

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Config

Config is the configuration class used by the Api and holds the developer authentication data. It is required by the client handler to authenticate the http calls to the Hubtel Api.

Creating a Config.

The Config class only accepts three arguments :

	The Hubtel Account Number

	The Hubtel ClientID

	The Hubtel ClientSecret

The arguments must be passed in accordingly to the Hubtel Config as follows:

	use OVAC\HubtelPayment\Config;

	new Config(AccountNumber, ClientId, ClientSecret);

The data on this Client ID and ClientSecret above can be obtained from any existing or new Hubtel account by creating a developer api application as follows:

First navigate to the Hubtel Accounts Api page at https://unity.hubtel.com/account/api-accounts
[image: _images/aab9f8e9fd0d63fe97a99770883c0ef2200ab58b.png]

Click on the add application button.
[image: _images/e441d516b1510b0eeb707084a8132fcecb3df001.png]

Select Http Rest Api as the Api type and provide a description of the application and then hit save.
[image: _images/5ded29382379e436e4637a6853df785cf7d5f362.png]

After hitting the save button, The ClientID and ClientSecret will be revealed as shown below.
[image: _images/8984af4c2a1de5d2e49661d993c853c3e0fa7781.png]

The Account Number can also be found at https://unity.hubtel.com/merchantaccount/dashboard
[image: _images/df3a6ff9f5d7230338a0a0ab1aad36fb801cfcaf.png]

Example #1 using the data from the Hubtel account shown above.

	use OVAC\HubtelPayment\Config;

	$config = new Config('HM2707170067', 'ukoqgisb', 'tfbfugam');

The config can now be injected into a call to any of the Transaction class as shown here

properties

The config object has setters and getters that allow you to manipulate the properties of the instance subject.

Installation

To install OVAC\Hubtel-Payment you need:

	PHP 5.4+

	Composer [https://getcomposer.org/]

OVAC\Hubtel-Payment is available on Packagist, so the only thing you need to do is to add it as a dependency for your project.

That can be done by running following command in your project folder:

composer require ovac/hubtel-payment

As alternative you can directly edit your composer.json by adding:

{
 "require": {
 "ovac/hubtel-payment": "~0"
 }
}

After that, only be sure to include composer autoload file:

require 'vendor/autoload.php';

Dependencies

OVAC\Hubtel-Payment needs 1 community powered quality libraries to work:

	Guzzle [http://docs.guzzlephp.org/en/stable/] (MIT)

It will be installed for you by Composer.

Development Dependencies

As this package depends on the current stable release of PHPUnit (v6.3+) for testing, when installed in development mode, OVAC\Hubtel-Payment will only work on PHP 7+ because PHPunit requires . This is because the and also requires:

	PHPUnit [https://phpunit.de] (MIT)

	Mockery [http://docs.mockery.io/en/latest/] (BSD-3-CLAUSE)

	PHPMD - PHP Mess Detector [https://phpmd.org/] (BSD 3-clause)

	PHP-Coveralls [https://github.com/satooshi/php-coveralls] (MIT)

	PHP_CodeSniffer [https://www.squizlabs.com/php-codesniffer] (MIT)

	PHP Copy/Paste Detector (PHPCPD) [https://github.com/sebastianbergmann/phpcpd] (BSD 3-clause)

	Symfony2 PHP_CodeSniffer Coding Standard [https://github.com/leaphub/phpcs-symfony2-standard] (MIT)

ReceiveMoney

Introduction

The ReceiveMoney class allows you to receive money from your php application by providing a fluent syntax for building the query to be sent to the Hubtel’s Api. When configured correctly, it sends a prompt to the intended number making the payment.

Before getting started, be sure to have a Config object that will be injected into the instance when it will be executed. Check out this documentation for how to setup the Config

Using the ReceiveMoney Class

The send money api can be consumed using a configuration instance with valid data from an existing Hubtel account.

The ReceiveMoney class exposes several methods that can be chained to each other for fluent configuration of the parameters required by the hubtel api.

	from

	amount

	description

	channel

	customerEmail

	customerName

	setCustomer

	callbackOnSuccess

	callbackOnError

	setCallback

	callback

The run method must be called after the configuration chain is complete, in order to execute the command and place a call to the hubtel api.

	run

Putting it all together.

Putting it all together, we will place a call to the Hubtel Api and return a JSON data or throw an error if it was not successful.

You can checkout the expected response types here.

<?php

use OVAC\HubtelPayment\Config;
use OVAC\HubtelPayment\Api\Transaction\ReceiveMoney;

public function someClass(Config $config)
{
 $receiveMoney = ReceiveMoney::from('0553577261') //- The phone number to send the prompt to.
 ->amount(100.00) //- The exact amount value of the transaction
 ->description('Online Purchase') //- Description of the transaction.
 ->customerEmail('admin@ovac4u.com') //- Name of the person making the payment.
 ->callback('http://ovac4u.com/pay') //- The URL to send callback after payment.
 ->channel('mtn-gh'); //- The mobile network Channel.

