

Welcome to HPOlib’s documentation!

This package is discontinued. We have merged all changes that we have done since the initial release into the master branch, hoping that they are useful for some of you. The current software has several known bugs, which can be found in the issue tracker. In case someone wants to continue working on HPOlib, we’re happy to accept and merge pull requests. If you’re looking for a set of benchmarks, please use the predecessor HPOlib2 [http://github.com/automl/HPOlib2]. HPOlib2 does not contain any optimization packages. We will add a list of Bayesian optimization packages to the documentation of HPOlib2.

HPOlib is a package which aiming to simplify the development and use of hyperparameter optimization algorithms. It features benchmarks which have been used in papers introducing state-of-the-art hyperparameter optimization tools like spearmint and hyperopt. Furthermore, it provides a common interface to several Bayesian optimization packages as well as the possibility to add your own optimization package.

Contents:

	Installation Instructions For HPOlib
	Installing inside an virtualenv

	Algorithms and Datasets
	Benchmarks Overview

	Description

	Manual
	How to run listed benchmarks

	How to run your own benchmarks

	Configure the HPOlib

	How to run your own optimizer

	Convert Search Spaces

	Test/Validate the Best Configuration(s)

	Dispatchers: Different ways to invoke the Target Algorithm

	Optimization algorithms
	Configuration Runner

	Plotting results
	Exporting results

	The HPOlib Structure

	Citing the HPOlib

Indices and tables

	Search Page

[image: Fork me on GitHub]

 Installation Instructions For HPOlib

Installation Instructions For HPOlib

First:

git clone https://github.com/automl/HPOlib.git

Installing inside an virtualenv

	Get virtualenv [http://www.virtualenv.org/en/latest/virtualenv.html#installation],
then load a freshly created virtualenv. (If you are not familiar with virtualenv,
you might want to read more [http://www.virtualenv.org/en/latest/virtualenv.html)] about it)

pip install virtualenv
virtualenv virtualHPOlib
source virtualHPOlib/bin/activate

	Install numpy, scipy, matplotlib, as this doesn’t
work through setup.py.

pip install numpy
pip install scipy
pip install matplotlib

This may take some time. Afterwards you can verify having those libs installed with:

pip freeze

	run setup.py

python setup.py install

This will install HPOlib and some requirements (networkx,
protobuf, pymongo). Be sure your system is
connected to the internet, so setup.py can download
optimizer and runsolver code. Your environment now looks like that

pip freeze

 HPOlib==0.0.1
 argparse==1.2.1
 backports.ssl-match-hostname==3.4.0.2
 distribute==0.7.3
 matplotlib==1.3.1
 networkx==1.8.1
 nose==1.3.0
 numpy==1.8.0
 protobuf==2.5.0
 pymongo==2.6.3
 pyparsing==2.0.1
 python-dateutil==2.2
 scipy==0.13.3
 six==1.5.2
 tornado==3.2
 wsgiref==0.1.2

and

ls optimizers/smac
 smac_2_10_00-dev_parser.py smac_2_10_00-dev.py smac_2_10_00-dev_src smac_2_10_00-devDefault.cfg

	You can now run, e.g. smac with 200 evaluations on the branin function:

cd benchmarks/branin
HPOlib-run -o ../../optimizers/smac/smac_2_10_00-dev -s 23

This takes depending on your machine ~2 minutes. You can now plot the results of your first experiment:

HPOlib-plot FIRSTRUN smac_2_10_00-dev_23_*/smac_*.pkl -s `pwd`/Plots/

You can test the other optimizers (spearmint will take quite longer 30min):

HPOlib-run -o ../../optimizers/tpe/h -s 23
HPOlib-run -o ../../optimizers/spearmint/spearmint_april2013 -s 23

and again:

HPOlib-plot SMAC smac_2_10_00-dev_23_*/smac_*.pkl TPE hyperopt_august2013_mod_23_*/hyp*.pkl SPEARMINT spearmint_april2013_mod_23_*/spear*.pkl -s `pwd`/Plots/

and to check the general performance on this super complex benchmark:

HPOlib-plot BRANIN smac_2_10_00-dev_23_*/smac_*.pkl hyperopt_august2013_mod_23_*/hyp*.pkl spearmint_april2013_mod_23_*/spear*.pkl -s `pwd`/Plots/

Problems during installation

python setup.py crashes with ImportError: cannot import name Feature
during installing pymongo. This happens due to pymongo using a deprecated feature
:python:’Feature’, which is not available in the setuptools version (>2.2).
This error is fixed, but not yet available on PYPI.

