

hypeJunction

Build modern social media applications with an ever-growing collection of high-quality plugins for Elgg 3+

	Installation
	Using ZIP files

	Using Composer

	Additional Info

	hypeActivity

	hypeAjax
	Developer Notes

	hypeAttachments
	Register allowed subtypes

	Display an attachment input

	Attach uploaded files in an action

	Attach an object

	Display attachments

	Acknowledgements

	hypeAutocomplete

	hypeBlog

	hypeBraintreePayments
	Webhooks

	Card Input

	hypeBraintreeSubscriptions
	Currencies

	Subscriptions

	hypeCapabilities
	Registering a role

	Assigning a role to a user

	Remove a role from a user

	Configuring role permissions

	hypeCaptcha
	Usage

	hypeCli
	Commands

	hypeCountries
	Country select

	List countries

	Country info

	hypeDiscussions

	hypeDownloads

	hypeDraft

	hypeDropzone
	Adding a drag&drop file input and processing uploads

	Initializing and resetting dropzone

	Acknowledgements

	hypeEmbed
	Shortcodes

	Static assets

	Acknowledgements

	hypeGroups
	Group Subtypes

	Fields

	hypeHero

	hypeIllustration

	hypeInteractions

	hypeInvite
	Gotchas

	Creating Invites

	hypeLists
	Server-Side

	Client-Side

	hypeMapsOpen
	A map of arbitrary locations

	A map with custom icons

	A map of entities

	A map with data source and search

	Change marker icon and color

	Change popup content

	Acknowledgements

	hypeMedia

	hypeMentions
	Acknowledgements

	hypeMenus

	hypeModerator
	Approval Workflow

	hypeNotifications
	Notification preferences

	Notification event types

	Notification testing

	Sample SMTP config for GMail

	Sample SMTP config for SendGrid

	File Attachments

	hypePayments
	New payment

	hypePaypalPayments
	Webhooks

	Paypal Button

	hypePaypalSubscriptions
	Disclaimer

	hypePost
	Form Fields

	Common Properties

	hypePaywall

	hypeProfile

	hypeSatis
	Satis Build

	Client Setup

	hypeScraper
	Card

	Player

	Linkify

	hypeShortcode
	Register shortcode

	Generate a shortcode tag

	Expand shortcodes

	Strip shortcodes

	hypeShutdown
	Shutdown event

	hypeSlug
	Adding slugs

	hypeStash
	Stashing Logic

	Helpers

	Custom Properties

	hypeStaticPages

	hypeStripePayments
	Webhooks

	Card Input

	hypeStripeSubscriptions

	hypeSubscriptions
	Events

	hypeTime

	hypeTrees

	hypeVue
	Developer Tools

	hypeWall
	Gotchas

Installation

Using ZIP files

Distribution (.zip) plugin files can be downloaded from hypeJunction website [https://hypejunction.com/]. To add a plugin, unzip it into your /mod directory, making sure the directories are not nested, and that manifest.xml is in the root of the plugin folder.

Using Composer

To use composer, you need to have an active subscription that gives you access to individual packages.

Add your satis credentials to global config
You can find your username and token by logging into https://hypejunction.com/ and navigating to one of the downloads.

composer config --global --auth http-basic.hypejunction.com <username> <token>

Update your composer.json to include:

"repositories": [
 {
 "type": "composer",
 "url": "https://hypejunction.com/satis"
 }
]

New Project

The easiest way to create an Elgg project with hypeJunction plugins installed is by running the following commands.

Create a new Elgg project with hypeJunction Pro plugins pre-installed

composer create-project hypejunction/hypejunction:dev-master ./project-name

cd ./project-name

composer install
composer install # 2nd call is currently required

./elgg-cli install
./elgg-cli plugins:activate hypeCli
./elgg-cli hypejunction:install

Existing Project

You can add plugins to an existing project, using

composer require hypejunction/<plugin_name>

Additional Info

Learn about installation in Elgg docs [https://learn.elgg.org/].

hypeActivity

Replaces profile pages with an activity stream

	Activity streams as main attribute of the profile page

	Extendable with custom modules/widgets

hypeAjax

Utilities for AJAX requests

	Deferred view rendering

Developer Notes

Deferred Rendering

To defer view rendering, simply add 'deferred' => true to view vars.

echo elgg_view('my_view', [
 // tells the view system to defer view render
 'deferred' => true,

 // if set to false, placeholder will not be rendered
 // if set to a value, that value will be used as the placeholder
 // if not set, default ajax loader will be used
 'placeholder' => false,

 // you can pass other view vars, as you would with normal views
 // various Elgg data will be serialized and available to the deferred view
 // some of the values may need to be wrapped into a Serializable instance
 'entity' => get_entity(123),
 'user' => get_user(234),
]);

hypeAttachments

	API and UI for attaching files and other entities

	Form input for uploading file attachments

	Views for displaying attachments

Register allowed subtypes

If you add your entity subtype to a list of entities supporting attachments, the plugin
will attempt to create all of the UI, necessary to upload and display attachments:

elgg_register_plugin_hook_handler('allow_attachments', 'object:my_subtype', '\Elgg\Values::getTrue');

Note that this generic approach might not work with all plugins, and may require additional customizations on your side.

Display an attachment input

echo elgg_view('input/attachments');

To add an attachments input to your comment and discussion replies forms, use the following code. You will not need to add any code to your save action.

echo elgg_view('input/attachments', [
 'name' => 'comment_attachments',
]);

To add an attachments input to your personal messages and replies forms, use the following code. You will not need to add any code to your save action.

echo elgg_view('input/attachments', [
 'name' => 'message_attachments',
]);

Note that if you are not using hypeDropzone, your form must have it’s encoding set to multipart/form-data.