 $receiveMoney->injectConfig($config) //- Inject the configuration
 ->run(); //- Run the transaction after required data.
}

Let’s Break it down

[bookmark: method-from]

from(number) {#ReceiveMoney-method}

The from method can be called statically, thus creates an instance of the receive money class. The from method takes the phone number that is making the payment:

 use OVAC\HubtelPayment\Api\Transaction\ReceiveMoney;

 // Sets the number to bill from.
 // So that it can be changed to other parameter setup methods.
 $receiveMoney = ReceiveMoney::from('0553577261');

The to method can also be chained to an instance that already exists and

 use OVAC\HubtelPayment\Api\Transaction\ReceiveMoney;

 $receiveMoney = ReceiveMoney::from('0553577261');

 // This will set the number that the mobile that will receive the payment prompt
 // If a number was previously set, it will be updated.
 $receiveMoney->from('0553577261');

[bookmark: method-amount]

amount(number) {#ReceiveMoney-method}

The amount method can be called statically, thus creates an instance of the receive money class. The amount method takes the value of the transaction and returns the ReceiveMoney instance:

 use OVAC\HubtelPayment\Api\Transaction\ReceiveMoney;

 // Sets the amount of money that will be billed to the client
 $receiveMoney = ReceiveMoney::amount(100.90);

The amount method can also be chained to an instance that already exists and

 use OVAC\HubtelPayment\Api\Transaction\ReceiveMoney;

 $receiveMoney = ReceiveMoney::amount('0553577261');

 // This will set amount of .
 // but if a number was previously set, it will be updated.
 $receiveMoney->amount('0553577261');

[bookmark: method-description]

description(string) {#ReceiveMoney-method}

The description method takes in a string of the description of the transaction:

 $receiveMoney->description('Money for rent'); //Describe the transaction

[bookmark: method-customerEmail]

customerEmail(string) {#ReceiveMoney-method}

The customerEmail method takes in a string of the Mobile Money (Payer) Sender’s Email address:

 $receiveMoney->customerEmail('contact@ovac4u.com'); //Email of the Sender (Payer)

[bookmark: method-customerName]

customerName(string) {#ReceiveMoney-method}

The customerName method takes in a string of the Receiver’s Name:

 $receiveMoney->customerName('John Doe'); //Name of the Sender (Payer)

[bookmark: method-setCustomer]

setCustomer(array) {#ReceiveMoney-method}

The setCustomer The customerName method takes in an array of the key and value of the customer’s info
This can be used instead of calling customerName and customerEmail seperately.

 // This way, all customer details are set at once.
 $receiveMoney = ReceiveMoney::amount(100.00)->setCustomer([
 'name' => 'Ariama Victor',
 'email' => 'contact@ovac4u.com',
 'phone' => '0553577261'
]);

 // With this method, you can set only one or two instead of all three, so this will also work
 $receiveMoney = ReceiveMoney::from('0553577261')
 ->setCustomer([
 'name' => 'Ariama Victor',
 'email' => 'contact@ovac4u.com',
]);

[bookmark: method-callbackOnSuccess]

callbackOnSuccess(string) {#ReceiveMoney-method}

The callbackOnSuccess method takes in a url to which Hubtel will send a cllback after a successful payment.

 $receiveMoney->callbackOnSuccess('http://your_url_for_hubtel_callback_on_success');

[bookmark: method-callbackOnError]

callbackOnError(string) {#ReceiveMoney-method}

The callbackOnError method takes in a url to which Hubtel will send a callback to if a user does not complete the payment.
or if there is no money or not enough money in the account of the user.

 $receiveMoney->callbackOnError('http://your_url_for_hubtel_callback_on_error');

[bookmark: method-setCallback]

setCallback(array) {#ReceiveMoney-method}

The setCallback method takes in an array of the key and value of the callback info
This can be used instead of calling callBackOnError and callBackOnSuccess seperately.

 use OVAC\HubtelPayment\Api\Transaction\ReceiveMoney;

 // This way, all customer details are set at once.
 $receiveMoney = ReceiveMoney::amount(100.00)->setCallback([
 'success' => 'http://your_url_for_hubtel_callback_on_success',
 'error' => 'http://your_url_for_hubtel_callback_on_error',
]);

[bookmark: method-callback]

callback(array) {#ReceiveMoney-method}

The callback method takes in a string the url to send callback to both for success and error.
On the route handling this url, you could use an if statement to determine if the callback was successful or an error occured.

