hyperledger-fabricdocs Documentation
Release master

hyperledger

Sep 29, 2021

Contents

10

11

12

13

14

15

16

Introduction

What’s new in v1.4
Release notes

Key Concepts

Getting Started
Developing Applications
Tutorials

Operations Guides
Commands Reference
Architecture Reference
Frequently Asked Questions
Contributions Welcome!
Glossary

Releases

Still Have Questions?

Status

13

15

99

105

159

279

363

409

443

449

465

475

477

479

hyperledger-fabricdocs Documentation, Release master

~ “/« HYPERLEDGER

%Y FABRIC

Enterprise grade permissioned distributed ledger platform that offers modularity and versatility for a broad set of
industry use cases.

Contents 1

hyperledger-fabricdocs Documentation, Release master

2 Contents

CHAPTER 1

Introduction

In general terms, a blockchain is an immutable transaction ledger, maintained within a distributed network of peer
nodes. These nodes each maintain a copy of the ledger by applying transactions that have been validated by a consensus
protocol, grouped into blocks that include a hash that bind each block to the preceding block.

The first and most widely recognized application of blockchain is the Bitcoin cryptocurrency, though others have
followed in its footsteps. Ethereum, an alternative cryptocurrency, took a different approach, integrating many of the
same characteristics as Bitcoin but adding smart contracts to create a platform for distributed applications. Bitcoin
and Ethereum fall into a class of blockchain that we would classify as public permissionless blockchain technology.
Basically, these are public networks, open to anyone, where participants interact anonymously.

As the popularity of Bitcoin, Ethereum and a few other derivative technologies grew, interest in applying the underlying
technology of the blockchain, distributed ledger and distributed application platform to more innovative enterprise
use cases also grew. However, many enterprise use cases require performance characteristics that the permissionless
blockchain technologies are unable (presently) to deliver. In addition, in many use cases, the identity of the participants
is a hard requirement, such as in the case of financial transactions where Know- Your-Customer (KYC) and Anti-Money
Laundering (AML) regulations must be followed.

For enterprise use, we need to consider the following requirements:
« Participants must be identified/identifiable
* Networks need to be permissioned
* High transaction throughput performance
* Low latency of transaction confirmation
* Privacy and confidentiality of transactions and data pertaining to business transactions

While many early blockchain platforms are currently being adapted for enterprise use, Hyperledger Fabric has been
designed for enterprise use from the outset. The following sections describe how Hyperledger Fabric (Fabric) differ-
entiates itself from other blockchain platforms and describes some of the motivation for its architectural decisions.

https://en.wikipedia.org/wiki/Bitcoin

hyperledger-fabricdocs Documentation, Release master

1.1 Hyperledger Fabric

Hyperledger Fabric is an open source enterprise-grade permissioned distributed ledger technology (DLT) platform,
designed for use in enterprise contexts, that delivers some key differentiating capabilities over other popular distributed
ledger or blockchain platforms.

One key point of differentiation is that Hyperledger was established under the Linux Foundation, which itself has a
long and very successful history of nurturing open source projects under open governance that grow strong sustaining
communities and thriving ecosystems. Hyperledger is governed by a diverse technical steering committee, and the Hy-
perledger Fabric project by a diverse set of maintainers from multiple organizations. It has a development community
that has grown to over 35 organizations and nearly 200 developers since its earliest commits.

Fabric has a highly modular and configurable architecture, enabling innovation, versatility and optimization for a
broad range of industry use cases including banking, finance, insurance, healthcare, human resources, supply chain
and even digital music delivery.

Fabric is the first distributed ledger platform to support smart contracts authored in general-purpose programming
languages such as Java, Go and Node.js, rather than constrained domain-specific languages (DSL). This means that
most enterprises already have the skill set needed to develop smart contracts, and no additional training to learn a new
language or DSL is needed.

The Fabric platform is also permissioned, meaning that, unlike with a public permissionless network, the participants
are known to each other, rather than anonymous and therefore fully untrusted. This means that while the participants
may not fully trust one another (they may, for example, be competitors in the same industry), a network can be operated
under a governance model that is built off of what trust does exist between participants, such as a legal agreement or
framework for handling disputes.

One of the most important of the platform’s differentiators is its support for pluggable consensus protocols that
enable the platform to be more effectively customized to fit particular use cases and trust models. For instance, when
deployed within a single enterprise, or operated by a trusted authority, fully byzantine fault tolerant consensus might
be considered unnecessary and an excessive drag on performance and throughput. In situations such as that, a crash
fault-tolerant (CFT) consensus protocol might be more than adequate whereas, in a multi-party, decentralized use case,
a more traditional byzantine fault tolerant (BFT) consensus protocol might be required.

Fabric can leverage consensus protocols that do not require a native cryptocurrency to incent costly mining or to
fuel smart contract execution. Avoidance of a cryptocurrency reduces some significant risk/attack vectors, and absence
of cryptographic mining operations means that the platform can be deployed with roughly the same operational cost
as any other distributed system.

The combination of these differentiating design features makes Fabric one of the better performing platforms avail-
able today both in terms of transaction processing and transaction confirmation latency, and it enables privacy and
confidentiality of transactions and the smart contracts (what Fabric calls “chaincode’) that implement them.

Let’s explore these differentiating features in more detail.

1.2 Modularity

Hyperledger Fabric has been specifically architected to have a modular architecture. Whether it is pluggable con-
sensus, pluggable identity management protocols such as LDAP or OpenID Connect, key management protocols or
cryptographic libraries, the platform has been designed at its core to be configured to meet the diversity of enterprise
use case requirements.

At a high level, Fabric is comprised of the following modular components:

* A pluggable ordering service establishes consensus on the order of transactions and then broadcasts blocks to
peers.

4 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance

hyperledger-fabricdocs Documentation, Release master

* A pluggable membership service provider is responsible for associating entities in the network with crypto-
graphic identities.

* An optional peer-to-peer gossip service disseminates the blocks output by ordering service to other peers.

e Smart contracts (“‘chaincode”) run within a container environment (e.g. Docker) for isolation. They can be
written in standard programming languages but do not have direct access to the ledger state.

» The ledger can be configured to support a variety of DBMSs.

* A pluggable endorsement and validation policy enforcement that can be independently configured per applica-
tion.

There is fair agreement in the industry that there is no “one blockchain to rule them all”. Hyperledger Fabric can be
configured in multiple ways to satisfy the diverse solution requirements for multiple industry use cases.

1.3 Permissioned vs Permissionless Blockchains

In a permissionless blockchain, virtually anyone can participate, and every participant is anonymous. In such a context,
there can be no trust other than that the state of the blockchain, prior to a certain depth, is immutable. In order
to mitigate this absence of trust, permissionless blockchains typically employ a “mined” native cryptocurrency or
transaction fees to provide economic incentive to offset the extraordinary costs of participating in a form of byzantine
fault tolerant consensus based on “proof of work” (PoW).

Permissioned blockchains, on the other hand, operate a blockchain amongst a set of known, identified and often vetted
participants operating under a governance model that yields a certain degree of trust. A permissioned blockchain
provides a way to secure the interactions among a group of entities that have a common goal but which may not fully
trust each other. By relying on the identities of the participants, a permissioned blockchain can use more traditional
crash fault tolerant (CFT) or byzantine fault tolerant (BFT) consensus protocols that do not require costly mining.

Additionally, in such a permissioned context, the risk of a participant intentionally introducing malicious code through
a smart contract is diminished. First, the participants are known to one another and all actions, whether submitting
application transactions, modifying the configuration of the network or deploying a smart contract are recorded on the
blockchain following an endorsement policy that was established for the network and relevant transaction type. Rather
than being completely anonymous, the guilty party can be easily identified and the incident handled in accordance
with the terms of the governance model.

1.4 Smart Contracts

A smart contract, or what Fabric calls “chaincode”, functions as a trusted distributed application that gains its secu-
rity/trust from the blockchain and the underlying consensus among the peers. It is the business logic of a blockchain
application.

There are three key points that apply to smart contracts, especially when applied to a platform:
* many smart contracts run concurrently in the network,
* they may be deployed dynamically (in many cases by anyone), and
* application code should be treated as untrusted, potentially even malicious.

Most existing smart-contract capable blockchain platforms follow an order-execute architecture in which the consen-
sus protocol:

* validates and orders transactions then propagates them to all peer nodes,

* each peer then executes the transactions sequentially.

1.3. Permissioned vs Permissionless Blockchains 5

hyperledger-fabricdocs Documentation, Release master

The order-execute architecture can be found in virtually all existing blockchain systems, ranging from pub-
lic/permissionless platforms such as Ethereum (with PoW-based consensus) to permissioned platforms such as Ten-
dermint, Chain, and Quorum.

Smart contracts executing in a blockchain that operates with the order-execute architecture must be deterministic;
otherwise, consensus might never be reached. To address the non-determinism issue, many platforms require that the
smart contracts be written in a non-standard, or domain-specific language (such as Solidity) so that non-deterministic
operations can be eliminated. This hinders wide-spread adoption because it requires developers writing smart contracts
to learn a new language and may lead to programming errors.

Further, since all transactions are executed sequentially by all nodes, performance and scale is limited. The fact that
the smart contract code executes on every node in the system demands that complex measures be taken to protect the
overall system from potentially malicious contracts in order to ensure resiliency of the overall system.

1.5 A New Approach

Fabric introduces a new architecture for transactions that we call execute-order-validate. It addresses the resiliency,
flexibility, scalability, performance and confidentiality challenges faced by the order-execute model by separating the
transaction flow into three steps:

* execute a transaction and check its correctness, thereby endorsing it,
* order transactions via a (pluggable) consensus protocol, and
* validate transactions against an application-specific endorsement policy before committing them to the ledger

This design departs radically from the order-execute paradigm in that Fabric executes transactions before reaching
final agreement on their order.

In Fabric, an application-specific endorsement policy specifies which peer nodes, or how many of them, need to vouch
for the correct execution of a given smart contract. Thus, each transaction need only be executed (endorsed) by the
subset of the peer nodes necessary to satisfy the transaction’s endorsement policy. This allows for parallel execution
increasing overall performance and scale of the system. This first phase also eliminates any non-determinism, as
inconsistent results can be filtered out before ordering.

Because we have eliminated non-determinism, Fabric is the first blockchain technology that enables use of standard
programming languages. In the 1.1.0 release, smart contracts can be written in either Go or Node.js, while there are
plans to support other popular languages including Java in subsequent releases.

1.6 Privacy and Confidentiality

As we have discussed, in a public, permissionless blockchain network that leverages PoW for its consensus model,
transactions are executed on every node. This means that neither can there be confidentiality of the contracts them-
selves, nor of the transaction data that they process. Every transaction, and the code that implements it, is visible to
every node in the network. In this case, we have traded confidentiality of contract and data for byzantine fault tolerant
consensus delivered by PoW.

This lack of confidentiality can be problematic for many business/enterprise use cases. For example, in a network of
supply-chain partners, some consumers might be given preferred rates as a means of either solidifying a relationship,
or promoting additional sales. If every participant can see every contract and transaction, it becomes impossible to
maintain such business relationships in a completely transparent network — everyone will want the preferred rates!

As a second example, consider the securities industry, where a trader building a position (or disposing of one) would
not want her competitors to know of this, or else they will seek to get in on the game, weakening the trader’s gambit.

6 Chapter 1. Introduction

https://ethereum.org/
http://tendermint.com/
http://tendermint.com/
http://chain.com/
http://www.jpmorgan.com/global/Quorum
https://solidity.readthedocs.io/en/v0.4.23/

hyperledger-fabricdocs Documentation, Release master

In order to address the lack of privacy and confidentiality for purposes of delivering on enterprise use case require-
ments, blockchain platforms have adopted a variety of approaches. All have their trade-offs.

Encrypting data is one approach to providing confidentiality; however, in a permissionless network leveraging PoW
for its consensus, the encrypted data is sitting on every node. Given enough time and computational resource, the
encryption could be broken. For many enterprise use cases, the risk that their information could become compromised
is unacceptable.

Zero knowledge proofs (ZKP) are another area of research being explored to address this problem, the trade-off here
being that, presently, computing a ZKP requires considerable time and computational resources. Hence, the trade-off
in this case is performance for confidentiality.

In a permissioned context that can leverage alternate forms of consensus, one might explore approaches that restrict
the distribution of confidential information exclusively to authorized nodes.

Hyperledger Fabric, being a permissioned platform, enables confidentiality through its channel architecture. Basically,
participants on a Fabric network can establish a “channel” between the subset of participants that should be granted
visibility to a particular set of transactions. Think of this as a network overlay. Thus, only those nodes that participate in
a channel have access to the smart contract (chaincode) and data transacted, preserving the privacy and confidentiality
of both.

To improve upon its privacy and confidentiality capabilities, Fabric has added support for private data and is working
on zero knowledge proofs (ZKP) available in the future. More on this as it becomes available.

1.7 Pluggable Consensus

The ordering of transactions is delegated to a modular component for consensus that is logically decoupled from
the peers that execute transactions and maintain the ledger. Specifically, the ordering service. Since consensus is
modular, its implementation can be tailored to the trust assumption of a particular deployment or solution. This
modular architecture allows the platform to rely on well-established toolkits for CFT (crash fault-tolerant) or BFT
(byzantine fault-tolerant) ordering.

Fabric currently offers two CFT ordering service implementations. The first is based on the et cd library of the Raft
protocol. The other is Kafka (which uses Zookeeper internally). For information about currently available ordering
services, check out our conceptual documentation about ordering.

Note also that these are not mutually exclusive. A Fabric network can have multiple ordering services supporting
different applications or application requirements.

1.8 Performance and Scalability

Performance of a blockchain platform can be affected by many variables such as transaction size, block size, network
size, as well as limits of the hardware, etc. The Hyperledger community is currently developing a draft set of measures
within the Performance and Scale working group, along with a corresponding implementation of a benchmarking
framework called Hyperledger Caliper.

While that work continues to be developed and should be seen as a definitive measure of blockchain platform per-
formance and scale characteristics, a team from IBM Research has published a peer reviewed paper that evaluated
the architecture and performance of Hyperledger Fabric. The paper offers an in-depth discussion of the architec-
ture of Fabric and then reports on the team’s performance evaluation of the platform using a preliminary release of
Hyperledger Fabric v1.1.

The benchmarking efforts that the research team did yielded a significant number of performance improvements for
the Fabric v1.1.0 release that more than doubled the overall performance of the platform from the v1.0.0 release levels.

1.7. Pluggable Consensus 7

./private-data/private-data.html
https://coreos.com/etcd/
https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
https://kafka.apache.org/
https://zookeeper.apache.org/
./orderer/ordering_service.html
https://docs.google.com/document/d/1DQ6PqoeIH0pCNJSEYiw7JVbExDvWh_ZRVhWkuioG4k0/edit#heading=h.t3gztry2ja8i
https://wiki.hyperledger.org/projects/caliper
https://arxiv.org/abs/1801.10228v1

hyperledger-fabricdocs Documentation, Release master

1.9 Conclusion

Any serious evaluation of blockchain platforms should include Hyperledger Fabric in its short list.

Combined, the differentiating capabilities of Fabric make it a highly scalable system for permissioned blockchains
supporting flexible trust assumptions that enable the platform to support a wide range of industry use cases ranging
from government, to finance, to supply-chain logistics, to healthcare and so much more.

More importantly, Hyperledger Fabric is the most active of the (currently) ten Hyperledger projects. The community
building around the platform is growing steadily, and the innovation delivered with each successive release far out-
paces any of the other enterprise blockchain platforms.

1.10 Acknowledgement

The preceding is derived from the peer reviewed “Hyperledger Fabric: A Distributed Operating System for Per-
missioned Blockchains™ - Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan,
Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou,
Marko Vukolic, Sharon Weed Cocco, Jason Yellick

8 Chapter 1. Introduction

https://arxiv.org/abs/1801.10228v2
https://arxiv.org/abs/1801.10228v2

CHAPTER 2

What’s new in v1.4

2.1 Hyperledger Fabric’s first long term support release

Hyperledger Fabric has matured since the initial v1.0 release, and so has the community of Fabric operators. The
Fabric developers have been working with network operators to deliver v1.4 with a focus on stability and production
operations. As such, v1.4.x will be our first long term support release.

Our policy to date has been to provide bug fix (patch) releases for our most recent major or minor release until the
next major or minor release has been published. We plan to continue this policy for subsequent releases. However, for
Hyperledger Fabric v1.4, the Fabric maintainers are pledging to provide bug fixes for a period of one year from the
date of release. This will likely result in a series of patch releases (v1.4.1, v1.4.2, and so on), where multiple fixes are
bundled into a patch release.

If you are running with Hyperledger Fabric v1.4.x, you can be assured that you will be able to safely upgrade to any
of the subsequent patch releases. In the advent that there is need of some upgrade process to remedy a defect, we will
provide that process with the patch release.

2.2 Raft ordering service

Introduced in v1.4.1, Raft is a crash fault tolerant (CFT) ordering service based on an implementation of Raft protocol
in etcd. Raft follows a “leader and follower” model, where a leader node is elected (per channel) and its decisions are
replicated to the followers. Raft ordering services should be easier to set up and manage than Kafka-based ordering
services, and their design allows organizations spread out across the world to contribute nodes to a decentralized
ordering service.

e The Ordering Service: Describes the role of an ordering service in Fabric and an overview of the three ordering
service implementations currently available: Solo, Kafka, and Raft.

» Configuring and operating a Raft ordering service: Shows the configuration parameters and considerations
when deploying a Raft ordering service.

e Setting up an ordering node: Describes the process for deploying an ordering node, independent of what the
ordering service implementation will be.

https://raft.github.io/raft.pdf
https://coreos.com/etcd/

hyperledger-fabricdocs Documentation, Release master

* Building Your First Network: The ability to stand up a sample network using a Raft ordering service has been
added to this tutorial.

* Migrating from Kafka to Raft: If you’re a user with a Kafka ordering service, this doc shows the process for
migrating to a Raft ordering service. Available since v1.4.2.

2.3 Serviceability and operations improvements

As more Hyperledger Fabric networks enter a production state, serviceability and operational aspects are critical.
Fabric v1.4 takes a giant leap forward with logging improvements, health checks, and operational metrics. As such,
Fabric v1.4 is the recommended release for production operations.

» The Operations Service: The new RESTful operations service provides operators with three services to monitor
and manage peer and orderer node operations:

— The logging /1ogspec endpoint allows operators to dynamically get and set logging levels for the peer
and orderer nodes.

— The /healthz endpoint allows operators and container orchestration services to check peer and orderer
node liveness and health.

— The /metrics endpoint allows operators to utilize Prometheus to pull operational metrics from peer and
orderer nodes. Metrics can also be pushed to StatsD.

— Asofvl.4.4,the /version endpoint allows operators to query the release version of the peer and orderer
and the commit SHA from which the release was cut.

2.4 Improved programming model for developing applications

Writing decentralized applications has just gotten easier. Programming model improvements for smart contracts
(chaincode) and the SDKs makes the development of decentralized applications more intuitive, allowing you to focus
on your application logic. These programming model enhancements are available for Node.js (as of Fabric v1.4.0)
and Java (as of Fabric v1.4.2). The existing SDKs are still available for use and existing applications will continue to
work. It is recommended that developers migrate to the new SDKs, which provide a layer of abstraction to improve
developer productivity and ease of use.

New documentation helps you understand the various aspects of creating a decentralized application for Hyperledger
Fabric, using a commercial paper business network scenario.

* The scenario: Describes a hypothetical business network involving six organizations who want to build an
application to transact together that will serve as a use case to describe the programming model.

* Analysis: Describes the structure of a commercial paper and how transactions affect it over time. Demonstrates
that modeling using states and transactions provides a precise way to understand and model the decentralized
business process.

* Process and Data Design: Shows how to design the commercial paper processes and their related data structures.

e Smart Contract Processing: Shows how a smart contract governing the decentralized business process of issuing,
buying and redeeming commercial paper should be designed.

» Application Conceptually describes a client application that would leverage the smart contract described in
Smart Contract Processing.

» Application design elements: Describes the details around contract namespaces, transaction context, transaction
handlers, connection profiles, connection options, wallets, and gateways.

And finally, a tutorial and sample that brings the commercial paper scenario to life:

10 Chapter 2. What’s new in v1.4

hyperledger-fabricdocs Documentation, Release master

e Commercial paper tutorial

2.5 New tutorials

o Writing Your First Application: This tutorial has been updated to leverage the improved smart contract (chain-
code) and SDK programming model. The tutorial has Java, JavaScript, and Typescript examples of the client
application and chaincode.

e Commercial paper tutorial As mentioned above, this is the tutorial that accompanies the new Developing Ap-
plications documentation. This contains both Java and JavaScript code.

» Upgrading to the Newest Version of Fabric: Leverages the network from Building Your First Network to demon-
strate an upgrade from v1.3 to v1.4.x. Includes both a script (which can serve as a template for upgrades), as
well as the individual commands so that you can understand every step of an upgrade.

2.6 Private data enhancements

* Private Data: The Private data feature has been a part of Fabric since v1.2, and this release debuts two new
enhancements:

— Reconciliation, which allows peers for organizations that are added to private data collections to retrieve
the private data for prior transactions to which they now are entitled.

— Client access control to automatically enforce access control within chaincode based on the client orga-
nization collection membership without having to write specific chaincode logic.

2.7 Node OU support

* Membership Service Providers (MSP): Starting with v1.4.3, node OUs are now supported for admin and orderer
identity classifications (extending the existing Node OU support for clients and peers). These “organizational
units” allow organizations to further classify identities into admins and orderers based on the OUs of their x509
certificates.

2.5. New tutorials 11

hyperledger-fabricdocs Documentation, Release master

12 Chapter 2. What’s new in v1.4

CHAPTER 3

Release notes

The release notes provide more details for users moving to the new release, along with a link to the full release change

log.

Fabric v1.4.0 release notes.
Fabric v1.4.1 release notes.
Fabric v1.4.2 release notes.
Fabric v1.4.3 release notes.
Fabric v1.4.4 release notes.
Fabric v1.4.5 release notes.
Fabric v1.4.6 release notes.
Fabric v1.4.7 release notes.
Fabric v1.4.8 release notes.
Fabric v1.4.9 release notes.
Fabric v1.4.10 release notes.
Fabric v1.4.11 release notes.

Fabric v1.4.12 release notes.

Fabric CA v1.4.0 release notes.
Fabric CA v1.4.1 release notes.
Fabric CA v1.4.2 release notes.
Fabric CA v1.4.3 release notes.
Fabric CA v1.4.4 release notes.
Fabric CA v1.4.5 release notes.

Fabric CA v1.4.6 release notes.

13

https://github.com/hyperledger/fabric/releases/tag/v1.4.0
https://github.com/hyperledger/fabric/releases/tag/v1.4.1
https://github.com/hyperledger/fabric/releases/tag/v1.4.2
https://github.com/hyperledger/fabric/releases/tag/v1.4.3
https://github.com/hyperledger/fabric/releases/tag/v1.4.4
https://github.com/hyperledger/fabric/releases/tag/v1.4.5
https://github.com/hyperledger/fabric/releases/tag/v1.4.6
https://github.com/hyperledger/fabric/releases/tag/v1.4.7
https://github.com/hyperledger/fabric/releases/tag/v1.4.8
https://github.com/hyperledger/fabric/releases/tag/v1.4.9
https://github.com/hyperledger/fabric/releases/tag/v1.4.10
https://github.com/hyperledger/fabric/releases/tag/v1.4.11
https://github.com/hyperledger/fabric/releases/tag/v1.4.12
https://github.com/hyperledger/fabric-ca/releases/tag/v1.4.0
https://github.com/hyperledger/fabric-ca/releases/tag/v1.4.1
https://github.com/hyperledger/fabric-ca/releases/tag/v1.4.2
https://github.com/hyperledger/fabric-ca/releases/tag/v1.4.3
https://github.com/hyperledger/fabric-ca/releases/tag/v1.4.4
https://github.com/hyperledger/fabric-ca/releases/tag/v1.4.5
https://github.com/hyperledger/fabric-ca/releases/tag/v1.4.6

hyperledger-fabricdocs Documentation, Release master

¢ Fabric CA v1.4.7 release notes.
e Fabric CA v1.4.8 release notes.

e Fabric CA v1.4.9 release notes.

14 Chapter 3. Release notes

https://github.com/hyperledger/fabric-ca/releases/tag/v1.4.7
https://github.com/hyperledger/fabric-ca/releases/tag/v1.4.8
https://github.com/hyperledger/fabric-ca/releases/tag/v1.4.9

CHAPTER 4

Key Concepts

4.1 Introduction

Hyperledger Fabric is a platform for distributed ledger solutions underpinned by a modular architecture delivering high
degrees of confidentiality, resiliency, flexibility, and scalability. It is designed to support pluggable implementations
of different components and accommodate the complexity and intricacies that exist across the economic ecosystem.

We recommend first-time users begin by going through the rest of the introduction below in order to gain familiarity
with how blockchains work and with the specific features and components of Hyperledger Fabric.

Once comfortable — or if you’re already familiar with blockchain and Hyperledger Fabric — go to Getting Started
and from there explore the demos, technical specifications, APIs, etc.

4.1.1 What is a Blockchain?

A Distributed Ledger

At the heart of a blockchain network is a distributed ledger that records all the transactions that take place on the
network.

A blockchain ledger is often described as decentralized because it is replicated across many network participants,
each of whom collaborate in its maintenance. We’ll see that decentralization and collaboration are powerful attributes
that mirror the way businesses exchange goods and services in the real world.

15

hyperledger-fabricdocs Documentation, Release master

In addition to being decentralized and collaborative, the information recorded to a blockchain is append-only, using
cryptographic techniques that guarantee that once a transaction has been added to the ledger it cannot be modified.
This property of “immutability” makes it simple to determine the provenance of information because participants can
be sure information has not been changed after the fact. It’s why blockchains are sometimes described as systems of
proof.

Smart Contracts

To support the consistent update of information — and to enable a whole host of ledger functions (transacting, query-
ing, etc) — a blockchain network uses smart contracts to provide controlled access to the ledger.

16 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

written to
the ledger

O

updating
transaction

Smart contract

Smart contracts are not only a key mechanism for encapsulating information and keeping it simple across the network,
they can also be written to allow participants to execute certain aspects of transactions automatically.

A smart contract can, for example, be written to stipulate the cost of shipping an item where the shipping charge
changes depending on how quickly the item arrives. With the terms agreed to by both parties and written to the ledger,
the appropriate funds change hands automatically when the item is received.

Consensus

The process of keeping the ledger transactions synchronized across the network — to ensure that ledgers update only
when transactions are approved by the appropriate participants, and that when ledgers do update, they update with the
same transactions in the same order — is called consensus.

4.1. Introduction 17

hyperledger-fabricdocs Documentation, Release master

Ol
O

You’ll learn a lot more about ledgers, smart contracts and consensus later. For now, it’s enough to think of a blockchain
as a shared, replicated transaction system which is updated via smart contracts and kept consistently synchronized
through a collaborative process called consensus.

4.1.2 Why is a Blockchain useful?

Today’s Systems of Record

The transactional networks of today are little more than slightly updated versions of networks that have existed since
business records have been kept. The members of a business network transact with each other, but they maintain
separate records of their transactions. And the things they re transacting — whether it’s Flemish tapestries in the 16th
century or the securities of today — must have their provenance established each time they’re sold to ensure that the
business selling an item possesses a chain of title verifying their ownership of it.

What you’re left with is a business network that looks like this:

18 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Modern technology has taken this process from stone tablets and paper folders to hard drives and cloud platforms, but
the underlying structure is the same. Unified systems for managing the identity of network participants do not exist,
establishing provenance is so laborious it takes days to clear securities transactions (the world volume of which is
numbered in the many trillions of dollars), contracts must be signed and executed manually, and every database in the
system contains unique information and therefore represents a single point of failure.

It’s impossible with today’s fractured approach to information and process sharing to build a system of record that
spans a business network, even though the needs of visibility and trust are clear.

The Blockchain Difference

What if, instead of the rat’s nest of inefficiencies represented by the “modern” system of transactions, business net-
works had standard methods for establishing identity on the network, executing transactions, and storing data? What
if establishing the provenance of an asset could be determined by looking through a list of transactions that, once
written, cannot be changed, and can therefore be trusted?

That business network would look more like this:

4.1. Introduction 19

hyperledger-fabricdocs Documentation, Release master

EEEEEEE,

]

OO OO0

This is a blockchain network, wherein every participant has their own replicated copy of the ledger. In addition to
ledger information being shared, the processes which update the ledger are also shared. Unlike today’s systems, where
a participant’s private programs are used to update their private ledgers, a blockchain system has shared programs
to update shared ledgers.

With the ability to coordinate their business network through a shared ledger, blockchain networks can reduce the
time, cost, and risk associated with private information and processing while improving trust and visibility.

You now know what blockchain is and why it’s useful. There are a lot of other details that are important, but they all
relate to these fundamental ideas of the sharing of information and processes.

4.1.3 What is Hyperledger Fabric?

The Linux Foundation founded the Hyperledger project in 2015 to advance cross-industry blockchain technologies.
Rather than declaring a single blockchain standard, it encourages a collaborative approach to developing blockchain
technologies via a community process, with intellectual property rights that encourage open development and the
adoption of key standards over time.

Hyperledger Fabric is one of the blockchain projects within Hyperledger. Like other blockchain technologies, it has a
ledger, uses smart contracts, and is a system by which participants manage their transactions.

20 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Where Hyperledger Fabric breaks from some other blockchain systems is that it is private and permissioned. Rather
than an open permissionless system that allows unknown identities to participate in the network (requiring protocols
like “proof of work™ to validate transactions and secure the network), the members of a Hyperledger Fabric network
enroll through a trusted Membership Service Provider (MSP).

Hyperledger Fabric also offers several pluggable options. Ledger data can be stored in multiple formats, consensus
mechanisms can be swapped in and out, and different MSPs are supported.

