
HydroBox Documentation
Release 0.1.0

Mirko Mälicke

Aug 28, 2018

Contents:

1 Stable branch 1

2 Development branch 3

3 About 5
3.1 Installation Guide . 5
3.2 Getting Started . 6
3.3 Examples . 6
3.4 Contribution Guide . 18
3.5 Reference . 23

4 Indices and tables 33

Python Module Index 35

i

ii

CHAPTER 1

Stable branch

1

https://travis-ci.org/mmaelicke/hydrobox
http://hydrobox.readthedocs.io/en/latest?badge=latest
https://codecov.io/gh/mmaelicke/hydrobox

HydroBox Documentation, Release 0.1.0

2 Chapter 1. Stable branch

CHAPTER 2

Development branch

Warning: This documentation is by no means finished and in development. Kind of everything here might be
subject to change.

3

https://travis-ci.org/mmaelicke/hydrobox
http://hydrobox.readthedocs.io/en/latest?badge=latest
https://codecov.io/gh/mmaelicke/hydrobox

HydroBox Documentation, Release 0.1.0

4 Chapter 2. Development branch

CHAPTER 3

About

The HydroBox package is a toolbox for hydrological data analysis developed at the Chair of Hydrology at the Karl-
sruhe Institute of Technology (KIT). The HydroBox has a submodule called toolbox, which is a collection of functions
and classes that accept common numpy and pandas input formats and wrap around scipy functionality. Its purpose is:

• to speed up common hydrological data analysis tasks

• to integrate fully with custom numpy/pandas/scipy code

Jump directly to the installation section or get started.

3.1 Installation Guide

3.1.1 PyPi

Install the Hydrobox using pip. The latest version on PyPI can be installed using pip:

pip install hydrobox

3.1.2 GitHub

There might be a more recent version on GitHub available. It can be installed as follows:

git clone https://github.com/mmaelicke/hydrobox.git
cd hydrobox
pip install -r requirements.txt
pip install -e .

5

https://hyd.iwg.kit.edu/english/index.php
https://kit.edu/english/index.php
https://kit.edu/english/index.php
https://pypi.python.org/pypi/hydrobox

HydroBox Documentation, Release 0.1.0

3.2 Getting Started

3.2.1 Under Development

Warning: This site is under construction

3.3 Examples

Important: These examples should help you tp get started with most of the functionality. However, some examples
and tools might need a specific database backend or service running on the machine. In this case you have to install
the requirements. The reference section should guide you to the correct function with more detailed information on
the setup.

3.3.1 Discharge Tools

FDC from random data

Workflow

The workflow in this example will generate some random data and applies two processing steps to illustrate the
general idea. All tools are designed to fit seamlessly into automated processing environments like WPS servers or
other workflow engines.

The workflow in this example:

1. generates a ten year random discharge time series from a gamma distribution

2. aggregates the data to daily maximum values

3. creates a flow duration curve

4. uses python to visualize the flow duration curve

Generate the data

use the ggplot plotting style
In [1]: import matplotlib as mpl

In [2]: mpl.style.use('ggplot')

In [3]: from hydrobox import toolbox

Step 1:
In [4]: series = toolbox.io.timeseries_from_distribution(

...: distribution='gamma',

...: distribution_args=[2, 0.5], # [location, scale]

...: start='200001010000', # start date

...: end='201001010000', # end date

(continues on next page)

6 Chapter 3. About

HydroBox Documentation, Release 0.1.0

(continued from previous page)

...: freq='15min', # temporal resolution

...: size=None, # set to None, for inferring

...: seed=42 # set a random seed

...:)

...:

In [5]: print(series.head())
2000-01-01 00:00:00 1.196840
2000-01-01 00:15:00 0.747232
2000-01-01 00:30:00 0.691142
2000-01-01 00:45:00 0.691151
2000-01-01 01:00:00 2.324857
Freq: 15T, dtype: float64

Apply the aggregation

In [6]: import numpy as np

In [7]: series_daily = toolbox.aggregate(series, by='1D', func=np.max)

In [8]: print(series_daily.head())
2000-01-01 3.648999
2000-01-02 3.398266
2000-01-03 3.196676
2000-01-04 3.842573
2000-01-05 2.578654
Freq: D, dtype: float64

Calculate the flow duration curve (FDC)

the FDC is calculated on the values only
In [9]: fdc = toolbox.flow_duration_curve(x=series_daily.values, # an FDC does
→˓not need a DatetimeIndex

...: plot=False # return values, not
→˓a plot

...:)

...:

In [10]: print(fdc[:5])
[0.0002736 0.0005472 0.00082079 0.00109439 0.00136799]

In [11]: print(fdc[-5:])
\\\[0.99863201 0.99890561 0.
→˓99917921 0.9994528 0.9997264]

The first output line shows the first five exceeding probabilities, while the second line shows the last five values. The
output as numpy.ndarray is especially useful when the output is directed into another analysis function or is used
inside a workflow engine. This way the plotting and styling can be adapted to the use-case.