 // This way, all customer details are set at once.
 $receiveMoney = ReceiveMoney::amount(100.00)->callback([
 'success' => 'http://your_url_for_hubtel_callback_on_success',
 'error' => 'http://your_url_for_hubtel_callback_on_error',
]);

[bookmark: method-run]

run(array) {#ReceiveMoney-method}

The run method can be called after all the parameters have been provided. it creates the call to the Hubtel server.
Note: Some parameters are required by the hubtel server and must be available before the run method is called. The client will throw an error if the required paramseters have not been setup. They have been listed at the bottom of this page. You can also checkout Hubtel ReceiveMoney Request Params for the required and optional params.

 // The call to the ReceiveMoney Run method will return a Json Response from the hubtel API Server.
 $receiveMoney->run();

Mass Assignment

The ReceiveMoney method supports mass assigment upon creating a new instance of the class. The Mass assinable values can be passed into the constructor as an arguement in a cascading array format as follows:

 $receiveMoney = new ReceiveMoney(array(
 'customer' => array(
 'name' => $this->customerName,
 'email' => $this->customerEmail,
 'phone' => $this->customerMsisdn,
),
 'callback' => array(
 'success' => $this->primaryCallbackURL,
 'error' => $this->secondaryCallbackURL,
),
 'description' => $this->description,
 'clientReference' => $this->clientReference,
 'channel' => $this->channel,
 'token' => $this->token,
 'feesOnCustomer' => true,
));

 // This will run the transaction and prompt the phone number as an agent.
 $receiveMoney->run();

Generic Methods

This class inherits and implements generic methods

You can checkout the full API here [https://ovac4u.com/hubtel-payment-api]

SendMoney

Introduction

The SendMoney class allows you to send money from your php application by providing a fluent syntax for building the query to be sent to the Hubtel’s Api.

Before getting started, be sure to have a Config object that will be injected into the instance when it will be executed. Check out this documentation for how to setup the Config

Using the SendMoney Class

The send money api can be consumed using a configuration instance with valid data from an existing Hubtel account.

The SendMoney class exposes several methods that can be chained to each other for fluent configuration of the params.

	to

	amount

	description

	channel

	customerEmail

	customerName

	setCustomer

	callbackOnSuccess

	callbackOnError

	setCallback

	callback

The run method must be called after the configuration chain is complete, in order to execute the command and place a call to the hubtel api.

	run

Putting it all together.

Putting it all together, we will place a call to the Hubtel Api and return a JSON data or throw an error if it was not successful.

You can checkout the expected response types here.

<?php

use OVAC\HubtelPayment\Config;
use OVAC\HubtelPayment\Api\Transaction\SendMoney;

public function someClass(Config $config)
{
 $sendMoney = SendMoney::to('0553577261') //- The phone number to send the prompt to.
 ->amount(100.00) //- The exact amount value of the transaction
 ->description('Online Purchase') //- Description of the transaction.
 ->customerEmail('admin@ovac4u.com') //- Name of the person making the payment.
 ->callback('http://ovac4u.com/pay') //- The URL to send callback after payment.
 ->channel('mtn-gh'); //- The mobile network Channel.

 $sendMoney->injectConfig($config) //- Inject the configuration
 ->run(); //- Run the transaction after required data.
}

Let’s Break it down

[bookmark: method-to]

to(number) {#SendMoney-method}

The to method can be called statically, thus creates an instance of the send money class. The to method takes the phone number that the money is going to be sent to:

 use OVAC\HubtelPayment\Api\Transaction\SendMoney;

 // Sets the receiver of the funds and returns the sendMoney
 // So that it can be changed to other parameter setup methods.
 $sendMoney = SendMoney::to('0553577261');

The to method can also be chained to an instance that already exists and

 use OVAC\HubtelPayment\Api\Transaction\SendMoney;

 $sendMoney = SendMoney::to('0553577261');

 // This will set the number that the mobile money will be sent to
 // If a number was previously set, it will be updated.
 $sendMoney->to('0553577261');

[bookmark: method-amount]

amount(number) {#SendMoney-method}

The amount method can be called statically, thus creates an instance of the send money class. The to method takes the value of the transaction and returns the SendMoney instance:

 use OVAC\HubtelPayment\Api\Transaction\SendMoney;

 // Sets the receiver of the funds and returns the sendMoney
 // So that it can be changed to other parameter setup methods.
 $sendMoney = SendMoney::amount(100.90);

The amount method can also be chained to an instance that already exists and

 use OVAC\HubtelPayment\Api\Transaction\SendMoney;

 $sendMoney = SendMoney::amount('0553577261');

 // This will set amount of .
 // but if a number was previously set, it will be updated.
 $sendMoney->amount('0553577261');

[bookmark: method-description]

description(string) {#SendMoney-method}

The description method takes in a string of the description of the transaction:

 $sendMoney->description('Money for rent'); //Describe the transaction

[bookmark: method-customerEmail]

customerEmail(string) {#SendMoney-method}

The customerEmail method takes in a string of the Receiver’s Email address:

 $sendMoney->customerEmail('Money for rent'); //Email of the receiver

[bookmark: method-customerName]

customerName(string) {#SendMoney-method}

The customerName method takes in a string of the Receiver’s Name:

 $sendMoney->customerName('Money for rent'); //Name of the receiver

[bookmark: method-setCustomer]

setCustomer(array) {#SendMoney-method}

The setCustomer The customerName method takes in an array of the key and value of the customer’s info
This can be used instead of calling customerName and customerEmail seperately.