Hyperledger Fabric also offers the ability to create channels, allowing a group of participants to create a separate ledger
of transactions. This is an especially important option for networks where some participants might be competitors and
not want every transaction they make — a special price they’re offering to some participants and not others, for
example — known to every participant. If two participants form a channel, then those participants — and no others —
have copies of the ledger for that channel.

Shared Ledger

Hyperledger Fabric has a ledger subsystem comprising two components: the world state and the transaction log.
Each participant has a copy of the ledger to every Hyperledger Fabric network they belong to.

The world state component describes the state of the ledger at a given point in time. It’s the database of the ledger. The
transaction log component records all transactions which have resulted in the current value of the world state; it’s the
update history for the world state. The ledger, then, is a combination of the world state database and the transaction
log history.

The ledger has a replaceable data store for the world state. By default, this is a LevelDB key-value store database.
The transaction log does not need to be pluggable. It simply records the before and after values of the ledger database
being used by the blockchain network.

Smart Contracts

Hyperledger Fabric smart contracts are written in chaincode and are invoked by an application external to the
blockchain when that application needs to interact with the ledger. In most cases, chaincode interacts only with
the database component of the ledger, the world state (querying it, for example), and not the transaction log.

Chaincode can be implemented in several programming languages. Currently, Go and Node are supported.
Privacy

Depending on the needs of a network, participants in a Business-to-Business (B2B) network might be extremely
sensitive about how much information they share. For other networks, privacy will not be a top concern.

Hyperledger Fabric supports networks where privacy (using channels) is a key operational requirement as well as
networks that are comparatively open.

Consensus

Transactions must be written to the ledger in the order in which they occur, even though they might be between
different sets of participants within the network. For this to happen, the order of transactions must be established and a
method for rejecting bad transactions that have been inserted into the ledger in error (or maliciously) must be put into
place.

This is a thoroughly researched area of computer science, and there are many ways to achieve it, each with different
trade-offs. For example, PBFT (Practical Byzantine Fault Tolerance) can provide a mechanism for file replicas to
communicate with each other to keep each copy consistent, even in the event of corruption. Alternatively, in Bitcoin,
ordering happens through a process called mining where competing computers race to solve a cryptographic puzzle
which defines the order that all processes subsequently build upon.

Hyperledger Fabric has been designed to allow network starters to choose a consensus mechanism that best represents
the relationships that exist between participants. As with privacy, there is a spectrum of needs; from networks that are
highly structured in their relationships to those that are more peer-to-peer.

4.1. Introduction 21

hyperledger-fabricdocs Documentation, Release master

We’ll learn more about the Hyperledger Fabric consensus mechanisms, which currently include SOLO, Kafka, and
Raft.

4.1.4 Where can | learn more?

* Identity (conceptual documentation)

A conceptual doc that will take you through the critical role identities play in a Fabric network (using an established
PKI structure and x.509 certificates).

* Membership (conceptual documentation)

Talks through the role of a Membership Service Provider (MSP), which converts identities into roles in a Fabric
network.

* Peers (conceptual documentation)

Peers — owned by organizations — host the ledger and smart contracts and make up the physical structure of a Fabric
network.

e Building Your First Network (tutorial)

Learn how to download Fabric binaries and bootstrap your own sample network with a sample script. Then tear down
the network and learn how it was constructed one step at a time.

o Writing Your First Application (tutorial)

Deploys a very simple network — even simpler than Build Your First Network — to use with a simple smart contract
and application.

* Transaction Flow
A high level look at a sample transaction flow.
* Hyperledger Fabric Model

A high level look at some of components and concepts brought up in this introduction as well as a few others and
describes how they work together in a sample transaction flow.

4.2 Hyperledger Fabric Functionalities

Hyperledger Fabric is an implementation of distributed ledger technology (DLT) that delivers enterprise-ready net-
work security, scalability, confidentiality and performance, in a modular blockchain architecture. Hyperledger Fabric
delivers the following blockchain network functionalities:

4.2.1 ldentity management

To enable permissioned networks, Hyperledger Fabric provides a membership identity service that manages user IDs
and authenticates all participants on the network. Access control lists can be used to provide additional layers of
permission through authorization of specific network operations. For example, a specific user ID could be permitted
to invoke a chaincode application, but be blocked from deploying new chaincode.

4.2.2 Privacy and confidentiality

Hyperledger Fabric enables competing business interests, and any groups that require private, confidential transac-
tions, to coexist on the same permissioned network. Private channels are restricted messaging paths that can be used

22 Chapter 4. Key Concepts

identity/identity.html
membership/membership.html
peers/peers.html

hyperledger-fabricdocs Documentation, Release master

to provide transaction privacy and confidentiality for specific subsets of network members. All data, including trans-
action, member and channel information, on a channel are invisible and inaccessible to any network members not
explicitly granted access to that channel.

4.2.3 Efficient processing

Hyperledger Fabric assigns network roles by node type. To provide concurrency and parallelism to the network,
transaction execution is separated from transaction ordering and commitment. Executing transactions prior to ordering
them enables each peer node to process multiple transactions simultaneously. This concurrent execution increases
processing efficiency on each peer and accelerates delivery of transactions to the ordering service.

In addition to enabling parallel processing, the division of labor unburdens ordering nodes from the demands of
transaction execution and ledger maintenance, while peer nodes are freed from ordering (consensus) workloads. This
bifurcation of roles also limits the processing required for authorization and authentication; all peer nodes do not have
to trust all ordering nodes, and vice versa, so processes on one can run independently of verification by the other.

4.2.4 Chaincode functionality

Chaincode applications encode logic that is invoked by specific types of transactions on the channel. Chaincode that
defines parameters for a change of asset ownership, for example, ensures that all transactions that transfer ownership
are subject to the same rules and requirements. System chaincode is distinguished as chaincode that defines operating
parameters for the entire channel. Lifecycle and configuration system chaincode defines the rules for the channel;
endorsement and validation system chaincode defines the requirements for endorsing and validating transactions.

4.2.5 Modular design

Hyperledger Fabric implements a modular architecture to provide functional choice to network designers. Specific
algorithms for identity, ordering (consensus) and encryption, for example, can be plugged in to any Hyperledger
Fabric network. The result is a universal blockchain architecture that any industry or public domain can adopt, with
the assurance that its networks will be interoperable across market, regulatory and geographic boundaries.

4.3 Hyperledger Fabric Model

This section outlines the key design features woven into Hyperledger Fabric that fulfill its promise of a comprehensive,
yet customizable, enterprise blockchain solution:

* Assets — Asset definitions enable the exchange of almost anything with monetary value over the network, from
whole foods to antique cars to currency futures.

* Chaincode — Chaincode execution is partitioned from transaction ordering, limiting the required levels of trust
and verification across node types, and optimizing network scalability and performance.

e Ledger Features — The immutable, shared ledger encodes the entire transaction history for each channel, and
includes SQL-like query capability for efficient auditing and dispute resolution.

* Privacy — Channels and private data collections enable private and confidential multi-lateral transactions that
are usually required by competing businesses and regulated industries that exchange assets on a common net-
work.

e Security & Membership Services — Permissioned membership provides a trusted blockchain network, where
participants know that all transactions can be detected and traced by authorized regulators and auditors.

» Consensus — A unique approach to consensus enables the flexibility and scalability needed for the enterprise.

4.3. Hyperledger Fabric Model 23

hyperledger-fabricdocs Documentation, Release master

4.3.1 Assets

Assets can range from the tangible (real estate and hardware) to the intangible (contracts and intellectual property).
Hyperledger Fabric provides the ability to modify assets using chaincode transactions.

Assets are represented in Hyperledger Fabric as a collection of key-value pairs, with state changes recorded as trans-
actions on a Channel ledger. Assets can be represented in binary and/or JSON form.

4.3.2 Chaincode

Chaincode is software defining an asset or assets, and the transaction instructions for modifying the asset(s); in other
words, it’s the business logic. Chaincode enforces the rules for reading or altering key-value pairs or other state
database information. Chaincode functions execute against the ledger’s current state database and are initiated through
a transaction proposal. Chaincode execution results in a set of key-value writes (write set) that can be submitted to the
network and applied to the ledger on all peers.

4.3.3 Ledger Features

The ledger is the sequenced, tamper-resistant record of all state transitions in the fabric. State transitions are a result
of chaincode invocations (‘transactions’) submitted by participating parties. Each transaction results in a set of asset
key-value pairs that are committed to the ledger as creates, updates, or deletes.

The ledger is comprised of a blockchain (‘chain’) to store the immutable, sequenced record in blocks, as well as a state
database to maintain current fabric state. There is one ledger per channel. Each peer maintains a copy of the ledger
for each channel of which they are a member.

Some features of a Fabric ledger:
* Query and update ledger using key-based lookups, range queries, and composite key queries
* Read-only queries using a rich query language (if using CouchDB as state database)
» Read-only history queries — Query ledger history for a key, enabling data provenance scenarios

* Transactions consist of the versions of keys/values that were read in chaincode (read set) and keys/values that
were written in chaincode (write set)

* Transactions contain signatures of every endorsing peer and are submitted to ordering service
* Transactions are ordered into blocks and are “delivered” from an ordering service to peers on a channel
* Peers validate transactions against endorsement policies and enforce the policies

* Prior to appending a block, a versioning check is performed to ensure that states for assets that were read have
not changed since chaincode execution time

* There is immutability once a transaction is validated and committed

* A channel’s ledger contains a configuration block defining policies, access control lists, and other pertinent
information

* Channels contain Membership Service Provider instances allowing for crypto materials to be derived from
different certificate authorities

See the ledger topic for a deeper dive on the databases, storage structure, and “query-ability.”

24 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

4.3.4 Privacy

Hyperledger Fabric employs an immutable ledger on a per-channel basis, as well as chaincode that can manipulate
and modify the current state of assets (i.e. update key-value pairs). A ledger exists in the scope of a channel — it can
be shared across the entire network (assuming every participant is operating on one common channel) — or it can be
privatized to include only a specific set of participants.

In the latter scenario, these participants would create a separate channel and thereby isolate/segregate their transactions
and ledger. In order to solve scenarios that want to bridge the gap between total transparency and privacy, chaincode
can be installed only on peers that need to access the asset states to perform reads and writes (in other words, if a
chaincode is not installed on a peer, it will not be able to properly interface with the ledger).

When a subset of organizations on that channel need to keep their transaction data confidential, a private data collection
(collection) is used to segregate this data in a private database, logically separate from the channel ledger, accessible
only to the authorized subset of organizations.

Thus, channels keep transactions private from the broader network whereas collections keep data private between
subsets of organizations on the channel.

To further obfuscate the data, values within chaincode can be encrypted (in part or in total) using common cryp-
tographic algorithms such as AES before sending transactions to the ordering service and appending blocks to the
ledger. Once encrypted data has been written to the ledger, it can be decrypted only by a user in possession of the
corresponding key that was used to generate the cipher text. For further details on chaincode encryption, see the
Chaincode for Developers topic.

See the Private Data topic for more details on how to achieve privacy on your blockchain network.

4.3.5 Security & Membership Services

Hyperledger Fabric underpins a transactional network where all participants have known identities. Public Key Infras-
tructure is used to generate cryptographic certificates which are tied to organizations, network components, and end
users or client applications. As a result, data access control can be manipulated and governed on the broader network
and on channel levels. This “permissioned” notion of Hyperledger Fabric, coupled with the existence and capabilities
of channels, helps address scenarios where privacy and confidentiality are paramount concerns.

See the Membership Service Providers (MSP) topic to better understand cryptographic implementations, and the sign,
verify, authenticate approach used in Hyperledger Fabric.

4.3.6 Consensus

In distributed ledger technology, consensus has recently become synonymous with a specific algorithm, within a
single function. However, consensus encompasses more than simply agreeing upon the order of transactions, and
this differentiation is highlighted in Hyperledger Fabric through its fundamental role in the entire transaction flow,
from proposal and endorsement, to ordering, validation and commitment. In a nutshell, consensus is defined as the
full-circle verification of the correctness of a set of transactions comprising a block.

Consensus is achieved ultimately when the order and results of a block’s transactions have met the explicit policy
criteria checks. These checks and balances take place during the lifecycle of a transaction, and include the usage of
endorsement policies to dictate which specific members must endorse a certain transaction class, as well as system
chaincodes to ensure that these policies are enforced and upheld. Prior to commitment, the peers will employ these
system chaincodes to make sure that enough endorsements are present, and that they were derived from the appropriate
entities. Moreover, a versioning check will take place during which the current state of the ledger is agreed or consented
upon, before any blocks containing transactions are appended to the ledger. This final check provides protection against
double spend operations and other threats that might compromise data integrity, and allows for functions to be executed
against non-static variables.

4.3. Hyperledger Fabric Model 25

hyperledger-fabricdocs Documentation, Release master

In addition to the multitude of endorsement, validity and versioning checks that take place, there are also ongoing
identity verifications happening in all directions of the transaction flow. Access control lists are implemented on
hierarchical layers of the network (ordering service down to channels), and payloads are repeatedly signed, verified and
authenticated as a transaction proposal passes through the different architectural components. To conclude, consensus
is not merely limited to the agreed upon order of a batch of transactions; rather, it is an overarching characterization
that is achieved as a byproduct of the ongoing verifications that take place during a transaction’s journey from proposal
to commitment.

Check out the Transaction Flow diagram for a visual representation of consensus.

4.4 Blockchain network

This topic will describe, at a conceptual level, how Hyperledger Fabric allows organizations to collaborate in the
formation of blockchain networks. If you’re an architect, administrator or developer, you can use this topic to get a
solid understanding of the major structure and process components in a Hyperledger Fabric blockchain network. This
topic will use a manageable worked example that introduces all of the major components in a blockchain network.
After understanding this example you can read more detailed information about these components elsewhere in the
documentation, or try building a sample network.

After reading this topic and understanding the concept of policies, you will have a solid understanding of the decisions
that organizations need to make to establish the policies that control a deployed Hyperledger Fabric network. You’ll
also understand how organizations manage network evolution using declarative policies — a key feature of Hyperledger
Fabric. In a nutshell, you’ll understand the major technical components of Hyperledger Fabric and the decisions
organizations need to make about them.

4.4.1 What is a blockchain network?

A blockchain network is a technical infrastructure that provides ledger and smart contract (chaincode) services to
applications. Primarily, smart contracts are used to generate transactions which are subsequently distributed to every
peer node in the network where they are immutably recorded on their copy of the ledger. The users of applications
might be end users using client applications or blockchain network administrators.

In most cases, multiple organizations come together as a consortium to form the network and their permissions are
determined by a set of policies that are agreed by the consortium when the network is originally configured. Moreover,
network policies can change over time subject to the agreement of the organizations in the consortium, as we’ll discover
when we discuss the concept of modification policy.

4.4.2 The sample network

Before we start, let’s show you what we’re aiming at! Here’s a diagram representing the final state of our sample
network.

Don’t worry that this might look complicated! As we go through this topic, we will build up the network piece by
piece, so that you see how the organizations R1, R2, R3 and R4 contribute infrastructure to the network to help form
it. This infrastructure implements the blockchain network, and it is governed by policies agreed by the organizations
who form the network — for example, who can add new organizations. You’ll discover how applications consume the
ledger and smart contract services provided by the blockchain network.

26 Chapter 4. Key Concepts

../build_network.html
../glossary.html#organization
../glossary.html#consortium
../glossary.html#policy

hyperledger-fabricdocs Documentation, Release master

1

e

Four organizations, R1, R2, R3 and R4 have jointly decided, and written into an agreement, that they will set up and
exploit a Hyperledger Fabric network. R4 has been assigned to be the network initiator — it has been given the power
to set up the initial version of the network. R4 has no intention to perform business transactions on the network. Rl
and R2 have a need for a private communications within the overall network, as do R2 and R3. Organization R1 has a
client application that can perform business transactions within channel C1. Organization R2 has a client application
that can do similar work both in channel C1 and C2. Organization R3 has a client application that can do this on
channel C2. Peer node Pl maintains a copy of the ledger LI associated with Cl. Peer node P2 maintains a copy of
the ledger L1 associated with C1 and a copy of ledger L2 associated with C2. Peer node P3 maintains a copy of the
ledger L2 associated with C2. The network is governed according to policy rules specified in network configuration
NC4, the network is under the control of organizations R1 and R4. Channel CI is governed according to the policy
rules specified in channel configuration CC1; the channel is under the control of organizations R1 and R2. Channel
C2 is governed according to the policy rules specified in channel configuration CC2; the channel is under the control
of organizations R2 and R3. There is an ordering service O4 that services as a network administration point for N,
and uses the system channel. The ordering service also supports application channels C1 and C2, for the purposes of
transaction ordering into blocks for distribution. Each of the four organizations has a preferred Certificate Authority.

4.4.3 Creating the Network

Let’s start at the beginning by creating the basis for the network:

4.4. Blockchain network 27

hyperledger-fabricdocs Documentation, Release master

CA4

N

The network is formed when an orderer is started. In our example network, N, the ordering service comprising a single
node, O4, is configured according to a network configuration NC4, which gives administrative rights to organization
R4. At the network level, Certificate Authority CA4 is used to dispense identities to the administrators and network
nodes of the R4 organization.

We can see that the first thing that defines a network, N, is an ordering service, O4. It’s helpful to think of the
ordering service as the initial administration point for the network. As agreed beforehand, O4 is initially configured
and started by an administrator in organization R4, and hosted in R4. The configuration NC4 contains the policies that
describe the starting set of administrative capabilities for the network. Initially this is set to only give R4 rights over
the network. This will change, as we’ll see later, but for now R4 is the only member of the network.

Certificate Authorities

You can also see a Certificate Authority, CA4, which is used to issue certificates to administrators and network nodes.
CAA4 plays a key role in our network because it dispenses X.509 certificates that can be used to identify components
as belonging to organization R4. Certificates issued by CAs can also be used to sign transactions to indicate that an
organization endorses the transaction result — a precondition of it being accepted onto the ledger. Let’s examine these
two aspects of a CA in a little more detail.

Firstly, different components of the blockchain network use certificates to identify themselves to each other as being
from a particular organization. That’s why there is usually more than one CA supporting a blockchain network — dif-
ferent organizations often use different CAs. We’re going to use four CAs in our network; one of for each organization.
Indeed, CAs are so important that Hyperledger Fabric provides you with a built-in one (called Fabric-CA) to help you
get going, though in practice, organizations will choose to use their own CA.

The mapping of certificates to member organizations is achieved by via a structure called a Membership Services
Provider (MSP). Network configuration NC4 uses a named MSP to identify the properties of certificates dispensed by
CA4 which associate certificate holders with organization R4. NC4 can then use this MSP name in policies to grant
actors from R4 particular rights over network resources. An example of such a policy is to identify the administrators
in R4 who can add new member organizations to the network. We don’t show MSPs on these diagrams, as they would
just clutter them up, but they are very important.

Secondly, we’ll see later how certificates issued by CAs are at the heart of the transaction generation and validation
process. Specifically, X.509 certificates are used in client application transaction proposals and smart contract trans-
action responses to digitally sign transactions. Subsequently the network nodes who host copies of the ledger verify
that transaction signatures are valid before accepting transactions onto the ledger.

28 Chapter 4. Key Concepts

../glossary.html#membership-services
../glossary.html#membership-services
../glossary.html#transaction
../glossary.html#proposal
../glossary.html#response
../glossary.html#response
../glossary.html#transaction

hyperledger-fabricdocs Documentation, Release master

Let’s recap the basic structure of our example blockchain network. There’s a resource, the network N, accessed by a
set of users defined by a Certificate Authority CA4, who have a set of rights over the resources in the network N as
described by policies contained inside a network configuration NC4. All of this is made real when we configure and
start the ordering service node O4.

4.4.4 Adding Network Administrators

NC4 was initially configured to only allow R4 users administrative rights over the network. In this next phase, we are
going to allow organization R1 users to administer the network. Let’s see how the network evolves:

- B

CA4

AN Y

Organization R4 updates the network configuration to make organization R1 an administrator too. After this point R1
and R4 have equal rights over the network configuration.

We see the addition of a new organization R1 as an administrator — R1 and R4 now have equal rights over the net-
work. We can also see that certificate authority CA1 has been added — it can be used to identify users from the R1
organization. After this point, users from both R1 and R4 can administer the network.

Although the orderer node, O4, is running on R4’s infrastructure, R1 has shared administrative rights over it, as long
as it can gain network access. It means that R1 or R4 could update the network configuration NC4 to allow the R2
organization a subset of network operations. In this way, even though R4 is running the ordering service, and R1 has
full administrative rights over it, R2 has limited rights to create new consortia.

In its simplest form, the ordering service is a single node in the network, and that’s what you can see in the example.
Ordering services are usually multi-node, and can be configured to have different nodes in different organizations. For
example, we might run O4 in R4 and connect it to O2, a separate orderer node in organization R1. In this way, we
would have a multi-site, multi-organization administration structure.

We’ll discuss the ordering service a little more [ater in this topic, but for now just think of the ordering service as an
administration point which provides different organizations controlled access to the network.

4.4.5 Defining a Consortium

Although the network can now be administered by R1 and R4, there is very little that can be done. The first thing we
need to do is define a consortium. This word literally means “a group with a shared destiny”, so it’s an appropriate
choice for a set of organizations in a blockchain network.

Let’s see how a consortium is defined:

4.4. Blockchain network 29

hyperledger-fabricdocs Documentation, Release master

/

BE Y

A network administrator defines a consortium X1 that contains two members, the organizations RI and R2. This
consortium definition is stored in the network configuration NC4, and will be used at the next stage of network devel-
opment. CAl and CA?2 are the respective Certificate Authorities for these organizations.

Because of the way NC4 is configured, only R1 or R4 can create new consortia. This diagram shows the addition of
a new consortium, X1, which defines R1 and R2 as its constituting organizations. We can also see that CA2 has been
added to identify users from R2. Note that a consortium can have any number of organizational members — we have
just shown two as it is the simplest configuration.

Why are consortia important? We can see that a consortium defines the set of organizations in the network who share
a need to transact with one another — in this case R1 and R2. It really makes sense to group organizations together if
they have a common goal, and that’s exactly what’s happening.

The network, although started by a single organization, is now controlled by a larger set of organizations. We could
have started it this way, with R1, R2 and R4 having shared control, but this build up makes it easier to understand.

We’re now going to use consortium X1 to create a really important part of a Hyperledger Fabric blockchain — a
channel.

4.4.6 Creating a channel for a consortium

So let’s create this key part of the Fabric blockchain network — a channel. A channel is a primary communications
mechanism by which the members of a consortium can communicate with each other. There can be multiple channels
in a network, but for now, we’ll start with one.

Let’s see how the first channel has been added to the network:

30 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

C_ c1

CA4

B8

A channel C1 has been created for RI and R2 using the consortium definition X1. The channel is governed by a
channel configuration CCI, completely separate to the network configuration. CCI is managed by R1 and R2 who
have equal rights over C1. R4 has no rights in CC1 whatsoever.

The channel C1 provides a private communications mechanism for the consortium X1. We can see channel C1 has been
connected to the ordering service O4 but that nothing else is attached to it. In the next stage of network development,
we’re going to connect components such as client applications and peer nodes. But at this point, a channel represents
the potential for future connectivity.

Even though channel C1 is a part of the network N, it is quite distinguishable from it. Also notice that organizations
R3 and R4 are not in this channel — it is for transaction processing between R1 and R2. In the previous step, we saw
how R4 could grant R1 permission to create new consortia. It’s helpful to mention that R4 also allowed R1 to create
channels! In this diagram, it could have been organization R1 or R4 who created a channel C1. Again, note that a
channel can have any number of organizations connected to it — we’ve shown two as it’s the simplest configuration.

Again, notice how channel C1 has a completely separate configuration, CC1, to the network configuration NC4. CCl1
contains the policies that govern the rights that R1 and R2 have over the channel C1 — and as we’ve seen, R3 and
R4 have no permissions in this channel. R3 and R4 can only interact with C1 if they are added by R1 or R2 to the
appropriate policy in the channel configuration CC1. An example is defining who can add a new organization to the
channel. Specifically, note that R4 cannot add itself to the channel C1 — it must, and can only, be authorized by R1 or
R2.

Why are channels so important? Channels are useful because they provide a mechanism for private communications
and private data between the members of a consortium. Channels provide privacy from other channels, and from the
network. Hyperledger Fabric is powerful in this regard, as it allows organizations to share infrastructure and keep it
private at the same time. There’s no contradiction here — different consortia within the network will have a need for
different information and processes to be appropriately shared, and channels provide an efficient mechanism to do this.
Channels provide an efficient sharing of infrastructure while maintaining data and communications privacy.

We can also see that once a channel has been created, it is in a very real sense “free from the network”. It is only
organizations that are explicitly specified in a channel configuration that have any control over it, from this time
forward into the future. Likewise, any updates to network configuration NC4 from this time onwards will have no direct
effect on channel configuration CC1; for example if consortia definition X1 is changed, it will not affect the members
of channel C1. Channels are therefore useful because they allow private communications between the organizations
constituting the channel. Moreover, the data in a channel is completely isolated from the rest of the network, including
other channels.

As an aside, there is also a special system channel defined for use by the ordering service. It behaves in exactly the

4.4. Blockchain network 31

hyperledger-fabricdocs Documentation, Release master

same way as a regular channel, which are sometimes called application channels for this reason. We don’t normally
need to worry about this channel, but we’ll discuss a little bit more about it later in this topic.

4.4.7 Peers and Ledgers

Let’s now start to use the channel to connect the blockchain network and the organizational components together. In
the next stage of network development, we can see that our network N has just acquired two new components, namely
a peer node P1 and a ledger instance, L1.

< C1

L4
B8 - Y

A peer node P1 has joined the channel C1. P1 physically hosts a copy of the ledger L1. Pl and O4 can communicate
with each other using channel C1I.

Peer nodes are the network components where copies of the blockchain ledger are hosted! At last, we’re starting to
see some recognizable blockchain components! P1’s purpose in the network is purely to host a copy of the ledger L1
for others to access. We can think of L1 as being physically hosted on P1, but logically hosted on the channel C1.
We’ll see this idea more clearly when we add more peers to the channel.

A key part of a P1’s configuration is an X.509 identity issued by CA1 which associates P1 with organization R1. Once
P1 is started, it can join channel C1 using the orderer O4. When O4 receives this join request, it uses the channel
configuration CCI to determine P1’s permissions on this channel. For example, CC1 determines whether P1 can read
and/or write information to the ledger L1.

Notice how peers are joined to channels by the organizations that own them, and though we’ve only added one peer,
we’ll see how there can be multiple peer nodes on multiple channels within the network. We’ll see the different roles
that peers can take on a little later.

4.4.8 Applications and Smart Contract chaincode

Now that the channel C1 has a ledger on it, we can start connecting client applications to consume some of the services
provided by workhorse of the ledger, the peer!

Notice how the network has grown:

32 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

— @
\
e

— Cl

CA4

8

2 AN

A smart contract S5 has been installed onto P1. Client application Al in organization Rl can use S5 to access the
ledger via peer node P1. Al, P1 and O4 are all joined to channel C1, i.e. they can all make use of the communication
facilities provided by that channel.

In the next stage of network development, we can see that client application Al can use channel CI to connect to
specific network resources — in this case Al can connect to both peer node P1 and orderer node O4. Again, see how
channels are central to the communication between network and organization components. Just like peers and orderers,
a client application will have an identity that associates it with an organization. In our example, client application Al
is associated with organization R1; and although it is outside the Fabric blockchain network, it is connected to it via
the channel C1.

It might now appear that Al can access the ledger L1 directly via P1, but in fact, all access is managed via a special
program called a smart contract chaincode, S5. Think of S5 as defining all the common access patterns to the ledger;
S5 provides a well-defined set of ways by which the ledger L1 can be queried or updated. In short, client application
Al has to go through smart contract S5 to get to ledger L1!

Smart contract chaincodes can be created by application developers in each organization to implement a business
process shared by the consortium members. Smart contracts are used to help generate transactions which can be
subsequently distributed to the every node in the network. We’ll discuss this idea a little later; it’ll be easier to
understand when the network is bigger. For now, the important thing to understand is that to get to this point two
operations must have been performed on the smart contract; it must have been installed, and then instantiated.

Installing a smart contract

After a smart contract S5 has been developed, an administrator in organization R1 must install it onto peer node
P1. This is a straightforward operation; after it has occurred, P1 has full knowledge of S5. Specifically, P1 can see
the implementation logic of S5 — the program code that it uses to access the ledger L1. We contrast this to the S5
interface which merely describes the inputs and outputs of S5, without regard to its implementation.

When an organization has multiple peers in a channel, it can choose the peers upon which it installs smart contracts; it
does not need to install a smart contract on every peer.

Instantiating a smart contract

However, just because P1 has installed S5, the other components connected to channel C1 are unaware of it; it must first
be instantiated on channel C1. In our example, which only has a single peer node P1, an administrator in organization

4.4. Blockchain network 33

../glossary.html#install
../glossary.html#instantiate

hyperledger-fabricdocs Documentation, Release master

R1 must instantiate S5 on channel C1 using P1. After instantiation, every component on channel C1 is aware of the
existence of S5; and in our example it means that S5 can now be invoked by client application A1!

Note that although every component on the channel can now access S5, they are not able to see its program logic. This
remains private to those nodes who have installed it; in our example that means P1. Conceptually this means that it’s
the smart contract interface that is instantiated, in contrast to the smart contract implementation that is installed. To
reinforce this idea; installing a smart contract shows how we think of it being physically hosted on a peer, whereas
instantiating a smart contract shows how we consider it logically hosted by the channel.

Endorsement policy

The most important piece of additional information supplied at instantiation is an endorsement policy. It describes
which organizations must approve transactions before they will be accepted by other organizations onto their copy of
the ledger. In our sample network, transactions can only be accepted onto ledger L1 if R1 or R2 endorse them.

The act of instantiation places the endorsement policy in channel configuration CC1; it enables it to be accessed by
any member of the channel. You can read more about endorsement policies in the transaction flow topic.

Invoking a smart contract

Once a smart contract has been installed on a peer node and instantiated on a channel it can be invoked by a client
application. Client applications do this by sending transaction proposals to peers owned by the organizations specified
by the smart contract endorsement policy. The transaction proposal serves as input to the smart contract, which uses it
to generate an endorsed transaction response, which is returned by the peer node to the client application.