However, in case you are using hydrobox in a pure Python environment, most tools can be directly used for plotting.
At the current stage matplotlib is the only plotting possibility.

3.3. Examples 7

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

HydroBox Documentation, Release 0.1.0

Plot the result

If not encapsulated in a WPS server, the tool can also plot
In [12]: toolbox.flow_duration_curve(series_daily.values);

With most plotting functions, it is also possible to embed the plots into existing figures in order to fit seamlessly into
reports etc.

In [13]: import matplotlib.pyplot as plt

build the figure as needed
In [14]: fig, axes = plt.subplots(1,2, figsize=(14,7))

In [15]: toolbox.flow_duration_curve(series_daily.values, ax=axes[0]);

In [16]: toolbox.flow_duration_curve(series.values, ax=axes[1]);

In [17]: axes[0].set_title('aggregated');

In [18]: axes[1].set_title('non-aggregated');

In [19]: plt.show();

8 Chapter 3. About

HydroBox Documentation, Release 0.1.0

Reference

See also:

• flow_duration_curve reference

• aggregate reference

Hydrological Regime

Workflow

The workflow for the regime function is very similar to the one presented in the flow duration curve section.

In this example, we will use real world data. As the hydrobox is build on top of numpy and pandas, we can easily use
the great input tools provided by pandas. This example will load a discharge time series from Hofkirchen in Germany,
gauging the Danube river. The data is provided by Gewässerkundlicher Dienst Bayern under a CC BY 4.0 license.
Therefore, this example will also illustrate how you can combine pandas and hydrobox to produce nice regime plots
with just a few lines of code.

Note: In order to make use of the plotting, you need to run the tools in a Python environment. If you are using e.g. a
WPS server calling the tools, be sure to capture the output.

3.3. Examples 9

https://gkd.bayern.de

HydroBox Documentation, Release 0.1.0

Load the data using pandas

some imports
In [20]: from hydrobox import toolbox

In [21]: import pandas as pd

Step 1:
In [22]: df = pd.read_csv('./data/discharge_hofkirchen.csv',

....: skiprows=10, # meta data header, skip this

....: sep=';', # the cell separator

....: decimal=',', # german-style decimal sign

....: index_col='Datum', # the 'date' column

....: parse_dates=[0] # transform to DatetimeIndex

....:)

....:

use only the 'Mittelwert' (mean) column
In [23]: series = df.Mittelwert

In [24]: print(series.head())
Datum
1900-11-01 328.0
1900-11-02 385.0
1900-11-03 422.0
1900-11-04 388.0
1900-11-05 381.0
Name: Mittelwert, dtype: float64

Note: The data was downloaded from: Datendownload GKD and is published under CC BY 4.0 license. If you are
not using a german OS, note that the file encoding is ISO 8859-1 and you might have to remove the special german
signs from the header before converting to UTF-8.

See also:

More information on the read_csv function is provided in the pandas documentation.

Output the regime

In order to calculate the regime, without a plot, we can set plot to None.

In [25]: regime = toolbox.regime(series, plot=False)

In [26]: print(regime)
[[534.]
[558.]
[639.]
[698.]
[671.]
[677.]
[604.]
[538.]
[482.]
[437.]

(continues on next page)

10 Chapter 3. About

https://gkd.bayern.de/fluesse/download/index.php?thema=gkd&rubrik=fluesse&produkt=abfluss&gknr=0&msnr=10088003
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable

HydroBox Documentation, Release 0.1.0

(continued from previous page)

[438.]
[473.]]

These plain numpy arrays can be used in any further custom workflow or plotting.

Plotting

In [27]: toolbox.regime(series)
Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x7faf1e714208>

Note: As stated in the function reference, the default plotting will choose the first color of the specified color map for
the main aggregate line. As this defaults to the ‘‘Blue‘‘s, the first color is white. Therefore, when no percentiles are
used (which would make use of the colormap), it is a good idea to overwrite the color for the main line.

In [28]: toolbox.regime(series, color='#ffab7f')
Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x7faf1e6b3080>

3.3. Examples 11

HydroBox Documentation, Release 0.1.0

Using percentiles

The plot shown above is nice, but the tool is way more powerful. Using the percentiles keyword, we can either
specify a number of percentiles or pass custom percentile edges.

In [29]: toolbox.regime(series, percentiles=10);

12 Chapter 3. About

HydroBox Documentation, Release 0.1.0

In [30]: toolbox.regime(series, percentiles=[25, 75, 100], color='#223a5e');

3.3. Examples 13

HydroBox Documentation, Release 0.1.0

Adjusting the plot

Furthermore, the regime function can normalize the monthly aggregates to the overall aggregate. The function used
for aggregation can also be changed. The following example will output monthly mean values over median values and
normalize them to the MQ (overall mean).

