
HyLogic Documentation
Release 1a

Marko Manninen

Aug 03, 2017

Contents

1 HyLogic 3
1.1 Current status . 3
1.2 Contents . 3

1.2.1 Requirements and installation . 4
1.3 Jupyter and Hy . 4
1.4 HyLogic module . 4

1.4.1 Propositional logic . 5
1.5 Symbols . 5
1.6 Basic axioms and theorems . 5

1.6.1 Propositions . 5
1.7 Semantical notes . 7
1.8 Truth-bearer in action . 7
1.9 Resolution of the famous paradox . 9

1.9.1 Formulas . 10
1.10 Connectives . 10

1.10.1 Argumentation . 11
1.11 Validation of the argument form . 12
1.12 De Morgan’s laws . 13

1.12.1 First-order logic . 14
1.13 Quantifiers, predicates, variables, sets . 14

1.13.1 Truth tables . 15
1.13.2 Venn diagrams . 15

1.14 The MIT License . 16

i

ii

HyLogic Documentation, Release 1a

HyLogic is a set of macros to test and automate logical expressions in Hy. Convenient propositional logic, predicate
logic and first-order logic notation is supported.

Contents:

Contents 1

http://hy.readthedocs.io/en/latest/

HyLogic Documentation, Release 1a

2 Contents

CHAPTER 1

HyLogic

Propositional, predicate, and first-order logic evaluator for Hy authored by Marko Manninen, 2017.

𝑃ß𝑄

𝑄

−−−−
∴ 𝑃

Current status

Draft.

The Python Package Index installation is not provided yet, but planned in future.

Contents

• Requirements and installation

• Propositional logic

• Semantical notes

• Truth-bearer in action

• Resolution of the famous paradox

• Formulas

• Argumentation

• First-order logic

• Truth tables

3

https://github.com/hylang/hy
https://github.com/markomanninen/
https://pypi.python.org/pypi

HyLogic Documentation, Release 1a

• Venn diagrams

• License

Requirements and installation

Jupyter and Hy

Some work is required to get this interactive document running on your local computer (Mac, PC, Linux). First you
need Jupyter Notebook and Calysto tools. Easy way to get Jupyter Notebook running is to use Anaconda package from
Continuum: https://www.continuum.io/downloads. It will also install Python language interpreter to your computer.

Hy language, which by the way is a cool Lisp syntax and feature set upon Python, you can get from: https://github.
com/hylang/hy. Install it and then follow Calysto Hy kernel installation instructions from their GitHub project page:
https://github.com/Calysto/calysto_hy. Note, that Calysto tools does not contain Calysto Hy kernel. That’s why Hy
kernel for Jupyter Notebook needs to be installed also.

Hy is selected for a core Logic implementation language because its syntax resembles mathematical and logic notation
in many ways, mostly the use of parentheses in the native syntax and no separate parser is needed for that purpose.
Not that the parser implementation was not tried for three different languages before the selection: http://plcparser.
herokuapp.com/

With macro support Hy can be extended pretty easily to satisfy notational needs for this project.

After installations you should be ready to print environment information running the following Hy code:

(import hy sys)
(print "Hy version: " hy.__version__)
(print "Python" sys.version)

Hy version: 0.12.1
Python 3.5.2 |Anaconda custom (64-bit)| (default, Jul 5 2016, 11:41:13) [MSC v.1900
→˓64 bit (AMD64)]

HyLogic module

Finally you need to retrieve HyLogic module from GitHub: https://github.com/markomanninen/hylogic. If you run
current Notebook document from the module directory, then you should be fine to import necessary macros.

; require macros and import functions and variables
(require (hylogic.macros (*)))
(import [hylogic.macros [*]])
; NL for newlines
(setv NL "\r\n")

Note: If all you need is a command line (console) interface, then you don’t actually need Jupyter Notebook and
Calysto. Python, Hy, and HyLogic module are basic prerequisites. By downloading and placing provided Hyffix
and HyLogic directories to your script root, you can get HyLogic running even on Andoid with Termux!

Hyffix is used to support infix, prefix and affix notation plus provide operator precedence functionality.