It’s these transactions responses that are packaged together with the transaction proposal to form a fully endorsed
transaction, which can be distributed to the entire network. We’ll look at this in more detail later For now, it’s enough
to understand how applications invoke smart contracts to generate endorsed transactions.

By this stage in network development we can see that organization R1 is fully participating in the network. Its
applications — starting with A1 — can access the ledger L1 via smart contract S5, to generate transactions that will be
endorsed by R1, and therefore accepted onto the ledger because they conform to the endorsement policy.

4.4.9 Network completed

Recall that our objective was to create a channel for consortium X1 — organizations R1 and R2. This next phase of
network development sees organization R2 add its infrastructure to the network.

Let’s see how the network has evolved:

34 Chapter 4. Key Concepts

../glossary.html#invoke
../glossary.html#endorsement-policy
../txflow.html
../glossary.html#invoke

hyperledger-fabricdocs Documentation, Release master

?? LA
.............

EE

The network has grown through the addition of infrastructure from organization R2. Specifically, R2 has added peer
node P2, which hosts a copy of ledger L1, and chaincode S5. P2 has also joined channel C1, as has application A2.
A2 and P2 are identified using certificates from CA2. All of this means that both applications Al and A2 can invoke
S5 on C1 either using peer node P1 or P2.

We can see that organization R2 has added a peer node, P2, on channel C1. P2 also hosts a copy of the ledger L1
and smart contract S5. We can see that R2 has also added client application A2 which can connect to the network via
channel C1. To achieve this, an administrator in organization R2 has created peer node P2 and joined it to channel C1,
in the same way as an administrator in R1.

We have created our first operational network! At this stage in network development, we have a channel in which
organizations R1 and R2 can fully transact with each other. Specifically, this means that applications Al and A2 can
generate transactions using smart contract S5 and ledger L1 on channel C1.

Generating and accepting transactions

In contrast to peer nodes, which always host a copy of the ledger, we see that there are two different kinds of peer
nodes; those which host smart contracts and those which do not. In our network, every peer hosts a copy of the smart
contract, but in larger networks, there will be many more peer nodes that do not host a copy of the smart contract. A
peer can only run a smart contract if it is installed on it, but it can know about the interface of a smart contract by being
connected to a channel.

You should not think of peer nodes which do not have smart contracts installed as being somehow inferior. It’s more
the case that peer nodes with smart contracts have a special power — to help generate transactions. Note that all peer
nodes can validate and subsequently accept or reject transactions onto their copy of the ledger L1. However, only
peer nodes with a smart contract installed can take part in the process of transaction endorsement which is central to
the generation of valid transactions.

We don’t need to worry about the exact details of how transactions are generated, distributed and accepted in this topic
— it is sufficient to understand that we have a blockchain network where organizations R1 and R2 can share information
and processes as ledger-captured transactions. We’ll learn a lot more about transactions, ledgers, smart contracts in
other topics.

4.4. Blockchain network 35

hyperledger-fabricdocs Documentation, Release master

Types of peers

In Hyperledger Fabric, while all peers are the same, they can assume multiple roles depending on how the network is
configured. We now have enough understanding of a typical network topology to describe these roles.

» Committing peer. Every peer node in a channel is a committing peer. It receives blocks of generated transactions,
which are subsequently validated before they are committed to the peer node’s copy of the ledger as an append
operation.

» Endorsing peer. Every peer with a smart contract can be an endorsing peer if it has a smart contract installed.
However, to actually be an endorsing peer, the smart contract on the peer must be used by a client application to
generate a digitally signed transaction response. The term endorsing peer is an explicit reference to this fact.

An endorsement policy for a smart contract identifies the organizations whose peer should digitally sign a
generated transaction before it can be accepted onto a committing peer’s copy of the ledger.

These are the two major types of peer; there are two other roles a peer can adopt:

* Leader peer. When an organization has multiple peers in a channel, a leader peer is a node which takes respon-
sibility for distributing transactions from the orderer to the other committing peers in the organization. A peer
can choose to participate in static or dynamic leadership selection.

It is helpful, therefore to think of two sets of peers from leadership perspective — those that have static leader
selection, and those with dynamic leader selection. For the static set, zero or more peers can be configured as
leaders. For the dynamic set, one peer will be elected leader by the set. Moreover, in the dynamic set, if a leader
peer fails, then the remaining peers will re-elect a leader.

It means that an organization’s peers can have one or more leaders connected to the ordering service. This can
help to improve resilience and scalability in large networks which process high volumes of transactions.

* Anchor peer. If a peer needs to communicate with a peer in another organization, then it can use one of the
anchor peers defined in the channel configuration for that organization. An organization can have zero or more
anchor peers defined for it, and an anchor peer can help with many different cross-organization communication
scenarios.

Note that a peer can be a committing peer, endorsing peer, leader peer and anchor peer all at the same time! Only the
anchor peer is optional — for all practical purposes there will always be a leader peer and at least one endorsing peer
and at least one committing peer.

Install not instantiate

In a similar way to organization R1, organization R2 must install smart contract S5 onto its peer node, P2. That’s
obvious — if applications Al or A2 wish to use S5 on peer node P2 to generate transactions, it must first be present;
installation is the mechanism by which this happens. At this point, peer node P2 has a physical copy of the smart
contract and the ledger; like P1, it can both generate and accept transactions onto its copy of ledger L1.

However, in contrast to organization R1, organization R2 does not need to instantiate smart contract S5 on channel
C1. That’s because S5 has already been instantiated on the channel by organization R1. Instantiation only needs to
happen once; any peer which subsequently joins the channel knows that smart contract S5 is available to the channel.
This fact reflects the fact that ledger L1 and smart contract really exist in a physical manner on the peer nodes, and a
logical manner on the channel; R2 is merely adding another physical instance of L1 and S5 to the network.

In our network, we can see that channel C1 connects two client applications, two peer nodes and an ordering service.
Since there is only one channel, there is only one logical ledger with which these components interact. Peer nodes P1
and P2 have identical copies of ledger L1. Copies of smart contract S5 will usually be identically implemented using
the same programming language, but if not, they must be semantically equivalent.

36 Chapter 4. Key Concepts

../glossary.html#commitment
../glossary.html#endorsement
../glossary.html#leading-peer
../glossary.html#anchor-peer

hyperledger-fabricdocs Documentation, Release master

We can see that the careful addition of peers to the network can help support increased throughput, stability, and
resilience. For example, more peers in a network will allow more applications to connect to it; and multiple peers in
an organization will provide extra resilience in the case of planned or unplanned outages.

It all means that it is possible to configure sophisticated topologies which support a variety of operational goals — there
is no theoretical limit to how big a network can get. Moreover, the technical mechanism by which peers within an
individual organization efficiently discover and communicate with each other — the gossip protocol — will accommodate
a large number of peer nodes in support of such topologies.

The careful use of network and channel policies allow even large networks to be well-governed. Organizations are free
to add peer nodes to the network so long as they conform to the policies agreed by the network. Network and channel
policies create the balance between autonomy and control which characterizes a de-centralized network.

4.4.10 Simplifying the visual vocabulary

We’re now going to simplify the visual vocabulary used to represent our sample blockchain network. As the size of
the network grows, the lines initially used to help us understand channels will become cumbersome. Imagine how
complicated our diagram would be if we added another peer or client application, or another channel?

That’s what we’re going to do in a minute, so before we do, let’s simplify the visual vocabulary. Here’s a simplified
representation of the network we’ve developed so far:

03 [b o

28 _ W

The diagram shows the facts relating to channel CI in the network N as follows: Client applications Al and A2
can use channel C1 for communication with peers P1 and P2, and orderer O4. Peer nodes Pl and P2 can use the
communication services of channel Cl. Ordering service O4 can make use of the communication services of channel
Cl. Channel configuration CCI applies to channel CI.

\
%

Note that the network diagram has been simplified by replacing channel lines with connection points, shown as blue
circles which include the channel number. No information has been lost. This representation is more scalable be-
cause it eliminates crossing lines. This allows us to more clearly represent larger networks. We’ve achieved this
simplification by focusing on the connection points between components and a channel, rather than the channel itself.

4.4.11 Adding another consortium definition

In this next phase of network development, we introduce organization R3. We’re going to give organizations R2 and
R3 a separate application channel which allows them to transact with each other. This application channel will be

4.4. Blockchain network 37

../gossip.html#gossip-protocol

hyperledger-fabricdocs Documentation, Release master

completely separate to that previously defined, so that R2 and R3 transactions can be kept private to them.

Let’s return to the network level and define a new consortium, X2, for R2 and R3:

-

CA4

o 6 NG B

A network administrator from organization RI or R4 has added a new consortium definition, X2, which includes
organizations R2 and R3. This will be used to define a new channel for X2.

Notice that the network now has two consortia defined: X1 for organizations R1 and R2 and X2 for organizations R2
and R3. Consortium X2 has been introduced in order to be able to create a new channel for R2 and R3.

A new channel can only be created by those organizations specifically identified in the network configuration policy,
NC4, as having the appropriate rights to do so, i.e. R1 or R4. This is an example of a policy which separates
organizations that can manage resources at the network level versus those who can manage resources at the channel
level. Seeing these policies at work helps us understand why Hyperledger Fabric has a sophisticated tiered policy
structure.

In practice, consortium definition X2 has been added to the network configuration NC4. We discuss the exact mechan-
ics of this operation elsewhere in the documentation.

4.4.12 Adding a new channel

Let’s now use this new consortium definition, X2, to create a new channel, C2. To help reinforce your understanding of
the simpler channel notation, we’ve used both visual styles — channel C1 is represented with blue circular end points,
whereas channel C2 is represented with red connecting lines:

38 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

O
1 1

< C2 —

AL

CA4

LB Y

A new channel C2 has been created for R2 and R3 using consortium definition X2. The channel has a channel con-
figuration CC2, completely separate to the network configuration NC4, and the channel configuration CCI. Channel
C2 is managed by R2 and R3 who have equal rights over C2 as defined by a policy in CC2. RI and R4 have no rights
defined in CC2 whatsoever.

/
E

The channel C2 provides a private communications mechanism for the consortium X2. Again, notice how organiza-
tions united in a consortium are what form channels. The channel configuration CC2 now contains the policies that
govern channel resources, assigning management rights to organizations R2 and R3 over channel C2. It is managed
exclusively by R2 and R3; R1 and R4 have no power in channel C2. For example, channel configuration CC2 can
subsequently be updated to add organizations to support network growth, but this can only be done by R2 or R3.

Note how the channel configurations CC1 and CC2 remain completely separate from each other, and completely
separate from the network configuration, NC4. Again we’re seeing the de-centralized nature of a Hyperledger Fabric
network; once channel C2 has been created, it is managed by organizations R2 and R3 independently to other network
elements. Channel policies always remain separate from each other and can only be changed by the organizations
authorized to do so in the channel.

As the network and channels evolve, so will the network and channel configurations. There is a process by which
this is accomplished in a controlled manner — involving configuration transactions which capture the change to these
configurations. Every configuration change results in a new configuration block transaction being generated, and
later in this topic, we’ll see how these blocks are validated and accepted to create updated network and channel
configurations respectively.

Network and channel configurations

Throughout our sample network, we see the importance of network and channel configurations. These configurations
are important because they encapsulate the policies agreed by the network members, which provide a shared reference
for controlling access to network resources. Network and channel configurations also contain facts about the network
and channel composition, such as the name of consortia and its organizations.

For example, when the network is first formed using the ordering service node O4, its behaviour is governed by the
network configuration NC4. The initial configuration of NC4 only contains policies that permit organization R4 to
manage network resources. NC4 is subsequently updated to also allow R1 to manage network resources. Once this
change is made, any administrator from organization R1 or R4 that connects to O4 will have network management
rights because that is what the policy in the network configuration NC4 permits. Internally, each node in the ordering
service records each channel in the network configuration, so that there is a record of each channel created, at the
network level.

4.4. Blockchain network 39

hyperledger-fabricdocs Documentation, Release master

It means that although ordering service node O4 is the actor that created consortia X1 and X2 and channels C1 and
C2, the intelligence of the network is contained in the network configuration NC4 that O4 is obeying. As long as O4
behaves as a good actor, and correctly implements the policies defined in NC4 whenever it is dealing with network
resources, our network will behave as all organizations have agreed. In many ways NC4 can be considered more
important than O4 because, ultimately, it controls network access.

The same principles apply for channel configurations with respect to peers. In our network, P1 and P2 are likewise
good actors. When peer nodes P1 and P2 are interacting with client applications Al or A2 they are each using the
policies defined within channel configuration CC1 to control access to the channel C1 resources.

For example, if A1 wants to access the smart contract chaincode S5 on peer nodes P1 or P2, each peer node uses its
copy of CC1 to determine the operations that Al can perform. For example, A1 may be permitted to read or write data
from the ledger L1 according to policies defined in CC1. We’ll see later the same pattern for actors in channel and its
channel configuration CC2. Again, we can see that while the peers and applications are critical actors in the network,
their behaviour in a channel is dictated more by the channel configuration policy than any other factor.

Finally, it is helpful to understand how network and channel configurations are physically realized. We can see that
network and channel configurations are logically singular — there is one for the network, and one for each channel.
This is important; every component that accesses the network or the channel must have a shared understanding of the
permissions granted to different organizations.

Even though there is logically a single configuration, it is actually replicated and kept consistent by every node that
forms the network or channel. For example, in our network peer nodes P1 and P2 both have a copy of channel
configuration CC1, and by the time the network is fully complete, peer nodes P2 and P3 will both have a copy of
channel configuration CC2. Similarly ordering service node O4 has a copy of the network configuration, but in a
multi-node configuration, every ordering service node will have its own copy of the network configuration.

Both network and channel configurations are kept consistent using the same blockchain technology that is used for
user transactions — but for configuration transactions. To change a network or channel configuration, an administrator
must submit a configuration transaction to change the network or channel configuration. It must be signed by the
organizations identified in the appropriate policy as being responsible for configuration change. This policy is called
the mod_policy and we’ll discuss it later.

Indeed, the ordering service nodes operate a mini-blockchain, connected via the system channel we mentioned earlier.
Using the system channel ordering service nodes distribute network configuration transactions. These transactions are
used to co-operatively maintain a consistent copy of the network configuration at each ordering service node. In a
similar way, peer nodes in an application channel can distribute channel configuration transactions. Likewise, these
transactions are used to maintain a consistent copy of the channel configuration at each peer node.

This balance between objects that are logically singular, by being physically distributed is a common pattern in Hy-
perledger Fabric. Objects like network configurations, that are logically single, turn out to be physically replicated
among a set of ordering services nodes for example. We also see it with channel configurations, ledgers, and to
some extent smart contracts which are installed in multiple places but whose interfaces exist logically at the channel
level. It’s a pattern you see repeated time and again in Hyperledger Fabric, and enables Hyperledger Fabric to be both
de-centralized and yet manageable at the same time.

4.4.13 Adding another peer

Now that organization R3 is able to fully participate in channel C2, let’s add its infrastructure components to the
channel. Rather than do this one component at a time, we’re going to add a peer, its local copy of a ledger, a smart
contract and a client application all at once!

Let’s see the network with organization R3’s components added:

40 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

~

Al

-

CA4

o 2 NG

The diagram shows the facts relating to channels C1 and C2 in the network N as follows: Client applications Al and
A2 can use channel C1 for communication with peers P1 and P2, and ordering service O4; client applications A3 can
use channel C2 for communication with peer P3 and ordering service O4. Ordering service O4 can make use of the
communication services of channels Cl and C2. Channel configuration CCI1 applies to channel Cl, CC2 applies to
channel C2.

First of all, notice that because peer node P3 is connected to channel C2, it has a different ledger — L2 — to those peer
nodes using channel C1. The ledger L2 is effectively scoped to channel C2. The ledger L1 is completely separate;
it is scoped to channel C1. This makes sense — the purpose of the channel C2 is to provide private communications
between the members of the consortium X2, and the ledger L2 is the private store for their transactions.

In a similar way, the smart contract S6, installed on peer node P3, and instantiated on channel C2, is used to provide
controlled access to ledger L2. Application A3 can now use channel C2 to invoke the services provided by smart
contract S6 to generate transactions that can be accepted onto every copy of the ledger L2 in the network.

At this point in time, we have a single network that has two completely separate channels defined within it. These
channels provide independently managed facilities for organizations to transact with each other. Again, this is de-
centralization at work; we have a balance between control and autonomy. This is achieved through policies which are
applied to channels which are controlled by, and affect, different organizations.

4.4.14 Joining a peer to multiple channels

In this final stage of network development, let’s return our focus to organization R2. We can exploit the fact that R2 is
a member of both consortia X1 and X2 by joining it to multiple channels:

4.4. Blockchain network 41

hyperledger-fabricdocs Documentation, Release master

oa & ohs

CA4

—
AA - AA
& o= NG - ;

The diagram shows the facts relating to channels CI and C2 in the network N as follows: Client applications Al can
use channel CI for communication with peers P1 and P2, and ordering service O4; client application A2 can use
channel C1 for communication with peers P1 and P2 and channel C2 for communication with peers P2 and P3 and
ordering service O4; client application A3 can use channel C2 for communication with peer P3 and P2 and ordering
service O4. Ordering service O4 can make use of the communication services of channels CI and C2. Channel
configuration CCI applies to channel C1, CC2 applies to channel C2.

\

AL

We can see that R2 is a special organization in the network, because it is the only organization that is a member of
two application channels! It is able to transact with organization R1 on channel C1, while at the same time it can also
transact with organization R3 on a different channel, C2.

Notice how peer node P2 has smart contract S5 installed for channel C1 and smart contract S6 installed for channel
C2. Peer node P2 is a full member of both channels at the same time via different smart contracts for different ledgers.

This is a very powerful concept — channels provide both a mechanism for the separation of organizations, and a
mechanism for collaboration between organizations. All the while, this infrastructure is provided by, and shared
between, a set of independent organizations.

It is also important to note that peer node P2’s behaviour is controlled very differently depending upon the channel
in which it is transacting. Specifically, the policies contained in channel configuration CC1 dictate the operations
available to P2 when it is transacting in channel C1, whereas it is the policies in channel configuration CC2 that
control P2’s behaviour in channel C2.

Again, this is desirable — R2 and R1 agreed the rules for channel C1, whereas R2 and R3 agreed the rules for channel
C2. These rules were captured in the respective channel policies — they can and must be used by every component in
a channel to enforce correct behaviour, as agreed.

Similarly, we can see that client application A2 is now able to transact on channels C1 and C2. And likewise, it too
will be governed by the policies in the appropriate channel configurations. As an aside, note that client application
A2 and peer node P2 are using a mixed visual vocabulary — both lines and connections. You can see that they are
equivalent; they are visual synonyms.

The ordering service

The observant reader may notice that the ordering service node appears to be a centralized component; it was used to
create the network initially, and connects to every channel in the network. Even though we added R1 and R4 to the
network configuration policy NC4 which controls the orderer, the node was running on R4’s infrastructure. In a world
of de-centralization, this looks wrong!

42 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Don’t worry! Our example network showed the simplest ordering service configuration to help you understand the idea
of a network administration point. In fact, the ordering service can itself too be completely de-centralized! We men-
tioned earlier that an ordering service could be comprised of many individual nodes owned by different organizations,
so let’s see how that would be done in our sample network.

Let’s have a look at a more realistic ordering service node configuration:

CA4

AL

N

A multi-organization ordering service. The ordering service comprises ordering service nodes OI and O4. Ol is
provided by organization RI and node O4 is provided by organization R4. The network configuration NC4 defines
network resource permissions for actors from both organizations R1 and R4.

We can see that this ordering service completely de-centralized — it runs in organization R1 and it runs in organization
R4. The network configuration policy, NC4, permits R1 and R4 equal rights over network resources. Client applica-
tions and peer nodes from organizations R1 and R4 can manage network resources by connecting to either node Ol
or node O4, because both nodes behave the same way, as defined by the policies in network configuration NC4. In
practice, actors from a particular organization tend to use infrastructure provided by their home organization, but that’s
certainly not always the case.

De-centralized transaction distribution

As well as being the management point for the network, the ordering service also provides another key facility — it
is the distribution point for transactions. The ordering service is the component which gathers endorsed transactions
from applications and orders them into transaction blocks, which are subsequently distributed to every peer node in
the channel. At each of these committing peers, transactions are recorded, whether valid or invalid, and their local
copy of the ledger updated appropriately.

Notice how the ordering service node O4 performs a very different role for the channel C1 than it does for the network
N. When acting at the channel level, O4’s role is to gather transactions and distribute blocks inside channel C1. It
does this according to the policies defined in channel configuration CC1. In contrast, when acting at the network
level, O4’s role is to provide a management point for network resources according to the policies defined in network
configuration NC4. Notice again how these roles are defined by different policies within the channel and network
configurations respectively. This should reinforce to you the importance of declarative policy based configuration in
Hyperledger Fabric. Policies both define, and are used to control, the agreed behaviours by each and every member of
a consortium.

We can see that the ordering service, like the other components in Hyperledger Fabric, is a fully de-centralized com-
ponent. Whether acting as a network management point, or as a distributor of blocks in a channel, its nodes can be

4.4. Blockchain network 43

hyperledger-fabricdocs Documentation, Release master

distributed as required throughout the multiple organizations in a network.

Changing policy

Throughout our exploration of the sample network, we’ve seen the importance of the policies to control the behaviour
of the actors in the system. We’ve only discussed a few of the available policies, but there are many that can be
declaratively defined to control every aspect of behaviour. These individual policies are discussed elsewhere in the
documentation.

Most importantly of all, Hyperledger Fabric provides a uniquely powerful policy that allows network and channel
administrators to manage policy change itself! The underlying philosophy is that policy change is a constant, whether
it occurs within or between organizations, or whether it is imposed by external regulators. For example, new or-
ganizations may join a channel, or existing organizations may have their permissions increased or decreased. Let’s
investigate a little more how change policy is implemented in Hyperledger Fabric.

They key point of understanding is that policy change is managed by a policy within the policy itself. The modification
policy, or mod_policy for short, is a first class policy within a network or channel configuration that manages change.
Let’s give two brief examples of how we’ve already used mod_policy to manage change in our network!

The first example was when the network was initially set up. At this time, only organization R4 was allowed to manage
the network. In practice, this was achieved by making R4 the only organization defined in the network configuration
NC4 with permissions to network resources. Moreover, the mod_policy for NC4 only mentioned organization R4 —
only R4 was allowed to change this configuration.

We then evolved the network N to also allow organization R1 to administer the network. R4 did this by adding R1 to
the policies for channel creation and consortium creation. Because of this change, R1 was able to define the consortia
X1 and X2, and create the channels C1 and C2. R1 had equal administrative rights over the channel and consortium
policies in the network configuration.

R4 however, could grant even more power over the network configuration to R1! R4 could add R1 to the mod_policy
such that R1 would be able to manage change of the network policy too.

This second power is much more powerful than the first, because R1 now has full control over the network configu-
ration NC4! This means that R1 can, in principle remove R4’s management rights from the network. In practice, R4
would configure the mod_policy such that R4 would need to also approve the change, or that all organizations in the
mod_policy would have to approve the change. There’s lots of flexibility to make the mod_policy as sophisticated as
it needs to be to support whatever change process is required.

This is mod_policy at work — it has allowed the graceful evolution of a basic configuration into a sophisticated one.
All the time this has occurred with the agreement of all organization involved. The mod_policy behaves like every
other policy inside a network or channel configuration; it defines a set of organizations that are allowed to change the
mod_policy itself.

We’ve only scratched the surface of the power of policies and mod_policy in particular in this subsection. It is
discussed at much more length in the policy topic, but for now let’s return to our finished network!

4.4.15 Network fully formed

Let’s recap what our network looks like using a consistent visual vocabulary. We’ve re-organized it slightly using our
more compact visual syntax, because it better accommodates larger topologies:

44 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

%00 g.0p .8

AA AA

@)\ == 468,

In this diagram we see that the Fabric blockchain network consists of two application channels and one ordering
channel. The organizations RI and R4 are responsible for the ordering channel, Rl and R2 are responsible for the
blue application channel while R2 and R3 are responsible for the red application channel. Client applications Al is
an element of organization R1, and CAl is its certificate authority. Note that peer P2 of organization R2 can use the
communication facilities of the blue and the red application channel. Each application channel has its own channel
configuration, in this case CCI and CC2. The channel configuration of the system channel is part of the network
configuration, NC4.

We’re at the end of our conceptual journey to build a sample Hyperledger Fabric blockchain network. We’ve created a
four organization network with two channels and three peer nodes, with two smart contracts and an ordering service.
It is supported by four certificate authorities. It provides ledger and smart contract services to three client applications,
who can interact with it via the two channels. Take a moment to look through the details of the network in the diagram,
and feel free to read back through the topic to reinforce your knowledge, or go to a more detailed topic.

Summary of network components

Here’s a quick summary of the network components we’ve discussed:
* Ledger. One per channel. Comprised of the Blockchain and the World state
e Smart contract (aka chaincode)
* Peer nodes
* Ordering service
* Channel

¢ Certificate Authority

4.4.16 Network summary

In this topic, we’ve seen how different organizations share their infrastructure to provide an integrated Hyperledger
Fabric blockchain network. We’ve seen how the collective infrastructure can be organized into channels that provide
private communications mechanisms that are independently managed. We’ve seen how actors such as client applica-
tions, administrators, peers and orderers are identified as being from different organizations by their use of certificates

4.4. Blockchain network 45

../glossary.html#ledger
../glossary.html#block
../glossary.html#world-state
../glossary.html#smart-contract
../glossary.html#peer
../glossary.html#ordering-service
../glossary.html#channel
../glossary.html#hyperledger-fabric-ca

hyperledger-fabricdocs Documentation, Release master

from their respective certificate authorities. And in turn, we’ve seen the importance of policy to define the agreed
permissions that these organizational actors have over network and channel resources.

4.5 Identity

4.5.1 What is an Identity?

The different actors in a blockchain network include peers, orderers, client applications, administrators and more. Each
of these actors — active elements inside or outside a network able to consume services — has a digital identity encap-
sulated in an X.509 digital certificate. These identities really matter because they determine the exact permissions
over resources and access to information that actors have in a blockchain network.

A digital identity furthermore has some additional attributes that Fabric uses to determine permissions, and it gives
the union of an identity and the associated attributes a special name — principal. Principals are just like userIDs or
grouplDs, but a little more flexible because they can include a wide range of properties of an actor’s identity, such as
the actor’s organization, organizational unit, role or even the actor’s specific identity. When we talk about principals,
they are the properties which determine their permissions.

For an identity to be verifiable, it must come from a trusted authority. A membership service provider (MSP) is
how this is achieved in Fabric. More specifically, an MSP is a component that defines the rules that govern the
valid identities for this organization. The default MSP implementation in Fabric uses X.509 certificates as identities,
adopting a traditional Public Key Infrastructure (PKI) hierarchical model (more on PKI later).

4.5.2 A Simple Scenario to Explain the Use of an Identity

Imagine that you visit a supermarket to buy some groceries. At the checkout you see a sign that says that only Visa,
Mastercard and AMEX cards are accepted. If you try to pay with a different card — let’s call it an “ImagineCard” —
it doesn’t matter whether the card is authentic and you have sufficient funds in your account. It will be not be accepted.

>

0
. Here

—o|[=@
=
e T
-=w - =m
—\
= o —>

Having a valid credit card is not enough — it must also be accepted by the store! PKIs and MSPs work together in the
same way — a PKI provides a list of identities, and an MSP says which of these are members of a given organization
that participates in the network.

PKI certificate authorities and MSPs provide a similar combination of functionalities. A PKI is like a card provider —
it dispenses many different types of verifiable identities. An MSP, on the other hand, is like the list of card providers
accepted by the store, determining which identities are the trusted members (actors) of the store payment network.
MSPs turn verifiable identities into the members of a blockchain network.

Let’s drill into these concepts in a little more detail.

46 Chapter 4. Key Concepts

../membership/membership.html

hyperledger-fabricdocs Documentation, Release master

4.5.3 What are PKls?

A public key infrastructure (PKI) is a collection of internet technologies that provides secure communications
in a network. It’s PKI that puts the S in HTTPS — and if you’re reading this documentation on a web browser, you’re
probably using a PKI to make sure it comes from a verified source.

Certificate
Authority

!

Principal

request certificate

Certificate
. . > — public key
Revocation List issue certificate & = O'I'I'I
L]
Digital
Certificate

- |&=| [4=| [8=] |&=] |8

The elements of Public Key Infrastructure (PKI). A PKI is comprised of Certificate Authorities who issue digital
certificates to parties (e.g., users of a service, service provider), who then use them to authenticate themselves in the
messages they exchange with their environment. A CA’s Certificate Revocation List (CRL) constitutes a reference for
the certificates that are no longer valid. Revocation of a certificate can happen for a number of reasons. For example,
a certificate may be revoked because the cryptographic private material associated to the certificate has been exposed.

Although a blockchain network is more than a communications network, it relies on the PKI standard to ensure
secure communication between various network participants, and to ensure that messages posted on the blockchain are
properly authenticated. It’s therefore important to understand the basics of PKI and then why MSPs are so important.

There are four key elements to PKI:
* Digital Certificates
¢ Public and Private Keys
¢ Certificate Authorities
¢ Certificate Revocation Lists

Let’s quickly describe these PKI basics, and if you want to know more details, Wikipedia is a good place to start.

4.5.4 Digital Certificates

A digital certificate is a document which holds a set of attributes relating to the holder of the certificate. The most
common type of certificate is the one compliant with the X.509 standard, which allows the encoding of a party’s
identifying details in its structure.

For example, Mary Morris in the Manufacturing Division of Mitchell Cars in Detroit, Michigan might have
a digital certificate with a SUBJECT attribute of C=US, ST=Michigan, L=Detroit, O=Mitchell Cars,
OU=Manufacturing, CN=Mary Morris /UID=123456. Mary’s certificate is similar to her government iden-
tity card — it provides information about Mary which she can use to prove key facts about her. There are many other
attributes in an X.509 certificate, but let’s concentrate on just these for now.