In [31]: toolbox.regime(series, agg='nanmean', normalize=True, color='#223a5e')
Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x7faf1e750048>

14 Chapter 3. About

HydroBox Documentation, Release 0.1.0

Reference

See also:

• regime reference

3.3.2 Signal Processing

Simplifying a Signal

Whenever you seek to apply a tool on your data that will operate on each value and this tool is time and / or resource
consuming, it might be a good idea to operate on as few values as possible. Simply removing duplicated values is not
always the best approach. Think of a discharge time series where you want to calculate an index that depends on a
previous state.

Set up a test case

The example below will show the idea behind the simplify method of the signal submodule. At first some imports.

In [1]: import numpy as np

In [2]: import matplotlib.pyplot as plt

(continues on next page)

3.3. Examples 15

HydroBox Documentation, Release 0.1.0

(continued from previous page)

In [3]: import matplotlib as mpl

In [4]: mpl.style.use('ggplot')

And now setup and plot the test signal.

In [5]: x = np.array([1., 1.2, 1.5, 1.5, 1.5, 1.5, 1.6, 1.5, 1.6, 1.5, 1., 0.5,
...: 0.2, 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3,
...: 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.7, 1., 1.5, 1.6,
...: 1.5, 1.6, 1.5, 1.6, 1.5, 1.6])
...:

In [6]: plt.plot(x, '.--r');

Handling replicas

There are a number of replications. We want to get rid of those.

In [7]: from hydrobox.toolbox import simplify

In [8]: plt.plot(simplify(x, flatten=False), '.--r');

16 Chapter 3. About

HydroBox Documentation, Release 0.1.0

Look at the amount of markers in both plots, where the signal gave a constant value. The replicas got dropped
from the signal.

Handling sensor precision noise

So far, this only removed subsequent value duplicates. The other signal information this method can simplify is the
constant repetition of two values. This usually happens in environmental sensors either in constant conditions or during
really slow state changes. In these cases the signal can alternate between two states within the sensor resolution. These
recordings can be evened out by setting the flatten attribute to True.

In [9]: plt.plot(simplify(x, flatten=True), '.--r');

3.3. Examples 17

HydroBox Documentation, Release 0.1.0

Of course, the index information was completely lost. In this example the x-axis is just counting the occurrences of
values. In case you need the index information for further analysis, you have to extract the index and preserve it,
before calling the simplify method.

Important: The preservation of indices, whenever the data is of type pandas.Series is planned for a future
release.

Warning: Keep in mind that two very strong assumptions are underlying this method. It does change the signal
dramatically. Ensuring that the sensor noise assumption is correct is completely up to you.

3.4 Contribution Guide

3.4.1 How to Contribute

There are several ways how you can contribute to hydrobox. All contributions should make use of the Fork / Pull
request workflow in the GitHub repository. More information on pull requests can be found on the GitHub About pull
requests page.

1. Add new tools to the toolbox

2. Improve / Add unit tests to increase code coverage

3. Improve / Add docstrings on existing functions

18 Chapter 3. About

https://github.com/mmaelicke/hydrobox.git
https://help.github.com/articles/about-pull-requests
https://help.github.com/articles/about-pull-requests

HydroBox Documentation, Release 0.1.0

4. Add more examples to the documentation

Add Tools to the Toolbox

Important:

In a nutshell:

1. Fork the repository on GitHub

2. Commit your method to your fork

3. Add documentation and unittests for your method

4. Make sure your fork is building correctly

5. Pull request your fork back into the main repository

The idea behind hydrobox is to be used on top of numpy, scipy and pandas. This implies using the data types defined
in these libraries whenever possible. The main purpose of hydrobox is to save hydrologists from reproducing their
codes in every single project. Therefore a hydrobox tool should:

1. combine analysis steps belonging together into one function, while

2. separating preprocessing from analysis

3. be helpful to other hydrologists

4. output common python, numpy or pandas datatypes

Important: For this guide, we will add a function from_csv to the io submodule. This should illustrate how you
can add your stuff.

Fork and structure

Once you forked the project, place a new file in the appropriate module or add a new one. Once your function has been
added, import your function in the hydrobox.toolbox file. Please use an meaningful name for your function. It
should be clear what the function does. In some cases tool functions are tool specific to make them available at the
global hydrobox.toolbox scope. Then the submodule itself will be imported in the toolbox and you do not need
to adjust the imports. One example is the io submodule.

Here, we pretend to add a from_csv file to the toolbox. This function will go into a file text.py in the
hydrobox.io submodule:

1 def from_csv(path, sep=','):
2 """
3 numpydoc docstring here
4 """
5 return pd.from_csv(path, sep=sep)

Now, import this function in the __init__ of hydrobox.io. If you want your method to be available in the global
scope, import it in hydrobox.toolbox as well.

3.4. Contribution Guide 19

HydroBox Documentation, Release 0.1.0

Important: Please do only use numpydoc docstring conventions and make sure to properly style and comment the
Parameters section.

Decorating your tool

Hydrobox includes two helpful decorators in the hydrobox.util submodule: accept and enforce. We en-
courage you to use the accept decorator whenever possible. This will help to produce way cleaner code. This
decorator will check the input data for their data type and raise a TypeError in case the passed data does not have
the correct type. If more than one type is accepted, simply pass a tuple. In case a argument can be on NoneType or a
callable, use the two literals ‘None’ and ‘callable’ and pass them as strings.