4 Chapter 1. HyLogic

http://jupyter.org/
http://calysto.github.io/
https://www.continuum.io/downloads
http://docs.hylang.org/en/latest/index.html
https://github.com/hylang/hy
https://github.com/hylang/hy
https://github.com/Calysto/calysto_hy
http://plcparser.herokuapp.com/
http://plcparser.herokuapp.com/
https://github.com/markomanninen/hylogic
https://github.com/markomanninen/hylogic
https://termux.com/
https://github.com/markomanninen/hyffix

HyLogic Documentation, Release 1a

Propositional logic

This documentation will provide a lot of introductionary material for understanding concepts of logic, not just how
to use HyLogic module. Main motivation is to provide a computational playground for studying logic, testing
logical clauses and automated deduction. See: https://en.wikipedia.org/wiki/Automated_theorem_proving and https:
//en.wikipedia.org/wiki/Automated_proof_checking.

Symbols

Propositional constants:

• (True / 1)

• (False / 0)

Basic axioms and theorems

• Identity 𝑃 = 𝑃

• Negation ¬ = and ¬ =

• Double negation ¬¬ =

• All well defined statements are true (explicit metalogical axiom)

The last axiom may look odd at the moment, but is clarified later on the Semantical notes section.

Propositions

Propositional variables are created with defproposition, defpropositions, defproposition*, and
defpropositions* macros. The last two macros also creates a negated propositional variable to reduce some
repetitive work. In HyLogic a proposition consists of one mandatory and two optional parameters:

Mandatory:

1. A propositional variable that is usually denoted by a capital letter like 𝑃 , 𝑄, and 𝑅. Often small letters are
used too but we have reserved small letters for predicate variable names. But it is really up to you, what
letters to use. You can use multi-character symbols too. For example 𝑉 𝑎𝑅! is a proper symbol name as well.
Using commonly used variable names and conventions improves readability and understandability of the logic
expressions however. A propositional variable is also called a sentential variable.

Optional (statement):

2. A truth value that is either 𝑇𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒. Default is 𝑇𝑟𝑢𝑒. A truth value can also be defined by using the
number 1 for 𝑇𝑟𝑢𝑒 and the number 0 for 𝐹𝑎𝑙𝑠𝑒 or by using constant symbols and respectively. Note that in
some logic systems may be used for “unknown” rather than 𝐹𝑎𝑙𝑠𝑒.

3. A sentence that is a literal representation of the proposition such as the phrase “Today is Tuesday”. Default is an
empty string (“”). Althought in HyLogic it doesn’t really matter what is the content of the sentence, in practice
we urge to find out complementizer from the written natural text. It means that in the sentence there should be
a clear situational condition mentioned. If there is a state of affair in the sentence like “A is B” then it becomes
a truth-maker and consequently we are able to transfer it to a proposition, which then is a truth-bearer.

So the format of the macro (defproposition, defpropositions, defproposition*,
defpropositions*) to initialize a proposition in HyLogic is the following:

1.5. Symbols 5

https://www.ics.uci.edu/~alspaugh/cls/shr/logicConcepts.html
https://en.wikipedia.org/wiki/Automated_theorem_proving
https://en.wikipedia.org/wiki/Automated_proof_checking
https://en.wikipedia.org/wiki/Automated_proof_checking
http://mathworld.wolfram.com/SententialVariable.html
https://en.wikipedia.org/wiki/Three-valued_logic
https://en.wikipedia.org/wiki/Complementizer
https://en.wikipedia.org/wiki/State_of_affairs_(philosophy)

HyLogic Documentation, Release 1a

(macro symbol &optional [truth-value True] [sentence ""])

Example 1.1

Let us first define a proposition variable 𝑃 by using defproposition macro and output it:

(defproposition P)
(print P)

P=True

Note, how truth value is set to 𝑇𝑟𝑢𝑒 by default. It is recommended that the truth value is set to 𝑇𝑟𝑢𝑒 for statements
because interpretation of the arguments may get trickier if 𝐹𝑎𝑙𝑠𝑒 is used as we can see from the Example 1.3.

Example 1.2

With defpropositions marco you can create multiple proposition variables at once:

(defpropositions P Q R)
(print P Q R)

P=True Q=True R=True

It is possible to define only simple proposition variables with the mass creation defpropositions and
defpropositions* macros. That is, you cannot give the truth value and the sentence on them. But on the
other hand, it is possible to change the truth value and the sentence via object properties afterwards.