4.5. Identity 47

https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/X.509

hyperledger-fabricdocs Documentation, Release master

Mary Morris

A digital certificate describing a party called Mary Morris. Mary is the SUBJECT of the certificate, and the high-
lighted SUBJECT text shows key facts about Mary. The certificate also holds many more pieces of information, as you
can see. Most importantly, Mary’s public key is distributed within her certificate, whereas her private signing key is
not. This signing key must be kept private.

What is important is that all of Mary’s attributes can be recorded using a mathematical technique called cryptography
(literally, “secret writing”) so that tampering will invalidate the certificate. Cryptography allows Mary to present her
certificate to others to prove her identity so long as the other party trusts the certificate issuer, known as a Certificate
Authority (CA). As long as the CA keeps certain cryptographic information securely (meaning, its own private
signing key), anyone reading the certificate can be sure that the information about Mary has not been tampered with
— it will always have those particular attributes for Mary Morris. Think of Mary’s X.509 certificate as a digital identity
card that is impossible to change.

4.5.5 Authentication, Public keys, and Private Keys

Authentication and message integrity are important concepts in secure communications. Authentication requires that
parties who exchange messages are assured of the identity that created a specific message. For a message to have
“integrity” means that cannot have been modified during its transmission. For example, you might want to be sure
you’re communicating with the real Mary Morris rather than an impersonator. Or if Mary has sent you a message, you
might want to be sure that it hasn’t been tampered with by anyone else during transmission.

Traditional authentication mechanisms rely on digital signatures that, as the name suggests, allow a party to digitally
sign its messages. Digital signatures also provide guarantees on the integrity of the signed message.

Technically speaking, digital signature mechanisms require each party to hold two cryptographically connected keys:
a public key that is made widely available and acts as authentication anchor, and a private key that is used to produce
digital signatures on messages. Recipients of digitally signed messages can verify the origin and integrity of a
received message by checking that the attached signature is valid under the public key of the expected sender.

The unique relationship between a private key and the respective public key is the cryptographic magic that
makes secure communications possible. The unique mathematical relationship between the keys is such that the
private key can be used to produce a signature on a message that only the corresponding public key can match, and
only on the same message.

48 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Mary Morris

0-|'|'| Mary’s public key
[]

Mary's ®
orMﬁna] —
document
As I was

going to St
Ives, I met
a man with
seven cats}
each cat
had seven
kittens.

Signed version
of document

As I was
going to St
Ives, I met
a man with
seven cats;
each cat
had seven
kittens.

9

Signature

xprzaglr | OFm (X13vRZQql41)
verified as authentic
Tampered using public key
version of
document
Az I was

going to St
Ives, I met
a man with
eight cats;
each cat
had seven
kittens.

X13vRZQql41

®

Signature

(X13vRZQgL41)

incorrect according to
public key

Om

Verifying
Principal

In the example above, Mary uses her private key to sign the message. The signature can be verified by anyone who
sees the signed message using her public key.

4.5.6 Certificate Authorities

As you’ve seen, an actor or a node is able to participate in the blockchain network, via the means of a digital identity
issued for it by an authority trusted by the system. In the most common case, digital identities (or simply identities)
have the form of cryptographically validated digital certificates that comply with X.509 standard and are issued by a
Certificate Authority (CA).

CAs are a common part of internet security protocols, and you’ve probably heard of some of the more popular ones:
Symantec (originally Verisign), GeoTrust, DigiCert, GoDaddy, and Comodo, among others.

p

<

Certificate
Authority

N

)

issue signed
certificates

8=| |4

0= @

®m

A Certificate Authority dispenses certificates to different actors. These certificates are digitally signed by the CA and

4.5. ldentity

49

hyperledger-fabricdocs Documentation, Release master

bind together the actor with the actor’s public key (and optionally with a comprehensive list of properties). As a result,
if one trusts the CA (and knows its public key), it can trust that the specific actor is bound to the public key included in
the certificate, and owns the included attributes, by validating the CA’s signature on the actor’s certificate.

Certificates can be widely disseminated, as they do not include either the actors’ nor the CA’s private keys. As such
they can be used as anchor of trusts for authenticating messages coming from different actors.

CAs also have a certificate, which they make widely available. This allows the consumers of identities issued by a given
CA to verify them by checking that the certificate could only have been generated by the holder of the corresponding
private key (the CA).

In a blockchain setting, every actor who wishes to interact with the network needs an identity. In this setting, you might
say that one or more CAs can be used to define the members of an organization’s from a digital perspective. It’s
the CA that provides the basis for an organization’s actors to have a verifiable digital identity.

Root CAs, Intermediate CAs and Chains of Trust

CAs come in two flavors: Root CAs and Intermediate CAs. Because Root CAs (Symantec, Geotrust, etc) have to
securely distribute hundreds of millions of certificates to internet users, it makes sense to spread this process out
across what are called Intermediate CAs. These Intermediate CAs have their certificates issued by the root CA or
another intermediate authority, allowing the establishment of a “chain of trust” for any certificate that is issued by
any CA in the chain. This ability to track back to the Root CA not only allows the function of CAs to scale while
still providing security — allowing organizations that consume certificates to use Intermediate CAs with confidence
— it limits the exposure of the Root CA, which, if compromised, would endanger the entire chain of trust. If an
Intermediate CA is compromised, on the other hand, there will be a much smaller exposure.

RCA signs ICA1 ICAT signs ICA2 ICAZ2 signs ICA3
. certificate certificate certificate
RCA signs
own m
certificate _

o

Root Intermediate
RCA

I: |}
L=
Yellow certificates Green certificates Blue certificates Grey certificates
signed by RCA signed by ICAL signed by ICA2 signed by ICA3

A chain of trust is established between a Root CA and a set of Intermediate CAs as long as the issuing CA for the
certificate of each of these Intermediate CAs is either the Root CA itself or has a chain of trust to the Root CA.

Intermediate CAs provide a huge amount of flexibility when it comes to the issuance of certificates across multiple
organizations, and that’s very helpful in a permissioned blockchain system (like Fabric). For example, you’ll see that
different organizations may use different Root CAs, or the same Root CA with different Intermediate CAs — it really
does depend on the needs of the network.

50 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Fabric CA

It’s because CAs are so important that Fabric provides a built-in CA component to allow you to create CAs in the
blockchain networks you form. This component — known as Fabric CA is a private root CA provider capable of
managing digital identities of Fabric participants that have the form of X.509 certificates. Because Fabric CA is
a custom CA targeting the Root CA needs of Fabric, it is inherently not capable of providing SSL certificates for
general/automatic use in browsers. However, because some CA must be used to manage identity (even in a test
environment), Fabric CA can be used to provide and manage certificates. It is also possible — and fully appropriate
— to use a public/commerical root or intermediate CA to provide identification.

If you’re interested, you can read a lot more about Fabric CA in the CA documentation section.

4.5.7 Certificate Revocation Lists

A Certificate Revocation List (CRL) is easy to understand — it’s just a list of references to certificates that a CA knows
to be revoked for one reason or another. If you recall the store scenario, a CRL would be like a list of stolen credit
cards.

When a third party wants to verify another party’s identity, it first checks the issuing CA’s CRL to make sure that
the certificate has not been revoked. A verifier doesn’t have to check the CRL, but if they don’t they run the risk of
accepting a compromised identity.

Certificate Validating Impersonating
Authority Principal Principal
present
revoked
certificate

Certificate
Revocation List

!

]
]
]
7y

> |&=| |4=] 4=/ |A=] |&

Using a CRL to check that a certificate is still valid. If an impersonator tries to pass a compromised digital certificate
to a validating party, it can be first checked against the issuing CA’s CRL to make sure it’s not listed as no longer
valid.

Note that a certificate being revoked is very different from a certificate expiring. Revoked certificates have not expired
— they are, by every other measure, a fully valid certificate. For more in-depth information about CRLs, click here.

Now that you’ve seen how a PKI can provide verifiable identities through a chain of trust, the next step is to see how
these identities can be used to represent the trusted members of a blockchain network. That’s where a Membership
Service Provider (MSP) comes into play — it identifies the parties who are the members of a given organization
in the blockchain network.

To learn more about membership, check out the conceptual documentation on MSPs.

4.5. Identity 51

http://hyperledger-fabric-ca.readthedocs.io/
https://hyperledger-fabric-ca.readthedocs.io/en/latest/users-guide.html#generating-a-crl-certificate-revocation-list
../membership/membership.html

hyperledger-fabricdocs Documentation, Release master

4.6 Membership Service Provider (MSP)

4.6.1 Why do | need an MSP?

Because Fabric is a permissioned network, blockchain participants need a way to prove their identity to the rest of the
network in order to transact on the network. If you’ve read through the documentation on Identity you’ve seen how
a Public Key Infrastructure (PKI) can provide verifiable identities through a chain of trust. How is that chain of trust
used by the blockchain network?

Certificate Authorities issue identities by generating a public and private key which forms a key-pair that can be used
to prove identity. Because a private key can never be shared publicly, a mechanism is required to enable that proof
which is where the MSP comes in. For example, a peer uses its private key to digitally sign, or endorse, a transaction.
The MSP on the ordering service contains the peer’s public key which is then used to verify that the signature attached
to the transaction is valid. The private key is used to produce a signature on a transaction that only the corresponding
public key, that is part of an MSP, can match. Thus, the MSP is the mechanism that allows that identity to be trusted
and recognized by the rest of the network without ever revealing the member’s private key.

Recall from the credit card scenario in the Identity topic that the Certificate Authority is like a card provider — it
dispenses many different types of verifiable identities. An MSP, on the other hand, determines which credit card
providers are accepted at the store. In this way, the MSP turns an identity (the credit card) into a role (the ability to
buy things at the store).

This ability to turn verifiable identities into roles is fundamental to the way Fabric networks function, since it al-
lows organizations, nodes, and channels the ability establish MSPs that determine who is allowed to do what at the
organization, node, and channel level.

MSP

Identities

—o|[—o @

=2||=® ‘E:’

—@ @

Identities are similar to your credit cards that are used to prove you can pay. The MSP is similar to the list of accepted
credit cards.

Consider a consortium of banks that operate a blockchain network. Each bank operates peer and ordering nodes,
and the peers endorse transactions submitted to the network. However, each bank would also have departments and
account holders. The account holders would belong to each organization, but would not run nodes on the network.
They would only interact with the system from their mobile or web application. So how does the network recognize and
differentiate these identities? A CA was used to create the identities, but like the card example, those identities can’t
just be issued, they need to be recognized by the network. MSPs are used to define the organizations that are trusted
by the network members. MSPs are also the mechanism that provide members with a set of roles and permissions
within the network. Because the MSPs defining these organizations are known to the members of a network, they can
then be used to validate that network entities that attempt to perform actions are allowed to.

Finally, consider if you want to join an existing network, you need a way to turn your identity into something that is
recognized by the network. The MSP is the mechanism that enables you to participate on a permissioned blockchain

52 Chapter 4. Key Concepts

../identity/identity.html

hyperledger-fabricdocs Documentation, Release master

network. To transact on a Fabric network a member needs to:
1. Have an identity issued by a CA that is trusted by the network.

2. Become a member of an organization that is recognized and approved by the network members. The MSP
is how the identity is linked to the membership of an organization. Membership is achieved by adding the
member’s public key (also known as certificate, signing cert, or signcert) to the organization’s MSP.

3. Add the MSP to either a consortium on the network or a channel.

4. Ensure the MSP is included in the policy definitions on the network.

4.6.2 What is an MSP?

Despite its name, the Membership Service Provider does not actually provide anything. Rather, the implementation
of the MSP requirement is a set of folders that are added to the configuration of the network and is used to define an
organization both inwardly (organizations decide who its admins are) and outwardly (by allowing other organizations
to validate that entities have the authority to do what they are attempting to do). Whereas Certificate Authorities
generate the certificates that represent identities, the MSP contains a list of permissioned identities.

The MSP identifies which Root CAs and Intermediate CAs are accepted to define the members of a trust domain by
listing the identities of their members, or by identifying which CAs are authorized to issue valid identities for their
members.

But the power of an MSP goes beyond simply listing who is a network participant or member of a channel. It is the
MSP that turns an identity into a role by identifying specific privileges an actor has on a node or channel. Note that
when a user is registered with a Fabric CA, a role of admin, peer, client, orderer, or member must be associated with the
user. For example, identities registered with the “peer” role should, naturally, be given to a peer. Similarly, identities
registered with the “admin” role should be given to organization admins. We’ll delve more into the significance of
these roles later in the topic.

In addition, an MSP can allow for the identification of a list of identities that have been revoked — as discussed in the
Identity documentation — but we will talk about how that process also extends to an MSP.

4.6.3 MSP domains

MSPs occur in two domains in a blockchain network:
* Locally on an actor’s node (local MSP)
¢ In channel configuration (channel MSP)

The key difference between local and channel MSPs is not how they function — both turn identities into roles — but
their scope. Each MSP lists roles and permissions at a particular level of administration.

Local MSPs

Local MSPs are defined for clients and for nodes (peers and orderers). Local MSPs define the permissions for a
node (who are the peer admins who can operate the node, for example). The local MSPs of clients (the account holders
in the banking scenario above), allow the user to authenticate itself in its transactions as a member of a channel (e.g. in
chaincode transactions), or as the owner of a specific role into the system such as an organization admin, for example,
in configuration transactions.

Every node must have a local MSP defined, as it defines who has administrative or participatory rights at that
level (peer admins will not necessarily be channel admins, and vice versa). This allows for authenticating member
messages outside the context of a channel and to define the permissions over a particular node (who has the ability to
install chaincode on a peer, for example). Note that one or more nodes can be owned by an organization. An MSP

4.6. Membership Service Provider (MSP) 53

../glossary.html#consortium
../identity/identity.html

hyperledger-fabricdocs Documentation, Release master

defines the organization admins. And the organization, the admin of the organization, the admin of the node, and the
node itself should all have the same root of trust.

An orderer local MSP is also defined on the file system of the node and only applies to that node. Like peer nodes,
orderers are also owned by a single organization and therefore have a single MSP to list the actors or nodes it trusts.

Channel MSPs

In contrast, channel MSPs define administrative and participatory rights at the channel level. Peers and ordering
nodes on an application channel share the same view of channel MSPs, and will therefore be able to correctly authen-
ticate the channel participants. This means that if an organization wishes to join the channel, an MSP incorporating
the chain of trust for the organization’s members would need to be included in the channel configuration. Otherwise
transactions originating from this organization’s identities will be rejected. Whereas local MSPs are represented as a
folder structure on the file system, channel MSPs are described in a channel configuration.

Snippet from a channel config.json file that includes two organization MSPs.

Channel MSPs identify who has authorities at a channel level. The channel MSP defines the relationship be-
tween the identities of channel members (which themselves are MSPs) and the enforcement of channel level policies.
Channel MSPs contain the MSPs of the organizations of the channel members.

Every organization participating in a channel must have an MSP defined for it. In fact, it is recommended that
there is a one-to-one mapping between organizations and MSPs. The MSP defines which members are empowered to
act on behalf of the organization. This includes configuration of the MSP itself as well as approving administrative
tasks that the organization has role, such as adding new members to a channel. If all network members were part of a
single organization or MSP, data privacy is sacrificed. Multiple organizations facilitate privacy by segregating ledger
data to only channel members. If more granularity is required within an organization, the organization can be further
divided into organizational units (OUs) which we describe in more detail later in this topic.

The system channel MSP includes the MSPs of all the organizations that participate in an ordering service. An
ordering service will likely include ordering nodes from multiple organizations and collectively these organizations
run the ordering service, most importantly managing the consortium of organizations and the default policies that are
inherited by the application channels.

Local MSPs are only defined on the file system of the node or user to which they apply. Therefore, physically and
logically there is only one local MSP per node. However, as channel MSPs are available to all nodes in the channel,
they are logically defined once in the channel configuration. However, a channel MSP is also instantiated on the file
system of every node in the channel and kept synchronized via consensus. So while there is a copy of each channel
MSP on the local file system of every node, logically a channel MSP resides on and is maintained by the channel or
the network.

The following diagram illustrates how local and channel MSPs coexist on the network:

54 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

(== N\

Blockchain Network

i1
|

\ |
\ /

\ Global MSP " N/

Certificate Authority

Local MSP @ Channel
@ Membership
Services Provider
RCA2 ORGZ.MSP [SEIE - C — 4 b
= eer

ORG1.MSP ch n

Global MSPs \ S
- Orderer

The MSPs for the peer and orderer are local, whereas the MSPs for a channel (including the network configuration
channel, also known as the system channel) are global, shared across all participants of that channel. In this figure,
the network system channel is administered by ORGI, but another application channel can be managed by ORGI
and ORG2. The peer is a member of and managed by ORG2, whereas ORG1 manages the orderer of the figure.
ORG] trusts identities from RCAI, whereas ORG?2 trusts identities from RCA2. It is important to note that these are
administration identities, reflecting who can administer these components. So while ORG1 administers the network,
ORG2.MSP does exist in the network definition.

4.6.4 What role does an organization play in an MSP?

An organization is a logical managed group of members. This can be something as big as a multinational corporation
or a small as a flower shop. What’s most important about organizations (or orgs) is that they manage their members
under a single MSP. The MSP allows an identity to be linked to an organization. Note that this is different from the
organization concept defined in an X.509 certificate, which we mentioned above.

The exclusive relationship between an organization and its MSP makes it sensible to name the MSP after the organi-
zation, a convention you’ll find adopted in most policy configurations. For example, organization ORG1 would likely
have an MSP called something like ORG1-MSP. In some cases an organization may require multiple membership
groups — for example, where channels are used to perform very different business functions between organizations.
In these cases it makes sense to have multiple MSPs and name them accordingly, e.g., ORG2-MSP-NATIONAL and
ORG2-MSP-GOVERNMENT, reflecting the different membership roots of trust within ORG2 in the NATIONAL sales
channel compared to the GOVERNMENT regulatory channel.

Organizational Units (OUs) and MSPs

An organization can also be divided into multiple organizational units, each of which has a certain set of responsi-
bilities, also referred to as affiliations. Think of an OU as a department inside an organization. For example,
the ORG1 organization might have both ORG1 . MANUFACTURING and ORG1 .DISTRIBUTION OUs to reflect these
separate lines of business. When a CA issues X.509 certificates, the OU field in the certificate specifies the line of
business to which the identity belongs. A benefit of using OUs like this is that these values can then be used in policy
definitions in order to restrict access or in smart contracts for attribute-based access control. Otherwise, separate MSPs
would need to be created for each organization.

Specifying OUs is optional. If OUs are not used, all of the identities that are part of an MSP — as identified by the
Root CA and Intermediate CA folders — will be considered members of the organization.

4.6. Membership Service Provider (MSP) 55

hyperledger-fabricdocs Documentation, Release master

Node OU Roles and MSPs

Additionally, there is a special kind of OU, sometimes referred to as a Node OU, that can be used to confer a role onto
an identity. These Node OU roles are defined in the $SFABRIC_CFG_PATH/msp/config.yaml file and contain a
list of organizational units whose members are considered to be part of the organization represented by this MSP. This
is particularly useful when you want to restrict the members of an organization to the ones holding an identity (signed
by one of MSP designated CAs) with a specific Node OU role in it. For example, with node OU’s you can implement a
more granular endorsement policy that requires Orgl peers to endorse a transaction, rather than any member of Orgl.

In order to use the Node OU roles, the “identity classification” feature must be enabled for the network. When using
the folder-based MSP structure, this is accomplished by enabling “Node OUs” in the config.yaml file which resides in
the root of the MSP folder:

NodeOUs:
Enable: true
ClientOUIdentifier:

Certificate: cacerts/ca.sampleorg-cert.pem

OrganizationalUnitIdentifier: client
PeerOUIdentifier:

Certificate: cacerts/ca.sampleorg-cert.pem

OrganizationalUnitIdentifier: peer
AdminOUIdentifier:

Certificate: cacerts/ca.sampleorg-cert.pem

OrganizationalUnitIdentifier: admin
OrdererOUIdentifier:

Certificate: cacerts/ca.sampleorg-cert.pem

OrganizationalUnitIdentifier: orderer

In the example above, there are 4 possible Node OU ROLES for the MSP:
* client
* peer
e admin
* orderer

This convention allows you to distinguish MSP roles by the OU present in the CommonName attribute of the X509
certificate. The example above says that any certificate issued by cacerts/ca.sampleorg-cert.pem in which OU=client
will identified as a client, OU=peer as a peer, etc. Starting with Fabric v1.4.3, there is also an OU for the orderer and
for admins. The new admins role means that you no longer have to explicitly place certs in the admincerts folder of
the MSP directory. Rather, the admin role present in the user’s signcert qualifies the identity as an admin user.

These Role and OU attributes are assigned to an identity when the Fabric CA or SDK is used to register a user
with the CA. It is the subsequent enrol1 user command that generates the certificates in the users’ /msp folder.

56 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Q a
& FEe e
&
Fabric-CA CLI or SDK O o TES
Register User [affiléon, role] -
Enroll user MSP

/msp

L— cacerts

L— intermediate cacerts
L tiscacerts

L—tls intermediate cacerts
L— keystore (private key)
L— signcerts (public key)

The resulting ROLE and OU attributes are visible inside the X.509 signing certificate located in the /signcerts
folder. The ROLE attribute is identified as hf . Type and refers to an actor’s role within its organization, (specifying,

for example, that an actor is a peer). See the following snippet from a signing certificate shows how the Roles and
OUs are represented in the certificate.

Certificate:
Data
Version: 3 (0x2)
Serial Number:
45:60:41:01 :de:f:5d:b2:94:18:79:91:26:31 :dR:0e:b0: 9b: 6b: BR
Signature Algorithm: ecdsa-with-SHA256
Issuer: C=US, ST=New York, O=Hyperledger, OU=Fabric, CN=fabric-ca-server
Validity
Not Before: Nov 20 22:13:00 2019 GMT
Not After : Nov 19 22:18:00 2020 GMT
Subject: OU=peer, OU=0RG1, OU=DISTRIBUTION, CN=userl
L — § P —
ROLE ORGANIZATIONAL UNIT ENROLL ID
(MNode QL)

X509v3 extensions:
X509v3 Key Usage: critical
Digital Signature
X509v3 Basic Constraints: critical
CA:FALSE
X509v3 Subject Key Identifier:
17:B0:9B:29:42:F6:44: E0:TD:02:C6:78:96:2D:97:14:TA:DT:FC:CA

X509v3 Authority Key Identifier:
keyid:DC:91:B7:85:A4:37:66:D0:D2:B7:62: A9:3F:59:83:D6:EB:01:E8: 80
1.23456.78.1:
ORGANIZATIONAL UNIT ENROLL ID ROLE (Node OU)

o o 1

{"attrs": {"hf Affiliation":"ORG1.DISTRIBUTION","hf EnrollmentID": "user 1","hf Type":"peer" } }

Note: For Channel MSPs, just because an actor has the role of an administrator it doesn’t mean that
they can administer particular resources. The actual power a given identity has with respect to administer-
ing the system is determined by the policies that manage system resources. For example, a channel policy
might specify that ORG1-MANUFACTURING administrators, meaning identities with a role of admin and a

4.6. Membership Service Provider (MSP) 57

hyperledger-fabricdocs Documentation, Release master

Node OU of ORG1-MANUFACTURING, have the rights to add new organizations to the channel, whereas the
ORG1-DISTRIBUTION administrators have no such rights.

Finally, OUs could be used by different organizations in a consortium to distinguish each other. But in such cases,
the different organizations have to use the same Root CAs and Intermediate CAs for their chain of trust, and assign
the OU field to identify members of each organization. When every organization has the same CA or chain of trust,
this makes the system more centralized than what might be desirable and therefore deserves careful consideration on
a blockchain network.

4.6.5 MSP Structure

Let’s explore the MSP elements that render the functionality we’ve described so far.

A local MSP folder contains the following sub-folders:

msp .

— config.yaml ~ node OU configuration
—— .. cacerts

[m‘crt . . - - . -

signing chain for organization-level certificates

I intermediatecerts signs

L cacnt _
—— .. admincerts* organization administrator(s) certificate(s)

[*deprecated in Fabric v1.4.3 and higher)
admin.crt

o keystore (private key)
I— signer.key —

——— . signcerts jpusickey

I— signer.crt

—— . tlscacerts

pairs with

I— tlsca.<org-domain>-cert.pem 7

—— . tlsintermediatecerts — signing chain for network TLS node certificates

I— tisca.<org-domain>.pem

.. operationscerts ~ certs for Fabric operations metrics

The figure above shows the subfolders in a local MSP on the file system

* config.yaml: Used to configure the identity classification feature in Fabric by enabling “Node OUs” and defining

the accepted roles.

* cacerts: This folder contains a list of self-signed X.509 certificates of the Root CAs trusted by the organization

represented by this MSP. There must be at least one Root CA certificate in this MSP folder.

This is the most important folder because it identifies the CAs from which all other certificates must be derived
to be considered members of the corresponding organization to form the chain of trust.

intermediatecerts: This folder contains a list of X.509 certificates of the Intermediate CAs trusted by this
organization. Each certificate must be signed by one of the Root CAs in the MSP or by any Intermediate CA
whose issuing CA chain ultimately leads back to a trusted Root CA.

An intermediate CA may represent a different subdivision of the organization (like ORG1-MANUFACTURING
and ORG1-DISTRIBUTION do for ORG1), or the organization itself (as may be the case if a commercial CA
is leveraged for the organization’s identity management). In the latter case intermediate CAs can be used to rep-
resent organization subdivisions. Here you may find more information on best practices for MSP configuration.

58

Chapter 4. Key Concepts

../msp.html

hyperledger-fabricdocs Documentation, Release master

Notice, that it is possible to have a functioning network that does not have an Intermediate CA, in which case
this folder would be empty.

Like the Root CA folder, this folder defines the CAs from which certificates must be issued to be considered
members of the organization.

* admincerts (Deprecated from Fabric v1.4.3 and higher): This folder contains a list of identities that define
the actors who have the role of administrators for this organization. In general, there should be one or more
X.509 certificates in this list.

Note: Prior to Fabric v1.4.3, admins were defined by explicitly putting certs in the admincerts folder in
the local MSP directory of your peer. With Fabric v1.4.3 or higher, certificates in this folder are no longer
required. Instead, it is recommended that when the user is registered with the CA, that the admin role is used
to designate the node administrator. Then, the identity is recognized as an admin by the Node OU role value
in their signcert. As a reminder, in order to leverage the admin role, the “identity classification” feature must be
enabled in the config.yaml above by setting “Node OUs” to Enable: true. We’ll explore this more later.

And as a reminder, for Channel MSPs, just because an actor has the role of an administrator it doesn’t mean that
they can administer particular resources. The actual power a given identity has with respect to administering
the system is determined by the policies that manage system resources. For example, a channel policy might
specify that ORG1-MANUFACTURING administrators have the rights to add new organizations to the channel,
whereas the ORG1-DISTRIBUTION administrators have no such rights.

* keystore: (private Key) This folder is defined for the local MSP of a peer or orderer node (or in a client’s local
MSP), and contains the node’s private key. This key is used to sign data — for example to sign a transaction
proposal response, as part of the endorsement phase.

This folder is mandatory for local MSPs, and must contain exactly one private key. Obviously, access to this
folder must be limited only to the identities of users who have administrative responsibility on the peer.

The channel MSP configuration does not include this folder, because channel MSPs solely aim to offer identity
validation functionalities and not signing abilities.

Note: If you are using a Hardware Security Module(HSM) for key management, this folder is empty because
the private key is generated by and stored in the HSM.

* signcert: For a peer or orderer node (or in a client’s local MSP) this folder contains the node’s signing key.
This key matches cryptographically the node’s identity included in Node Identity folder and is used to sign data
— for example to sign a transaction proposal response, as part of the endorsement phase.

This folder is mandatory for local MSPs, and must contain exactly one public key. Obviously, access to this
folder must be limited only to the identities of users who have administrative responsibility on the peer.

Configuration of a channel MSP does not include this folder, as channel MSPs solely aim to offer identity
validation functionalities and not signing abilities.

* tlscacerts: This folder contains a list of self-signed X.509 certificates of the Root CAs trusted by this organiza-
tion for secure communications between nodes using TLS. An example of a TLS communication would be
when a peer needs to connect to an orderer so that it can receive ledger updates.

MSP TLS information relates to the nodes inside the network — the peers and the orderers, in other words,
rather than the applications and administrations that consume the network.

There must be at least one TLS Root CA certificate in this folder. For more information about TLS, see Securing
Communication with Transport Layer Security (TLS).

* tlsintermediatecacerts: This folder contains a list intermediate CA certificates CAs trusted by the organization
represented by this MSP for secure communications between nodes using TLS. This folder is specifically use-
ful when commercial CAs are used for TLS certificates of an organization. Similar to membership intermediate
CAs, specifying intermediate TLS CAs is optional.

4.6. Membership Service Provider (MSP) 59

../hsm.html
../enable_tls.html
../enable_tls.html

hyperledger-fabricdocs Documentation, Release master

* operationscerts: This folder contains the certificates required to communicate with the Fabric Operations Ser-
vice APL

A channel MSP includes the following additional folder:

* Revoked Certificates: If the identity of an actor has been revoked, identifying information about the identity
— not the identity itself — is held in this folder. For X.509-based identities, these identifiers are pairs of strings
known as Subject Key Identifier (SKI) and Authority Access Identifier (AKI), and are checked whenever the
certificate is being used to make sure the certificate has not been revoked.

This list is conceptually the same as a CA’s Certificate Revocation List (CRL), but it also relates to revocation
of membership from the organization. As a result, the administrator of a channel MSP can quickly revoke an
actor or node from an organization by advertising the updated CRL of the CA. This “list of lists” is optional. It
will only become populated as certificates are revoked.