Attach uploaded files in an action

hypeapps_attach_uploaded_files($entity, 'upload', [
 'access_id' => $entity->access_id, // change the access level of uploaded files
]);

Attach an object

hypeapps_attach($entity, $attachment);

Display attachments

echo elgg_view('output/attachments', [
 'entity' => $entity,
]);

Acknowledgements

	Early version of the plugin development has been partially sponsored by [Social Business World](https://socialbusinessworld.org/)

hypeAutocomplete

Autocomplete input

	Replaces selects with autocomplete inputs that support images and icons

	Adds typeahead support for tags input

	Replaces autocomplete and userpicker inputs

	Adds versatile input/guids

hypeBlog

Customized blog

	Uses extendable form interface

	Rich-media oriented

hypeBraintreePayments

A wrapper for Braintree’s PHP SDK

Webhooks

Configure your Braintree application to send webhooks to `https://<your-elgg-site>/payments/braintree/webhooks`

To digest a webhook, register a plugin hook handler:

elgg_register_plugin_hook_handler('subscription_went_past_due', 'braintree', HandleExpiredSubscription::class);

class HandleExpiredSubscription {
 public function __invoke(\Elgg\Hook $hook) {
 $webhook = $hook->getParam('webhook');
 /* @var $webhook \Briantree\WebhookNotification */

 // ... do stuff

 return $result; // data to send back to braintree
 }
}

Card Input

To display a card input:

// Card number, expiry and CVC
echo elgg_view_field([
 '#type' => 'braintree/card',
 '#label' => 'Credit or Debit Card',
 'required' => true,
]);

You can then retrieve the value of the Braintree token in your action:

$token = get_input('braintree_token'); // Corresponds to payment_method_nonce

elgg()->{'payments.gateways.braintree'}->pay($transaction, [
 'braintree_token' => $token,
]);

hypeBraintreeSubscriptions

Braintree integration for hypeSubscriptions

Currencies

If you are using multiple currencies, make sure to set up a Braintree merchant account for each currency.

Subscriptions

Braintree API does not allow plans to be created via API calls, so you will need to setup your plans via Braintree control panel and then import them. Plans will be matched by their plan_id, so you can duplicate your existing plans on Braintree.

hypeCapabilities

Capabilities and roles API

Registering a role

elgg()->roles->register('role_name');

Assigning a role to a user

// Site wide role
elgg()->roles->assign('role_name', $user);

// Group specific role
elgg()->roles->assign('role_name', $user, $group);

Remove a role from a user

// Site wide role
elgg()->roles->unassign('role_name', $user);

// Group specific role
elgg()->roles->unassign('role_name', $user, $group);

Configuring role permissions

Creating entities of a specific type

// Prevent users with given role from creating entities of a given type
elgg()->roles->role_name->onCreate('object', 'blog', Role::DENY);

// Allow users to create entities of a given type regardless of context
elgg()->roles->role_name->onCreate('object', 'blog', Role::ALLOW, Role::OVERRIDE);

// Allow users to create entities of a given type if all other container permissins are met
elgg()->roles->role_name->onCreate('object', 'blog', Role::ALLOW, Role::STACK);

// Allow users to create entities when specific conditions are met
// Only allow group blogs
elgg()->roles->role_name->onCreate('object', 'blog', Role::DENY, function(\hypeJunction\Capabilities\Context $context) {
 $container = $context->getTarget();
 if (!$container instanceof ElggGroup) {
 return Role::DENY;
 }
});

Update and delete permissions

Similar to above, you can use `onUpdate` and `onDelete` methods;

Granting administrative permissions

Administrative permissions imply high-level administrative action on entities, e.g. approving a certain post after moderation.
By default, core does not use this privilege level, but you can check if the user has admin permissions over an entity like so:

$params = [
 'entity' => $entity,
 'user' => $user,
];
if (!elgg_trigger_plugin_hook('permissions_check:administer', "$entity->type:$entity->subtype", $params, false)) {
 // No permissions to approve
 throw new EntityPermissionsException();
}

// Do something that requires high level permissions, e.g.
$entity->published_status = 'published';

Granting/denying admin permissions

// Prevent users with given role from creating entities of a given type
// Allow moderator role to administer all blogs regardless of owner/container
elgg()->roles->moderator->onAdminister('object', 'blog', Role::ALLOW, Role::OVERRIDE);

// Allow users to create entities when specific conditions are met
// Allow teacher to administer all group blogs
elgg()->roles->teacher->canAdminister('object', 'blog', Role::ALLOW, function(\hypeJunction\Capabilities\Context $context) {
 $entity = $context->getTarget();
 $actor = $context->getActor();

 $container = $entity->getContainerEntity();
 return $container->canEdit($actor->guid);
});

Routes

You can allow/deny access to certain routes by route name

// Context parameter contain matched route elements
// e.g. prevent access to user profile if users are not friends
elgg()->roles->user->onRouteAccess('view:user', Role::DENY, function(\hypeJunction\Capabilities\Context $context) {
 $actor = $context->getActor();

 $username = $context->getParam('username');
 $user = get_user_by_username($username);

 if (!$actor || !$user instanceof ElggUser || !$actor->isFriendOf($user->guid)) {
 register_error('You must be friends to access user profiles');
 return Role::DENY;
 }
});