1 from io import TextIOWrapper
2

3 @accept(path=(str, TextIOWrapper), sep=str)
4 def from_csv(path, sep=','):
5 ...

In this example, the path argument can be a string or a file pointer, sep has to be a string. Thus, there is no need to
check the user input in your tool as the decorator already did this for you. We encourage you to use this decorator es-
pecially for checking the input data to be of type numpy.ndarray pandas.DataFrame and pandas.Series.

Test your tool

Although the code coverage of this project is not yet really good, it would be nice not to drop it any further. A good
code coverage needs unit tests. Beyond code coverage, unit tests will help us to detect whenever our contribution
breaks existing code. And last but not least a unit test will help you to build more reliable code. In a nutshell, it would
be really helpful if you produce unit tests for your code. More information on unit tests is given in the Add / Improve
unit tests section. Some useful links to get you stated with unit tests in Python can be found below.

See also:

• ‘unit tests module reference‘_

• Unit Test Wikipedia page

• Add / Improve unit tests

Document your tool

In order to make it possible for others to use your tool, a good, comprehensive documentation is needed. As a first
step, you should always add a docstring to your function. For hydrobox, please use the numpydoc docstring format.
More information can also be found in the Add / Improve docstrings section.

See also:

• numpydoc reference site

• Add / Improve docstrings

20 Chapter 3. About

http://numpydoc.readthedocs.io/en/latest/format.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://en.wikipedia.org/wiki/Unit_testing
http://numpydoc.readthedocs.io/en/latest/format.html

HydroBox Documentation, Release 0.1.0

Produce examples

Sometimes a docstring is not enough to understand a tool. Although short examples, references and formulas can go
into numpydoc docstring formats, you might want to offer different examples covering the whole bandwidth of your
tool. Then you should produce some examples for this documentation. You can refer to the Examples section for more
information.

See also:

• Examples

Pull Request

Once your have finished with your implementations, create a pull request on GitHub. More info in the Pull Request
section.

3.4.2 Add / improve unit tests

Important: If you are not familiar with unit testing in general, please refer to https://en.wikipedia.org/wiki/Unit_
testing. If you are not familiar with the unittests module. please refer to https://docs.python.org/3/library/unittest.
html

Unit tests are important as they make your code much more reliable and reusable for other users. The basic idea behind
a unit test is to test any possible input and output to your tool against the expected behavior. For this you have to set
up a test case, run the scenario and compare it to what you expected. When some modules and packages which you
rely on change and break your code, the unit test will notice and fail. I am personally using unit tests whenever I try
to improve my code, this way I can be sure that I did not optimize any functionality away (and that happens a lot. . .).

For creating a unit test you need to define a class. Each method of this class represents a test. There are different ways
of implementing unit tests, either one test method to test a whole tool or one test method per single check you want to
perform. In hydrobox, we decided to use one TestCase class for each method and try to break down each check into a
single test method. The example below illustrates this.

1 import unittest
2 import pandas as pd
3 import from_csv # import your tool here
4

5 class TestFromCsv(unittest.TestCase):
6 def test_row_count(self):
7 df = from_csv('file_of_known_size.txt')
8 self.assertEqual(len(df), 450)
9

10 def test_col_count(self):
11 df = from_csv('file_of_known_size.txt')
12 self.assertEqual(len(df.columns), 5)
13

14 def test_change_sep(self):
15 """
16 change the separator to a sign that does not appear
17 in the file. then there sould be only one column.
18 """
19 df = from_csv('file_of_known_size.txt', sep="|")
20 self.assertEqual(len(df.columns)), 1)

(continues on next page)

3.4. Contribution Guide 21

https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Unit_testing
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html

HydroBox Documentation, Release 0.1.0

(continued from previous page)

21

22 if __name__=='__main__':
23 unittest.main()

This is a very basic example that checks three different things. It uses our new tool to load a file of known content into
the variable df.

3.4.3 Add / improve docstrings

Important: If you are not familiar with the numpydoc docstring format, please refer to http://numpydoc.readthedocs.
io/en/latest/format.html.

The most important parts of a numpydoc docstring are shown in the example below. Please make sure, that your
docstring always contains the main description, parameters and returns.