If you’ve read this doc as well as our doc on Identity, you should now have a pretty good grasp of how identities and
MSPs work in Hyperledger Fabric. You’ve seen how a PKI and MSPs are used to identify the actors collaborating in
a blockchain network. You’ve learned how certificates, public/private keys, and roots of trust work, in addition to how
MSPs are physically and logically structured.

4.7 Peers

A blockchain network is comprised primarily of a set of peer nodes (or, simply, peers). Peers are a fundamental
element of the network because they host ledgers and smart contracts. Recall that a ledger immutably records all the
transactions generated by smart contracts (which in Hyperledger Fabric are contained in a chaincode, more on this
later). Smart contracts and ledgers are used to encapsulate the shared processes and shared information in a network,
respectively. These aspects of a peer make them a good starting point to understand a Fabric network.

Other elements of the blockchain network are of course important: ledgers and smart contracts, orderers, policies,
channels, applications, organizations, identities, and membership, and you can read more about them in their own
dedicated sections. This section focusses on peers, and their relationship to those other elements in a Fabric network.

- N

Blockchain
network
Pz Peer node

L1

Smart contract
(aka chaincode)

L1

P3

10805

Ledger

\ v

A blockchain network is comprised of peer nodes, each of which can hold copies of ledgers and copies of smart
contracts. In this example, the network N consists of peers P1, P2 and P3, each of which maintain their own instance
of the distributed ledger L1. P1, P2 and P3 use the same chaincode, S1, to access their copy of that distributed ledger.

Peers can be created, started, stopped, reconfigured, and even deleted. They expose a set of APIs that enable admin-
istrators and applications to interact with the services that they provide. We’ll learn more about these services in this

60 Chapter 4. Key Concepts

../operations_service.html
../operations_service.html
../identity/identity.html

hyperledger-fabricdocs Documentation, Release master

section.

4.7.1 A word on terminology

Fabric implements smart contracts with a technology concept it calls chaincode — simply a piece of code that
accesses the ledger, written in one of the supported programming languages. In this topic, we’ll usually use the term
chaincode, but feel free to read it as smart contract if you’re more used to that term. It’s the same thing! If you want
to learn more about chaincode and smart contracts, check out our documentation on smart contracts and chaincode.

4.7.2 Ledgers and Chaincode

Let’s look at a peer in a little more detail. We can see that it’s the peer that hosts both the ledger and chaincode.
More accurately, the peer actually hosts instances of the ledger, and instances of chaincode. Note that this provides a
deliberate redundancy in a Fabric network — it avoids single points of failure. We’ll learn more about the distributed
and decentralized nature of a blockchain network later in this section.

A peer hosts instances of ledgers and instances of chaincodes. In this example, P1 hosts an instance of ledger L1 and
an instance of chaincode S1. There can be many ledgers and chaincodes hosted on an individual peer.

Because a peer is a host for ledgers and chaincodes, applications and administrators must interact with a peer if they
want to access these resources. That’s why peers are considered the most fundamental building blocks of a Fabric
network. When a peer is first created, it has neither ledgers nor chaincodes. We’ll see later how ledgers get created,
and how chaincodes get installed, on peers.

Multiple Ledgers

A peer is able to host more than one ledger, which is helpful because it allows for a flexible system design. The
simplest configuration is for a peer to manage a single ledger, but it’s absolutely appropriate for a peer to host two or
more ledgers when required.

4.7. Peers 61

../smartcontract/smartcontract.html

hyperledger-fabricdocs Documentation, Release master

S2

A peer hosting multiple ledgers. Peers host one or more ledgers, and each ledger has zero or more chaincodes that
apply to them. In this example, we can see that the peer Pl hosts ledgers L1 and L2. Ledger LI is accessed using
chaincode S1. Ledger L2 on the other hand can be accessed using chaincodes S1 and S2.

Although it is perfectly possible for a peer to host a ledger instance without hosting any chaincodes which access that
ledger, it’s rare that peers are configured this way. The vast majority of peers will have at least one chaincode installed
on it which can query or update the peer’s ledger instances. It’s worth mentioning in passing that, whether or not users
have installed chaincodes for use by external applications, peers also have special system chaincodes that are always
present. These are not discussed in detail in this topic.

Multiple Chaincodes

There isn’t a fixed relationship between the number of ledgers a peer has and the number of chaincodes that can access
that ledger. A peer might have many chaincodes and many ledgers available to it.

S1 S3

An example of a peer hosting multiple chaincodes. Each ledger can have many chaincodes which access it. In this
example, we can see that peer P1 hosts ledgers L1 and L2, where LI is accessed by chaincodes S1 and S2, and L2 is
accessed by S1 and S3. We can see that S1 can access both L1 and L2.

62 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

We’ll see a little later why the concept of channels in Fabric is important when hosting multiple ledgers or multiple
chaincodes on a peer.

4.7.3 Applications and Peers

We’re now going to show how applications interact with peers to access the ledger. Ledger-query interactions involve
a simple three-step dialogue between an application and a peer; ledger-update interactions are a little more involved,
and require two extra steps. We’ve simplified these steps a little to help you get started with Fabric, but don’t worry
— what’s most important to understand is the difference in application-peer interactions for ledger-query compared to
ledger-update transaction styles.

Applications always connect to peers when they need to access ledgers and chaincodes. The Fabric Software De-
velopment Kit (SDK) makes this easy for programmers — its APIs enable applications to connect to peers, invoke
chaincodes to generate transactions, submit transactions to the network that will get ordered and committed to the
distributed ledger, and receive events when this process is complete.

Through a peer connection, applications can execute chaincodes to query or update a ledger. The result of a ledger
query transaction is returned immediately, whereas ledger updates involve a more complex interaction between appli-
cations, peers and orderers. Let’s investigate this in a little more detail.

Blockehain
Network
/ 2.1 peer invokes chaincode with proposal \
E] Application
1. connect to peer
2. invoke chaincode (proposal) 2.2 chaincode generates Peer
A query or update
3. proposal response e TS
] 1 i
H 5. ledger update event i Chaincode
| Lo | 4.2 peer updates ledger
i using transaction blocks
4, request that transaction is ordered =4 1 Transactions sent - Ledger
to peers in blocks y
. Orderer

Peers, in conjunction with orderers, ensure that the ledger is kept up-to-date on every peer. In this example, application
A connects to P1 and invokes chaincode S1 to query or update the ledger L1. PI invokes S1 to generate a proposal
response that contains a query result or a proposed ledger update. Application A receives the proposal response and,
for queries, the process is now complete. For updates, A builds a transaction from all of the responses, which it sends
it to Ol for ordering. O1 collects transactions from across the network into blocks, and distributes these to all peers,
including P1. P1I validates the transaction before applying to L1. Once LI is updated, P1 generates an event, received
by A, to signify completion.

A peer can return the results of a query to an application immediately since all of the information required to satisfy the
query is in the peer’s local copy of the ledger. Peers never consult with other peers in order to respond to a query from
an application. Applications can, however, connect to one or more peers to issue a query; for example, to corroborate
a result between multiple peers, or retrieve a more up-to-date result from a different peer if there’s a suspicion that
information might be out of date. In the diagram, you can see that ledger query is a simple three-step process.

An update transaction starts in the same way as a query transaction, but has two extra steps. Although ledger-updating
applications also connect to peers to invoke a chaincode, unlike with ledger-querying applications, an individual peer
cannot perform a ledger update at this time, because other peers must first agree to the change — a process called
consensus. Therefore, peers return to the application a proposed update — one that this peer would apply subject to

4.7. Peers 63

hyperledger-fabricdocs Documentation, Release master

other peers’ prior agreement. The first extra step — step four — requires that applications send an appropriate set of
matching proposed updates to the entire network of peers as a transaction for commitment to their respective ledgers.
This is achieved by the application using an orderer to package transactions into blocks, and distribute them to the
entire network of peers, where they can be verified before being applied to each peer’s local copy of the ledger. As
this whole ordering processing takes some time to complete (seconds), the application is notified asynchronously, as
shown in step five.

Later in this section, you’ll learn more about the detailed nature of this ordering process — and for a really detailed
look at this process see the Transaction Flow topic.

4.7.4 Peers and Channels

Although this section is about peers rather than channels, it’s worth spending a little time understanding how peers
interact with each other, and with applications, via channels — a mechanism by which a set of components within a
blockchain network can communicate and transact privately.

These components are typically peer nodes, orderer nodes and applications and, by joining a channel, they agree to
collaborate to collectively share and manage identical copies of the ledger associated with that channel. Conceptually,
you can think of channels as being similar to groups of friends (though the members of a channel certainly don’t need
to be friends!). A person might have several groups of friends, with each group having activities they do together.
These groups might be totally separate (a group of work friends as compared to a group of hobby friends), or there
can be some crossover between them. Nevertheless, each group is its own entity, with “rules” of a kind.

Blockchain
/ \ E] Blockch: - Ledger
P1 @ Channel Application
L1
P2 PA Principal PA (e.g. A, P1)
L1 n Peer r communicates via
channel C.
—— C i
K y E] Chaincode

Channels allow a specific set of peers and applications to communicate with each other within a blockchain network.
In this example, application A can communicate directly with peers P1 and P2 using channel C. You can think of the
channel as a pathway for communications between particular applications and peers. (For simplicity, orderers are
not shown in this diagram, but must be present in a functioning network.)

We see that channels don’t exist in the same way that peers do — it’s more appropriate to think of a channel as a
logical structure that is formed by a collection of physical peers. It is vital to understand this point — peers provide
the control point for access to, and management of, channels.

4.7.5 Peers and Organizations
Now that you understand peers and their relationship to ledgers, chaincodes and channels, you’ll be able to see how
multiple organizations come together to form a blockchain network.

Blockchain networks are administered by a collection of organizations rather than a single organization. Peers are
central to how this kind of distributed network is built because they are owned by — and are the connection points to

64 Chapter 4. Key Concepts

../txflow.html

hyperledger-fabricdocs Documentation, Release master

the network for — these organizations.

Blockchain
Ledger
Network
Channel E] Application
Principal PA (e.g. A1, P5)
Peer ? communicates via
channel C.
Organization
\‘\ Organization R owns application Al
/| and peers P1, P2.
ﬂ"’

Peers in a blockchain network with multiple organizations. The blockchain network is built up from the peers owned
and contributed by the different organizations. In this example, we see four organizations contributing eight peers to
form a network. The channel C connects five of these peers in the network N — PI1, P3, P5, P7 and P8. The other
peers owned by these organizations have not been joined to this channel, but are typically joined to at least one other
channel. Applications that have been developed by a particular organization will connect to their own organization’s
peers as well as those of different organizations. Again, for simplicity, an orderer node is not shown in this diagram.

It’s really important that you can see what’s happening in the formation of a blockchain network. The network is
both formed and managed by the multiple organizations who contribute resources to it. Peers are the resources that
we’re discussing in this topic, but the resources an organization provides are more than just peers. There’s a principle
at work here — the network literally does not exist without organizations contributing their individual resources
to the collective network. Moreover, the network grows and shrinks with the resources that are provided by these
collaborating organizations.

You can see that (other than the ordering service) there are no centralized resources — in the example above, the
network, N, would not exist if the organizations did not contribute their peers. This reflects the fact that the network
does not exist in any meaningful sense unless and until organizations contribute the resources that form it. Moreover,
the network does not depend on any individual organization — it will continue to exist as long as one organization
remains, no matter which other organizations may come and go. This is at the heart of what it means for a network to
be decentralized.

Applications in different organizations, as in the example above, may or may not be the same. That’s because it’s
entirely up to an organization as to how its applications process their peers’ copies of the ledger. This means that both
application and presentation logic may vary from organization to organization even though their respective peers host
exactly the same ledger data.

Applications connect either to peers in their organization, or peers in another organization, depending on the nature of
the ledger interaction that’s required. For ledger-query interactions, applications typically connect to their own orga-
nization’s peers. For ledger-update interactions, we’ll see later why applications need to connect to peers representing
every organization that is required to endorse the ledger update.

4.7.6 Peers and ldentity

Now that you’ve seen how peers from different organizations come together to form a blockchain network, it’s worth
spending a few moments understanding how peers get assigned to organizations by their administrators.

4.7. Peers 65

hyperledger-fabricdocs Documentation, Release master

Peers have an identity assigned to them via a digital certificate from a particular certificate authority. You can read
lots more about how X.509 digital certificates work elsewhere in this guide but, for now, think of a digital certificate
as being like an ID card that provides lots of verifiable information about a peer. Each and every peer in the network
is assigned a digital certificate by an administrator from its owning organization.

Blockchain Peer
Network
@ Channel Organization

Identity Principal PA (e.g. P1,P4)

communicates via

&]|| Channel channel C.

policy
CA Certificate @ Membership Service
Authority Provider

e

~

\ | Organization R owns application Al
,‘ and peers P1, P2.
’

CA1 ORG1.MSP N P

N-~__—'¢
ORG2.MSP CA2
@ Channel
N . Cha'nnel C ver: RS pollcy.CP
subject to contains
S MSP2

policy CP. MSPs: MSP1
and MSP2.
Principal P MSP1 selects the Certificate
has identity D Authority CA1 to provide certificates

for it.
When a peer connects to a channel, its digital certificate identifies its owning organization via a channel MSP. In this
example, P1 and P2 have identities issued by CAl. Channel C determines from a policy in its channel configuration
that identities from CAl should be associated with Orgl using ORGI.MSP. Similarly, P3 and P4 are identified by
ORG2.MSP as being part of Org2.

Whenever a peer connects using a channel to a blockchain network, a policy in the channel configuration uses the
peer’s identity to determine its rights. The mapping of identity to organization is provided by a component called
a Membership Service Provider (MSP) — it determines how a peer gets assigned to a specific role in a particular
organization and accordingly gains appropriate access to blockchain resources. Moreover, a peer can be owned only
by a single organization, and is therefore associated with a single MSP. We’ll learn more about peer access control
later in this section, and there’s an entire section on MSPs and access control policies elsewhere in this guide. But
for now, think of an MSP as providing linkage between an individual identity and a particular organizational role in a
blockchain network.

To digress for a moment, peers as well as everything that interacts with a blockchain network acquire their organi-
zational identity from their digital certificate and an MSP. Peers, applications, end users, administrators and orderers
must have an identity and an associated MSP if they want to interact with a blockchain network. We give a name
to every entity that interacts with a blockchain network using an identity — a principal. You can learn lots more
about principals and organizations elsewhere in this guide, but for now you know more than enough to continue your
understanding of peers!

Finally, note that it’s not really important where the peer is physically located — it could reside in the cloud, or in a
data centre owned by one of the organizations, or on a local machine — it’s the identity associated with it that identifies
it as being owned by a particular organization. In our example above, P3 could be hosted in Orgl’s data center, but as
long as the digital certificate associated with it is issued by CA2, then it’s owned by Org?2.

66 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

4.7.7 Peers and Orderers

We’ve seen that peers form the basis for a blockchain network, hosting ledgers and smart contracts which can be
queried and updated by peer-connected applications. However, the mechanism by which applications and peers interact
with each other to ensure that every peer’s ledger is kept consistent is mediated by special nodes called orderers, and
it’s to these nodes we now turn our attention.

An update transaction is quite different from a query transaction because a single peer cannot, on its own, update the
ledger — updating requires the consent of other peers in the network. A peer requires other peers in the network to
approve a ledger update before it can be applied to a peer’s local ledger. This process is called consensus, which takes
much longer to complete than a simple query. But when all the peers required to approve the transaction do so, and the
transaction is committed to the ledger, peers will notify their connected applications that the ledger has been updated.
You’re about to be shown a lot more detail about how peers and orderers manage the consensus process in this section.

Specifically, applications that want to update the ledger are involved in a 3-phase process, which ensures that all the
peers in a blockchain network keep their ledgers consistent with each other. In the first phase, applications work with
a subset of endorsing peers, each of which provide an endorsement of the proposed ledger update to the application,
but do not apply the proposed update to their copy of the ledger. In the second phase, these separate endorsements
are collected together as transactions and packaged into blocks. In the final phase, these blocks are distributed back to
every peer where each transaction is validated before being applied to that peer’s copy of the ledger.

As you will see, orderer nodes are central to this process, so let’s investigate in a little more detail how applications
and peers use orderers to generate ledger updates that can be consistently applied to a distributed, replicated ledger.

Phase 1: Proposal

Phase 1 of the transaction workflow involves an interaction between an application and a set of peers — it does not
involve orderers. Phase 1 is only concerned with an application asking different organizations’ endorsing peers to
agree to the results of the proposed chaincode invocation.

To start phase 1, applications generate a transaction proposal which they send to each of the required set of peers for
endorsement. Each of these endorsing peers then independently executes a chaincode using the transaction proposal
to generate a transaction proposal response. It does not apply this update to the ledger, but rather simply signs it and
returns it to the application. Once the application has received a sufficient number of signed proposal responses, the
first phase of the transaction flow is complete. Let’s examine this phase in a little more detail.

/ \ Blockchain E] Chaincode
Network

Channel Orderer

Peer n Ledger

Transaction T1,
el P2 | response R2
endorsed with E2

Transaction T
proposal P

ACIRE

|
c) Ledger

N | transaction PrincipaIAPA (Pl,?Z)
tEl__ | T1 flowson Y communicates via

channel C channel C.

Transaction proposals are independently executed by peers who return endorsed proposal responses. In this example,
application Al generates transaction T1 proposal P which it sends to both peer PI1 and peer P2 on channel C. P1
executes S1 using transaction T1 proposal P generating transaction T1 response RI which it endorses with El. Inde-
pendently, P2 executes S1 using transaction T1 proposal P generating transaction T1 response R2 which it endorses

4.7. Peers 67

hyperledger-fabricdocs Documentation, Release master

with E2. Application Al receives two endorsed responses for transaction T1, namely EI and E2.

Initially, a set of peers are chosen by the application to generate a set of proposed ledger updates. Which peers are
chosen by the application? Well, that depends on the endorsement policy (defined for a chaincode), which defines the
set of organizations that need to endorse a proposed ledger change before it can be accepted by the network. This
is literally what it means to achieve consensus — every organization who matters must have endorsed the proposed
ledger change before it will be accepted onto any peer’s ledger.

A peer endorses a proposal response by adding its digital signature, and signing the entire payload using its private
key. This endorsement can be subsequently used to prove that this organization’s peer generated a particular response.
In our example, if peer P1 is owned by organization Orgl, endorsement E1 corresponds to a digital proof that “Trans-
action T1 response R1 on ledger L1 has been provided by Orgl’s peer P1!”.

Phase 1 ends when the application receives signed proposal responses from sufficient peers. We note that different
peers can return different and therefore inconsistent transaction responses to the application for the same transaction
proposal. It might simply be that the result was generated at different times on different peers with ledgers at different
states, in which case an application can simply request a more up-to-date proposal response. Less likely, but much
more seriously, results might be different because the chaincode is non-deterministic. Non-determinism is the enemy
of chaincodes and ledgers and if it occurs it indicates a serious problem with the proposed transaction, as inconsis-
tent results cannot, obviously, be applied to ledgers. An individual peer cannot know that their transaction result is
non-deterministic — transaction responses must be gathered together for comparison before non-determinism can be
detected. (Strictly speaking, even this is not enough, but we defer this discussion to the transaction section, where
non-determinism is discussed in detail.)

At the end of phase 1, the application is free to discard inconsistent transaction responses if it wishes to do so,
effectively terminating the transaction workflow early. We’ll see later that if an application tries to use an inconsistent
set of transaction responses to update the ledger, it will be rejected.

Phase 2: Ordering and packaging transactions into blocks

The second phase of the transaction workflow is the packaging phase. The orderer is pivotal to this process — it
receives transactions containing endorsed transaction proposal responses from many applications, and orderes the
transactions into blocks. For more details about the ordering and packaging phase, check out our conceptual informa-
tion about the ordering phase.

Phase 3: Validation and commit

At the end of phase 2, we see that orderers have been responsible for the simple but vital processes of collecting
proposed transaction updates, ordering them, and packaging them into blocks, ready for distribution to the peers.

The final phase of the transaction workflow involves the distribution and subsequent validation of blocks from the
orderer to the peers, where they can be applied to the ledger. Specifically, at each peer, every transaction within a
block is validated to ensure that it has been consistently endorsed by all relevant organizations before it is applied to
the ledger. Failed transactions are retained for audit, but are not applied to the ledger.

68 Chapter 4. Key Concepts

../orderer/ordering_service.html#phase-two-ordering-and-packaging-transactions-into-blocks
../orderer/ordering_service.html#phase-two-ordering-and-packaging-transactions-into-blocks

hyperledger-fabricdocs Documentation, Release master

Peer

Blockchain
Network

Orderer

@ Channel .

Ledger - Block B
1 Ledger L1 has e

B blockchain with :;

Block B1 contains
transactions
T1,7T2,T3...

blocks B0, B1

Block B1 flows
on channel C

The second role of an orderer node is to distribute blocks to peers. In this example, orderer Ol distributes block B2 to
peer Pl and peer P2. Peer P1 processes block B2, resulting in a new block being added to ledger L1 on P1. In parallel,
peer P2 processes block B2, resulting in a new block being added to ledger L1 on P2. Once this process is complete,
the ledger L1 has been consistently updated on peers P1 and P2, and each may inform connected applications that the
transaction has been processed.

Principal PA (P1,
P2) communicates
via channel C.

Phase 3 begins with the orderer distributing blocks to all peers connected to it. Peers are connected to orderers on
channels such that when a new block is generated, all of the peers connected to the orderer will be sent a copy of the
new block. Each peer will process this block independently, but in exactly the same way as every other peer on the
channel. In this way, we’ll see that the ledger can be kept consistent. It’s also worth noting that not every peer needs to
be connected to an orderer — peers can cascade blocks to other peers using the gossip protocol, who also can process
them independently. But let’s leave that discussion to another time!

Upon receipt of a block, a peer will process each transaction in the sequence in which it appears in the block. For
every transaction, each peer will verify that the transaction has been endorsed by the required organizations according
to the endorsement policy of the chaincode which generated the transaction. For example, some transactions may
only need to be endorsed by a single organization, whereas others may require multiple endorsements before they are
considered valid. This process of validation verifies that all relevant organizations have generated the same outcome
or result. Also note that this validation is different than the endorsement check in phase 1, where it is the application
that receives the response from endorsing peers and makes the decision to send the proposal transactions. In case the
application violates the endorsement policy by sending wrong transactions, the peer is still able to reject the transaction
in the validation process of phase 3.

If a transaction has been endorsed correctly, the peer will attempt to apply it to the ledger. To do this, a peer must
perform a ledger consistency check to verify that the current state of the ledger is compatible with the state of the
ledger when the proposed update was generated. This may not always be possible, even when the transaction has
been fully endorsed. For example, another transaction may have updated the same asset in the ledger such that the
transaction update is no longer valid and therefore can no longer be applied. In this way each peer’s copy of the ledger
is kept consistent across the network because they each follow the same rules for validation.

After a peer has successfully validated each individual transaction, it updates the ledger. Failed transactions are not
applied to the ledger, but they are retained for audit purposes, as are successful transactions. This means that peer
blocks are almost exactly the same as the blocks received from the orderer, except for a valid or invalid indicator on
each transaction in the block.

We also note that phase 3 does not require the running of chaincodes — this is done only during phase 1, and that’s im-
portant. It means that chaincodes only have to be available on endorsing nodes, rather than throughout the blockchain
network. This is often helpful as it keeps the logic of the chaincode confidential to endorsing organizations. This is
in contrast to the output of the chaincodes (the transaction proposal responses) which are shared with every peer in
the channel, whether or not they endorsed the transaction. This specialization of endorsing peers is designed to help
scalability.

4.7. Peers 69

hyperledger-fabricdocs Documentation, Release master

Finally, every time a block is committed to a peer’s ledger, that peer generates an appropriate event. Block events
include the full block content, while block transaction events include summary information only, such as whether each
transaction in the block has been validated or invalidated. Chaincode events that the chaincode execution has produced
can also be published at this time. Applications can register for these event types so that they can be notified when
they occur. These notifications conclude the third and final phase of the transaction workflow.

In summary, phase 3 sees the blocks which are generated by the orderer consistently applied to the ledger. The strict
ordering of transactions into blocks allows each peer to validate that transaction updates are consistently applied across
the blockchain network.

Orderers and Consensus

This entire transaction workflow process is called consensus because all peers have reached agreement on the order and
content of transactions, in a process that is mediated by orderers. Consensus is a multi-step process and applications
are only notified of ledger updates when the process is complete — which may happen at slightly different times on
different peers.

We will discuss orderers in a lot more detail in a future orderer topic, but for now, think of orderers as nodes which
collect and distribute proposed ledger updates from applications for peers to validate and include on the ledger.

That’s it! We’ve now finished our tour of peers and the other components that they relate to in Fabric. We’ve seen that
peers are in many ways the most fundamental element — they form the network, host chaincodes and the ledger, handle
transaction proposals and responses, and keep the ledger up-to-date by consistently applying transaction updates to it.

4.8 Smart Contracts and Chaincode

Audience: Architects, application and smart contract developers, administrators

From an application developer’s perspective, a smart contract, together with the ledger, form the heart of a Hyper-
ledger Fabric blockchain system. Whereas a ledger holds facts about the current and historical state of a set of business
objects, a smart contract defines the executable logic that generates new facts that are added to the ledger. A chain-
code is typically used by administrators to group related smart contracts for deployment, but can also be used for low
level system programming of Fabric. In this topic, we’ll focus on why both smart contracts and chaincode exist, and
how and when to use them.

In this topic, we’ll cover:
* What is a smart contract
* A note on terminology
* Smart contracts and the ledger
* How to develop a smart contract
* The importance of endorsement policies
* Valid transactions
* Smart contracts and channels
o Communicating between smart contracts

* What is system chaincode?

70 Chapter 4. Key Concepts

../ledger/ledger.html

hyperledger-fabricdocs Documentation, Release master

4.8.1 Smart contract

Before businesses can transact with each other, they must define a common set of contracts covering common terms,
data, rules, concept definitions, and processes. Taken together, these contracts lay out the business model that govern

all of the interactions between transacting parties.

Seller Organization

ORG1

application:

seller = ORGL;
buyer = ORG2Z;
transfer (CAR1, seller,

buyer) ;

car contract:

query (car) :
get (car) ;
return car;

transfer (car,
get (car) ;
car.owner =
put (car) ;
return car;

update (car, p
get (car);
car.colour =

buyer, seller):

buyer;

roperties):

properties.colour;

Buyer Organization

application:

seller = ORG2Z;
buyer = ORG1;

transfer (CAR2Z, seller, buyer);

put (car) ;
return car;

A smart contract defines the rules between different organizations in executable code. Applications invoke a smart
contract to generate transactions that are recorded on the ledger.

Using a blockchain network, we can turn these contracts into executable programs — known in the industry as smart
contracts — to open up a wide variety of new possibilities. That’s because a smart contract can implement the gov-
ernance rules for any type of business object, so that they can be automatically enforced when the smart contract is
executed. For example, a smart contract might ensure that a new car delivery is made within a specified timeframe,
or that funds are released according to prearranged terms, improving the flow of goods or capital respectively. Most
importantly however, the execution of a smart contract is much more efficient than a manual human business process.

In the diagram above, we can see how two organizations, ORG1 and ORG2 have defined a car smart contract to
query, transfer and update cars. Applications from these organizations invoke this smart contract to perform
an agreed step in a business process, for example to transfer ownership of a specific car from ORG1 to ORG2.

4.8.2 Terminology

Hyperledger Fabric users often use the terms smart contract and chaincode interchangeably. In general, a smart
contract defines the transaction logic that controls the lifecycle of a business object contained in the world state. It is
then packaged into a chaincode which is then deployed to a blockchain network. Think of smart contracts as governing
transactions, whereas chaincode governs how smart contracts are packaged for deployment.

4.8. Smart Contracts and Chaincode 71

hyperledger-fabricdocs Documentation, Release master

vehicle | car contract insurance | policy contract
chaincode chaincode
boat contract liability contract
truck contract syndication contract

securitization contract

A smart contract is defined within a chaincode. Multiple smart contracts can be defined within the same chaincode.
When a chaincode is deployed, all smart contracts within it are made available to applications.

In the diagram, we can see a vehicle chaincode that contains three smart contracts: cars, boats and trucks. We
can also see an insurance chaincode that contains four smart contracts: policy, liability, syndication
and securitization. In both cases these contracts cover key aspects of the business process relating to vehicles
and insurance. In this topic, we will use the car contract as an example. We can see that a smart contract is a domain
specific program which relates to specific business processes, whereas a chaincode is a technical container of a group
of related smart contracts for installation and instantiation.

4.8.3 Ledger

At the simplest level, a blockchain immutably records transactions which update states in a ledger. A smart contract
programmatically accesses two distinct pieces of the ledger — a blockchain, which immutably records the history of
all transactions, and a world state that holds a cache of the current value of these states, as it’s the current value of an
object that is usually required.

Smart contracts primarily put, get and delete states in the world state, and can also query the immutable blockchain
record of transactions.

* A get typically represents a query to retrieve information about the current state of a business object.
* A put typically creates a new business object or modifies an existing one in the ledger world state.

* A delete typically represents the removal of a business object from the current state of the ledger, but not its
history.

Smart contracts have many APIs available to them. Critically, in all cases, whether transactions create, read, update or
delete business objects in the world state, the blockchain contains an immutable record of these changes.

4.8.4 Development

Smart contracts are the focus of application development, and as we’ve seen, one or more smart contracts can be
defined within a single chaincode. Deploying a chaincode to a network makes all its smart contracts available to the
organizations in that network. It means that only administrators need to worry about chaincode; everyone else can
think in terms of smart contracts.

At the heart of a smart contract is a set of t ransaction definitions. For example, look at fabcar. Js, where you
can see a smart contract transaction that creates a new car:

72 Chapter 4. Key Concepts

../developapps/transactioncontext.html#structure
../ledger/ledger.html
https://github.com/hyperledger/fabric-samples/blob/master/chaincode/fabcar/javascript/lib/fabcar.js#L93

hyperledger-fabricdocs Documentation, Release master

async createCar (ctx, carNumber, make, model, color, owner) {

const car = {
color,
docType:
make,
model,

owner,

'car',

}i

await ctx.stub.putState (carNumber, Buffer.from(JSON.stringify(car)));

You can learn more about the Fabcar smart contract in the Writing your first application tutorial.