Next we will change the truth value of the created proposition 𝑃 to 𝐹𝑎𝑙𝑠𝑒, plus give the literal meaning (sentence) for
the proposition 𝑄:

; alter the truth value of the proposition
(setv P.truth-value False)
; set the literal sentence of the proposition
(setv Q.sentence "This proposition is true")
; output modified propositions
(print P)
(print Q)

P=False
Q<This proposition is true>=True

Example 1.3

Let us then redefine two propositional variables 𝑃 and 𝑄 and their negations 𝑃 and 𝑄 by using a special
defproposition* macro. Now we will utilize the full parameter set by also giving the specific truth value and the
literal sentence:

(defproposition* P False "Today is Tuesday")
(defproposition* Q True "John will go to work")

Output propositions:

6 Chapter 1. HyLogic

HyLogic Documentation, Release 1a

(print P NL ¬P)
(print Q NL ¬Q)

P<Today is Tuesday>=False
¬P<Today is Tuesday>=True

Q<John will go to work>=True
¬Q<John will go to work>=False

From the output we find each proposition and their negation represented in a string format that distinguishes all three
aspects of the proposition, namely the symbol, the literal representation, and the truth value of the proposition.

Semantical notes

Maybe a small explanation here is in place because understanding the basic components of the propositional logic
requires the understanding of the common convention on how propositional logic works and how it is represented in a
written or a spoken format.

When we define the proposition 𝑃 to mean “Today is Tuesday” and to be 𝐹𝑎𝑙𝑠𝑒, the following happens. We define
that the symbol 𝑃 denotes the sentence “Today is Tuesday” in natural human language. We also define that the truth
value of the statement is 𝐹𝑎𝑙𝑠𝑒. Thus we could understand the proposition 𝑃 to say something like “Today is not
Tuesday” or maybe even something like: “Today is Tuesday”, but that the statement is not true!

There is a possible pitfall in these expressions. Strictly speaking, the proposition 𝑃 , as an object in HyLogic, is just
stating that it has the sentencial property which value is “Today is Tuesday” and it has the truth value which is 𝐹𝑎𝑙𝑠𝑒.
And that statement is metalogically true because the proposition object has been stored in the computer memory in
that state.

The last part is important. We have to rely on the top-most metalogical axiom that all statements, as they are expressed,
are invariantly true. Also, we are not trying to determine if it is really Tuesday today. In some sense, logic is not meant
to find out truth from the world, but to help to follow logical steps to determine the consequence of the predefined true
statements. Given the assumptions are true, and logical rules are followed, then we can count on that the consequence
is true too. In our example we defined 𝑃 to be 𝐹𝑎𝑙𝑠𝑒 and then we will deduce the rest of the argumentation according
to that definition.

However, the negation of the proposition 𝑃 , which is automaticly generated by the defproposition* macro, is
𝑃 (read: not 𝑃). By literal representation it could be written: “It is not the case that Today is Tuesday”. HyLogic
module doesn’t try to formulate literal representations of the negated sentences. Module just formulates negations by
prepending symbol to the propositional variable and switching the truth value to its opposite. Sentence is left intact.

The truth value of the negation of 𝑃 in our example is 𝑇𝑟𝑢𝑒 because the original 𝑃 was defined to be 𝐹𝑎𝑙𝑠𝑒 and
because we defined negation to work such way in the basic axioms and theorems.

Truth-bearer in action

Because initialized proposition P is a truth-bearer, thus it has the truth value, either 𝑇𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒, we can ask for
it. There are several ways of doing it, because Hy language (backed up with Python) and HyLogic (including Hyffix)
provides a large core of functions.

Let us use equality comparison function to compare if 𝑃 is 𝑇𝑟𝑢𝑒 by Hy way:

(= P True)

1.7. Semantical notes 7

HyLogic Documentation, Release 1a

False

Because a proposition object contains a truth-value property, we could achieve and compare it directly too in Hy code:

; is the truth-value of P True?
(if (= P.truth-value True)

; if it is, then
(print "Yes, it is!")
; else
(print "No, it is not!"))

No, it is not!