// Here is an example of how to prevent access to member pages to non-logged in users:
elgg()->roles->guest->onRouteAccess('collection:user:user', Role::DENY);
elgg()->roles->guest->onRouteAccess('collection:user:user:alpha', Role::DENY);
elgg()->roles->guest->onRouteAccess('collection:user:user:newest', Role::DENY);
elgg()->roles->guest->onRouteAccess('collection:user:user:online', Role::DENY);
elgg()->roles->guest->onRouteAccess('collection:user:user:popular', Role::DENY);
elgg()->roles->guest->onRouteAccess('search:user:user', Role::DENY);
elgg()->roles->guest->onRouteAccess('view:user', Role::DENY);

Custom (component) capabilities

You can check and alter custom capabilities:

// Check a custom role
elgg()->roles->can('read', 'discussions');

// Define how role responds to capability check
elgg()->roles->guest->on('read', 'discussions', Role::DENY);

// Override role response
elgg_register_plugin_hook_handler('capability', 'read:discussions', function(Hook $hook) {

});

hypeCaptcha

Protects the site from bots using reCaptcha

Usage

echo elgg_view_field(['#type' => 'captcha']);

Users are only requested to solve a captcha one. If they proved they are human, they won’t be bothered again.

hypeCli

CLI tools for working with hypeJunction plugins

Commands

`elgg-cli hypejunction:install [--pack|-p]`

Install all plugins within a pack.

Packs include:

core - plugins that most other plugins depend on
content - plugins for authoring content
tools - various site tools
theming - theming tools
commerce - payments and subscriptions

hypeCountries

Country utilities

	Country info, including name, ISO, ISO-3, ISO numeric, FIPS, TLD, currency code, postal code format and other

	Country input view

Country select

echo elgg_view('input/country', array(
 'name' => 'country',
 'value' => 'CZ',
));

List countries

$countries = elgg()->countries->getCountries();
foreach ($countries as $country) {
 /* @var $country \hypeJunction\Country */
 echo "$country->name ($country->iso)";
}

Country info

Get a list of countries with extended details

$fields = array(
 'name',
 'iso',
 'iso3',
 //'iso_numeric',
 //'fips',
 'capital',
 //'area',
 //'population',
 //'continent',
 'tld',
 'currency_code',
 'currency_name',
 'phone_code',
 'postal_code_format',
 'postal_code_regex',
 'languages',
 //'geoname_id',
 'neighbours'
);

// Get a list of countries ordered by currency_code
$countries = elgg_get_country_info($fields, 'currency_code');

hypeDiscussions

	Implements threaded discussions (using comment system)

	Integrates with hypeInteractions for real time updates

	Enables replies from river

	Adds attachments to discussions (requires hypeAttachments)

	Adds discussions widget to the group and user profile

	Restricted discussion (only group admins can start new discussions)

	Enables discussions outside of groups

hypeDownloads

Digital product downloads

hypeDraft

Implements a publishing workflow for content items.

	Allow users to save draft posts hidden from other users

	Autosave posts

	Maintain revision history

hypeDropzone

Drag&Drop File Uploads for Elgg

	Cross-browser support for drag&drop file uploads

	Easy to integrate into existing forms

	Supports chunked uploads of large files

Adding a drag&drop file input and processing uploads

To add a drag&drop input to your form, add the following:

echo elgg_view('input/dropzone', array(
 'name' => 'upload_guids',
 'accept' => "image/*",
 'max' => 25,
 'multiple' => true,
 'container_guid' => $container_guid, // optional file container
 'subtype' => $subtype, // subtype of the file entities to be created
 // see the view for more options
));

In your action, you can retrieve uploaded files with `get_input('upload_guids');`

You also need to implement a fallback solution for when the browser does not support
drag and drop. Check hypeJunction\DropzoneService for an example.

Initializing and resetting dropzone

You can instantiate and clear dropzone by triggering jQuery events on the containing form:

$('.elgg-form').trigger('initialize'); // will instantiate dropzone inputs contained within the form
$('.elgg-form').trigger('reset'); // will clear previews and hidden guid inputs

Acknowledgements

	Dropzone.js is a really cool library by Matias Meno

http://www.dropzonejs.com/

hypeEmbed

	Search, upload and embed files on the spot

	Search and embed all other registered object types on the spot

	Embed URL previews and rich-media players

	[admin] Embed buttons that match the site styles

	[admin] Embed “insecure” HTML embeds (forms, calendars etc)

Shortcodes

The plugin supports the following shortcodes:

embed shortcode:

	guid - GUID of an entity to embed

button shortcode:

	text - call to action

	type - One of the following types action, submit, delete, cancel (these values only affect styling and do not carry any functional value)

	url - URL to link to

	target - Default self, blank or lightbox

Examples:

[embed guid="555"]
[button type="action" text="Read Terms" url="/terms" target="lightbox"]

Unlisted shortcode attributes will be parsed and passed to the view after sanitization, so extending plugins can add additional options.

By default, only shortcodes passed to output/longtext view will be expanded automatically.

Static assets

If you are using the same images across multiple posts, you may way to use static assets,
as they allow you to take advantage of simplecache, thus offering better performance than
file entities.

Create a folder in your dataroot /embed/ and place your image files in there, flush the caches,
and you will see your images in the Assets tab of the embed lightbox window.

Acknowledgements

	Upgrade for Elgg 2.3 has been sponsored by ApostleTree, LLC

hypeGroups

	Extended search and sort functionality

	API to add new group subtypes

	API to manage group hierarchies

	API for managing group fields

	API for restricting group tools, as well as using preset tools

Group Subtypes

Registering new subtypes and configuring them is made easy.

Here is an example of how to remove groups from the top level of the site, and making them subgroups of a new subtype called classroom.