1 @accept(path=(str, TextIOWrapper), sep=str)
2 def from_csv(path, sep=','):
3 r"""short descriptive tile
4

5 After a short title, give a few sentences of explanation. What does this
6 Method do and how is it intended to be used?
7

8 Parameters
9 ----------

10 path : str, TextIOWrapper
11 The parameters can also get a full description about their meaning
12 possible values. Please be as extensive as necessary here.
13 Note the whitespace between the parameter name and the (list) of
14 accepted types.
15 sep : str, optional
16 In case an argument is optional, you can indicate this by the
17 optional keyword after the type.
18

19 Returns
20 -------
21 pandas.DataFrame
22

23 Notes
24 -----
25

26 The first description at the top should be a rather technical description.
27 The optional Notes section can be added and used to inform the user about
28 the background of the function or further readings.
29 For this purpose you can also include references[1]_ into your Notes.
30 In the documentations, these will be rendered in the Reference section.
31

32 And last but not least you can also input some math:
33

34 .. math:: a^2 + b^2 = c^2
35

36 References
37 ----------
38

(continues on next page)

22 Chapter 3. About

http://numpydoc.readthedocs.io/en/latest/format.html
http://numpydoc.readthedocs.io/en/latest/format.html

HydroBox Documentation, Release 0.1.0

(continued from previous page)

39 .. [1] Python, M., Chapman, G., Cleese, J., Gilliam, T., Jones, T.,
40 Idle, E., & Palin, M. (2000). the Holy Grail. EMI Records.
41

42 Examples
43 --------
44

45 >>> from_csv('file.txt').size
46 (220201, 5)
47

48 """
49 ...

Note: You should only add short and descriptive examples into the docstring itself. Make use of the Examples section
of this documentation.

3.4.4 Enhance the Examples

Todo: write this section

3.4.5 Create a Pull Request

Important: If you are not familiar with Pull Requests, please refer to https://help.github.com/articles/
about-pull-requests.

The best scenario for a pull request would be one that includes the new tool / enhancement, a proper docstring, unit
tests and a new example. However, we will also accept a pull request including only a tool and a docstring. In these
cases, please provide a proper description in the pull request message in order to make it possible for others to add
missing content.

Beside a good description, a descriptive title is vital. Please state what you actually want to contribute in the pull
request title. For the examples produced in this guide a descriptive title would be something like: Added from_csv tool
for reading files.

Note: If your contribution does only contain minor changes like PEP8 fixes, typos and small bugfixes, you can of
course pull request these changes without examples and unittests.

And finally, I am really looking forward to your contributions and thanks in advance!

3.5 Reference

Note: The reference section is still under development, as is the toolbox itself. It may not reflect the toolbox structure
correctly at any time.

3.5. Reference 23

https://help.github.com/articles/about-pull-requests
https://help.github.com/articles/about-pull-requests

HydroBox Documentation, Release 0.1.0

3.5.1 Input / Output

Random

timeseries_from_distribution

hydrobox.io.random.timeseries_from_distribution(distribution=’gamma’, distri-
bution_args=[10, 2], size=10,
seed=None, start=’now’, end=None,
freq=’D’)

Generate a random time series

This function will return a pandas.Series indexed by a pandas.DatetimeIndex holding random data
that is generated by the given distribution. The distribution name has to be importable from numpy.random
and the distribution_args list will be passed as *args. The seed parameter will be directed to np.random.
seed in order to return reproducable pseudo-random results.

Parameters

distribution [string, default=’gamma’] Any distribution density function from numpy.
random can be chosen. The distribution properties (like location or scale) can be passed
with the parameter distribution_args.

distribution_args [list, None, default=[10,2]] This list will be passed as
*distribution_args into the given density function. If no areguments shall be
passed, distribution_args can be set to None.

size [int, default=10] Specifies the length of the produced time series.

seed [int, default=None] Will be passed to numpy.random.seed.

start [string, datetime, default=’now’] Starting point for the pandas.DatetimeIndex. Can
be either a datetime or string. The string has either to be ‘now’ for using the current time
step, or a Datetime string of format YYYYMMDDHHmmss, where the time (HHmmss) can
be omitted. If end is used, start or size should be set to None.

end [string, datetime, defualt=None] see start.

freq [string, default=’D’] Specify the temporal resulution of the time series. This can either be
used in case size is omitted, but start and end are given, or in case either start or end is
omitted but size is given. Any string accepted by the freq attribute of pandas.Grouper
is accepted.

Returns

pandas.Series

See also:

pandas.Grouper further information of freq settings

24 Chapter 3. About

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Grouper.html#pandas.Grouper

HydroBox Documentation, Release 0.1.0

3.5.2 Preprocessing

Scaling

aggregation

hydrobox.preprocessing.scale.aggregate(x, by, func=’mean’)
Time series aggregation

This function version will only operate on a single pandas.Series or pandas.DataFrame instance. It
has to be indexed by a pandas.DatetimeIndex. The input data will be aggregated to the given frequency by
passing a pandas.Grouper conform string argument specifying the desired period like: ‘1M’ for one month or
‘3Y-Sep’ for three years starting at the first of October.

Parameters

x: ‘‘pandas.Series‘‘, ‘‘pandas.DataFrame‘‘ The input data, will be aggregated over the in-
dex.

by [string] Specifies the desired temporal resolution. Will be passed as freq argument of a
pandas.Grouper object for grouping the data into the new resolution. If by is None,
the whole Series will be aggregated to only one value. The same applies to by='all'.

func [string] Function identifier used for aggregation. Has to be importable from numpy. The
function must accept n input values and aggregate them to only a single one.