Above notation is so called prefix or Polish notation which is common in Lisp languages. Hyffix module, that
is included in HyLogic, provides infix as well as more exotic affix notation support. Hyffix module provides
deffix macro that you can use for infixed logical expressions. Alternatively same can be achieved by #$ macro
shorthand.

In the following example equivalence operator is used to find out if proposition 𝑃 is either 𝑇𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒. Other
operators, or connectives as they are called in logic, are fully listed in the Formulas section.

Using deffix macro:

; P is equivalent to (True)?
(deffix P)

False

Note, that we are kind of “asking” if 𝑃 is 𝑇𝑟𝑢𝑒, but in reality we are passing 𝑃 and to the equality function, which
determines that 𝑃 , that is 𝐹𝑎𝑙𝑠𝑒, is not same as 𝑇𝑟𝑢𝑒. Thus result is 𝐹𝑎𝑙𝑠𝑒.

Using deffix macro shorthand to achieve similar comparison, but this time we are comparing 𝑃 to 𝐹𝑎𝑙𝑠𝑒:

; P is equivalent to (False)?
#$(P)

True

Note, that in deffix macro, = is a variable assignment function and it will change the value of propositions instead
of comparison. This behaviour may change in the future...

In this example we will test, if double negation of the proposition 𝑃 is equivalent to 𝑃 :

; P is equivalent to not not P (double negation)?
#$(P (¬(¬P)))

True

Double negation version of the proposition symbols are not generated by defproposition* macro. Just single
negation variables are generated. Thus we can’t use ¬¬P, but should use either (¬ ¬P) or (¬(¬P)). One could also
utilize defproposition macro and generate double negated propositions in the following manner:

(defproposition ¬¬P False "Today is Tuesday")
(print ¬¬P)
#$(P ¬¬P)

8 Chapter 1. HyLogic

HyLogic Documentation, Release 1a

¬¬P<Today is Tuesday>=False

True

As said before, the proposition variable symbol can be anything, not only single letters. In the above example negation
symbol has no independent meaning or functionality. But, if negation symbol is used by alone, it actually refers to the
unary boolean operation, contra to other connectives, which are n-ary binary operators.

Resolution of the famous paradox

At first glance, the separate mutable truth value may feel unnecessary and confucing. Why should we reassert, that
“Today is Tuesday” is 𝑇𝑟𝑢𝑒, because the truthness is already stated in the sentence? Separation is really the key to
prevent “real” paradoxes occur in the classical logic. Take for example the famous variation of the Liar’s Paradox:

“This sentence is false”

Eubulides, who formulated it in the fourth century BC, said that if that sentence, or proposition, is true, then it can’t
be true, because it says it is false, hence the paradox. Paradox means that the given clause is both true and false at the
same time, or neither one, or that the truthness of the statement changes mutually. So we can’t decide which one it is,
true or false. In reality, the paradox comes from the confusion of the references of the properties of the proposition.
That’s why it was written in italics. References are often ambiguous in a written language.

In HyLogic, the sentence itself doesn’t define or hold the truth value of the proposition. The truth value and the
sentence are properties of the proposition, as is the selected symbol too, for example 𝑃 . For the practical purposes we
have modelled that the proposition is an object with three properties. We can describe the set of proposition objects 𝑥
having 𝑆𝑦𝑚𝑏𝑜𝑙, 𝑇𝑟𝑢𝑡ℎ𝑉 𝑎𝑙𝑢𝑒, and 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒, latter two having no mutable 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 with this notation:

S = {𝑥|𝑆𝑦𝑚𝑏𝑜𝑙(𝑥)𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑇𝑟𝑢𝑡ℎ𝑉 𝑎𝑙𝑢𝑒(𝑥), 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒(𝑥))

𝑒𝑛𝑑𝑠𝑝𝑙𝑖𝑡
𝑇ℎ𝑢𝑠𝑤𝑒𝑐𝑎𝑛𝑑𝑜𝑡𝑤𝑜𝑐𝑙𝑎𝑟𝑖𝑓𝑦𝑖𝑛𝑔𝑡ℎ𝑖𝑛𝑔𝑠 :

to say that the proposition symbolized with 𝑃 with a sentence “This sentence is false” has the truth value 𝑇𝑟𝑢𝑒

to use only the alternative symbol, instead of the sentence, and say that the proposition 𝑃 has the truth value
𝑇𝑟𝑢𝑒

Now, it becomes apparent that what we try to define in the Liar’s Paradox is that 𝑃 is 𝑇𝑟𝑢𝑒. There is no contradiction or
paradox in this representation. Whatever is stated in the sentence of proposition 𝑃 , it does not affect to the truth value
of the statement. The truth value is a separate and an independent property (attribute) from the sentence. Moreover,
the truth value doesn’t have a mutable relation to the sentence, just to the overall state of the proposition. This can be
properly presented by a model theory and is clearly emphasized in the semantic theory of truth.