 $svc = elgg()->groups;
 /* @var $svc \hypeJunction\Groups\GroupsService */

 $svc->registerSubtype('classroom', [
 'labels' => [
 'en' => [
 'item' => 'Classroom',
 'collection' => 'Classrooms',
],
],
 'root' => true,
 'identifier' => 'classrooms',
 'class' => \CustomPlugin\Classroom::class,
 'collections' => [
 'all' => \CustomPlugin\DefaultClassroomCollection::class,
 'owner' => \CustomPlugin\OwnedClassroomCollection::class,
 'member' => \CustomPlugin\JoinedClassroomCollection::class,
],
]);

 $svc->registerSubtype('group', [
 'site_menu' => false,
 'labels' => [
 'en' => [
 'item' => 'Group',
 'collection' => 'Groups',
],
],
 'root' => false,
 'parents' => ['classroom'],
 'identifier' => 'groups',
]);

You can put multiple subtypes into a collection by assigning them to the same identifier, e.g. you could create usa_state and canada_province subtypes and register them for regions identifier.

Fields

Fields are managed by hypePost. Please see the documentation there for more information.

hypeHero

Replaces owner block with a hero

hypeIllustration

Unsplash integration

hypeInteractions

Enhanced commenting and liking UX for Elgg

	Extendable interactions module

	Real-time comments and likes (requires hypeLists)

	Comment attachments (requires hypeAttachments)

	Multi-level comment threads

	Inline comment search (requires hypeLists)

	Inline comment sorting (requires hypeLists)

hypeInvite

	Allows users to invite new users by email

	An option to create an invite-only network

	Keeps track of all invitations to the same email address

	Creates friend requests when invitations are accepted

	Group owners can allow members to invite other members

	Site admins can allow group invitations of non-friends

	Site admins can allow group invitations by email

Gotchas

	Registration must be enabled on the site for this plugin to work

	In an invite-only network, uservalidationbyemail will be bypassed,
as it is assumed that users would have received their invitation code by email

	When invited by email to group, non-existing users will first have to create an account. Upon registration,
invitations will be created for every group the email has been invited to before registration.

Creating Invites

Other plugins may centralize off-site invitations and attach custom behavior to the invites.
For example, to invite non-registered users to an event by their email:

$invite = users_invite_create_user_invite($email);
add_entity_relationship($invite->guid, 'invited_to', $event->guid);
add_entity_relationship($invite->guid, 'invited_by', $inviter->guid);

// generate a registration link to include in the notification
$registration_link = users_invite_get_registration_link($email, $inviter->guid);

// implement a custom handler
elgg_register_plugin_hook_handler('accept', 'invite', function($hook, $type, $return, $params) {

 $invite = $params['invite'];
 $user = $params['user'];

 $events = elgg_get_entities_from_relationship([
 'types' => 'object',
 'subtypes' => 'event',
 'relationship' => 'invited_to',
 'relationship_guid' => $invite->guid,
 'limit' => 0,
]);

 if (!$events) {
 return;
 }

 foreach ($events as $event) {
 add_entity_relationship($user->guid, 'attending', $event->guid);
 }
});

hypeLists

A set of tools that improve UX and simplify common list patterns for developers.

	Seamless integration with core and existing plugins

	AJAXed list pagination and infinite scroll

	Lazy loading of preceeding and succeeding list pages

	Auto refreshing of lists

	An interface for creating sortable/searchable lists

Server-Side

The following options are accepted by `elgg_list_entities()`, `elgg_view_entity_list()`,
and by `page/components/list` and `page/components/gallery` views. These parameters will only take effect,
if you have `'pagination' => true` in your options. Additional options, that need to be passed to the jQuery plugin, can be prefixed with `data-`

	`'list_id'` STRING is an optional parameter, but it is strongly recommended to pass it to your list. List id must be unique to the page.

	`'pagination_type'` STRING `default` (pagination bar with page number navigation) or `infinite` (before and after navigation)

	`'position'` STRING can be used to specify the position of pagination items. `before`, `after`, `both`

	`'num_pages'` INT can be used to specify how many page number navigation items to show, use 0 to only show Next and Prev links

	`'lazy_load'` INT can be used to initialize lazy loading of pages

	`'auto_refresh'` INT can be used to specify at which interval in seconds new items should be fetched

	`'reversed'` BOOL can be used to specify reversed lists. If list is reversed, it is assumed that the new items will be located at the end of the list

Client-Side

Lists that have received the necessary parameters server-side will be instantiated automatically. If you need to instantiate a list programmatically, use `$.hypeList(options)`.

// Instantiate a new list
$('.elgg-list.my-list').hypeList({
 baseUrl: false, // Data source
 count: 0, // Number of items in the list
 offset: 0, // Current offset from the beginning of the list
 offsetKey: 'offset', // Offset key
 limit: 10, // Number of items per page
 listId: '', // List identifier unique to the page
 pagination: 'default', // Pagination type: 'default', 'infinite'
 paginationPosition: 'after', // Pagination position: 'before', 'after', 'both'
 paginationNumPages: 10, // Number of page links to display in the pager
 classActive: 'elgg-state-selected', // CSS class pertinent to active elements
 classDisabled: 'elgg-state-disabled', // CSS class pertinent to disabled elements
 classLoading: 'elgg-state-loading', // CSS class pertinent to pending elements
 textNoResults: '', // Text displayed when no items were found in the list
 textNext: elgg.echo('next'), // Text for next link
 textPrev: elgg.echo('previous'), // Text for previous link
 keyTextBefore: 'lists:add:before', // Language key for before link (will receive limit as parameter)
 keyTextAfter: 'lists:add:after', // Language key for before link (will receive limit as parameter)
 lazyLoad: 10, // Number of pages to lazy load
 autoRefresh: 60, // Fetch new items at this interval (in seconds)
 reversed: false, // List is reversed that is new items are appended to the end of the list
 scrollTopOffset: -100, // Additional offset in pixels for when the page is scrolled to the top of the list
 listTime: 0, // Timestamp at which the list was generated, sent with AJAX requests
 showEffect: 'highlight', // jQuery UI effect used for toggling item visibility
 selectorDelete: '.elgg-menu-item-delete > a', // CSS selector of an anchor that will trigger a delete action
});