A smart contract can describe an almost infinite array of business use cases relating to immutability of data in multi-
organizational decision making. The job of a smart contract developer is to take an existing business process that
might govern financial prices or delivery conditions, and express it as a smart contract in a programming language
such as JavaScript, GOLANG or Java. The legal and technical skills required to convert centuries of legal language
into programming language is increasingly practiced by smart contract auditors. You can learn about how to design
and develop a smart contract in the Developing applications topic.

4.8.5 Endorsement

Associated with every chaincode is an endorsement policy that applies to all of the smart contracts defined within
it. An endorsement policy is very important; it indicates which organizations in a blockchain network must sign a
transaction generated by a given smart contract in order for that transaction to be declared valid.

Seller Organization

Buyer Organization

car contract:

query (car) :
get (car);
return car;

application:

transfer (car,
get (car);
car.owner =
put (car) ;
return car;

buyer, seller):

seller = ORG1;
buyer = ORGZ;

buyer;
transfer (CARL, uyer

seller, buyer);

car interface:

update (car,
get (car);

properties):
Transactions:

car.colour =

put (car) ;
return car;

properties.colour;

query
transfer

update

Endorsement Policy:
ORG1 AND ORG2Z

Every smart contract has an endorsement policy associated with it. This endorsement policy identifies which orga-
nizations must approve transactions generated by the smart contract before those transactions can be identified as
valid.

An example endorsement policy might define that three of the four organizations participating in a blockchain net-
work must sign a transaction before it is considered valid. All transactions, whether valid or invalid are added to a
distributed ledger, but only valid transactions update the world state.

If an endorsement policy specifies that more than one organization must sign a transaction, then the smart contract
must be executed by a sufficient set of organizations in order for a valid transaction to be generated. In the example

4.8. Smart Contracts and Chaincode 73

../write_first_app.html
../developapps/developing_applications.html

hyperledger-fabricdocs Documentation, Release master

above, a smart contract transaction to transfer a car would need to be executed and signed by both ORG1 and
ORG2 for it to be valid.

Endorsement policies are what make Hyperledger Fabric different to other blockchains like Ethereum or Bitcoin. In
these systems valid transactions can be generated by any node in the network. Hyperledger Fabric more realistically
models the real world; transactions must be validated by trusted organizations in a network. For example, a government
organization must sign a valid 1 ssueIdentity transaction, or both the buyer and seller of a car must sign a
car transfer transaction. Endorsement policies are designed to allow Hyperledger Fabric to better model these types
of real-world interactions.

Finally, endorsement policies are just one example of policy in Hyperledger Fabric. Other policies can be defined
to identify who can query or update the ledger, or add or remove participants from the network. In general, policies
should be agreed in advance by the consortium of organizations in a blockchain network, although they are not set
in stone. Indeed, policies themselves can define the rules by which they can be changed. And although an advanced
topic, it is also possible to define custom endorsement policy rules over and above those provided by Fabric.

4.8.6 Valid transactions

When a smart contract executes, it runs on a peer node owned by an organization in the blockchain network. The
contract takes a set of input parameters called the transaction proposal and uses them in combination with its program
logic to read and write the ledger. Changes to the world state are captured as a transaction proposal response (or just
transaction response) which contains a read-write set with both the states that have been read, and the new states
that are to be written if the transaction is valid. Notice that the world state is not updated when the smart contract
is executed!

Seller organization car contract: Buyer organization

query (car) : -
get (car) ; car interface:
return car;
Transactions:
transfer (car, buyer, seller): query
N N . transfer
application: get (car); e
car.owner = buyer; up
= ; ut (car);
seller orots ° . Endorsement Policy:
buyer = ORG2Z; return car;
ORG1 AND ORG2
transfer (CAR1, seller, buyer);

Car transaction history car transfer transaction:

BE ||t!3 H 54 [es]es]

Car transaction history

||t1||t2||t3 Ht4||t5||t6||

identifier: t3

proposal:
input: {CARl, ORGl, ORG2}
signature: input*ORG1

response:
CARL: {owner:ORG2) output: {CARL.owner=ORGl, CARI.owner=ORG2} #{CARL: {owner:ORG2}
CAR2: {owner:ORG2] signatures: CAR2 : {owner : ORG2 }
output signed by ORG1

output signed by ORG2

All transactions have an identifier, a proposal, and a response signed by a set of organizations. All transactions are
recorded on the blockchain, whether valid or invalid, but only valid transactions contribute to the world state.

Examine the car transfer transaction. You can see a transaction t3 for a car transfer between ORG1 and
ORG2. See how the transaction has input {CAR1, ORG1, ORG2} and output {CARI1.owner=0ORG1l, CARI.
owner=0RG2}, representing the change of owner from ORG1 to ORG2. Notice how the input is signed by the
application’s organization ORG1, and the output is signed by both organizations identified by the endorsement policy,
ORG1 and ORG2. These signatures were generated by using each actor’s private key, and mean that anyone in the
network can verify that all actors in the network are in agreement about the transaction details.

74 Chapter 4. Key Concepts

../access_control.html#policies
../pluggable_endorsement_and_validation.html

hyperledger-fabricdocs Documentation, Release master

A transaction that is distributed to all peer nodes in the network is validated in two phases. Firstly, the transaction
is checked to ensure it has been signed by sufficient organizations according to the endorsement policy. Secondly,
it is checked to ensure that the current value of the world state matches the read set of the transaction when it was
signed by the endorsing peer nodes; that there has been no intermediate update. If a transaction passes both these tests,
it is marked as valid. All transactions are added to the blockchain history, whether valid or invalid, but only valid
transactions result in an update to the world state.

In our example, t 3 is a valid transaction, so the owner of CAR1 has been updated to ORG2. However, t 4 (not shown)
is an invalid transaction, so while it was recorded in the ledger, the world state was not updated, and CAR2 remains
owned by ORG2.

Finally, to understand how to use a smart contract or chaincode with world state, read the chaincode namespace topic.

4.8.7 Channels

Hyperledger Fabric allows an organization to simultaneously participate in multiple, separate blockchain networks
via channels. By joining multiple channels, an organization can participate in a so-called network of networks.
Channels provide an efficient sharing of infrastructure while maintaining data and communications privacy. They
are independent enough to help organizations separate their work traffic with different counterparties, but integrated
enough to allow them to coordinate independent activities when necessary.

Seller Organization Buyer Organization

Endorsement Policy:J

ORG1 AND ORG2

application:

seller = ORG1l; car contract:

buyer = ORGZ;
transfer (CAR1, seller, buyer); transfer(car,...):

application: .
PP insurance contract:
owner = ORG1;

insurer = ORG3;
insure (CAR1, owner, insurer); J

insure(car, ...):

Endorsement Policy:
ORG3

Owner Organization Insurance Organization

A channel provides a completely separate communication mechanism between a set of organizations. When a chain-
code is instantiated on a channel, an endorsement policy is defined for it; all the smart contracts within the chaincode
are made available to the applications on that channel.

An administrator defines an endorsement policy for a chaincode when it is instantiated on a channel, and can change
it when the chaincode is upgraded. The endorsement policy applies equally to all smart contracts defined within the
same chaincode deployed to a channel. It also means that a single smart contract can be deployed to different channels
with different endorsement policies.

In the example above, the car contract is deployed to the VEHICLE channel, and an insurance contract is de-
ployed to the INSURANCE channel. The car contract has an endorsement policy that requires ORG1 and ORG2 to
sign transactions before they are considered valid, whereas the insurance contract has an endorsement policy that
only requires ORG3 to sign valid transactions. ORG1 participates in two networks, the VEHICLE channel and the
INSURANCE network, and can coordinate activity across these two networks with ORG2 and ORG3 respectively.

4.8. Smart Contracts and Chaincode 75

../developapps/chaincodenamespace.html
../endorsement-policies.html#specifying-endorsement-policies-for-a-chaincode

hyperledger-fabricdocs Documentation, Release master

4.8.8 Intercommunication

Smart Contracts are able to call to other smart contracts both within the same channel and across different channels. It
this way, they can read and write world state data to which they would not otherwise have access due to smart contract
namespaces.

There are limitations to this inter-contract communication, which are described fully in the chaincode namespace
topic.

4.8.9 System chaincode

The smart contracts defined within a chaincode encode the domain dependent rules for a business process agreed
between a set of blockchain organizations. However, a chaincode can also define low-level program code which
corresponds to domain independent system interactions, unrelated to these smart contracts for business processes.

The following are the different types of system chaincodes and their associated abbreviations:

* Lifecycle system chaincode (LSCC) runs in all peers to handle package signing, install, instantiate, and upgrade
chaincode requests. You can read more about the LSCC implements this process.

* Configuration system chaincode (CSCC) runs in all peers to handle changes to a channel configuration, such as
a policy update. You can read more about this process in the following chaincode topic.

* Query system chaincode (QSCC) runs in all peers to provide ledger APIs which include block query, transaction
query etc. You can read more about these ledger APIs in the transaction context topic.

* Endorsement system chaincode (ESCC) runs in endorsing peers to cryptographically sign a transaction response.
You can read more about how the ESCC implements this process.

* Validation system chaincode (VSCC) validates a transaction, including checking endorsement policy and read-
write set versioning. You can read more about the LSCC implements this process.

It is possible for low level Fabric developers and administrators to modify these system chaincodes for their own uses.
However, the development and management of system chaincodes is a specialized activity, quite separate from the
development of smart contracts, and is not normally necessary. Changes to system chaincodes must be handled with
extreme care as they are fundamental to the correct functioning of a Hyperledger Fabric network. For example, if
a system chaincode is not developed correctly, one peer node may update its copy of the world state or blockchain
differently to another peer node. This lack of of consensus is one form of a ledger fork, a very undesirable situation.

4.9 Ledger

Audience: Architects, Application and smart contract developers, administrators

A ledger is a key concept in Hyperledger Fabric; it stores important factual information about business objects; both
the current value of the attributes of the objects, and the history of transactions that resulted in these current values.

In this topic, we’re going to cover:
* What is a Ledger?
» Storing facts about business objects
* A blockchain ledger
e The world state
» The blockchain data structure

e How blocks are stored in a blockchain

76 Chapter 4. Key Concepts

../developapps/chaincodenamespace.html#cross-chaincode-access
../chaincode4noah.html#chaincode-lifecycle
../configtx.html#configuration-updates
../developapps/transactioncontext.html
../peers/peers.html#phase-1-proposal
../peers/peers.html#phase-3-validation

hyperledger-fabricdocs Documentation, Release master

* Transactions

» World state database options
¢ The Fabcar example ledger
* Ledgers and namespaces

* Ledgers and channels

4.9.1 What is a Ledger?

A ledger contains the current state of a business as a journal of transactions. The earliest European and Chinese ledgers
date from almost 1000 years ago, and the Sumerians had stone ledgers 4000 years ago — but let’s start with a more
up-to-date example!

You’re probably used to looking at your bank account. What’s most important to you is the available balance — it’s
what you’re able to spend at the current moment in time. If you want to see how your balance was derived, then you
can look through the transaction credits and debits that determined it. This is a real life example of a ledger — a state
(your bank balance), and a set of ordered transactions (credits and debits) that determine it. Hyperledger Fabric is
motivated by these same two concerns — to present the current value of a set of ledger states, and to capture the history
of the transactions that determined these states.

4.9.2 Ledgers, Facts and States

A ledger doesn’t literally store business objects — instead it stores facts about those objects. When we say “we store a
business object in a ledger” what we really mean is that we’re recording the facts about the current state of an object,
and the facts about the history of transactions that led to the current state. In an increasingly digital world, it can feel
like we’re looking at an object, rather than facts about an object. In the case of a digital object, it’s likely that it lives in
an external datastore; the facts we store in the ledger allow us to identify its location along with other key information
about it.

While the facts about the current state of a business object may change, the history of facts about it is immutable,
it can be added to, but it cannot be retrospectively changed. We’re going to see how thinking of a blockchain as an
immutable history of facts about business objects is a simple yet powerful way to understand it.

Let’s now take a closer look at the Hyperledger Fabric ledger structure!

4.9.3 The Ledger

In Hyperledger Fabric, a ledger consists of two distinct, though related, parts — a world state and a blockchain. Each
of these represents a set of facts about a set of business objects.

Firstly, there’s a world state — a database that holds a cache of the current values of a set of ledger states. The world
state makes it easy for a program to directly access the current value of a state rather than having to calculate it by
traversing the entire transaction log. Ledger states are, by default, expressed as key-value pairs, and we’ll see later
how Hyperledger Fabric provides flexibility in this regard. The world state can change frequently, as states can be
created, updated and deleted.

Secondly, there’s a blockchain — a transaction log that records all the changes that have resulted in the current the
world state. Transactions are collected inside blocks that are appended to the blockchain — enabling you to understand
the history of changes that have resulted in the current world state. The blockchain data structure is very different to
the world state because once written, it cannot be modified; it is immutable.

4.9. Ledger 77

http://www.sciencephoto.com/media/686227/view/accounting-ledger-sumerian-cuneiform

hyperledger-fabricdocs Documentation, Release master

Ledger

World State

Blockchain

L comprises B and W

B determines W

A Ledger L comprises blockchain B and world state W, where blockchain B determines world state W. We can also say
that world state W is derived from blockchain B.

It’s helpful to think of there being one logical ledger in a Hyperledger Fabric network. In reality, the network maintains
multiple copies of a ledger — which are kept consistent with every other copy through a process called consensus. The
term Distributed Ledger Technology (DLT) is often associated with this kind of ledger — one that is logically singular,
but has many consistent copies distributed throughout a network.

Let’s now examine the world state and blockchain data structures in more detail.

4.9.4 World State

The world state holds the current value of the attributes of a business object as a unique ledger state. That’s use-
ful because programs usually require the current value of an object; it would be cumbersome to traverse the entire
blockchain to calculate an object’s current value — you just get it directly from the world state.

ﬁ Ledger world state

A ledger state with
key=K. It contains a set
of facts expressed as a

. . R simple value, V. The
{key=CAR1, value=Audi} version=0 . ;
state is at version 0.

A ledger state with
key=K. It contains a set
{key=K, value = {KV}} ||of facts expressed as a

version=0 set of key-value pairs
{KV}. The state is at
version 0.

{key=K, value =V}

{key= CAR2, value = {type: BMW, color: red, owner: Jane}} version=0

A ledger world state containing two states. The first state is: key=CARI and value=Audi. The second state has a more
complex value: key=CAR2 and value={model:BMW, color=red, owner=Janej}. Both states are at version 0.

A ledger state records a set of facts about a particular business object. Our example shows ledger states for two cars,

78 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

CARI1 and CAR2, each having a key and a value. An application program can invoke a smart contract which uses
simple ledger APIs to get, put and delete states. Notice how a state value can be simple (Audi...) or compound
(type:BMW...). The world state is often queried to retrieve objects with certain attributes, for example to find all red
BMWs.

The world state is implemented as a database. This makes a lot of sense because a database provides a rich set of
operators for the efficient storage and retrieval of states. We’ll see later that Hyperledger Fabric can be configured
to use different world state databases to address the needs of different types of state values and the access patterns
required by applications, for example in complex queries.

Applications submit transactions which capture changes to the world state, and these transactions end up being com-
mitted to the ledger blockchain. Applications are insulated from the details of this consensus mechanism by the
Hyperledger Fabric SDK; they merely invoke a smart contract, and are notified when the transaction has been in-
cluded in the blockchain (whether valid or invalid). The key design point is that only transactions that are signed by
the required set of endorsing organizations will result in an update to the world state. If a transaction is not signed by
sufficient endorsers, it will not result in a change of world state. You can read more about how applications use smart
contracts, and how to develop applications.

You’ll also notice that a state has an version number, and in the diagram above, states CAR1 and CAR?2 are at their
starting versions, 0. The version number for internal use by Hyperledger Fabric, and is incremented every time the state
changes. The version is checked whenever the state is updated to make sure the current states matches the version at
the time of endorsement. This ensures that the world state is changing as expected; that there has not been a concurrent
update.

Finally, when a ledger is first created, the world state is empty. Because any transaction which represents a valid change
to world state is recorded on the blockchain, it means that the world state can be re-generated from the blockchain
at any time. This can be very convenient — for example, the world state is automatically generated when a peer is
created. Moreover, if a peer fails abnormally, the world state can be regenerated on peer restart, before transactions
are accepted.

4.9.5 Blockchain

Let’s now turn our attention from the world state to the blockchain. Whereas the world state contains a set of facts
relating to the current state of a set of business objects, the blockchain is an historical record of the facts about how
these objects arrived at their current states. The blockchain has recorded every previous version of each ledger state
and how it has been changed.

The blockchain is structured as sequential log of interlinked blocks, where each block contains a sequence of transac-
tions, each transaction representing a query or update to the world state. The exact mechanism by which transactions
are ordered is discussed elsewhere; what’s important is that block sequencing, as well as transaction sequencing within
blocks, is established when blocks are first created by a Hyperledger Fabric component called the ordering service.

Each block’s header includes a hash of the block’s transactions, as well a copy of the hash of the prior block’s header.
In this way, all transactions on the ledger are sequenced and cryptographically linked together. This hashing and
linking makes the ledger data very secure. Even if one node hosting the ledger was tampered with, it would not be
able to convince all the other nodes that it has the ‘correct’ blockchain because the ledger is distributed throughout a
network of independent nodes.

The blockchain is always implemented as a file, in contrast to the world state, which uses a database. This is a sensible
design choice as the blockchain data structure is heavily biased towards a very small set of simple operations. Ap-
pending to the end of the blockchain is the primary operation, and query is currently a relatively infrequent operation.

Let’s have a look at the structure of a blockchain in a little more detail.

4.9. Ledger 79

../txflow.html
../smartcontract/smartcontract.html
../smartcontract/smartcontract.html
../developapps/developing_applications.html
../peers/peers.html#peers-and-orderers

hyperledger-fabricdocs Documentation, Release master

Blockchain
1 Block
el H Block header
Do D Block data

D1 D2
(genesis)

Transaction

w
ol |l 1P
El

M Block metadata

H2 is chained to H1

A blockchain B containing blocks BO, Bl, B2, B3. BO is the first block in the blockchain, the genesis block.
In the above diagram, we can see that block B2 has a block data D2 which contains all its transactions: T5, T6, T7.

Most importantly, B2 has a block header H2, which contains a cryptographic hash of all the transactions in D2 as
well as with the equivalent hash from the previous block B1. In this way, blocks are inextricably and immutably linked
to each other, which the term blockchain so neatly captures!

Finally, as you can see in the diagram, the first block in the blockchain is called the genesis block. It’s the starting
point for the ledger, though it does not contain any user transactions. Instead, it contains a configuration transaction
containing the initial state of the network channel (not shown). We discuss the genesis block in more detail when we
discuss the blockchain network and channels in the documentation.

4.9.6 Blocks

Let’s have a closer look at the structure of a block. It consists of three sections
¢ Block Header
This section comprises three fields, written when a block is created.

— Block number: An integer starting at O (the genesis block), and increased by 1 for every new block
appended to the blockchain.

— Current Block Hash: The hash of all the transactions contained in the current block.
— Previous Block Hash: A copy of the hash from the previous block in the blockchain.

These fields are internally derived by cryptographically hashing the block data. They ensure that each and every
block is inextricably linked to its neighbour, leading to an immutable ledger.

80 Chapter 4. Key Concepts

../channels.html

hyperledger-fabricdocs Documentation, Release master

1 H2

ﬂ H2 (block number) 2
D2
C H 2 (current block hash)

M2

Block header

n Block number

Hash of current block
transactions

=
N

@)
T
N

Copy of hash from
previous block

PH1

P H 1 (previous block hash)

V2 is detailed view of H2

Block header details. The header H2 of block B2 consists of block number 2, the hash CH2 of the current block
data D2, and a copy of a hash PHI from the previous block, block number 1.

¢ Block Data

This section contains a list of transactions arranged in order. It is written when the block is created by the
ordering service. These transactions have a rich but straightforward structure, which we describe lafer in this
topic.

¢ Block Metadata

This section contains the time when the block was written, as well as the certificate, public key and signature
of the block writer. Subsequently, the block committer also adds a valid/invalid indicator for every transaction,
though this information is not included in the hash, as that is created when the block is created.

4.9.7 Transactions

As we’ve seen, a transaction captures changes to the world state. Let’s have a look at the detailed blockdata structure
which contains the transactions in a block.

114

H4

Transaction

S 4 Header

Signature
P4 Proposal

Response
R4

Endorsements
E4 T4 | V4 |va4is detailed view of T4

Transaction details. Transaction T4 in blockdata D1 of block Bl consists of transaction header, H4, a transaction

4.9. Ledger 81

hyperledger-fabricdocs Documentation, Release master

signature, S4, a transaction proposal P4, a transaction response, R4, and a list of endorsements, E4.
In the above example, we can see the following fields:
* Header

This section, illustrated by H4, captures some essential metadata about the transaction — for example, the name
of the relevant chaincode, and its version.

 Signature

This section, illustrated by S4, contains a cryptographic signature, created by the client application. This field
is used to check that the transaction details have not been tampered with, as it requires the application’s private
key to generate it.

* Proposal

This field, illustrated by P4, encodes the input parameters supplied by an application to the smart contract
which creates the proposed ledger update. When the smart contract runs, this proposal provides a set of input
parameters, which, in combination with the current world state, determines the new world state.

* Response

This section, illustrated by R4, captures the before and after values of the world state, as a Read Write set
(RW-set). It’s the output of a smart contract, and if the transaction is successfully validated, it will be applied to
the ledger to update the world state.

¢ Endorsements

As shown in E4, this is a list of signed transaction responses from each required organization sufficient to satisfy
the endorsement policy. You’ll notice that, whereas only one transaction response is included in the transaction,
there are multiple endorsements. That’s because each endorsement effectively encodes its organization’s partic-
ular transaction response — meaning that there’s no need to include any transaction response that doesn’t match
sufficient endorsements as it will be rejected as invalid, and not update the world state.

That concludes the major fields of the transaction — there are others, but these are the essential ones that you need to
understand to have a solid understanding of the ledger data structure.

4.9.8 World State database options

The world state is physically implemented as a database, to provide simple and efficient storage and retrieval of ledger
states. As we’ve seen, ledger states can have simple or compound values, and to accommodate this, the world state
database implementation can vary, allowing these values to be efficiently implemented. Options for the world state
database currently include LevelDB and CouchDB.

LevelDB is the default and is particularly appropriate when ledger states are simple key-value pairs. A LevelDB
database is closely co-located with a network node — it is embedded within the same operating system process.

CouchDB is a particularly appropriate choice when ledger states are structured as JSON documents because CouchDB
supports the rich queries and update of richer data types often found in business transactions. Implementation-wise,
CouchDB runs in a separate operating system process, but there is still a 1:1 relation between a peer node and a
CouchDB instance. All of this is invisible to a smart contract. See CouchDB as the StateDatabase for more information
on CouchDB.

In LevelDB and CouchDB, we see an important aspect of Hyperledger Fabric — it is pluggable. The world state
database could be a relational data store, or a graph store, or a temporal database. This provides great flexibility in the
types of ledger states that can be efficiently accessed, allowing Hyperledger Fabric to address many different types of
problems.

82 Chapter 4. Key Concepts

../couchdb_as_state_database.html

hyperledger-fabricdocs Documentation, Release master

4.9.9 Example Ledger: fabcar
As we end this topic on the ledger, let’s have a look at a sample ledger. If you’ve run the fabcar sample application,
then you’ve created this ledger.

The fabcar sample app creates a set of 10 cars each with a unique identity; a different color, make, model and owner.
Here’s what the ledger looks like after the first four cars have been created.

key=CAR3, value={color: yellow, make: Volkswagen, model: Passat, owner: Max} version=0
key=CAR2, value={color: green, make: Hyundai, model: Tucson, owner: Jin Soo} version=0
key=CAR1, value={color: red, make: Ford, model: Mustang, owner: Brad} version=0
key=CARO, value={color: blue, make: Toyota, model: Prius, owner: Tomoko} version=0

(genesis) 1

The ledger, L, comprises a world state, W and a blockchain, B. W contains four states with keys: CARI, CAR2, CAR3
and CAR4. B contains two blocks, 0 and 1. Block I contains four transactions: T1, T2, T3, T4.

We can see that the world state contains states that correspond to CARO, CAR1, CAR2 and CAR3. CARO has a value
which indicates that it is a blue Toyota Prius, currently owned by Tomoko, and we can see similar states and values
for the other cars. Moreover, we can see that all car states are at version number 0, indicating that this is their starting
version number — they have not been updated since they were created.

We can also see that the blockchain contains two blocks. Block O is the genesis block, though it does not contain
any transactions that relate to cars. Block 1 however, contains transactions T1, T2, T3, T4 and these correspond to
transactions that created the initial states for CARO to CAR3 in the world state. We can see that block 1 is linked to
block 0.

We have not shown the other fields in the blocks or transactions, specifically headers and hashes. If you're interested
in the precise details of these, you will find a dedicated reference topic elsewhere in the documentation. It gives you
a fully worked example of an entire block with its transactions in glorious detail — but for now, you have achieved a
solid conceptual understanding of a Hyperledger Fabric ledger. Well done!

4.9.10 Namespaces

Even though we have presented the ledger as though it were a single world state and single blockchain, that’s a little bit
of an over-simplification. In reality, each chaincode has its own world state that is separate from all other chaincodes.
World states are in a namespace so that only smart contracts within the same chaincode can access a given namespace.

A blockchain is not namespaced. It contains transactions from many different smart contract namespaces. You can
read more about chaincode namespaces in this topic.

Let’s now look at how the concept of a namespace is applied within a Hyperledger Fabric channel.

4.9. Ledger 83

../write_first_app.html
../developapps/chaincodenamespace.html

hyperledger-fabricdocs Documentation, Release master

4.9.11 Channels

In Hyperledger Fabric, each channel has a completely separate ledger. This means a completely separate blockchain,
and completely separate world states, including namespaces. It is possible for applications and smart contracts to
communicate between channels so that ledger information can be accessed between them.

You can read more about how ledgers work with channels in this topic.

4.9.12 More information

See the Transaction Flow, Read-Write set semantics and CouchDB as the StateDatabase topics for a deeper dive on
transaction flow, concurrency control, and the world state database.

4.10 The Ordering Service

Audience: Architects, ordering service admins, channel creators

This topic serves as a conceptual introduction to the concept of ordering, how orderers interact with peers, the role
they play in a transaction flow, and an overview of the currently available implementations of the ordering service,
with a particular focus on the Raft ordering service implementation.

4.10.1 What is ordering?

Many distributed blockchains, such as Ethereum and Bitcoin, are not permissioned, which means that any node can
participate in the consensus process, wherein transactions are ordered and bundled into blocks. Because of this fact,
these systems rely on probabilistic consensus algorithms which eventually guarantee ledger consistency to a high
degree of probability, but which are still vulnerable to divergent ledgers (also known as a ledger “fork™), where different
participants in the network have a different view of the accepted order of transactions.

Hyperledger Fabric works differently. It features a kind of a node called an orderer (it’s also known as an “ordering
node”) that does this transaction ordering, which along with other nodes forms an ordering service. Because Fabric’s
design relies on deterministic consensus algorithms, any block a peer validates as generated by the ordering service
is guaranteed to be final and correct. Ledgers cannot fork the way they do in many other distributed blockchains.

In addition to promoting finality, separating the endorsement of chaincode execution (which happens at the peers)
from ordering gives Fabric advantages in performance and scalability, eliminating bottlenecks which can occur when
execution and ordering are performed by the same nodes.

4.10.2 Orderer nodes and channel configuration

In addition to their ordering role, orderers also maintain the list of organizations that are allowed to create channels.
This list of organizations is known as the “consortium”, and the list itself is kept in the configuration of the “orderer
system channel” (also known as the “ordering system channel”). By default, this list, and the channel it lives on, can
only be edited by the orderer admin. Note that it is possible for an ordering service to hold several of these lists, which
makes the consortium a vehicle for Fabric multi-tenancy.

Orderers also enforce basic access control for channels, restricting who can read and write data to them, and who
can configure them. Remember that who is authorized to modify a configuration element in a channel is subject
to the policies that the relevant administrators set when they created the consortium or the channel. Configuration
transactions are processed by the orderer, as it needs to know the current set of policies to execute its basic form
of access control. In this case, the orderer processes the configuration update to make sure that the requestor has the
proper administrative rights. If so, the orderer validates the update request against the existing configuration, generates

84 Chapter 4. Key Concepts

../channels.html
../developapps/chaincodenamespace.html#channel
../txflow.html
../readwrite.html
../couchdb_as_state_database.html

hyperledger-fabricdocs Documentation, Release master

a new configuration transaction, and packages it into a block that is relayed to all peers on the channel. The peers then
processs the configuration transactions in order to verify that the modifications approved by the orderer do indeed
satisfy the policies defined in the channel.

4.10.3 Orderer nodes and Identity

Everything that interacts with a blockchain network, including peers, applications, admins, and orderers, acquires their
organizational identity from their digital certificate and their Membership Service Provider (MSP) definition.

For more information about identities and MSPs, check out our documentation on Identity and Membership.

Just like peers, ordering nodes belong to an organization. And similar to peers, a separate Certificate Authority (CA)
should be used for each organization. Whether this CA will function as the root CA, or whether you choose to deploy
aroot CA and then intermediate CAs associated with that root CA, is up to you.

4.10.4 Orderers and the transaction flow

Phase one: Proposal

We’ve seen from our topic on Peers that they form the basis for a blockchain network, hosting ledgers, which can be
queried and updated by applications through smart contracts.

Specifically, applications that want to update the ledger are involved in a process with three phases that ensures all of
the peers in a blockchain network keep their ledgers consistent with each other.