It is also easy to see that as a logical statement, the sentence “This proposition is false” is not well defined because it
does not really contain a clear state of affair for the proposition. To formulate it to logic language it would become
“This proposition” is 𝑇𝑟𝑢𝑒. But then “This proposition” does not have a truth claim as we would expect. Compare to
similar “Today is tuesday” is 𝑇𝑟𝑢𝑒, which makes clear claim on the sentence. “Today is Tuesday” tries to make the
truth. “This proposition” phrase is not a truth-maker and doesn’t really fit for propositional statement. Again, not that
it would have any effect in HyLogic, where the sentence could very well be just an empty string!

Finally, according to basic axioms, all statements are true. This requirement prevents the possibility of the infinite truth
value assigment, that is, the self-referencial mutability of the truth value. Together these axioms prevents paradoxes
to occur in HyLogic, or classical logic more generally. Solution has familiar identities, because we designed three
properties on a proposition model categorically similar to Kleene’s strong three-valued logic. And we designed the
lowest level of hierachy with metalogical “All statements are true” that is also similar to Russell’s and Tarski’s solutions

1.9. Resolution of the famous paradox 9

http://mathworld.wolfram.com/LiarsParadox.html
http://mathworld.wolfram.com/EubulidesParadox.html
https://plato.stanford.edu/entries/model-theory/
https://en.wikipedia.org/wiki/Semantic_theory_of_truth

HyLogic Documentation, Release 1a

of paradoxes. Plus there is a reference to Gödel’s first incompleteness theory, because the unique metalogical axiom,
really just a model in a computer memory, is the necessary axiomatic system outside of the logic system itself.

Althought, this may sound promising, there is still “the million dollar” problem open:

The idea is that whatever semantic status the purported solution claims the liar sentence to have, if we are allowed
freely to refer to this semantic status in the object language, we can generate a new paradox.

https://plato.stanford.edu/entries/self-reference/

Proposed logic system does not invoke self-references in theory. But the language platform, Hy in this question, does
not prevent of using self-references and mutate the truth-value. It is easy to make an infinite loop and demonstrate that
situation.

Let us first initialize the ostensible paradoxical proposition:

(defproposition P True "This proposition is False")

In the language level we can find a contradiction already. Sentence says that this proposition is 𝐹𝑎𝑙𝑠𝑒, but we have
defined the proposition 𝑃 to be 𝑇𝑟𝑢𝑒. Sentence does not know the truth value nor it can change the truth value.
Furthermore, it has no functionality to refer to itself. Or if it would have, then where would it refer? If to the sentence
itself, then what part of it? Would it say “False” is “False”? Or would the sentence refer to the proposition, or to the
truth value of the proposition? The sentence is really dummy about that since it is just a description for the proposition,
nothing more.

But let us assume that the sentence could change the value of the proposition and then the proposition would change
the value of sentence. Following code should illustrate it:

(if (= P.truth-value False)
(do

(setv P.sentence (% "This proposition is %s" (str P.truth-value)))
(print P)))

(if (= P.truth-value True)
(do

(setv P.sentence (% "This proposition is %s" (str P.truth-value)))
(print P)))

P<This proposition is True>=True

'This proposition is True'

After demonstrating this, we will highly recommend to use the default truth value 𝑇𝑟𝑢𝑒 in propositions to simplify
things. And not to change the value after initialization.

But due to automated factorization of the arguments and proofs, and demonstration purposes, we will diverge from
that rule in the following examples anyway.