Returns

pandas.Series : if x was of type pandas.Series

pandas.DataFrame : if c was of type pandas.DataFrame

cut_period

hydrobox.preprocessing.scale.cut_period(x, start, stop)
Truncate Time series

Truncates a pandas.Series or pandas.DataFrame to the given period. The start and stop parameter
need to be either a string or a datetime.datetime, which will then be converted. Returns the truncated
time series.

Parameters

x [pandas.Series, pandas.DataFrame] The input data, will be truncated

start [string, datetime] Begin of truncation. Can be a datetime.datetime or a string. If a
string is passed, it has to use the format ‘YYYYMMDDhhmmss’, where the time component
‘hhmmss’ can be omitted.

stop [string, datetime,] End of truncation. Can be a datetime.datetime or a string. If a
string is passed, it has to use the format ‘YYYYMMDDhhmmss’, where the time component
‘hhmmss’ can be omitted.

3.5. Reference 25

HydroBox Documentation, Release 0.1.0

3.5.3 Basic statistical tools

Moving window statistics

moving_window

hydrobox.toolbox.moving_window(x, window_size=5, window_type=None, func=’nanmean’)
Moving window statistics

Applies a moving window function to the input data. Each of the grouped windows will be aggregated into a
resulting time series.

Parameters

x [pandas.Series, pandas.DataFrame] Input data. The data should have a pandas.
DatetimeIndex in order to produce meaningful results. However, this is not needed and
will technically work on different indexed data.

window_size [int] The specified number of values will be grouped into a window. This param-
eter might have different behavior in case the window_type is not None.

window_type [str, default=None] If None, an even spaced window will be used and shifted by
one for each group. Else, a window constructing class can be specified. Possible construc-
tors are specified in pandas.DataFrame.rolling.

func [str] Aggregating function for calculating the new window value. It has to be importable
from numpy, accept various input values and return only a single value like numpy.std
or numpy.median.

Returns

pandas.Series

pandas.DataFrame

Notes

Be aware that most window types (if window_type is not None) do only work with either numpy.sum or
numpy.mean.

Furthermore, most windows cannot work with the ‘nan’ versions of numpy aggregating function. Therefore
in case window_type is None, any ‘nan’ will be removed from the func string. In case you want to force this
behaviour, wrap the numpy function into a lambda.

Examples

This way, you can prevent the replacement of a np.nan* function:

>>> moving_window(x, func=lambda x: np.nanmean(x))
array([NaN, NaN, NaN, 4.7445, 4.784 ... 6.34532])

26 Chapter 3. About

HydroBox Documentation, Release 0.1.0

Linear Regression

linear_regression

hydrobox.toolbox.linear_regression(*x, df=None, plot=False, ax=None, notext=False)
Linear Regression tool

This tool can be used for a number of regression related tasks. It can calculate a linear regression between two
observables and also return a scatter plot including the regression parameters and function.

In case more than two Series or arrays are passed, they will be merged into a DataFrame and a linear
regression between all combinations will be calculated and potted if desired.

Parameters

x [pandas.Series, numpy.ndarray] If df is None, at least two Series or arrays have to be passed.
If more are passed, a multi output will be produced.

df [pandas.DataFrame] If df is set, all x occurrences will be ignored. DataFrame of the input
to be used for calculating the linear regression, This attribute can be useful, whenever a
multi input to x does not get merged correctly. Note that linear_regression will only use the
DataFrame.data array and ignore all other structural elements.

plot [bool] If True, the function will output a matplotlib Figure or plot into an existing instance.
If False (default) the data used for the plots will be returned.

ax [matplotlib.Axes.Axessubplot] Has to be a single matplotlib Axes instance if two data sets
are passed or a list of Axes if more than two data sets are passed.

notext [bool] If True, the output of the fitting parameters as a text into the plot will be sup-
pressed. This setting is ignored, is plot is set to False.

Returns

matplotlib.Figure

numpy.ndarray

Notes

If plot is True and ax is not None, the number of passed Axes has to match the total combinations between the
data sets. This is

𝑁2

where N is the length of x, or the length of df.columns.

Warning: This function does just calculate a linear regression. It handles a multi input recursively and has
some data wrangling overhead. If you are seeking a fast linear regression tool, use the scipy.stats.linregress
function directly.

3.5.4 Discharge Tools

Catchment hydrology

Common tools for diagnosic tools frequently used in catchment hydrology.

3.5. Reference 27

HydroBox Documentation, Release 0.1.0

flow_duration_curve

hydrobox.discharge.flow_duration_curve(x, log=True, plot=True, non_exceeding=True,
ax=None, **kwargs)

Calculate a flow duration curve

Calculate flow duration curve from the discharge measurements. The function can either return a matplotlib
plot or return the ordered (non)-exceeding probabilities of the observations. These values can then be used in
any external plotting environment.

In case x.ndim > 1, the function will be called iteratively along axis 0.

