develop.diagram.5.png
Issuer: MagnetoCorp
Paper: 00001

Owner: DigiBank

Issue date: 31 May 2020

Maturity date: 30 Nov 2020
Face value: 5M USD
Current state: trading

_images/develop.diagram.8.png
¢ key >< value

Issuer : MagnetoCorp, Paper: 00001, Owner: DigiBank, Issue date: 31 May 2020,

org-papernet.paperMagnetoCorp00001 Maturity date: 31 December 2020, Face value: 5m USD, Current state: trading

Issuer : MagnetoCorp, Paper: 00002, Owner: BigFund, Issue date:, 30 June 2020,

org-papernet.paperMagnetoCorp00002 Maturity date: 31 January 2021, Face value: 5m USD, Current state: trading

Issuer : MagnetoCorp, Paper: 00003, Owner: BrokerHouse, Issue date: 31 July 2020,,

org-papernet.paperMagnetoCorp00003 Maturity date: 28 February 2021, Face value: 5m USD, Current state: trading

Issuer : MagnetoCorp, Paper: 00004, Owner: DigiBank, Issue date: 31 August 2020,

org-papernet.paperMagnetoCorp00004 Maturity date: 31 March 2021, Face value: 5m USD, Current state: issued

_images/develop.diagram.7.png
aad

commercial paper: MagnetoCorp paper 00004

Issuer : Paper: Owner: Issue date: Maturity date: Face value: Current state:
MagnetoCorp 00004 DigiBank 31 August 2020 31 March 2021 5m USD issued
commercial paper list: org.papernet.paper

Issuer : Paper: Owner: Issue date: Maturity date: Face value: Current state:
MagnetoCorp 00001 DigiBank 31 May 2020 31 December 2020 5m USD trading

Issuer : Paper: Owner: Issue date: Maturity date: Face value: Current state:
MagnetoCorp 00002 BigFund 30 June 2020 31 January 2021 5m USD trading

Issuer : Paper: Owner: Issue date: Maturity date: Face value: Current state:
MagnetoCorp 00003 BrokerHouse 31 July 2020 28 February 2021 5m USD trading

_images/develop.diagram.2.png
beforeFunction (ctx)

CommercialPaperContract extends Contract {

afterFunction (ctx, result)

» issue (ctx, issuer, paperNumber, ...) {

return result;

unknownFunction (ctx)

buy (ctx, issuer, paperNumber, ...) {

redeem(ctx, issuer, paperNumber, ...)

_images/develop.diagram.13.png
add/import

identity
2
create/ 3 read
open identity
4

delete/export
identity

_images/develop.diagram.3.png
Application SDK

Smart Contract

Select identity from wallet
Connect to network gateway
Access PaperNet network
Construct issue request

Submit issue transaction e-------

Process issue response -

CommercialPaperContract {

+ issue (ctx, issuer, paperNumber...)

e }
issuer,

buy (ctx,

redeem(ctx, issuer, paperNumber..

paperNumber...) {

)

{

_images/develop.diagram.25.png
Ordererl

MagnetoCorp

Orderer2

DigiBank

Peer2

MagnetoCorp

Peer6

DigiBank

'
' -
issue Gatewa' s
Vo Peerl |u~intraorg
'
'
'

application 1

i
'

intra org | Gateway buy

gossip H 2 application

I

MagnetoCorp |~ 8OSSIp

Peer3 inter org

MagnetoCorp | 8OSSIP DigiBank

_images/develop.diagram.30.png
Connection
profile 1

R I

“issue”
application

CAl

MagnetoCorp

Gateway
1

paper

contract
s s N
Peer2 Ordererl| |Orderer2 Peer7
MagnetoCorp MagnetoCorp DigiBank DigiBank
N J - 1 N J
channel: papernet
Peerl Peer3 Peer9 Peer8
MagnetoCorp MagnetoCorp DigiBank DigiBank
 / ~—
paper paper
contract contract

Connection
profile 2

_I_V

RN S
i
'
| Gateway “buy”
H 2 application
'
[
CA2
DigiBank

_images/Jira1.png
Boards

Recently visited boards
All boards

_images/Jira2.png
Board name Board type Administrators Saved Filter Visibility

Consensus Scrum Clayton Sims Consensus [ALLUSERS)

_images/Jira.png
Issues ~ Boards ~ Gi

RECENT BOARDS

I Saveas papric

Ledger
s:All> A Endorser text
Membership Services
nodeSDK
Consensus

As:
more...