// Public methods

// Navigate to a page with a certain index
// For default pagination type, page with pageIndex is loaded and displayed
// For infinite pagination type, all pages in range from currently visible pages to the page with pageIndex are loaded and displayed
$('.elgg-list').trigger('goToPage', [pageIndex]);

// Trigger refresh
// Reloads the page and appends new items if any
// If no pageIndex is provided, it's determined by pagination type
// goToPage parameter can be used to navigate to the page once new items have been fetched
// goToPage flag is useful when a new post was made and you want to display the post to the user
$('.elgg-list').trigger('fetchNewItems', [pageIndex, goToPage]);

// Remove items from the list and reindex
$('.elgg-list').trigger('removeItems', [$items]);

// Add new items to the list
$('.elgg-list').trigger('addFetchedItems', [ajaxData]);

// Events

// Event triggered whenever the list is first rendered
// Callback will receive list options as a second parameter
$('.elgg-list').on('ready', callback);

// Event triggered whenever an item is added, removed or hidden from a list
// Callback will receive list options as a second parameter
$('.elgg-list').on('change', callback);

hypeMapsOpen

API and UI for maps built with open technology

	Geocoding and reverse geocoding via Nominatim

	Maps built with Leaflet.js

	Default map tiles provided by Open Street Maps (customizagle in views)

	User map

	Groups map

	Group members map

A map of arbitrary locations

echo elgg_view('page/components/map', [
 'markers' => [
 'Berlin, Germany',
 'London, UK',
 'Paris, France',
]
]);

A map with custom icons

$berlin = hypeJunction\MapsOpen\Marker::fromLocation('Berlin, Germany');
$berlin->icon = 'smile-o';
$berlin->color = 'green';
$berlin->tooltip = 'Berlin is a happy place';

$paris = hypeJunction\MapsOpen\Marker::fromLocation('Paris, France');
$paris->icon = 'coffee';
$paris->color = 'black';
$paris->tooltip = '';

echo elgg_view('page/components/map', [
 'markers' => [
 $berlin,
 $paris,
],
]);

A map of entities

echo elgg_view('page/components/map', [
 'markers' => elgg_get_entities_from_metadata([
 'types' => 'object',
 'subtypes' => 'place',
 'metadata_name_value_pairs' => [
 'venue_type' => 'cafe',
],
 'limit' => 0,
]),
 'center' => hypeJunction\MapsOpen\Marker::fromLocation('London, UK');
]);

A map with data source and search

echo elgg_view('page/components/map', [
 // Set src to json data source
 // Data set should be an export of Marker instances
 'src' => '/path/to/data/source/json',
 'show_search' => true,
]);

Change marker icon and color

Use ‘marker’,’<entity_type>’ hook.
Supported colors: ‘red’, ‘darkred’, ‘orange’, ‘green’, ‘darkgreen’, ‘blue’, ‘purple’, ‘darkpuple’, ‘cadetblue’

elgg_register_plugin_hook_handler('marker', 'object', function($hook, $type, $return, $params) {

 $entity = elgg_extract('entity', $params);

 if ($entity instanceof Event) {
 $return->icon = 'calendar';
 $return->color = 'darkpurple'
 }

 return $return;
})

Change popup content

Add a view for maps/tooltip/<entity_type>/<entity_subtype> or maps/tooltip/<entity_type>/default;

Acknowledgements

	Early version of the plugin has been partially sponsored by [Social Business World] (https://socialbusinessworld.org “Social Business World”)

hypeMedia

Media albums

	Support for image and video files

	Support for image and video embed via URLs

hypeMentions

Mentions

	Allows mentioning users and groups in various text fields @username

	Hashtag autocomplete #hashtag

	Emoji support :heart:

Acknowledgements

	Plugin uses amazing At.js library http://ichord.github.io/At.js/

	A list of emojis was sources from https://github.com/amio/emoji.json

hypeMenus

Menu editor

	Add/remove items from menus using admin interface

	Easily customize menu icons, text, tooltip, URL

	Drag&Drop reordering of menu items and children

	Easily add new menu sections

	Build dynamic URLs using extrapolation or linking an item to an entity

hypeModerator

Implements moderator role

Approval Workflow

Approval workflow only works with entities that use publish event.

To queue entities for approval use a hook handler:

elgg_register_plugin_hook_handler('uses:moderation', 'object:<entity_subtype>`, '\Elgg\Values::getTrue`);

hypeNotifications

	Facebook-style site notifications

	Email digest: users can specify at which interval they receive notifications for each type

	A tool to update preferred notification methods for all site users

	Leverages Zend_Mail (email library used in core) to send out HTML emails

	Allows to configure email transports (Sendmail, SMTP, File Transport, SendGrid, Mailgun, SparkPost)

	Allows to send file attachments

	Inlines CSS styles for improved email client experience

	Simpler testing experience: catch all email address, email/domain whitelist

Notification preferences

Go to Admin > Administer > Utilities > Notification Methods to update personal
and subscription notification preferences globally.

Notification event types

Notification event types can be filtered using 'notification_events','notifications' hook.
Users will be given an option to unsubscribe from notifications about these events or batch them into a digest.
Note that some instant notification events should not be added this list, e.g. password reset and other
account related notifications should remain instant.