Formulas

Connectives

The list all connectives to operate with the propositional and the first-order logic:

(for [[f data] connectives]
(print (last data) "\t" (first data) " \t" (second data)))

10 Chapter 1. HyLogic

https://plato.stanford.edu/entries/self-reference/

HyLogic Documentation, Release 1a

¬ not Negation
and Conjunction

↑ nand Nonconjunction
or Disjunction

↓ nor Nondisjunction
xor Exclusive or
xnor Nonexclusive or
eqv Equivalence
neqv Nonequivalence

← cimp Converse implication
cnimp Converse nonimplication
mimp Material implication

→ mnimp Material nonimplication

Argumentation

Introducing defargument, defpremise, and defconclusion macros.

In a propositional logic, an argument is a set of premises following each other where the final premise is distinguished
and called the conclusion. This is also called deductive reasoning where the more specific conclusion is reasoned from
the more general premises or assumptions. In HyLogic, an argument is created by defargument macro which
returns an object that can be assigned to a variable for further interaction. Defargument takes a serie of premises
defined by defpremise macro plus the final conclusion defined by defconclusion macro. Each premise is a
set of formulated propositions and axioms constructed by known inference rules.

Example 2.1

The next example is meant to demonstrate argumentation process in HyLogic. It is the famous modus ponens
implication elimination rule. But there is a small twist that should stress the need of accuracy on small details in
logical reasoning.

For the Modus Ponens argument, we will first define the implication premise “if P is True, then Q is True”. Then we
will define the second premise “P is True” and finally the conclusion “Q is True”. Symbolically and shortly this is
denoted with the expression: 𝑃ß𝑄,𝑃𝑄.

(setv a
(defargument
; if the proposition "Today is Tuesday" (P) is True
; then the proposition "John will go to work" (Q) must be True as well
; note that this does not set Q True, but just gives a rule
(defpremise P → Q)
; but we stated earlier on example 1.3 that the proposition "Today is Tuesday"

→˓(P) is False.
; so how should we deal with it now?
(defpremise P)
; well therefore, both <John will go to work>=True
; and <John will go to work>=False should be concluded as a valid argument
(defconclusion Q)))

;(print a)

It means that if Today is Tuesday is False OR “John will go to work” is True, then premise is True

Thus if “Today is not Tuesday” then “John will go to work” or “John will not go to work”

Moreover, because P is False, it tells nothing about Q so we can accept both True and False statements of Q

1.10. Connectives 11

https://en.wikipedia.org/wiki/Premise
https://en.wikipedia.org/wiki/Propositional_formula
https://en.wikipedia.org/wiki/Axiom
https://en.wikipedia.org/wiki/Rule_of_inference
https://en.wikipedia.org/wiki/Modus_ponens

HyLogic Documentation, Release 1a

Validation of the argument form

(defproposition* P False "Today is Tuesday")
(defproposition* Q True "John will go to work")

(print
(deffix P) (deffix Q) NL
"If P, then Q =" (deffix (P → Q)))

P<Today is Tuesday>=False Q<John will go to work>=True
If P, then Q = True

(defn gs [s] (if (= s True) s.symbol (+ "¬" s.symbol)))

(print (gs P) " → " (gs Q) "\t\t\t" (deffix P → Q))
(print (gs P) "\t\t\t\t" (deffix P = True))
;(print "(" (gs P) " → " (gs Q) ") " (gs P) "\t\t" (deffix (P → Q) P))
(print (gs Q) "\t\t\t\t" (deffix Q = True))
(print "(((" (gs P) " → " (gs Q) ") " (gs P) ") " (gs Q) ")\t" (deffix (((P → Q)
→˓P) → Q)))

¬P → Q True
¬P False
Q True
(((¬P → Q) ¬P) Q) True

(defproposition* P)
(defproposition* Q)

(print (deffix (¬P Q) (¬P → Q)))
(print (deffix P = True))
(print (deffix ¬Q = False))
(print (deffix ((((¬P Q) (¬P → Q)) P) → ¬Q)))

True
True
True
False

(print P)
(print Q)

P=True
Q=True

Slightly more complicated argument is shown next.