jolang as w Jef
=

nav.xhtml

 Table of Contents

 		
 A Blockchain Platform for the Enterprise

 		
 Introduction

 		
 Hyperledger Fabric

 		
 Modularity

 		
 Permissioned vs Permissionless Blockchains

 		
 Smart Contracts

 		
 A New Approach

 		
 Privacy and Confidentiality

 		
 Pluggable Consensus

 		
 Performance and Scalability

 		
 Conclusion

 		
 Acknowledgement

 		
 What’s new in v1.4

 		
 Serviceability and operations improvements

 		
 Improved programming model for developing applications

 		
 New tutorials

 		
 Private data enhancements

 		
 Release notes

 		
 Key Concepts

 		
 Introduction

 		
 What is a Blockchain?

 		
 Why is a Blockchain useful?

 		
 What is Hyperledger Fabric?

 		
 Where can I learn more?

 		
 Hyperledger Fabric Functionalities

 		
 Identity management

 		
 Privacy and confidentiality

 		
 Efficient processing

 		
 Chaincode functionality

 		
 Modular design

 		
 Hyperledger Fabric Model

 		
 Assets

 		
 Chaincode

 		
 Ledger Features

 		
 Privacy

 		
 Security & Membership Services

 		
 Consensus

 		
 Blockchain network

 		
 What is a blockchain network?

 		
 The sample network

 		
 Creating the Network

 		
 Adding Network Administrators

 		
 Defining a Consortium

 		
 Creating a channel for a consortium

 		
 Peers and Ledgers

 		
 Applications and Smart Contract chaincode

 		
 Network completed

 		
 Simplifying the visual vocabulary

 		
 Adding another consortium definition

 		
 Adding a new channel

 		
 Adding another peer

 		
 Joining a peer to multiple channels

 		
 Network fully formed

 		
 Network summary

 		
 Identity

 		
 What is an Identity?

 		
 A Simple Scenario to Explain the Use of an Identity

 		
 What are PKIs?

 		
 Digital Certificates

 		
 Authentication, Public keys, and Private Keys

 		
 Certificate Authorities

 		
 Certificate Revocation Lists

 		
 Membership

 		
 Mapping MSPs to Organizations

 		
 Local and Channel MSPs

 		
 MSP Levels

 		
 MSP Structure

 		
 Peers

 		
 A word on terminology

 		
 Ledgers and Chaincode

 		
 Applications and Peers

 		
 Peers and Channels

 		
 Peers and Organizations

 		
 Peers and Identity

 		
 Peers and Orderers

 		
 Private data

 		
 What is private data?

 		
 What is a private data collection?

 		
 A use case to explain collections

 		
 Transaction flow with private data

 		
 How a private data collection is defined

 		
 Purging data

 		
 Ledger

 		
 What is a Ledger?

 		
 A Blockchain Ledger

 		
 World State

 		
 Blockchain

 		
 Blocks

 		
 Transactions

 		
 World State database options

 		
 Example Ledger: fabcar

 		
 More information

 		
 Use Cases

 		
 Getting Started

 		
 Hyperledger Fabric SDKs

 		
 Hyperledger Fabric CA

 		
 Developing Applications

 		
 Tutorials

 		
 Writing Your First Application

 		
 Set up the blockchain network

 		
 Enrolling the admin user

 		
 Register and enroll user1

 		
 Querying the ledger

 		
 The FabCar smart contract

 		
 Updating the ledger

 		
 Summary

 		
 Additional resources

 		
 Commercial paper tutorial

 		
 Prerequisites

 		
 Download samples

 		
 Create network

 		
 Working as MagnetoCorp

 		
 Smart contract

 		
 Install contract

 		
 Instantiate contract

 		
 Application structure

 		
 Application dependencies

 		
 Wallet

 		
 Issue application

 		
 Working as DigiBank

 		
 Digibank applications

 		
 Run as DigiBank

 		
 Buy application

 		
 Redeem application

 		
 Further reading

 		
 Building Your First Network

 		
 Install prerequisites

 		
 Want to run it now?