Notification testing

You can disable outgoing email by switching to File Transport in plugin settings,
this will instead write email as txt files to the filestore under /notifications_log/zend/

Sample SMTP config for GMail

To use GMail as your SMTP relay, you will likely need to Allow less secure apps:
https://support.google.com/accounts/answer/6010255?hl=en

	Host: smtp.gmail.com

	Port: 587

	Secure Connection: TLS

	Auth: SMTP with AUTH LOGIN

	Username: <your gmail email>

	Password: <your gmail password>

Sample SMTP config for SendGrid

	Host: smtp.sendgrid.com

	Port: 587

	Secure Connection: TLS

	Auth: SMTP with AUTH LOGIN

	Username: apikey

	Password: <your api key>

File Attachments

To add attachments to your email, add an array of ElggFile objects to notification parameters:

notify_user($to, $from, $subject, $body, array(
 'attachments' => array(
 $file1, $file2,
)
));

hypePayments

	Standardized API for handling payments and product sales

	Interface for logging and refunding payments

New payment

namespace hypeJunction\Payments;

// First, we create an itemized order/invoice
$order = new Order();
$order->setCurrency('EUR');

// Add a new product
$order->add($product, 2);

// Add additional fees and charges
$shipping = Amount::fromString('25.25', 'EUR');
$charges[] = new ShippingFee('shipping', 0, $shipping);

$charges[] = new ProcessingFee('paypal_fee', 3.9);

$order->setCharges($charges);

$address = new Address();
$address->street_address = 'Some street 25';
// add other address parts
$address->country_code = 'CZ';

$order->setShippingAddress($address);

// Now create a transaction
$transaction = new Transaction();
$transaction->setOrder($order);
$transaction->setPaymentMethod('paypal');

// Be sure to correctly set the owner and container and access id
// to ensure that both the merchant and the customer have access
// to the transaction entity
$transaction->owner_guid = $payer->guid;
$transaction->container_guid = $payee->guid;

// You can use access_grant to give access to the merchant,
// or create a new acccess collection that contains both the payer and the payee
$transaction->access_id = ACCESS_PRIVATE;

$transaction->save();

// Instantiate a gateway of choice
$gateway = new \hypeJunction\PayPal\API\Adapter();

// What you do with response may depend on where you are executing
// this code. From an action file, you can just return the $response.
$response = $adapter->pay($transaction);

hypePaypalPayments

A wrapper for Paypal’s PHP SDK

Webhooks

Configure your Paypal application to send webhooks to `https://<your-elgg-site>/payments/paypal/webhooks`

To digest a webhook, register a plugin hook handler:

elgg_register_plugin_hook_handler('BILLING.SUBSCRIPTION.EXPIRED', 'paypal', HandleExpiredSubscription::class);

class HandleExpiredSubscription {
 public function __invoke(\Elgg\Hook $hook) {
 $webhook_data = $hook->getParam('data');

 // ... do stuff

 return $result; // Result will be reported back to paypal
 }
}

Paypal Button

To display a pay button:

echo elgg_view_field([
 '#type' => 'paypal/paypal',
 'required' => true,
]);

You can then retrieve the value of the Paypal’s payment and payer ID your action:

$payment_id = get_input('paypal_payment_id');
$payer_id = get_input('payer_id');

elgg()->{'payments.gateways.paypal'}->pay($transaction, [
 'paypal_payment_id' => $payment_id,
 'paypal_payer_id' => $payer_id,
]);

hypePaypalSubscriptions

Paypal integration for hypeSubscriptions

Disclaimer

PayPal sucks and so does its API. I have written this plugin to test the flexibility of the subscriptions API. Personally, I would discourage anyone from using PayPal, until they get their act together, hire an army of developers and get up to speed with the developments in the financial e-services.

During testing, I have noticed that PayPal doesn’t properly synchronize payment information with billing agreements, so it’s really impossible to keep track of changes in real-time. You may end up having to manually consolidate transactions and refunds.

hypePost

Provides utilities for creating and editing posts.

Extendable form fields
Post forms are built using an extended field API layer, which makes it easier to define
all fields in one place, and not have to worry about maintaining form, action and profile
logic separate from each other.

Reusable views
Plugins can recycle existing resource views, saving lots of time needed to bootstrap new entity types.

Client site validation
Client side form validation

AJAX form save
Forms are saved using AJAX with saves user a few steps should the action fail.

Form Fields

To extend post form, use fields, <entity_type>:<entity_subtype> (or less granular fields, <entity_type>) plugin hook.

The hook receives an instance of \hypeJunction\Fields\Collection, which allows you to easily manipulate fields:

elgg_register_plugin_hook_handler('fields', 'object:blog', function(\Elgg\Hook $hook) {

 $fields = $hook->getValue();
 /* @var $fields \hypeJunction\Fields\Collection */

 $fields->add('published_date', new MetaField([
 'type' => 'date',
 'required' => true,
]);

 $fields->get('description')->required = false;

 return $fields;
});

Common Properties

Icons

To enable or disable icons, use uses:icon, <entity_type>:<entity_subtype> hook. The handler should return true or false

Cover Images

To enable or disable cover images, use uses:cover, <entity_type>:<entity_subtype> hook. The handler should return true or false

Comments

To enable or disable comments, use uses:comments, <entity_type>:<entity_subtype> hook. The handler should return true or false

hypePaywall

	Restrict access to content items to paying site members

	Restrict downloads to paying site members

	Allow access with to content and downloads with one-off payments

hypeProfile

	Extended member search and sort functionality

	API for managing profile and registration fields

	API for adding fields to search

	Registration form validation

	Admin options to simplify registration form

	An option to validate email before account is created

hypeSatis

Allows hosting composer repository with private repositories as part of the Elgg site, extending hypeDownloads plugin.