(defproposition P True "It is raining")
(defproposition Q True "It is cold outside")
(defproposition R False "I'm indoors")

(print P NL Q NL R)

12 Chapter 1. HyLogic

HyLogic Documentation, Release 1a

P<It is raining>=True
Q<It is cold outside>=True
R<I'm indoors>=False

; set up argument inference rules
(setv a

(defargument
; If "it is raining and it is cold outside" then "I'm indoors"
(defpremise (P Q) → R)
; It is raining and it is cold outside
(defpremise (P Q))
; Therefore, I'm indoors
(defconclusion R)))

(print a)

(P Q) → R
(P Q)

R

(print
(deffix P) (deffix Q) (deffix R) NL
"If P and Q, then R =" (deffix (P Q) → R))

P<It is raining>=True Q<It is cold outside>=True R<I'm indoors>=False
If P and Q, then R = False

De Morgan’s laws

https://en.wikipedia.org/wiki/De_Morgan%27s_laws

(defpropositions P Q)

The negation of conjunction:

(deffix (¬ (P Q)) → (¬P ¬Q))

True

The negation of disjunction:

(deffix (¬ (P Q)) → (¬P ¬Q))

True

1.12. De Morgan’s laws 13

https://en.wikipedia.org/wiki/De_Morgan%27s_laws

HyLogic Documentation, Release 1a

First-order logic

Quantifiers, predicates, variables, sets

(tuple (range -9 0))

(-9, -8, -7, -6, -5, -4, -3, -2, -1)

;(x>0<10)(x>0)
; (all (map (fn (x) (x > 0)) (range 1 10)))
((x) (x > 0) (range 1 10)) ; all items [1 ... 9] are greater than 0?

True

;all(map(lambda x: x > 0, range(1 10)))
(all (map (fn (x) (> x 0)) (range 1 10)))

True

((x y) ((x > 0) (y < 0)) (range 1 10) (range -9 1)) ; test this case

True

((x) ((y) ((x > 0) (y < 0)) (range -9 0)) (range 1 10))

True

((x) ((x > 0) ((y) (y < 0) (range -9 0))) (range 1 10))
;(macroexpand `((x) ((x > 0) ((y) (y < 0) (range -10 -1))) (range 1 10)))

True

; Every whole number is divisible by 1 and itself.
;(x)(Div(x,x)(Div(1,x))

;(defoperator mod [x y] (% x y))
(defoperator mod0? [x y] (zero? (% x y)))
(defoperator Div [x y] (mod0? x y))

(setv domain-set [1 2 3])

((x) ((Div x 1) (Div x x)) domain-set)

True

(setv DX [1 1]
DY [-1 -2])

; all[any[1-1=0 1-2=-1] any[1-1=0 1-2=-1]]
((x) ((y) (x + y = 0) DY) DX)

14 Chapter 1. HyLogic

HyLogic Documentation, Release 1a

True

; all[1-1=0 1-2=-1 1-1=0 1-2=-1]
((x y) (x + y = 0) DX DY)

False

((x) (x < 1) (range 0 10)) ; is at least one item of [0 ... 9] smaller than 1?

True

; (x)((¬Div(x,x))(¬Div(1,x))
((x) ((¬ (x mod0? 1)) (¬ (x mod0? x))) domain-set)

False

; any[1-1=0 1-2=-1 1-1=0 1-2=-1]
((x y) ((x > 0) (y < 0)) DX DY)

True

; any[all[1-1=0 1-2=-1] all[1-1=0 1-2=-1]]
((x) ((y) (x + y = 0) DY) DX)

False

Truth tables

(truth-tables-html 2 cimp?)

(truth-tables-html 2 eqv?)

(truth-tables-html 2 xnor?)

Venn diagrams

;(venn-diagram)

(defn odd? [x &rest y]
(= 1 (% (+ x (sum y)) 2)))

(deffix (odd? 1 1 1))

True

1.13. Quantifiers, predicates, variables, sets 15

HyLogic Documentation, Release 1a

The MIT License

Copyright © 2017 Marko Manninen

16 Chapter 1. HyLogic

	HyLogic
	Current status
	Contents
	Requirements and installation

	Jupyter and Hy
	HyLogic module
	Propositional logic

	Symbols
	Basic axioms and theorems
	Propositions

	Semantical notes
	Truth-bearer in action
	Resolution of the famous paradox
	Formulas

	Connectives
	Argumentation

	Validation of the argument form
	De Morgan's laws
	First-order logic

	Quantifiers, predicates, variables, sets
	Truth tables
	Venn diagrams

	The MIT License