Solution: Downgrade setuptools with pip install setuptools==2.2
and try again or install pymongo manually.

[image: Fork me on GitHub]

 Algorithms and Datasets

Algorithms and Datasets

Benchmarks Overview

To run these algorithms and datasets with hyperparameter optimizers you need to install

	the HPOlib software from here

	the benchmark data: An algorithm and depending on the benchmark a wrapper and/or data

Then the benchmarks can easily be used, as described here;
Our software allows to integrate your own benchmarks as well. Here is the
HowTo.

NOTE: For all bechmarks crossvalidation is possible, but not extra listed.
Although possible, it obviously makes no sense to do crossvalidation on
functions like Branin and pre-computed results like the LDA ongrid.
Whether it makes sense to do so is indicated in the column CV.

 Available Benchmarks

 	Algorithm
 	# hyperparams(condition.)
 	contin./discr.
 	Dataset
 	Size(Train/Valid/Test)
 	runtime
 	programming language
 	CV

 	Branin
 	2(-)
 	2/-
 	-
 	-
 	< 1s
 	Python
 	no

 	RKHS
 	1(-)
 	1/-
 	-
 	-
 	< 1s
 	Python
 	no

 	Camelback function
 	2(-)
 	2/-
 	-
 	-
 	< 1s
 	Ruby
 	no

 	Hartmann 6d
 	6(-)
 	6/-
 	-
 	-
 	< 1s
 	Python
 	no

 	Michalewicz
 	10(-)
 	10/-
 	-
 	-
 	< 1s
 	Python
 	no

 	LDA ongrid

 Manual

Manual

How to run listed benchmarks

After having succesfully installed the basic HPOlib you can download more
benchmarks or create your own. Each benchmarks resides in an own directory and consists of an algorithm (+ wrapper if necessary), a configuration file and several hyperparameter configuration descriptions. If you want to use one of the benchmarks
listed here, follow these steps:

Let’s say you want to run the Reproducing Kernel Hilbert space (RKHS [https://github.com/iassael/function-rkhs]) function:

	RKHS is located with other benchmarks inside HPOlib/benchmarks folder. To run the benchmark first go inside that folder.

cd HPOlib/benchmarks/rkhs

	Inside this folder you can run one the optimizers (smac, tpe or spearmint) on RKHS function using HPOlib :

HPOlib-run -o ../../optimizers/smac/smac_2_10_00-dev -s 23
HPOlib-run -o ../../optimizers/tpe/h -s 23
HPOlib-run -o ../../optimizers/spearmint/spearmint_april2013 -s 23

Or more generally

HPOlib-run /path/to/optimizers/<tpe/hyperopt|smac|spearmint|tpe/random> [-s seed] [-t title]

By default, the optimizers will run 200 evaluations on the function. For smac and tpe this will take about 2 mins but for spearmint it will be longer than 45 mins, so change number_of_jobs parameter in config.cfg file in same folder to 50 or less.

[SMAC]
p = params.pcs

[TPE]
space = space.py

[SPEARMINT]
config = config.pb

[HPOLIB]
console_output_delay = 2.0
function = python ../rkhs.py
number_of_jobs = 200 #Change this to 50.
result_on_terminate = 1000

	Now you can plot results for the experiment in different ways:

Plot the results of only one optimizer:

HPOlib-plot FIRSTRUN smac_2_10_00-dev_23_*/smac_*.pkl -s `pwd`/Plots/

The Plots can be found inside folder named Plots in current working directory (HPOlib/benchmarks/rkhs)

[image: _images/MeanTrace_fr.png]
and if you have run all optimizers and want to compare their results:

HPOlib-plot SMAC smac_2_10_00-dev_23_*/smac_*.pkl TPE hyperopt_august2013_mod_23_*/hyp*.pkl SPEARMINT spearmint_april2013_mod_23_*/spear*.pkl -s `pwd`/Plots/

[image: _images/MeanTrace_all.png]
and to check the general performance on this super complex benchmark:

HPOlib-plot RKHS smac_2_10_00-dev_23_*/smac_*.pkl hyperopt_august2013_mod_23_*/hyp*.pkl spearmint_april2013_mod_23_*/spear*.pkl -s `pwd`/Plots/

[image: _images/MeanTrace_comparison.png]

How to run your own benchmarks

To run your own benchmark you basically need the software for the benchmark and
a search space description for the optimizers smac, spearmint and tpe. In order
to work with HPOlib you must put these files into a special directory structure.
It is the same directory structure as for the benchmarks which you can download
on this website and is explained in the list below. The following lines will
guide you through the creation of such a benchmark. Here is a rough guide on
what files you need:

	One directory having the name of the optimizer for each optimizer you want to use.
Currently, these are hyperopt_august2013_mod,
random_hyperopt2013_mod,
smac_2_10_00-dev and spearmint_april2013_mod.