Parameters

x [numpy.ndarray, pandas.Series] Series of prefereably discharge measurements

log [bool, default=True] if True plot on loglog axis, ignored when plot is False

plot [bool, default=True] if False plotting will be suppressed and the resulting array will be
returned

non_exceeding [bool, default=True] if True use non-exceeding probabilities

ax [matplotlib.AxesSubplot, default=None] if not None, will plot into that AxesSubplot in-
stance

kwargs [kwargs,] will be passed to the matplotlib.pyplot.plot function

Returns

matplotlib.AxesSubplot : if plot was True

numpy.ndarray : if plot was ‘False

Notes

The probabilities are calculated using the Weibull empirical probability. Following1, this probability can be
calculated as:

𝑝 = 𝑚/(𝑛+ 1)

where m is the rank of an observation in the ordered time series and n are the total observations. The increasion
by one will prevent 0% and 100% probabilities.

References

regime

hydrobox.discharge.regime(x, percentiles=None, normalize=False, agg=’nanmedian’, plot=True,
ax=None, **kwargs)

Calculate hydrological regime

Calculate a hydrological regime from discharge measurements. A regime is a annual overview, where all ob-
servations are aggregated across the month. Therefore it does only make sense to calculate a regime over more
than one year with a temporal resolution higher than monthly.

1 Sloto, R. a., & Crouse, M. Y. (1996). Hysep: a computer program for streamflow hydrograph separation and analysis. U.S. Geological Survey
Water-Resources Investigations Report, 96(4040), 54.

28 Chapter 3. About

HydroBox Documentation, Release 0.1.0

The regime can either be plotted or the calculated monthly aggreates can be returned (along with the quantiles,
if any were calculated).

Parameters

x [pandas.Series] The Series has to be indexed by a pandas.DatetimeIndex and hold
the preferably discharge measurements. However, the methods does also work for other
observables, if agg is adjusted.

percentiles [int, list, numpy.ndarray, default=None] percentiles can be used to calculate per-
centiles along with the main aggregate. The percentiles can either be set by an integer or a
list. If an integer is passed, that many percentiles will be evenly spreaded between the 0th
and 100th percentiles. A list can set the desired percentiles directly.

normalize [bool, default=False] If True, the regime will be normalized by the aggregate over
all months. Then the numbers do not give the discharge itself, but the ratio of the monthly
discharge to the overall discharge.

agg [string, default=’nanmedian’] Define the function used for aggregation. Usually this will
be ‘mean’ or ‘median’. If there might be NaN values in the observations, the ‘nan’ prefixed
functions can be used. In general, any aggregating function, which can be imported from
numpy can be used.

plot [bool, default=True] if False plotting will be suppressed and the resulting pandas.
DataFrame will be returned. In case quantiles was None, only the regime values will
be returned as numpy.ndarray

ax [matplotlib.AxesSubplot, default=None] if not None, will plot into that AxesSubplot in-
stance

cmap [string, optional] Specify a colormap for generating the Percentile areas is a smooth color
gradient. This has to be a valid colormap reference, see https://matplotlib.org/examples/
color/colormaps_reference.html. Defaults to 'Blue'.

color [string, optional] Define the color of the main aggregate. If None, the first color of the
specified cmap will be used.

lw [int, optinal] linewidth parameter in pixel. Defaults to 3.

linestyle [string, optional] Any valid matplotlib linestyle definition is accepted.

':' - dotted

'-.' - dash-dotted

'--' - dashed

'-' - solid

Returns

matplotlib.AxesSubplot : if plot was True

pandas.DataFrame : if plot was False and quantiles are not None

numpy.ndarray : if plot was False and quantiles is None

Notes

In case the color argument is not passed it will default to the first color in the the specified colormap (cmap).
You might want to overwrite this in case no percentiles are produced, as many colormaps range from light to
dark colors and the first color might just default to while.

3.5. Reference 29

https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html

HydroBox Documentation, Release 0.1.0

Discharge coefficients

Common indices frequently used to describe discharge measurements in a single coefficient.

Richards-Baker Flashiness Index

hydrobox.discharge.indices.richards_baker(x)
Richards-Baker Flashiness Index

Calculates the Richards-Baker Flashiness index (RB Index), which is a extension of the Richards Pathlengh
index. In contrast to the Pathlength of a signal, the R-B Index is relative to the total discharge and independend
of the chosen unit.

Parameters

x [numpy.ndarray, pd.Series] The discharge input values.

Returns

numpy.ndarray

Notes

The Richards-Baker Flashiness Index2 is defined as:

𝑅𝐵𝐼 =

∑︀𝑛
𝑖=1 |𝑞𝑖 − 𝑞𝑖−1|∑︀𝑛

𝑖=1 𝑞𝑖

References

3.5.5 Geostatistical Analysis

Gstat

variogram_model

hydrobox.gstat.variogram_model(coordinates, values, effective_range, sill, nugget=0, n_lags=15,
binning=’even’, maxlag=’median’, model=’spherical’, estima-
tor=’cressie’, s=None, plot=True, ax=None)

Variogram Function

Calculate a variogram from the given parameters. This function will not fit the theoretical function to the
experimental function, but use the passed arguments.