In the first phase, a client application sends a transaction proposal to a subset of peers that will invoke a smart contract to
produce a proposed ledger update and then endorse the results. The endorsing peers do not apply the proposed update
to their copy of the ledger at this time. Instead, the endorsing peers return a proposal response to the client application.
The endorsed transaction proposals will ultimately be ordered into blocks in phase two, and then distributed to all
peers for final validation and commit in phase three.

For an in-depth look at the first phase, refer back to the Peers topic.

Phase two: Ordering and packaging transactions into blocks

After the completion of the first phase of a transaction, a client application has received an endorsed transaction
proposal response from a set of peers. It’s now time for the second phase of a transaction.

In this phase, application clients submit transactions containing endorsed transaction proposal responses to an ordering
service node. The ordering service creates blocks of transactions which will ultimately be distributed to all peers on
the channel for final validation and commit in phase three.

Ordering service nodes receive transactions from many different application clients concurrently. These ordering
service nodes work together to collectively form the ordering service. Its job is to arrange batches of submitted
transactions into a well-defined sequence and package them into blocks. These blocks will become the blocks of the
blockchain!

The number of transactions in a block depends on channel configuration parameters related to the desired size and
maximum elapsed duration for a block (BatchSize and BatchTimeout parameters, to be exact). The blocks are
then saved to the orderer’s ledger and distributed to all peers that have joined the channel. If a peer happens to be down
at this time, or joins the channel later, it will receive the blocks after reconnecting to an ordering service node, or by
gossiping with another peer. We’ll see how this block is processed by peers in the third phase.

4.10. The Ordering Service 85

../identity/identity.html
../membership/membership.html
../peers/peers.html
../peers/peers.html#phase-1-proposal

hyperledger-fabricdocs Documentation, Release master

Blockchain Peer
Network
/ Tl T2 \
T3 T4
Block B1 Orderer

L8
HEe

: l T1 R1 E1,E2

T6 15
Al
Transaction T1,
A2 T1 SR response R2a Channel
e endorsed with E2
T Block B1 contains
1 :; transactions
A T BN - 1,72, T3..

g
— Ledger Principal PA
K y] transaction T1 (P1,P2)
flows on channel communicates
C via channel C.

The first role of an ordering node is to package proposed ledger updates. In this example, application Al sends a
transaction T1 endorsed by E1 and E2 to the orderer Ol. In parallel, Application A2 sends transaction T2 endorsed
by EI to the orderer Ol. Ol packages transaction Tl from application Al and transaction T2 from application
A2 together with other transactions from other applications in the network into block B2. We can see that in B2,
the transaction order is T1,T2,T3,T4,T6,T5 — which may not be the order in which these transactions arrived at the
orderer! (This example shows a very simplified ordering service configuration with only one ordering node.)

It’s worth noting that the sequencing of transactions in a block is not necessarily the same as the order received by
the ordering service, since there can be multiple ordering service nodes that receive transactions at approximately the
same time. What’s important is that the ordering service puts the transactions into a strict order, and peers will use this
order when validating and committing transactions.

This strict ordering of transactions within blocks makes Hyperledger Fabric a little different from other blockchains
where the same transaction can be packaged into multiple different blocks that compete to form a chain. In Hyperledger
Fabric, the blocks generated by the ordering service are final. Once a transaction has been written to a block, its
position in the ledger is immutably assured. As we said earlier, Hyperledger Fabric’s finality means that there are no
ledger forks — validated transactions will never be reverted or dropped.

We can also see that, whereas peers execute smart contracts and process transactions, orderers most definitely do not.
Every authorized transaction that arrives at an orderer is mechanically packaged in a block — the orderer makes no
judgement as to the content of a transaction (except for channel configuration transactions, as mentioned earlier).

At the end of phase two, we see that orderers have been responsible for the simple but vital processes of collecting
proposed transaction updates, ordering them, and packaging them into blocks, ready for distribution.

Phase three: Validation and commit

The third phase of the transaction workflow involves the distribution and subsequent validation of blocks from the
orderer to the peers, where they can be applied to the ledger.

Phase 3 begins with the orderer distributing blocks to all peers connected to it. It’s also worth noting that not every
peer needs to be connected to an orderer — peers can cascade blocks to other peers using the gossip protocol.

Each peer will validate distributed blocks independently, but in a deterministic fashion, ensuring that ledgers remain
consistent. Specifically, each peer in the channel will validate each transaction in the block to ensure it has been
endorsed by the required organization’s peers, that its endorsements match, and that it hasn’t become invalidated by
other recently committed transactions which may have been in-flight when the transaction was originally endorsed.
Invalidated transactions are still retained in the immutable block created by the orderer, but they are marked as invalid
by the peer and do not update the ledger’s state.

86 Chapter 4. Key Concepts

../gossip.html

hyperledger-fabricdocs Documentation, Release master

Peer

E] Blockchain
Network
@ Channel

Ledger - Block B
l T

T2

T3

Orderer

Ledger L1 has Block B1 contains

L
- blockchain with
“EHE | biocks Bo, B1

Block B1 flows
on channel C

The second role of an ordering node is to distribute blocks to peers. In this example, orderer O1 distributes block B2 to
peer Pl and peer P2. Peer P1 processes block B2, resulting in a new block being added to ledger L1 on P1. In parallel,
peer P2 processes block B2, resulting in a new block being added to ledger L1 on P2. Once this process is complete,
the ledger L1 has been consistently updated on peers P1 and P2, and each may inform connected applications that the
transaction has been processed.

transactions
T1,7T2,T3...

Principal PA (P1,
P2) communicates
via channel C.

In summary, phase three sees the blocks generated by the ordering service applied consistently to the ledger. The
strict ordering of transactions into blocks allows each peer to validate that transaction updates are consistently applied
across the blockchain network.

For a deeper look at phase 3, refer back to the Peers topic.

4.10.5 Ordering service implementations

While every ordering service currently available handles transactions and configuration updates the same way, there are
nevertheless several different implementations for achieving consensus on the strict ordering of transactions between
ordering service nodes.

For information about how to stand up an ordering node (regardless of the implementation the node will be used in),
check out our documentation on standing up an ordering node.

¢ Solo

The Solo implementation of the ordering service is aptly named: it features only a single ordering node. As a
result, it is not, and never will be, fault tolerant. For that reason, Solo implementations cannot be considered
for production, but they are a good choice for testing applications and smart contracts, or for creating proofs of
concept. However, if you ever want to extend this PoC network into production, you might want to start with a
single node Raft cluster, as it may be reconfigured to add additional nodes.

¢ Raft

New as of v1.4.1, Raft is a crash fault tolerant (CFT) ordering service based on an implementation of Raft
protocol in et cd. Raft follows a “leader and follower” model, where a leader node is elected (per channel)
and its decisions are replicated by the followers. Raft ordering services should be easier to set up and manage
than Kafka-based ordering services, and their design allows different organizations to contribute nodes to a
distributed ordering service.

¢ Kafka

Similar to Raft-based ordering, Apache Kafka is a CFT implementation that uses a “leader and follower” node
configuration. Kafka utilizes a ZooKeeper ensemble for management purposes. The Kafka based ordering

4.10. The Ordering Service 87

../peers/peers.html#phase-3-validation-and-commit
../orderer_deploy.html
https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
https://coreos.com/etcd/

hyperledger-fabricdocs Documentation, Release master

service has been available since Fabric v1.0, but many users may find the additional administrative overhead of
managing a Kafka cluster intimidating or undesirable.

4.10.6 Solo

As stated above, a Solo ordering service is a good choice when developing test, development, or proofs-of-concept
networks. For that reason, it is the default ordering service deployed in our Build your first network tutorial), as, from
the perspective of other network components, a Solo ordering service processes transactions identically to the more
elaborate Kafka and Raft implementations while saving on the administrative overhead of maintaining and upgrading
multiple nodes and clusters. Because a Solo ordering service is not crash-fault tolerant, it should never be considered
a viable alternative for a production blockchain network. For networks which wish to start with only a single ordering
node but might wish to grow in the future, a single node Raft cluster is a better option.

4.10.7 Raft

For information on how to configure a Raft ordering service, check out our documentation on configuring a Raft
ordering service.

The go-to ordering service choice for production networks, the Fabric implementation of the established Raft protocol
uses a “leader and follower” model, in which a leader is dynamically elected among the ordering nodes in a channel
(this collection of nodes is known as the “consenter set”), and that leader replicates messages to the follower nodes.
Because the system can sustain the loss of nodes, including leader nodes, as long as there is a majority of ordering
nodes (what’s known as a “quorum”) remaining, Raft is said to be “crash fault tolerant” (CFT). In other words, if there
are three nodes in a channel, it can withstand the loss of one node (leaving two remaining). If you have five nodes in a
channel, you can lose two nodes (leaving three remaining nodes).

From the perspective of the service they provide to a network or a channel, Raft and the existing Kafka-based ordering
service (which we’ll talk about later) are similar. They’re both CFT ordering services using the leader and follower
design. If you are an application developer, smart contract developer, or peer administrator, you will not notice
a functional difference between an ordering service based on Raft versus Kaftka. However, there are a few major
differences worth considering, especially if you intend to manage an ordering service:

* Raft is easier to set up. Although Kafka has scores of admirers, even those admirers will (usually) admit that
deploying a Kafka cluster and its ZooKeeper ensemble can be tricky, requiring a high level of expertise in Kafka
infrastructure and settings. Additionally, there are many more components to manage with Kafka than with Raft,
which means that there are more places where things can go wrong. And Kafka has its own versions, which
must be coordinated with your orderers. With Raft, everything is embedded into your ordering node.

» Kafka and Zookeeper are not designed to be run across large networks. They are designed to be CFT but should
be run in a tight group of hosts. This means that practically speaking you need to have one organization run
the Kafka cluster. Given that, having ordering nodes run by different organizations when using Kafka (which
Fabric supports) doesn’t give you much in terms of decentralization because the nodes will all go to the same
Kafka cluster which is under the control of a single organization. With Raft, each organization can have its own
ordering nodes, participating in the ordering service, which leads to a more decentralized system.

» Raft is supported natively. While Kafka-based ordering services are currently compatible with Fabric, users are
required to get the requisite images and learn how to use Kafka and ZooKeeper on their own. Likewise, support
for Kafka-related issues is handled through Apache, the open-source developer of Kafka, not Hyperledger Fab-
ric. The Fabric Raft implementation, on the other hand, has been developed and will be supported within the
Fabric developer community and its support apparatus.

* Where Kafka uses a pool of servers (called “Kafka brokers™) and the admin of the orderer organization specifies
how many nodes they want to use on a particular channel, Raft allows the users to specify which ordering nodes
will be deployed to which channel. In this way, peer organizations can make sure that, if they also own an

88 Chapter 4. Key Concepts

../build_network.html
../raft_configuration.html
../raft_configuration.html
https://kafka.apache.org/

hyperledger-fabricdocs Documentation, Release master

orderer, this node will be made a part of a ordering service of that channel, rather than trusting and depending
on a central admin to manage the Kafka nodes.

» Raft is the first step toward Fabric’s development of a byzantine fault tolerant (BFT) ordering service. As we’ll
see, some decisions in the development of Raft were driven by this. If you are interested in BFT, learning how
to use Raft should ease the transition.

Note: Similar to Solo and Kafka, a Raft ordering service can lose transactions after acknowledgement of receipt
has been sent to a client. For example, if the leader crashes at approximately the same time as a follower
provides acknowledgement of receipt. Therefore, application clients should listen on peers for transaction
commit events regardless (to check for transaction validity), but extra care should be taken to ensure that
the client also gracefully tolerates a timeout in which the transaction does not get committed in a configured
timeframe. Depending on the application, it may be desirable to resubmit the transaction or collect a new set
of endorsements upon such a timeout.

Raft concepts

While Raft offers many of the same features as Kafka — albeit in a simpler and easier-to-use package — it functions
substantially different under the covers from Kafka and introduces a number of new concepts, or twists on existing
concepts, to Fabric.

Log entry. The primary unit of work in a Raft ordering service is a “log entry”, with the full sequence of such entries
known as the “log”. We consider the log consistent if a majority (a quorum, in other words) of members agree on the
entries and their order, making the logs on the various orderers replicated.

Consenter set. The ordering nodes actively participating in the consensus mechanism for a given channel and re-
ceiving replicated logs for the channel. This can be all of the nodes available (either in a single cluster or in multiple
clusters contributing to the system channel), or a subset of those nodes.

Finite-State Machine (FSM). Every ordering node in Raft has an FSM and collectively they’re used to ensure that
the sequence of logs in the various ordering nodes is deterministic (written in the same sequence).

Quorum. Describes the minimum number of consenters that need to affirm a proposal so that transactions can be
ordered. For every consenter set, this is a majority of nodes. In a cluster with five nodes, three must be available
for there to be a quorum. If a quorum of nodes is unavailable for any reason, the ordering service cluster becomes
unavailable for both read and write operations on the channel, and no new logs can be committed.

Leader. This is not a new concept — Kafka also uses leaders, as we’ve said — but it’s critical to understand that
at any given time, a channel’s consenter set elects a single node to be the leader (we’ll describe how this happens in
Raft later). The leader is responsible for ingesting new log entries, replicating them to follower ordering nodes, and
managing when an entry is considered committed. This is not a special type of orderer. It is only a role that an orderer
may have at certain times, and then not others, as circumstances determine.

Follower. Again, not a new concept, but what’s critical to understand about followers is that the followers receive the
logs from the leader and replicate them deterministically, ensuring that logs remain consistent. As we’ll see in our
section on leader election, the followers also receive “heartbeat” messages from the leader. In the event that the leader
stops sending those message for a configurable amount of time, the followers will initiate a leader election and one of
them will be elected the new leader.

Raft in a transaction flow

Every channel runs on a separate instance of the Raft protocol, which allows each instance to elect a different leader.
This configuration also allows further decentralization of the service in use cases where clusters are made up of
ordering nodes controlled by different organizations. While all Raft nodes must be part of the system channel, they do
not necessarily have to be part of all application channels. Channel creators (and channel admins) have the ability to
pick a subset of the available orderers and to add or remove ordering nodes as needed (as long as only a single node is
added or removed at a time).

4.10. The Ordering Service 89

hyperledger-fabricdocs Documentation, Release master

While this configuration creates more overhead in the form of redundant heartbeat messages and goroutines, it lays
necessary groundwork for BFT.

In Raft, transactions (in the form of proposals or configuration updates) are automatically routed by the ordering node
that receives the transaction to the current leader of that channel. This means that peers and applications do not need
to know who the leader node is at any particular time. Only the ordering nodes need to know.

When the orderer validation checks have been completed, the transactions are ordered, packaged into blocks, consented
on, and distributed, as described in phase two of our transaction flow.

Architectural notes

How leader election works in Raft

Although the process of electing a leader happens within the orderer’s internal processes, it’s worth noting how the
process works.

Raft nodes are always in one of three states: follower, candidate, or leader. All nodes initially start out as a follower.
In this state, they can accept log entries from a leader (if one has been elected), or cast votes for leader. If no log entries
or heartbeats are received for a set amount of time (for example, five seconds), nodes self-promote to the candidate
state. In the candidate state, nodes request votes from other nodes. If a candidate receives a quorum of votes, then it is
promoted to a leader. The leader must accept new log entries and replicate them to the followers.

For a visual representation of how the leader election process works, check out The Secret Lives of Data.

Snapshots

If an ordering node goes down, how does it get the logs it missed when it is restarted?

While it’s possible to keep all logs indefinitely, in order to save disk space, Raft uses a process called “snapshotting”,
in which users can define how many bytes of data will be kept in the log. This amount of data will conform to a
certain number of blocks (which depends on the amount of data in the blocks. Note that only full blocks are stored in
a snapshot).

For example, let’s say lagging replica R1 was just reconnected to the network. Its latest block is 100. Leader L is at
block 196, and is configured to snapshot at amount of data that in this case represents 20 blocks. R1 would therefore
receive block 180 from L and then make a Deliver request for blocks 101 to 180. Blocks 180 to 196 would then
be replicated to R1 through the normal Raft protocol.

Kafka

The other crash fault tolerant ordering service supported by Fabric is an adaptation of a Kafka distributed streaming
platform for use as a cluster of ordering nodes. You can read more about Kafka at the Apache Kafka Web site, but at
a high level, Kafka uses the same conceptual “leader and follower” configuration used by Raft, in which transactions
(which Kafka calls “messages”) are replicated from the leader node to the follower nodes. In the event the leader node
goes down, one of the followers becomes the leader and ordering can continue, ensuring fault tolerance, just as with
Raft.

The management of the Kafka cluster, including the coordination of tasks, cluster membership, access control, and
controller election, among others, is handled by a ZooKeeper ensemble and its related APIs.

Kafka clusters and ZooKeeper ensembles are notoriously tricky to set up, so our documentation assumes a working
knowledge of Kafka and ZooKeeper. If you decide to use Kafka without having this expertise, you should complete,
at a minimum, the first six steps of the Kafka Quickstart guide before experimenting with the Kafka-based ordering

920 Chapter 4. Key Concepts

http://thesecretlivesofdata.com/raft/
https://kafka.apache.org/intro
https://kafka.apache.org/quickstart

hyperledger-fabricdocs Documentation, Release master

service. You can also consult this sample configuration file for a brief explanation of the sensible defaults for Katka
and ZooKeeper.

To learn how to bring up a a Kafka-based ordering service, check out our documentation on Kafka.

4.11 Private data

4.11.1 What is private data?

In cases where a group of organizations on a channel need to keep data private from other organizations on that
channel, they have the option to create a new channel comprising just the organizations who need access to the data.
However, creating separate channels in each of these cases creates additional administrative overhead (maintaining
chaincode versions, policies, MSPs, etc), and doesn’t allow for use cases in which you want all channel participants to
see a transaction while keeping a portion of the data private.

That’s why, starting in v1.2, Fabric offers the ability to create private data collections, which allow a defined subset
of organizations on a channel the ability to endorse, commit, or query private data without having to create a separate
channel.

4.11.2 What is a private data collection?

A collection is the combination of two elements:

1. The actual private data, sent peer-to-peer via gossip protocol to only the organization(s) authorized to see
it. This data is stored in a private state database on the peers of authorized organizations (sometimes called a
“side” database, or “SideDB”), which can be accessed from chaincode on these authorized peers. The ordering
service is not involved here and does not see the private data. Note that because gossip distributes the private
data peer-to-peer across authorized organizations, it is required to set up anchor peers on the channel, and con-
figure CORE_PEER_GOSSIP_EXTERNALENDPOINT on each peer, in order to bootstrap cross-organization
communication.

2. A hash of that data, which is endorsed, ordered, and written to the ledgers of every peer on the channel. The
hash serves as evidence of the transaction and is used for state validation and can be used for audit purposes.

The following diagram illustrates the ledger contents of a peer authorized to have private data and one which is not.

4.11. Private data 91

https://github.com/hyperledger/fabric/blob/release-1.1/bddtests/dc-orderer-kafka.yml
../kafka.html
../gossip.html

hyperledger-fabricdocs Documentation, Release master

. Peerl
Authorized Peer Unauthorized Peer

k1, secret value

J

channell

Collection members may decide to share the private data with other parties if they get into a dispute or if they want to
transfer the asset to a third party. The third party can then compute the hash of the private data and see if it matches
the state on the channel ledger, proving that the state existed between the collection members at a certain point in time.

When to use a collection within a channel vs. a separate channel
* Use channels when entire transactions (and ledgers) must be kept confidential within a set of organizations that
are members of the channel.

¢ Use collections when transactions (and ledgers) must be shared among a set of organizations, but when only
a subset of those organizations should have access to some (or all) of the data within a transaction. Addition-
ally, since private data is disseminated peer-to-peer rather than via blocks, use private data collections when
transaction data must be kept confidential from ordering service nodes.

4.11.3 A use case to explain collections

Consider a group of five organizations on a channel who trade produce:
¢ A Farmer selling his goods abroad
* A Distributor moving goods abroad
¢ A Shipper moving goods between parties
* A Wholesaler purchasing goods from distributors
¢ A Retailer purchasing goods from shippers and wholesalers

The Distributor might want to make private transactions with the Farmer and Shipper to keep the terms of the trades
confidential from the Wholesaler and the Retailer (so as not to expose the markup they’re charging).

The Distributor may also want to have a separate private data relationship with the Wholesaler because it charges
them a lower price than it does the Retailer.

92 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

The Wholesaler may also want to have a private data relationship with the Retailer and the Shipper.

Rather than defining many small channels for each of these relationships, multiple private data collections (PDC) can
be defined to share private data between:

1. PDC1: Distributor, Farmer and Shipper
2. PDC2: Distributor and Wholesaler
3. PDC3: Wholesaler, Retailer and Shipper

Private data collections
(PDC)

& D

% PDC3 ﬁ
Whoalesaler Retailer

A

PDC2 Shipper

Whaolesaler
\ D channell /

Using this example, peers owned by the Distributor will have multiple private databases inside their ledger which
includes the private data from the Distributor, Farmer and Shipper relationship and the Distributor and Wholesaler
relationship. Because these databases are kept separate from the database that holds the channel ledger, private data is
sometimes referred to as “SideDB”.

4.11. Private data 93

hyperledger-fabricdocs Documentation, Release master

Distributor-Farmer-
Shipper

Private State
Distributor-Wholesaler

channell

4.11.4 Transaction flow with private data

When private data collections are referenced in chaincode, the transaction flow is slightly different in order to protect
the confidentiality of the private data as transactions are proposed, endorsed, and committed to the ledger.

For details on transaction flows that don’t use private data refer to our documentation on transaction flow.

1.

The client application submits a proposal request to invoke a chaincode function (reading or writing private data)
to endorsing peers which are part of authorized organizations of the collection. The private data, or data used to
generate private data in chaincode, is sent in a t ransient field of the proposal.

The endorsing peers simulate the transaction and store the private data in a transient data store (a
temporary storage local to the peer). They distribute the private data, based on the collection policy, to authorized
peers via gossip.

The endorsing peer sends the proposal response back to the client. The proposal response includes the endorsed
read/write set, which includes public data, as well as a hash of any private data keys and values. No private data
is sent back to the client. For more information on how endorsement works with private data, click here.

The client application submits the transaction (which includes the proposal response with the private data hashes)
to the ordering service. The transactions with the private data hashes get included in blocks as normal. The
block with the private data hashes is distributed to all the peers. In this way, all peers on the channel can validate
transactions with the hashes of the private data in a consistent way, without knowing the actual private data.

At block commit time, authorized peers use the collection policy to determine if they are authorized to have
access to the private data. If they do, they will first check their local transient data store to determine
if they have already received the private data at chaincode endorsement time. If not, they will attempt to pull
the private data from another authorized peer. Then they will validate the private data against the hashes in the
public block and commit the transaction and the block. Upon validation/commit, the private data is moved to
their copy of the private state database and private writeset storage. The private data is then deleted from the
transient data store.

94

Chapter 4. Key Concepts

../txflow.html
../gossip.html
../private-data-arch.html#endorsement

hyperledger-fabricdocs Documentation, Release master

4.11.5 Purging private data

For very sensitive data, even the parties sharing the private data might want — or might be required by government
regulations — to periodically “purge” the data on their peers, leaving behind a hash of the data on the blockchain to
serve as immutable evidence of the private data.

In some of these cases, the private data only needs to exist on the peer’s private database until it can be replicated into
a database external to the peer’s blockchain. The data might also only need to exist on the peers until a chaincode
business process is done with it (trade settled, contract fulfilled, etc).

To support these use cases, private data can be purged if it has not been modified for a configurable number of blocks.
Purged private data cannot be queried from chaincode, and is not available to other requesting peers.

4.11.6 How a private data collection is defined

For more details on collection definitions, and other low level information about private data and collections, refer to
the private data reference topic.

4.12 Channel capabilities

Audience: Channel administrators, node administrators

Note: this is an advanced Fabric concept that is not necessary for new users or application developers to understand.
However, as channels and networks mature, understanding and managing capabilities becomes vital. Furthermore,
it is important to recognize that updating capabilties is a different, though often related, process to upgrading nodes.
We’ll describe this in detail in this topic.

Because Fabric is a distributed system that will usually involve multiple organizations, it is possible (and typical)
that different versions of Fabric code will exist on different nodes within the network as well as on the channels in
that network. Fabric allows this — it is not necessary for every peer and ordering node to be at the same version
level. In fact, supporting different version levels is what enables rolling upgrades of Fabric nodes. What is important
is that networks and channels process things in the same way, creating deterministic results for things like channel
configuration updates and chaincode invocations. Without deterministic results, one peer on a channel might invalidate
a transaction while another peer may validate it.

To that end, Fabric defines levels of what are called “capabilities”. These capabilities, which are defined in the
configuration of each channel, ensure determinism by defining a level at which behaviors produce consistent results.
As you’ll see, these capabilities have versions which are closely related to node binary versions. Capabilities enable
nodes running at different version levels to behave in a compatible and consistent way given the channel configuration
at a specific block height. You will also see that capabilities exist in many parts of the configuration tree, defined along
the lines of administration for particular tasks.

As you’ll see, sometimes it is necessary to update your channel to a new capability level to enable a new feature.

4.12.1 Node versions and capability versions
If you’re familiar with Hyperledger Fabric, you’re aware that it follows the typical semantic versioning pattern: v1.1,
v1.2.1, etc. These versions refer to releases and their related binary versions.

Capabilities follow the same semantic versioning convention. There are v1.1 capabilities and v1.2 capabilities and so
on. But it’s important to note a few distinctions.

* There is not necessarily a new capability level with each release. The need to establish a new capability is
determined on a case by case basis and relies chiefly on the backwards compatibility of new features and older

4.12. Channel capabilities 95

../private-data-arch.html

hyperledger-fabricdocs Documentation, Release master

binary versions. Adding Raft ordering services in v1.4.1, for example, did not change the way either transactions
or ordering service functions were handled and thus did not require the establishment of any new capabilities.
Private Data, on the other hand, could not be handled by peers before v1.2, requiring the establishment of a v1.2
capability level. Because not every release contains a new feature (or a bug fix) that changes the way transactions
are processed, certain releases will not require any new capabilities (for example, v1.4) while others will only
have new capabilities at particular levels (such as v1.2 and v1.3). We’ll discuss the “levels” of capabilities and
where they reside in the configuration tree later.

* Nodes must be at least at the level of certain capabilities in a channel. When a peer joins a channel, it reads
all of the blocks in the ledger sequentially, starting with the genesis block of the channel and continuing through
the transaction blocks and any subsequent configuration blocks. If a node, for example a peer, attempts to read a
block containing an update to a capability it doesn’t understand (for example, a v1.2 peer trying to read a block
with a v1.4.2 application capability), the peer will crash. This crashing behavior is intentional, as a v1.2 peer
cannot validate or commit any transactions past this point. Before joining a channel, make sure the node is
at the Fabric version (binary) level of the capabilities specified in the channel config relevant to the node
or higher. We’ll discuss which capabilities are relevant to which nodes later. However, because no user wants
their nodes to crash, it is strongly recommended to update all nodes to the required level (preferably, to the
latest release) before attempting to update capabilities. This is in line with the default Fabric recommendation
to always be at the latest binary and capability levels.

If users are unable to upgrade their binaries, then capabilities must be left at their lower levels. Lower level binaries
and capabilities will still work together as they’re meant to. However, keep in mind that it is a best practice to always
update to new binaries even if a user chooses not to update their capabilities. Because capabilities themselves also
include bug-fixes, it is always recommended to update capabilities once the network binaries support them.

4.12.2 Capability configuration groupings

As we discussed earlier, there is not a single capability level encompassing an entire channel. Rather, there are three
capabilities, each representing an area of administration.

e Orderer: These capabilities govern tasks and processing exclusive to the ordering service. Because these
capabilities do not involve processes that affect transactions or the peers, updating them falls solely to the
ordering service admins (peers do not need to understand orderer capabilities and will therefore not crash no
matter what the orderer capability is updated to). Note that these capabilities did not change between v1.1 and
v1.4.2. However, as we’ll see in the channel section, this does not mean that v1.1 ordering nodes will work on
all channels with capability levels below v1.4.2.

» Application: These capabilities govern tasks and processing exclusive to the peers. Because ordering service
admins have no role in deciding the nature of transactions between peer organizations, changing this capability
level falls exclusively to peer organizations. For example, Private Data can only be enabled on a channel with
the v1.2 application group capability (or higher) enabled. In the case of Private Data, this is the only capability
that must be enabled, as nothing about the way Private Data works requires a change to channel administration
or the way the ordering service processes transactions.

¢ Channel: This grouping encompasses tasks that are jointly administered by the peer organizations and the
ordering service. For example, this is the capability that defines the level at which channel configuration updates,
which are initiated by peer organizations and orchestrated by the ordering service, are processed. On a practical
level, this grouping defines the minimum level for all of the binaries in a channel, as both ordering nodes
and peers must be at least at the binary level corresponding to this capability in order to process the
capability.

The orderer and channel capabilities of a channel are inherited by default from the ordering system channel, where
modifying them are the exclusive purview of ordering service admins. As a result, peer organizations should inspect the
genesis block of a channel prior to joining their peers to that channel. Although the channel capability is administered
by the orderers in the orderer system channel (just as the consortium membership is), it is typical and expected that

96 Chapter 4. Key Concepts

./private-data/private-data.html

hyperledger-fabricdocs Documentation, Release master

the ordering admins will coordinate with the consortium admins to ensure that the channel capability is only upgraded
when the consortium is ready for it.

Because the ordering system channel does not define an application capability, this capability must be specified in
the channel profile when creating the genesis block for the channel. For more information about creating the genesis
block of a channel, check out configtx.

Take caution when specifying or modifying an application capability. Because the ordering service does not validate
that the capability level is valid, it will allow a channel to be created (or modified) to contain, for example, a v1.8
application capability even if no such capability exists. Any peer attempting to read a configuration block with this
capability would, as we have shown, crash, and even if it was possible to modify the channel once again to a valid
capability, it would not matter, as no peer would be able to get past the block with the invalid v1.8 capability.

For a full look at the current valid orderer, application, and channel capabilities check out a sample configtx.yaml
file, which lists them in the “Capabilities” section.

For more specific information about capabilities and where they reside in the channel configuration, check out defining
capability requirements.