 // This way, all customer details are set at once.
 $sendMoney = SendMoney::amount(100.00)->setCustomer([
 'name' => 'Ariama Victor',
 'email' => 'contact@ovac4u.com',
 'phone' => '0553577261'
]);

 // With this method, you can set only one or two instead of all three, so this will also work
 $sendMoney = SendMoney::to('0553577261')
 ->setCustomer([
 'name' => 'Ariama Victor',
 'email' => 'contact@ovac4u.com',
]);

[bookmark: method-callbackOnSuccess]

callbackOnSuccess(string) {#SendMoney-method}

The callbackOnSuccess method takes in a url to which Hubtel will send a cllback after a successful payment.

 $sendMoney->callbackOnSuccess('http://your_url_for_hubtel_callback_on_success');

[bookmark: method-callbackOnError]

callbackOnError(string) {#SendMoney-method}

The callbackOnError method takes in a url to which Hubtel will send a callback to if a user does not complete the payment.
or if there is no money or not enough money in the account of the user.

 $sendMoney->callbackOnError('http://your_url_for_hubtel_callback_on_error');

[bookmark: method-setCallback]

setCallback(array) {#SendMoney-method}

The setCallback method takes in an array of the key and value of the callback info
This can be used instead of calling callBackOnError and callBackOnSuccess seperately.

 use OVAC\HubtelPayment\Api\Transaction\SendMoney;

 // This way, all customer details are set at once.
 $sendMoney = SendMoney::amount(100.00)->setCallback([
 'success' => 'http://your_url_for_hubtel_callback_on_success',
 'error' => 'http://your_url_for_hubtel_callback_on_error',
]);

[bookmark: method-callback]

callback(array) {#SendMoney-method}

The callback method takes in a string the url to send callback to both for success and error.
On the route handling this url, you could use an if statement to determine if the callback was successful or an error.

 // This way, all customer details are set at once.
 $sendMoney = SendMoney::amount(100.00)->callback([
 'success' => 'http://your_url_for_hubtel_callback_on_success',
 'error' => 'http://your_url_for_hubtel_callback_on_error',
]);

[bookmark: method-run]

run(array) {#SendMoney-method}

The run method can be called after all the parameters have been provided. it creates the call to the Hubtel server.
Note: Some parameters are required by the hubtel server and must be available before the run method is called. The client will throw an error if the required paramseters have not been setup. They have been listed at the bottom of this page. You can also checkout Hubtel SendMoney Request Params for the required and optional params.

 // The call to the SendMoney Run method will return a Json Response from the hubtel API Server.
 $sendMoney->run();

Generic Methods

This class inherits and implements expected generic methods for the setters and getters
You can checkout the full API here [https://ovac4u.com/packages/ovac-hubtel-payment/api]

 _static/comment-bright.png

_images/e441d516b1510b0eeb707084a8132fcecb3df001.png
Applications

Registered Apps enable you to integrate Hubtel services with your applications via our APIs.

© ADD APPLICATION

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/8984af4c2a1de5d2e49661d993c853c3e0fa7781.png
App Registration was created.

Applications > Creating OVAC\Hubtel-Payment Client Tutorial

Basic Details Public Details Partner Details Availability

Description: Creating OVAC\Hubtel-Payment Client Tutorial

Client ID: ukoqgisb

Client Secret: tfbfugam

Event Callback URL:

_images/aab9f8e9fd0d63fe97a99770883c0ef2200ab58b.png
K

@ Secure | https://unity.hubtel.com/account/api-accounts

_images/5ded29382379e436e4637a6853df785cf7d5f362.png
APl Access

Register an App

NB: Apps that require access via SMPP will need to be authorized.

View Registered Apps

Register an App

* APl Type

v Choose...
HTTP REST API

SMPP 3.4 API

Description:

_images/df3a6ff9f5d7230338a0a0ab1aad36fb801cfcaf.png
i EH RCOLOY
El Unlty Ariama

BULK SMS SMS SHORT CODES ussD PAYMENTS DEVELOPER REPORTS v HELP

Merchant Account Dashboard HM2707170067

Here’s an overview of what’s been happening in your Merchant Account Account Number

Available Balance is yet to be transferred

| Overview GHC 0.00

e w m e

out of your account

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

_static/plus.png