Satis Build

To build Satis composer repository:

vendor/bin/elgg-cli satis:build

You may want to configure a cron job to run this command to pull in new versions of packages at a given interval.

Client Setup

First, add username and token of the Elgg account to the client server:

composer global config http-basic.{{host}} {{username}} {{token}}

In composer.json of the client project add:

{
 "repositories": [
 {
 "type": "composer",
 "url": "https://{{host}}/satis"
 }
]
}

Where:

	{{host}} is the hostname of your Elgg installation

	{{username}} is the username of the Elgg user

	{{token}} is the password of the Elgg user

hypeScraper

A tool for scraping, caching and embedding remote resources.

	Scrapes URLs and turns them in responsive preview cards

	Aggressive caching of scraped resources for enhanced performance

	Linkifies #hashtags, @usernames, links and emails

Card

To display a URL card with an image preview, title and brief description, use output/card view:

echo elgg_view('output/card', array(
 'href' => 'https://www.youtube.com/watch?v=Dlf1_vuIR4I',
));

Player

To dipslay a rich media player use output/player view:

echo elgg_view('output/player', array(
 'href' => 'https://www.youtube.com/watch?v=Dlf1_vuIR4I',
));

Linkify

To linkify all URLs, usernames, emails and hashtags that are not wrapped in html tags, use `output/linkify` view.
Pass your text in a `value` parameter. You can use `parse_` flags to skip certain qualifiers.

$text = '@someone needs to #linkify this article http://example.com and email it to someone@example.com';
if (elgg_view_exists('output/linkify')) {
 $text = elgg_view('output/linkify', array(
 'value' => $text,
 //'parse_urls' => false,
 //'parse_hashtags' => false,
 //'parse_usernames' => false,
 //'parse_emails' => false,
));
}

To generate a preview for multiple URLs extracted from text, use `output/url_preview` view.
Pass your text as a `value` parameter. The view will parse all URLs and generate previews.

$text = 'This video is really cool https://vimeo.com/channels/staffpicks/116498390';
if (elgg_view_exists('output/url_preview')) {
 $text = elgg_view('output/url_preview', array(
 'value' => $text,
));
}

hypeShortcode

Add support for custom BB-style shortcodes

Register shortcode

elgg()->shortcodes->register('mycode');

// then add a view in shortcodes/mycode
// view vars will contain attributes of the shortcode

Generate a shortcode tag

elgg()->shortcodes->generate('mycode', [
 'foo' => 'bar',
]);

Expand shortcodes

elgg()->shortcodes->expand($text);

Strip shortcodes

elgg()->shortcodes->strip($text);

hypeShutdown

API to offset code execution until system shutdown.
Allows plugins to execute expensive code until after the page has been rendered in the browser.

Shutdown event

All shutdown event handlers will be executed after the request has been sent to the browser and the buffer has been flushed.

You can either register a shutdown event handler:

elgg_register_event_handler('shutdown', 'system', function() {
 // your long running script
});

You can also use a runtime queue:

\hypeJunction\Shutdown\Queue::instance()->queue(function() use ($video) {
 $video->convert();
});

hypeSlug

Provides slug support

Adding slugs

If you have hypePost enabled, slug input will be automatically available. Otherwise, extend your forms and actions to store slug metadata on an entity.

hypeStash

API for caching common entity data to reduce DB queries

	Caches entity likes count

	Caches entity comments count

	Caches last comment

	Caches user friends count

	Caches group members count

Stashing Logic

The plugin uses preloader classes to load values from the database on first request.
The value is cached and returned on consequent calls. Preloader::up() can be
used to define when the cached value should be reset. For example, the value of likes
is constant until a new like annotation is created, or an old is deleted, so we
register our reset function for those events.

Helpers

You can use helper functions to retrieve counts using caching framework.
All available shortcut functions can be found in /lib/functions.php

elgg_get_total_likes($entity);
elgg_get_total_comments($entity);

Custom Properties

$stash = \hypeJunction\Stash\Stash::instance();

// Register a new cacheable property
$stash->register(new CustomProperty()); // Custom property must implement Preloader interface

// Get property value
$prop = $stash->get(CustomProperty::PROPERTY, $entity);

hypeStaticPages

Admin tool for creating static pages

hypeStripePayments

A wrapper for Stripe’s PHP SDK

Webhooks

Configure your Stripe application to send webhooks to `https://<your-elgg-site>/payments/stripe/webhooks`

To digest a webhook, register a plugin hook handler:

elgg_register_plugin_hook_handler('customer.subscription.deleted', 'stripe', HandleExpiredSubscription::class);

class HandleExpiredSubscription {
 public function __invoke(\Elgg\Hook $hook) {
 $stripe_event = $hook->getParam('event');
 /* @var $stripe_event \Stripe\Event */

 $subscription = $stripe_event->data->object;

 // ... do stuff

 return $result; // Result will be reported back to stripe
 }
}

Card Input

To display a card input:

// Card number, expiry and CVC
echo elgg_view_field([
 '#type' => 'stripe/card',
 '#label' => 'Credit or Debit Card',
 'required' => true,
]);

// Cardholder name
echo elgg_view_field([
 '#type' => 'stripe/cardholder',
 '#label' => 'Cardholder',
 'required' => true,
]);

// Billing address
// Requires hypeCountries plugin
echo elgg_view_field([
 '#type' => 'stripe/address',
 '#label' => 'Billing address',
 'required' => true,
]);

You can then retrieve the value of the Stripe token in your action:

$token = get_input('stripe_token');
$address = get_input('address');
$name = get_input('cardholder');

// Use stripe API to create a new card object
// or use the token as the source of the payment

hypeStripeSubscriptions

Stripe integration for hypeSubscriptions

hypeSubscriptions

API for implementing paid subscriptions

	Agnostic API that can be extended with any payment provider

	Implement site subscriptions and optionally restrict access to paying subscribers only

	API to implement entity/group specific subscriptions

	API to restrict access to posts and downloads

Events

To implement custom logic when the subscription is created, listen to create, subscription event.