4.13 Use Cases

The Hyperledger Requirements WG is documenting a number of blockchain use cases and maintaining an inventory
here.

4.13. Use Cases 97

configtx.html
http://github.com/hyperledger/fabric/blob/master/sampleconfig/configtx.yaml
http://github.com/hyperledger/fabric/blob/master/sampleconfig/configtx.yaml
capability_requirements.html
capability_requirements.html
https://wiki.hyperledger.org/display/LMDWG/Use+Cases

hyperledger-fabricdocs Documentation, Release master

98

Chapter 4. Key Concepts

CHAPTER B

Getting Started

5.1 Prerequisites

Before we begin, if you haven’t already done so, you may wish to check that you have all the prerequisites below
installed on the platform(s) on which you’ll be developing blockchain applications and/or operating Hyperledger
Fabric.

5.1.1 Install cURL

Download the latest version of the cURL tool if it is not already installed or if you get errors running the curl commands
from the documentation.

Note: If you're on Windows please see the specific note on Windows extras below.

5.1.2 Docker and Docker Compose
You will need the following installed on the platform on which you will be operating, or developing on (or for),
Hyperledger Fabric:

* MacOSX, *nix, or Windows 10: Docker Docker version 17.06.2-ce or greater is required.

¢ Older versions of Windows: Docker Toolbox - again, Docker version Docker 17.06.2-ce or greater is required.

You can check the version of Docker you have installed with the following command from a terminal prompt:

docker —-version

Note: Installing Docker for Mac or Windows, or Docker Toolbox will also install Docker Compose. If you already
had Docker installed, you should check that you have Docker Compose version 1.14.0 or greater installed. If not, we

99

https://curl.haxx.se/download.html
https://www.docker.com/get-docker
https://docs.docker.com/toolbox/toolbox_install_windows/

hyperledger-fabricdocs Documentation, Release master

recommend that you install a more recent version of Docker.

You can check the version of Docker Compose you have installed with the following command from a terminal prompt:

docker-compose —-version

5.1.3 Go Programming Language

Hyperledger Fabric uses the Go Programming Language for many of its components.
* Go version 1.12.x is required.

Given that we will be writing chaincode programs in Go, there are two environment variables you will need to set
properly; you can make these settings permanent by placing them in the appropriate startup file, such as your personal
~/ .bashrc file if you are using the bash shell under Linux.

First, you must set the environment variable GOPATH to point at the Go workspace containing the downloaded Fabric
code base, with something like:

export GOPATH=S$HOME/go

Note: You must set the GOPATH variable

Even though, in Linux, Go’s GOPATH variable can be a colon-separated list of directories, and will use a default value
of SHOME/go if it is unset, the current Fabric build framework still requires you to set and export that variable, and
it must contain only the single directory name for your Go workspace. (This restriction might be removed in a future
release.)

Second, you should (again, in the appropriate startup file) extend your command search path to include the Go bin
directory, such as the following example for bash under Linux:

export PATH=$PATH:S$SGOPATH/bin

While this directory may not exist in a new Go workspace installation, it is populated later by the Fabric build system
with a small number of Go executables used by other parts of the build system. So even if you currently have no such
directory yet, extend your shell search path as above.

5.1.4 Node.js Runtime and NPM

If you will be developing applications for Hyperledger Fabric leveraging the Hyperledger Fabric SDK for Node.js,
version 8 is supported from 8.9.4 and higher. Node.js version 10 is supported from 10.15.3 and higher.

¢ Node.js download

Note: Installing Node.js will also install NPM, however it is recommended that you confirm the version of NPM
installed. You can upgrade the npm tool with the following command:

npm install npm@5.6.0 —-g

100 Chapter 5. Getting Started

https://golang.org/dl/
https://nodejs.org/en/download/

hyperledger-fabricdocs Documentation, Release master

Python

Note: The following applies to Ubuntu 16.04 users only.

By default Ubuntu 16.04 comes with Python 3.5.1 installed as the python3 binary. The Fabric Node.js SDK requires
an iteration of Python 2.7 in order for nom install operations to complete successfully. Retrieve the 2.7 version
with the following command:

’sudo apt—-get install python

Check your version(s):

’python —-—version

5.1.5 Windows extras

If you are developing on Windows 7, you will want to work within the Docker Quickstart Terminal which uses Git
Bash and provides a better alternative to the built-in Windows shell.

However experience has shown this to be a poor development environment with limited functionality. It is suitable
to run Docker based scenarios, such as Getting Started, but you may have difficulties with operations involving the
make and docker commands.

On Windows 10 you should use the native Docker distribution and you may use the Windows PowerShell. However,
for the binaries command to succeed you will still need to have the uname command available. You can get it as
part of Git but beware that only the 64bit version is supported.

Before running any git clone commands, run the following commands:

git config —--global core.autocrlf false
git config —--global core.longpaths true

You can check the setting of these parameters with the following commands:

git config —-—-get core.autocrlf
git config —-get core.longpaths

These need to be false and t rue respectively.

The curl command that comes with Git and Docker Toolbox is old and does not handle properly the redirect used in
Getting Started. Make sure you install and use a newer version from the cURL downloads page

For Node.js you also need the necessary Visual Studio C++ Build Tools which are freely available and can be installed
with the following command:

’npm install --global windows-build-tools

See the NPM windows-build-tools page for more details.

Once this is done, you should also install the NPM GRPC module with the following command:

’npm install --global grpc

Your environment should now be ready to go through the Gertting Started samples and tutorials.

5.1. Prerequisites 101

https://git-scm.com/downloads
https://git-scm.com/downloads
https://curl.haxx.se/download.html
https://www.npmjs.com/package/windows-build-tools

hyperledger-fabricdocs Documentation, Release master

Note: If you have questions not addressed by this documentation, or run into issues with any of the tutorials, please
visit the Still Have Questions? page for some tips on where to find additional help.

5.2 Install Samples, Binaries and Docker Images

While we work on developing real installers for the Hyperledger Fabric binaries, we provide a script that will download
and install samples and binaries to your system. We think that you’ll find the sample applications installed useful to
learn more about the capabilities and operations of Hyperledger Fabric.

Note: If you are running on Windows you will want to make use of the Docker Quickstart Terminal for the upcoming
terminal commands. Please visit the Prerequisites if you haven’t previously installed it.

If you are using Docker Toolbox on Windows 7 or macOS, you will need to use a location under C : \Users (Windows
7) or /Users (macOS) when installing and running the samples.

If you are using Docker for Mac, you will need to use a location under /Users, /Volumes, /private, or /tmp.
To use a different location, please consult the Docker documentation for file sharing.

If you are using Docker for Windows, please consult the Docker documentation for shared drives and use a location
under one of the shared drives.

Determine a location on your machine where you want to place the fabric-samples repository and enter that directory
in a terminal window. The command that follows will perform the following steps:

1. If needed, clone the hyperledger/fabric-samples repository
2. Checkout the appropriate version tag

3. Install the Hyperledger Fabric platform-specific binaries and config files for the version specified into the /bin
and /config directories of fabric-samples

4. Download the Hyperledger Fabric docker images for the version specified

Once you are ready, and in the directory into which you will install the Fabric Samples and binaries, go ahead and
execute the command to pull down the binaries and images.

Note: If you want the latest production release, omit all version identifiers.

curl -sSL http://bit.ly/2ysbOFE | bash -s

Note: If you want a specific release, pass a version identifier for Fabric, Fabric-ca and thirdparty Docker images. The
command below demonstrates how to download Fabric v1.4.12

curl -sSL http://bit.ly/2ysbOFE | bash -s —- <fabric_version> <fabric-ca_version>
—<thirdparty_version>
curl -sSL http://bit.ly/2ysbOFE | bash -s —— 1.4.12 1.4.9 0.4.22

Note: If you get an error running the above curl command, you may have too old a version of curl that does not
handle redirects or an unsupported environment.

102 Chapter 5. Getting Started

https://docs.docker.com/docker-for-mac/#file-sharing
https://docs.docker.com/docker-for-windows/#shared-drives
https://github.com/hyperledger/fabric-samples

hyperledger-fabricdocs Documentation, Release master

Please visit the Prerequisites page for additional information on where to find the latest version of curl and get the right
environment. Alternately, you can substitute the un-shortened URL: https://raw.githubusercontent.com/hyperledger/
fabric/master/scripts/bootstrap.sh

The command above downloads and executes a bash script that will download and extract all of the platform-specific
binaries you will need to set up your network and place them into the cloned repo you created above. It retrieves the
following platform-specific binaries:

* configtxgen,
e configtxlator,
* cryptogen,
e discover,
* idemixgen,
e orderer,
* peer,
e fabric-ca-client,
* fabric-ca-server
and places them in the bin sub-directory of the current working directory.

You may want to add that to your PATH environment variable so that these can be picked up without fully qualifying
the path to each binary. e.g.:

export PATH=<path to download location>/bin:S$SPATH

Finally, the script will download the Hyperledger Fabric docker images from Docker Hub into your local Docker
registry and tag them as ‘latest’.

The script lists out the Docker images installed upon conclusion.

Look at the names for each image; these are the components that will ultimately comprise our Hyperledger Fabric
network. You will also notice that you have two instances of the same image ID - one tagged as “amd64-1.x.x” and
one tagged as “latest”. Prior to 1.2.0, the image being downloaded was determined by uname -m and showed as
“x86_64-1.x.x".

Note: On different architectures, the x86_64/amd64 would be replaced with the string identifying your architecture.

Note: If you have questions not addressed by this documentation, or run into issues with any of the tutorials, please
visit the Still Have Questions? page for some tips on where to find additional help.

Before we begin, if you haven’t already done so, you may wish to check that you have all the Prerequisites installed
on the platform(s) on which you’ll be developing blockchain applications and/or operating Hyperledger Fabric.

Once you have the prerequisites installed, you are ready to download and install HyperLedger Fabric. While we work
on developing real installers for the Fabric binaries, we provide a script that will Install Samples, Binaries and Docker
Images to your system. The script also will download the Docker images to your local registry.

5.2. Install Samples, Binaries and Docker Images 103

https://raw.githubusercontent.com/hyperledger/fabric/master/scripts/bootstrap.sh
https://raw.githubusercontent.com/hyperledger/fabric/master/scripts/bootstrap.sh
https://hub.docker.com/u/hyperledger/

hyperledger-fabricdocs Documentation, Release master

5.3 Hyperledger Fabric smart contract (chaincode) SDKs

Hyperledger Fabric offers a number of SDKs to support developing smart contracts (chaincode) in various program-
ming languages. There are three smart contract SDKs available for Go, Node.js, and Java:

¢ Go SDK and Go SDK documentation.
* Node.js SDK and Node.js SDK documentation.
¢ Java SDK and Java SDK documentation.

Currently, Node.js and Java support the new smart contract programming model delivered in Hyperledger Fabric v1.4.
Support for Go is planned to be delivered in a later release.

5.4 Hyperledger Fabric application SDKs

Hyperledger Fabric offers a number of SDKs to support developing applications in various programming languages.
There are two application SDKs available for Node.js and Java:

* Node.js SDK and Node.js SDK documentation.
e Java SDK and Java SDK documentation.

In addition, there are two more application SDKs that have not yet been officially released (for Python and Go), but
they are still available for downloading and testing:

* Python SDK.
* Go SDK.

Currently, Node.js and Java support the new application programming model delivered in Hyperledger Fabric v1.4.
Support for Go is planned to be delivered in a later release.

5.5 Hyperledger Fabric CA

Hyperledger Fabric provides an optional certificate authority service that you may choose to use to generate the
certificates and key material to configure and manage identity in your blockchain network. However, any CA that
can generate ECDSA certificates may be used.

104 Chapter 5. Getting Started

https://github.com/hyperledger/fabric/tree/release-1.4/core/chaincode/shim
https://godoc.org/gopkg.in/hyperledger/fabric.v1/core/chaincode/shim
https://github.com/hyperledger/fabric-chaincode-node
https://hyperledger.github.io/fabric-chaincode-node/
https://github.com/hyperledger/fabric-chaincode-java
https://hyperledger.github.io/fabric-chaincode-java/
https://github.com/hyperledger/fabric-sdk-node
https://fabric-sdk-node.github.io/
https://github.com/hyperledger/fabric-gateway-java
https://fabric-gateway-java.github.io/
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-go
http://hyperledger-fabric-ca.readthedocs.io/en/latest

CHAPTER O

Developing Applications

6.1 The scenario

Audience: Architects, Application and smart contract developers, Business professionals

In this topic, we’re going to describe a business scenario involving six organizations who use PaperNet, a commercial
paper network built on Hyperledger Fabric, to issue, buy and redeem commercial paper. We’re going to use the
scenario to outline requirements for the development of commercial paper applications and smart contracts used by
the participant organizations.

6.1.1 PaperNet network

PaperNet is a commercial paper network that allows suitably authorized participants to issue, trade, redeem and rate
commercial paper.

105

hyperledger-fabricdocs Documentation, Release master

Issue Buy/sell

MagnetoCorp Redeam BrokerHouse

Redeem

B Il B Il .

DigiBank R:Zf:m PaperNet R:Z;em HedgeMatic
rate
) Buy/sell
BigFund R:zeiem RateM
notify T

The PaperNet commercial paper network. Six organizations currently use PaperNet network to issue, buy, sell, redeem
and rate commercial paper. MagentoCorp issues and redeems commercial paper. DigiBank, BigFund, BrokerHouse
and HedgeMatic all trade commercial paper with each other. RateM provides various measures of risk for commercial

paper.

Let’s see how MagnetoCorp uses PaperNet and commercial paper to help its business.

6.1.2 Introducing the actors

MagnetoCorp is a well-respected company that makes self-driving electric vehicles. In early April 2020, MagnetoCorp
won a large order to manufacture 10,000 Model D cars for Daintree, a new entrant in the personal transport market.
Although the order represents a significant win for MagnetoCorp, Daintree will not have to pay for the vehicles until
they start to be delivered on November 1, six months after the deal was formally agreed between MagnetoCorp and
Daintree.

To manufacture the vehicles, MagnetoCorp will need to hire 1000 workers for at least 6 months. This puts a short term
strain on its finances — it will require an extra SM USD each month to pay these new employees. Commercial paper
is designed to help MagnetoCorp overcome its short term financing needs — to meet payroll every month based on the
expectation that it will be cash rich when Daintree starts to pay for its new Model D cars.

At the end of May, MagnetoCorp needs SM USD to meet payroll for the extra workers it hired on May 1. To do this, it
issues a commercial paper with a face value of SM USD with a maturity date 6 months in the future — when it expects
to see cash flow from Daintree. DigiBank thinks that MagnetoCorp is creditworthy, and therefore doesn’t require much
of a premium above the central bank base rate of 2%, which would value 4.95M USD today at SM USD in 6 months
time. It therefore purchases the MagnetoCorp 6 month commercial paper for 4.94M USD - a slight discount compared
to the 4.95M USD it is worth. DigiBank fully expects that it will be able to redeem 5SM USD from MagnetoCorp in
6 months time, making it a profit of 10K USD for bearing the increased risk associated with this commercial paper.
This extra 10K means it receives a 2.4% return on investment — significantly better than the risk free return of 2%.

At the end of June, when MagnetoCorp issues a new commercial paper for SM USD to meet June’s payroll, it is
purchased by BigFund for 4.94M USD. That’s because the commercial conditions are roughly the same in June as
they are in May, resulting in BigFund valuing MagnetoCorp commercial paper at the same price that DigiBank did in
May.

Each subsequent month, MagnetoCorp can issue new commercial paper to meet its payroll obligations, and these may
be purchased by DigiBank, or any other participant in the PaperNet commercial paper network — BigFund, HedgeMatic
or BrokerHouse. These organizations may pay more or less for the commercial paper depending on two factors — the

106 Chapter 6. Developing Applications

hyperledger-fabricdocs Documentation, Release master

central bank base rate, and the risk associated with MagnetoCorp. This latter figure depends on a variety of factors
such as the production of Model D cars, and the creditworthiness of MagnetoCorp as assessed by RateM, a ratings
agency.

The organizations in PaperNet have different roles, MagnetoCorp issues paper, DigiBank, BigFund, HedgeMatic
and BrokerHouse trade paper and RateM rates paper. Organizations of the same role, such as DigiBank, Bigfund,
HedgeMatic and BrokerHouse are competitors. Organizations of different roles are not necessarily competitors, yet
might still have opposing business interest, for example MagentoCorp will desire a high rating for its papers to sell
them at a high price, while DigiBank would benefit from a low rating, such that it can buy them at a low price. As
can be seen, even a seemingly simple network such as PaperNet can have complex trust relationships. A blockchain
can help establish trust among organizations that are competitors or have opposing business interests that might lead
to disputes. Fabric in particular has the means to capture even fine-grained trust relationships.

Let’s pause the MagnetoCorp story for a moment, and develop the client applications and smart contracts that Pa-
perNet uses to issue, buy, sell and redeem commercial paper as well as capture the trust relationships between the
organizations. We’ll come back to the role of the rating agency, RateM, a little later.

6.2 Analysis

Audience: Architects, Application and smart contract developers, Business professionals

Let’s analyze commercial paper in a little more detail. PaperNet participants such as MagnetoCorp and DigiBank use
commercial paper transactions to achieve their business objectives — let’s examine the structure of a commercial paper
and the transactions that affect it over time. We will also consider which organizations in PaperNet need to sign off on
a transaction based on the trust relationships among the organizations in the network. Later we’ll focus on how money
flows between buyers and sellers; for now, let’s focus on the first paper issued by MagnetoCorp.

6.2.1 Commercial paper lifecycle

A paper 00001 is issued by MagnetoCorp on May 31. Spend a few moments looking at the first state of this paper,
with its different properties and values:

Issuer = MagnetoCorp

Paper = 00001

Owner = MagnetoCorp

Issue date = 31 May 2020
Maturity = 30 November 2020
Face value = 5M USD

Current state = issued

This paper state is a result of the issue transaction and it brings MagnetoCorp’s first commercial paper into existence!
Notice how this paper has a SM USD face value for redemption later in the year. See how the Issuer and Owner are
the same when paper 00001 is issued. Notice that this paper could be uniquely identified as MagnetoCorp00001 —
a composition of the Issuer and Paper properties. Finally, see how the property Current state = issued
quickly identifies the stage of MagnetoCorp paper 00001 in its lifecycle.

Shortly after issuance, the paper is bought by DigiBank. Spend a few moments looking at how the same commercial
paper has changed as a result of this buy transaction:

Issuer = MagnetoCorp

Paper = 00001

Owner = DigiBank

Issue date = 31 May 2020
Maturity date = 30 November 2020

(continues on next page)

6.2. Analysis 107

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Face value = OM USD
Current state = trading

The most significant change is that of Owner — see how the paper initially owned by MagnetoCorp is now owned
by DigiBank. We could imagine how the paper might be subsequently sold to BrokerHouse or HedgeMatic, and
the corresponding change to Owner. Note how Current state allow us to easily identify that the paper is now
trading.

After 6 months, if DigiBank still holds the the commercial paper, it can redeem it with MagnetoCorp:

Issuer = MagnetoCorp

Paper = 00001

Owner = MagnetoCorp

Issue date = 31 May 2020
Maturity date = 30 November 2020
Face value = 5M USD

Current state = redeemed

This final redeem transaction has ended the commercial paper’s lifecycle — it can be considered closed. It is often
mandatory to keep a record of redeemed commercial papers, and the redeemed state allows us to quickly identify
these. The value of Owner of a paper can be used to perform access control on the redeem transaction, by comparing
the Owner against the identity of the transaction creator. Fabric supports this through the getCreator () chaincode
API. If golang is used as a chaincode language, the client identity chaincode library can be used to retrieve additional
attributes of the transaction creator.

6.2.2 Transactions

We’ve seen that paper 00001’s lifecycle is relatively straightforward — it moves between issued, trading and
redeemed as a result of an issue, buy, or redeem transaction.

These three transactions are initiated by MagnetoCorp and DigiBank (twice), and drive the state changes of paper
00001. Let’s have a look at the transactions that affect this paper in a little more detail:

Issue

Examine the first transaction initiated by MagnetoCorp:

Txn = issue

Issuer = MagnetoCorp

Paper = 00001

Issue time = 31 May 2020 09:00:00 EST
Maturity date = 30 November 2020

Face value = OM USD

See how the issue transaction has a structure with properties and values. This transaction structure is different to, but
closely matches, the structure of paper 00001. That’s because they are different things — paper 00001 reflects a state of
PaperNet that is a result of the issue transaction. It’s the logic behind the issue transaction (which we cannot see) that
takes these properties and creates this paper. Because the transaction creates the paper, it means there’s a very close
relationship between these structures.

The only organization that is involved in the issue transaction is MagnetoCorp. Naturally, MagnetoCorp needs to sign
off on the transaction. In general, the issuer of a paper is required to sign off on a transaction that issues a new paper.

108 Chapter 6. Developing Applications

https://github.com/hyperledger/fabric-chaincode-node/blob/master/fabric-shim/lib/stub.js#L293
https://github.com/hyperledger/fabric-chaincode-node/blob/master/fabric-shim/lib/stub.js#L293
https://github.com/hyperledger/fabric/blob/master/core/chaincode/shim/ext/cid/README.md

hyperledger-fabricdocs Documentation, Release master

Buy

Next, examine the buy transaction which transfers ownership of paper 00001 from MagnetoCorp to DigiBank:

Txn = buy

Issuer = MagnetoCorp

Paper = 00001

Current owner = MagnetoCorp

New owner = DigiBank

Purchase time = 31 May 2020 10:00:00 EST
Price = 4.94M USD

See how the buy transaction has fewer properties that end up in this paper. That’s because this transaction only
modifies this paper. It’s only New owner = DigiBank that changes as a result of this transaction; everything else
is the same. That’s OK — the most important thing about the buy transaction is the change of ownership, and indeed
in this transaction, there’s an acknowledgement of the current owner of the paper, MagnetoCorp.

You might ask why the Purchase time and Price properties are not captured in paper 00001? This comes
back to the difference between the transaction and the paper. The 4.94 M USD price tag is actually a property of the
transaction, rather than a property of this paper. Spend a little time thinking about this difference; it is not as obvious as
it seems. We’re going to see later that the ledger will record both pieces of information — the history of all transactions
that affect this paper, as well its latest state. Being clear on this separation of information is really important.

It’s also worth remembering that paper 00001 may be bought and sold many times. Although we’re skipping ahead a
little in our scenario, let’s examine what transactions we might see if paper 00001 changes ownership.

If we have a purchase by BigFund:

Txn = buy

Issuer = MagnetoCorp

Paper = 00001

Current owner = DigiBank

New owner = BigFund

Purchase time = 2 June 2020 12:20:00 EST
Price = 4.93M USD

Followed by a subsequent purchase by HedgeMatic:

Txn = buy

Issuer = MagnetoCorp

Paper = 00001

Current owner = BigFund

New owner = HedgeMatic

Purchase time = 3 June 2020 15:59:00 EST
Price = 4.90M USD

See how the paper’s owner changes, and how in our example, the price changes. Can you think of a reason why the
price of MagnetoCorp commercial paper might be falling?

Intuitively, a buy transaction demands that both the selling as well as the buying organization need to sign off on such
a transaction such that there is proof of the mutual agreement among the two parties that are part of the deal.

Redeem

The redeem transaction for paper 00001 represents the end of its lifecycle. In our relatively simple example, Hedge-
Matic initiates the transaction which transfers the commercial paper back to MagnetoCorp:

6.2. Analysis 109

hyperledger-fabricdocs Documentation, Release master

Txn = redeem

Issuer = MagnetoCorp

Paper = 00001

Current owner = HedgeMatic

Redeem time = 30 Nov 2020 12:00:00 EST

Again, notice how the redeem transaction has very few properties; all of the changes to paper 00001 can be calculated
data by the redeem transaction logic: the Issuer will become the new owner, and the Current state will
change to redeemed. The Current owner property is specified in our example, so that it can be checked against
the current holder of the paper.

From a trust perspective, the same reasoning of the buy transaction also applies to the redeem instruction: both
organizations involved in the transaction are required to sign off on it.

6.2.3 The Ledger

In this topic, we’ve seen how transactions and the resultant paper states are the two most important concepts in
PaperNet. Indeed, we’ll see these two fundamental elements in any Hyperledger Fabric distributed ledger — a world
state, that contains the current value of all objects, and a blockchain that records the history of all transactions that
resulted in the current world state.

The required sign-offs on transactions are enforced through rules, which are evaluated before appending a transaction
to the ledger. Only if the required signatures are present, Fabric will accept a transaction as valid.

You’re now in a great place translate these ideas into a smart contract. Don’t worry if your programming is a little
rusty, we’ll provide tips and pointers to understand the program code. Mastering the commercial paper smart contract
is the first big step towards designing your own application. Or, if you’re a business analyst who’s comfortable with a
little programming, don’t be afraid to keep dig a little deeper!

6.3 Process and Data Design

Audience: Architects, Application and smart contract developers, Business professionals

This topic shows you how to design the commercial paper processes and their related data structures in PaperNet.
Our analysis highlighted that modelling PaperNet using states and transactions provided a precise way to understand
what’s happening. We’re now going to elaborate on these two strongly related concepts to help us subsequently design
the smart contracts and applications of PaperNet.

6.3.1 Lifecycle

As we’ve seen, there are two important concepts that concern us when dealing with commercial paper; states and
transactions. Indeed, this is true for al/l blockchain use cases; there are conceptual objects of value, modeled as states,
whose lifecycle transitions are described by transactions. An effective analysis of states and transactions is an essential
starting point for a successful implementation.

We can represent the life cycle of a commercial paper using a state transition diagram:

110 Chapter 6. Developing Applications

../ledger/ledger.html
./analysis.html

hyperledger-fabricdocs Documentation, Release master

buy

redeem

issued trading redeemed

The state transition diagram for commercial paper. Commercial papers transition between issued, trading and re-
deemed states by means of the issue, buy and redeem transactions.

See how the state diagram describes how commercial papers change over time, and how specific transactions govern
the life cycle transitions. In Hyperledger Fabric, smart contracts implement transaction logic that transition commercial
papers between their different states. Commercial paper states are actually held in the ledger world state; so let’s take
a closer look at them.

6.3.2 Ledger state

Recall the structure of a commercial paper:

Issuer: MagnetoCorp

Paper: 00001

Owner: DigiBank

Issue date: 31 May 2020
Maturity date: 30 Nov 2020
Face wvalue: 5M USD
Current state: trading

A commercial paper can be represented as a set of properties, each with a value. Typically, some combination of these
properties will provide a unique key for each paper.

See how a commercial paper Paper property has value 00001, and the Face value property has value 5M USD.
Most importantly, the Current state property indicates whether the commercial paper is i ssued,t rading or
redeemed. In combination, the full set of properties make up the state of a commercial paper. Moreover, the entire
collection of these individual commercial paper states constitutes the ledger world state.

All ledger state share this form; each has a set of properties, each with a different value. This multi-property aspect
of states is a powerful feature — it allows us to think of a Fabric state as a vector rather than a simple scalar. We
then represent facts about whole objects as individual states, which subsequently undergo transitions controlled by
transaction logic. A Fabric state is implemented as a key/value pair, in which the value encodes the object properties
in a format that captures the object’s multiple properties, typically JSON. The ledger database can support advanced
query operations against these properties, which is very helpful for sophisticated object retrieval.

See how MagnetoCorp’s paper 00001 is represented as a state vector that transitions according to different transaction
stimuli:

6.3. Process and Data Design 111

../ledger/ledger.html#world-state
../ledger/ledger.html#ledger-world-state-database-options

hyperledger-fabricdocs Documentation, Release master

redeem

e I L gy S

Issuer: MagnetoCorp
Paper: 00001
Owner: MagnetoCorp

Issuer: MagnetoCorp
Paper: 00001
Owner: DigiBank

Issuer: MagnetoCorp
Paper: 00001
Owner: MagnetoCorp

(nil) Issue date: 31 May 2020 Issue date: 31 May 2020 Issue date: 31 May 2020
Maturity date: 30 Nowv 2020 Maturity date: 30 Nov 2020 Maturity date: 30 Nov 2020
Face value: 5M USD Face value: 5M USD Face value: 5M USD
Current state: issued Current state: trading Current state: redeemed

A commercial paper state is brought into existence and transitions as a result of different transactions. Hyperledger
Fabric states have multiple properties, making them vectors rather than scalars.

Notice how each individual paper starts with the empty state, which is technically a ni1 state for the paper, as it
doesn’t exist! See how paper 00001 is brought into existence by the issue transaction, and how it is subsequently
updated as a result of the buy and redeem transactions.

Notice how each state is self-describing; each property has a name and a value. Although all our commercial papers
currently have the same properties, this need not be the case for all time, as Hyperledger Fabric supports different
states having different properties. This allows the same ledger world state to contain different forms of the same asset
as well as different types of asset. It also makes it possible to update a state’s structure; imagine a new regulation that
requires an additional data field. Flexible state properties support the fundamental requirement of data evolution over
time.

6.3.3 State keys

In most practical applications, a state will have a combination of properties that uniquely identify it in a given context
— it’s key. The key for a PaperNet commercial paper is formed by a concatenation of the Issuer and paper
properties; so for MagnetoCorp’s first paper, it’s MagnetoCorp00001.

A state key allows us to uniquely identify a paper; it is created as a result of the issue transaction and subsequently
updated by buy and redeem. Hyperledger Fabric requires each state in a ledger to have a unique key.

When a unique key is not available from the available set of properties, an application-determined unique key is
specified as an input to the transaction that creates the state. This unique key is usually with some form of UUID,
which although less readable, is a standard practice. What’s important is that every individual state object in a ledger
must have a unique key.

Note: You should avoid using U+0000 (nil byte) in keys.

6.3.4 Multiple states

As we’ve seen, commercial papers in PaperNet are stored as state vectors in a ledger. It’s a reasonable requirement to
be able to query different commercial papers from the ledger; for example: find all the papers issued by MagnetoCorp,
or: find all the papers issued by MagnetoCorp in the redeemed state.

To make these kinds of search tasks possible, it