 		
 Crypto Generator

 		
 Configuration Transaction Generator

 		
 Run the tools

 		
 Start the network

 		
 Understanding the Docker Compose topology

 		
 Using CouchDB

 		
 Why CouchDB

 		
 A Note on Data Persistence

 		
 Troubleshooting

 		
 Adding an Org to a Channel

 		
 Setup the Environment

 		
 Bring Org3 into the Channel with the Script

 		
 Bring Org3 into the Channel Manually

 		
 Generate the Org3 Crypto Material

 		
 Prepare the CLI Environment

 		
 Fetch the Configuration

 		
 Convert the Configuration to JSON and Trim It Down

 		
 Add the Org3 Crypto Material

 		
 Sign and Submit the Config Update

 		
 Configuring Leader Election

 		
 Join Org3 to the Channel

 		
 Upgrade and Invoke Chaincode

 		
 Conclusion

 		
 Upgrading Your Network Components

 		
 Overview

 		
 Launch a v1.3 network

 		
 Upgrade the orderer containers

 		
 Upgrade the peer containers

 		
 Upgrading components BYFN does not support

 		
 Using Private Data in Fabric

 		
 Build a collection definition JSON file

 		
 Read and Write private data using chaincode APIs

 		
 Start the network

 		
 Install and instantiate chaincode with a collection

 		
 Store private data

 		
 Query the private data as an authorized peer

 		
 Query the private data as an unauthorized peer

 		
 Purge Private Data

 		
 Using indexes with private data

 		
 Additional resources

 		
 Chaincode Tutorials

 		
 What is Chaincode?

 		
 Two Personas

 		
 Chaincode for Developers

 		
 What is Chaincode?

 		
 Chaincode API

 		
 Simple Asset Chaincode

 		
 Install Hyperledger Fabric Samples

 		
 Terminal 1 - Start the network

 		
 Terminal 2 - Build & start the chaincode

 		
 Terminal 3 - Use the chaincode

 		
 Testing new chaincode

 		
 Chaincode encryption

 		
 Managing external dependencies for chaincode written in Go

 		
 Chaincode for Operators

 		
 What is Chaincode?

 		
 Chaincode lifecycle

 		
 Packaging

 		
 System chaincode

 		
 System Chaincode Plugins

 		
 Developing Plugins

 		
 Configuring Plugins

 		
 Using CouchDB

 		
 Why CouchDB?

 		
 Enable CouchDB in Hyperledger Fabric

 		
 Create an index

 		
 Add the index to your chaincode folder

 		
 Install and instantiate the Chaincode

 		
 Query the CouchDB State Database

 		
 Query the CouchDB State Database With Pagination

 		
 Update an Index

 		
 Delete an Index

 		
 Videos

 		
 Operations Guides

 		
 Upgrading to the Newest Version of Fabric

 		
 Updating a Channel Configuration

 		
 What is a Channel Configuration?

 		
 Editing a Config

 		
 Get the Necessary Signatures

 		
 Membership Service Providers (MSP)

 		
 MSP Configuration

 		
 How to generate MSP certificates and their signing keys?

 		
 MSP setup on the peer & orderer side

 		
 Organizational Units

 		
 Identity Classification

 		
 Channel MSP setup

 		
 Best Practices

 		
 Channel Configuration (configtx)

 		
 Anatomy of a configuration

 		
 Configuration updates

 		
 Permitted configuration groups and values

 		
 Orderer system channel configuration

 		
 Application channel configuration

 		
 Channel creation

 		
 Endorsement policies

 		
 Two ways to require endorsement

 		
 Setting chaincode-level endorsement policies

 		
 Setting key-level endorsement policies

 		
 Validation

 		
 Pluggable transaction endorsement and validation

 		
 Motivation

 		
 Pluggable endorsement and validation logic

 		
 Configuration

 		
 Endorsement plugin implementation

 		
 Validation plugin implementation

 		
 Important notes

 		
 Access Control Lists (ACL)

 		
 What is an Access Control List?

 		
 How ACLs are formatted in configtx.yaml

 		
 MSP Implementation with Identity Mixer

 		
 What is Idemix?

 		
 How to use Idemix

 		
 Idemix and chaincode

 		
 Current limitations

 		
 Technical summary

 		
 Identity Mixer MSP configuration generator (idemixgen)

 		
 Directory Structure

 		
 CA Key Generation

 		
 Adding a Default Signer

 		
 The Operations Service

 		
 Configuring the Operations Service

 		
 Health Checks

 		
 Metrics

 		
 Metrics Reference

 		
 Prometheus Metrics

 		
 StatsD Metrics

 		
 Error handling

 		
 General Overview

 		
 Usage Instructions

 		
 General guidelines for error handling in Hyperledger Fabric

 		
 Example program

 		
 Logging Control

 		
 Overview

 		
 Logging specification

 		
 Logging format

 		
 Go chaincodes

 		
 Securing Communication With Transport Layer Security (TLS)