To implement custom logic when the subscription cancelled, listing to cancel, subscription. Note that the sbuscription can be cancelled at period end, so check current_period_end metadata, before terminating access to features.

hypeTime

Utilities for working with dates and time

	Adds form fields for date and time input

	Allows users to configure their time output preferences

hypeTrees

	Simple API for managing hierarchies of entities

hypeVue

Vue.js bootstrap for Elgg

Developer Tools

To enable Vue dev tools, set environment config value to development

elgg_set_config('environment', 'development');

hypeWall

Rich user interface for sharing status updates, links and content via user walls.

	URL-parsing with embeddable content view

	Geotagging (based on browser location)

	Inline multi-file upload

	Friend tagging

	Content attachments

Gotchas

	Reverse geocoding is performed via Nominatim http://wiki.openstreetmap.org/wiki/Nominatim.

Reverse geocoding (i.e. browser position coordinates to human readable address)
will not work in https. Implement a custom solution using a paid/free/proprietary
service that does the same

	Icons are not included with the plugin. You will need to load FontAwesome CSS,

either by registering it in your theme, or using one of the available Elgg plugins.

	You can add wall tabs and forms by extending the `'framework/wall/container/extend'` view

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 hypeJunction

 		
 Installation

 		
 Using ZIP files

 		
 Using Composer

 		
 New Project

 		
 Existing Project

 		
 Additional Info

 		
 hypeActivity

 		
 hypeAjax

 		
 Developer Notes

 		
 Deferred Rendering

 		
 hypeAttachments

 		
 Register allowed subtypes

 		
 Display an attachment input

 		
 Attach uploaded files in an action

 		
 Attach an object

 		
 Display attachments

 		
 Acknowledgements

 		
 hypeAutocomplete

 		
 hypeBlog

 		
 hypeBraintreePayments

 		
 Webhooks

 		
 Card Input

 		
 hypeBraintreeSubscriptions

 		
 Currencies

 		
 Subscriptions

 		
 hypeCapabilities

 		
 Registering a role

 		
 Assigning a role to a user

 		
 Remove a role from a user

 		
 Configuring role permissions

 		
 Creating entities of a specific type

 		
 Update and delete permissions

 		
 Granting administrative permissions

 		
 Routes

 		
 Custom (component) capabilities

 		
 hypeCaptcha

 		
 Usage

 		
 hypeCli

 		
 Commands

 		
 `elgg-cli hypejunction:install [–pack|-p]`

 		
 hypeCountries

 		
 Country select

 		
 List countries

 		
 Country info

 		
 hypeDiscussions

 		
 hypeDownloads

 		
 hypeDraft

 		
 hypeDropzone

 		
 Adding a drag&drop file input and processing uploads

 		
 Initializing and resetting dropzone

 		
 Acknowledgements

 		
 hypeEmbed

 		
 Shortcodes

 		
 Static assets

 		
 Acknowledgements

 		
 hypeGroups

 		
 Group Subtypes

 		
 Fields

 		
 hypeHero

 		
 hypeIllustration

 		
 hypeInteractions

 		
 hypeInvite

 		
 Gotchas

 		
 Creating Invites

 		
 hypeLists

 		
 Server-Side

 		
 Client-Side

 		
 hypeMapsOpen

 		
 A map of arbitrary locations

 		
 A map with custom icons

 		
 A map of entities

 		
 A map with data source and search

 		
 Change marker icon and color

 		
 Change popup content

 		
 Acknowledgements

 		
 hypeMedia

 		
 hypeMentions

 		
 Acknowledgements

 		
 hypeMenus

 		
 hypeModerator

 		
 Approval Workflow

 		
 hypeNotifications

 		
 Notification preferences

 		
 Notification event types

 		
 Notification testing

 		
 Sample SMTP config for GMail

 		
 Sample SMTP config for SendGrid

 		
 File Attachments

 		
 hypePayments

 		
 New payment

 		
 hypePaypalPayments

 		
 Webhooks

 		
 Paypal Button

 		
 hypePaypalSubscriptions

 		
 Disclaimer

 		
 hypePost

 		
 Form Fields

 		
 Common Properties

 		
 hypePaywall

 		
 hypeProfile

 		
 hypeSatis

 		
 Satis Build

 		
 Client Setup

 		
 hypeScraper

 		
 Card

 		
 Player

 		
 Linkify

 		
 hypeShortcode

 		
 Register shortcode

 		
 Generate a shortcode tag

 		
 Expand shortcodes

 		
 Strip shortcodes

 		
 hypeShutdown

 		
 Shutdown event

 		
 hypeSlug

 		
 Adding slugs

 		
 hypeStash

 		
 Stashing Logic

 		
 Helpers

 		
 Custom Properties

 		
 hypeStaticPages

 		
 hypeStripePayments

 		
 Webhooks

 		
 Card Input

 		
 hypeStripeSubscriptions

 		
 hypeSubscriptions

 		
 Events

 		
 hypeTime

 		
 hypeTrees

 		
 hypeVue

 		
 Developer Tools

 		
 hypeWall

 		
 Gotchas

_static/ajax-loader.gif