Parameters

coordinates [numpy.ndarray] List of n-dimensional coordinates. Refer to scikit-gstat for more
information of this parameter.

values [numpy.ndarray] 1D-array of observaitons. Has to match the length of the first axis of
coordinates. Refer to scikit-gstat for more information of this parameter.

effective_range [float] Effective range of the theoretical model function. Refer to scikit-gstat
for more information of this parameter.

2 Baker D.B., P. Richards, T.T. Loftus, J.W. Kramer. A new flashiness index: characteristics and applications to midwestern rivers and streams.
JAWRA Journal of the American Water Resources Association, 40(2), 503-522, 2004.

30 Chapter 3. About

HydroBox Documentation, Release 0.1.0

sill [sill] Sill of the theoretical model function. Refer to scikit-gstat for more information of this
parameter.

nugget [float] Nugget of the theoretical model function. Defaults to 0 (no nugget effect included
in the model). Refer to scikit-gstat for more information of this parameter.

n_lags [int] Number of lag classes to be derived for the variogram. Refer to scikit-gstat for
more information of this parameter.

binning [str] Method used for calculating the lag class edges. Can be either ‘even’ (default) or
‘uniform’. ‘even’ will yield lag classes of same width, ‘uniform’ will assure a uniform dis-
tribution across all lag classes. Refer to scikit-gstat for more information of this parameter.

maxlag [float, str, None] Maximum separating distance, at which a point pair will still be in-
cluded into the variogram. Can be the number itself (float > 1), the share of the maximum
separating distance observed (0 < maxlag < 1), or one of ‘mean’, ‘median’ to calculate the
mean or median of all separating distances as maxlag.

model [str] The theoretical variogram model. Can be one of:

• spherical

• exponential

• gaussian

• cubic

• stable

• matern

Refer to scikit-gstat for more information of this parameter.

estimator [str] The semi-variance estimator to be used for the experimental variogram. Can be
one of:

• materon

• cressie

• dowd

• genton

• entropy

Refer to scikit-gstat for more information of this parameter.

s [float] In case the model was set to matern, s is the smoothness parameter of the model. In
case the model was set to stable, s is the shape parameter of the model. In all other cases, s
will be ignored.

plot [bool] If True, the function will return a plot of the Variogram, if False, it will return a tuple
of (bins, experimental, model).

ax [None, matplotlib.AxesSubplot] If None, the function will create a new matplotlib Figure.
In case an AxesSubplot is passed, that instance will be used for plotting.

Returns

plot [matlotlib.Figure] Will return a matplotlib Figure, if plot was set to True

data [tuple] Will return the tuple (bins, experimental, model) if plot was set to False.

3.5. Reference 31

HydroBox Documentation, Release 0.1.0

3.5.6 Signal Processing

Optimize

simplify

hydrobox.toolbox.simplify(x, flatten=True, threshold=0)
Simplify signal

An given input is simplified by reducing the amount of nodes representing the signal. Whenever node[n+1] -
node[n] <= threshold, no information gain is assumed between the two nodes. Thus, node[n+1] will be removed.

In case flatten is True, noise in the signal will be flattened as well. This is done by removing node[n + 1] in case
node[n] and node[n + 1] hold the same value. In case the underlying frequency in the noise is higher than one
time step or the amplitude is higher than the sensor precision, this method will not assume the value change as
noise. In these cases a filter needs to be applied first.

Parameters

x [numpy.ndarray, pandas.Series, pandas.DataFrame] numpy.array of signal

flatten [bool] Specify if a 1 frequence 1 amplitude change in signal be flattened out as assumed
noise.

threshold [int, float] value threshold at which a difference in signal is assumed

Returns

numpy.ndarray

32 Chapter 3. About

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

33

HydroBox Documentation, Release 0.1.0

34 Chapter 4. Indices and tables

Python Module Index

h
hydrobox.discharge.catchment, 27
hydrobox.discharge.indices, 30

35

HydroBox Documentation, Release 0.1.0

36 Python Module Index

Index

A
aggregate() (in module hydrobox.preprocessing.scale), 25

C
cut_period() (in module hydrobox.preprocessing.scale),

25

F
flow_duration_curve() (in module hydrobox.discharge),

28

H
hydrobox.discharge.catchment (module), 27
hydrobox.discharge.indices (module), 30

L
linear_regression() (in module hydrobox.toolbox), 27

M
moving_window() (in module hydrobox.toolbox), 26

R
regime() (in module hydrobox.discharge), 28
richards_baker() (in module hydrobox.discharge.indices),

30

S
simplify() (in module hydrobox.toolbox), 32

T
timeseries_from_distribution() (in module hy-

drobox.io.random), 24

V
variogram_model() (in module hydrobox.gstat), 30

37

	Stable branch
	Development branch
	About
	Installation Guide
	Getting Started
	Examples
	Contribution Guide
	Reference

	Indices and tables
	Python Module Index