 		
 Configuring TLS for peers nodes

 		
 Configuring TLS for orderer nodes

 		
 Configuring TLS for the peer CLI

 		
 Debugging TLS issues

 		
 Bringing up a Kafka-based Ordering Service

 		
 Caveat emptor

 		
 Big picture

 		
 Steps

 		
 Additional considerations

 		
 Kafka Protocol Version Compatibility

 		
 Debugging

 		
 Commands Reference

 		
 peer

 		
 Description

 		
 Syntax

 		
 Flags

 		
 Usage

 		
 peer chaincode

 		
 Syntax

 		
 Flags

 		
 peer chaincode install

 		
 peer chaincode instantiate

 		
 peer chaincode invoke

 		
 peer chaincode list

 		
 peer chaincode package

 		
 peer chaincode query

 		
 peer chaincode signpackage

 		
 peer chaincode upgrade

 		
 Example Usage

 		
 peer channel

 		
 Syntax

 		
 peer channel

 		
 peer channel create

 		
 peer channel fetch

 		
 peer channel getinfo

 		
 peer channel join

 		
 peer channel list

 		
 peer channel signconfigtx

 		
 peer channel update

 		
 Example Usage

 		
 peer version

 		
 Syntax

 		
 peer logging

 		
 Syntax

 		
 peer logging

 		
 peer logging getlevel

 		
 peer logging revertlevels

 		
 peer logging setlevel

 		
 Example Usage

 		
 peer node

 		
 Syntax

 		
 peer node start

 		
 peer node status

 		
 Example Usage

 		
 configtxgen

 		
 Syntax

 		
 configtxgen

 		
 Usage

 		
 Configuration

 		
 configtxlator

 		
 Syntax

 		
 configtxlator start

 		
 configtxlator proto_encode

 		
 configtxlator proto_decode

 		
 configtxlator compute_update

 		
 configtxlator version

 		
 Examples

 		
 Additional Notes

 		
 cryptogen

 		
 Syntax

 		
 cryptogen help

 		
 cryptogen generate

 		
 cryptogen showtemplate

 		
 cryptogen extend

 		
 cryptogen version

 		
 Usage

 		
 Service Discovery CLI

 		
 Configuring external endpoints

 		
 Persisting configuration

 		
 Querying the discovery service

 		
 Peer membership query:

 		
 Configuration query:

 		
 Endorsers query:

 		
 Not using a configuration file

 		
 Fabric-CA Commands

 		
 Fabric-CA Client

 		
 Fabric-CA Server

 		
 Architecture Reference

 		
 Architecture Origins

 		
 1. System architecture

 		
 2. Basic workflow of transaction endorsement

 		
 3. Endorsement policies

 		
 4 (post-v1). Validated ledger and PeerLedger checkpointing (pruning)

 		
 Transaction Flow

 		
 Hyperledger Fabric SDKs

 		
 Service Discovery

 		
 Why do we need service discovery?

 		
 How service discovery works in Fabric

 		
 Channels

 		
 Capability Requirements

 		
 Defining Capability Requirements

 		
 Setting Capabilities

 		
 CouchDB as the State Database

 		
 State Database options

 		
 Using CouchDB from Chaincode

 		
 CouchDB Configuration

 		
 Good practices for queries

 		
 Peer channel-based event services

 		
 General overview

 		
 Available services

 		
 How to register for events

 		
 Overview of deliver response messages

 		
 SDK event documentation

 		
 Private Data

 		
 Private data collection definition

 		
 Referencing collections from chaincode

 		
 Considerations when using private data

 		
 Using Indexes with collections

 		
 Upgrading a collection definition

 		
 Read-Write set semantics

 		
 Transaction simulation and read-write set

 		
 Transaction validation and updating world state using read-write set

 		
 Example simulation and validation

 		
 Gossip data dissemination protocol

 		
 Gossip protocol

 		
 Leader election

 		
 Anchor peers

 		
 Gossip messaging

 		
 Frequently Asked Questions

 		
 Endorsement

 		
 Security & Access Control

 		
 Application-side Programming Model

 		
 Chaincode (Smart Contracts and Digital Assets)

 		
 Differences in Most Recent Releases

 		
 Ordering Service

 		
 Solo

 		
 Kafka

 		
 BFT

 		
 Contributions Welcome!

 		
 Project Governance

 		
 Maintainers

 		
 Becoming a maintainer

 		
 Release cadence

 		
 Making Feature/Enhancement Proposals

 		
 Maintainers meeting

 		
 Release roadmap

 		
 Communications

 		
 Contribution guide

 		
 Install prerequisites

 		
 Getting a Linux Foundation account

 		
 Getting help

 		
 Reporting bugs

 		
 Submitting your fix