	One search space for each optimizer. This must be placed in the directory with the name of the optimizer.
You can convert your searchspace to other formats with
HPOlib_convert from and to all three different
optimizers.

	An executable which implements the HPOlib interface. Alternatively, this can
be a wrapper which parser the command line arguments, calls your target algorithm
and returns the result to the HPOlib.

	A configuration file config.cfg. See the section on
configuring the HPOlib for details.

Example

First, create a directory myBenchmark inside the
HPOlib/benchmarks directory. The executable
HPOlib/benchmarks/myBenchmark/myAlgo.py with the target algorithm can
be as easy as

import math
import time

import HPOlib.benchmark_util as benchmark_util

def myAlgo(params, **kwargs):
 # Params is a dict that contains the params
 # As the values are forwarded as strings you might want to convert and check them

 if not params.has_key('x'):
 raise ValueError("x is not a valid key in params")

 x = float(params["x"])

 if x < 0 or x > 3.5:
 raise ValueError("x not between 0 and 3.5: %s" % x)

 # **kwargs contains further information, like
 # for crossvalidation
 # kwargs['folds'] is 1 when no cv
 # kwargs['fold'] is the current fold. The index is zero-based

 # Run your algorithm and receive a result, you want to minimize
 result = -math.sin(x)

 return result

if __name__ == "__main__":
 starttime = time.time()
 # Use a library function which parses the command line call
 args, params = benchmark_util.parse_cli()
 result = myAlgo(params, **args)
 duration = time.time() - starttime
 print "Result for this algorithm run: %s, %f, 1, %f, %d, %s" % \
 ("SAT", abs(duration), result, -1, str(__file__))

As you can see, the script parses command line arguments, calls the target function
which is implemented in myAlgo, measures the runtime of the target algorithm and
prints a return string to the command line. All relevant information is then extracted
by the HPOlib. If you write a new algorithm/wrapper script, you must parse the
following call:

target_algorithm_executable --fold 0 --folds 1 --params [[-param1 value1]]

The return string must take the following form:

Result for this algorithm run: SAT, <duration>, 1, <result>, -1, <additional information>

This return string is not yet optimal and exists for historic reasons. It’s subject to change in one of the next versions of HPOlib.

Next, create HPOlib/benchmarks/myBenchmark/config.cfg,
which is the configuration file. It tells the HPOlib everything about the benchmark and looks like this:

[TPE]
space = mySpace.py

[HPOLIB]
function = python ../myAlgo.py
number_of_jobs = 200
worst possible result
result_on_terminate = 0

Since the hyperparameter optimization algorithm must know about the variables
and their possible values for your target algorithms, the next step is to
specify these in a so-called search space. Create a new directory
hyperopt_august2013_mod inside the
HPOlib/benchmarks/myBenchmark directory and save
these two lines of python in a file called mySpace.py. If you look at
the config.cfg, we already the use of the newly created search space.
As problems get more complex, you may want to specify more complex search
spaces. It is recommended to do this in the TPE format, then translate it into
the SMAC format which can then be translated into the spearmint format.
More information on how to write search spaces in the TPE format
can be found in this paper [http://www.coxlab.org/pdfs/2013_bergstra_hyperopt.pdf] and the hyperopt wiki [https://github.com/hyperopt/hyperopt/wiki/FMin].

from hyperopt import hp
space = {'x': hp.uniform('x', 0, 3.5)}

Now you can run your benchmark with tpe. The command (which has to be
executed from HPOlib/benchmarks/myBenchmark) is

HPOlib-run -o ../../optimizers/tpe/hyperopt_august2013_mod

Further you can run your benchmark with the other optimizers:

mkdir smac
python path/to/hpolib/format_converter/TpeSMAC.py tpe/mySpace.py >> smac/params.pcs
python path/to/wrapping.py smac
mkdir spearmint
python path/to/hpolib/format_converter/SMACSpearmint.py >> spearmint/config.pb
python path/to/wrapping.py spearmint

Configure the HPOlib

The config.cfg is a file, which contains necessary settings about your
experiment. It is designed such that as little as possible information needs to be given.
This means all values for optimizers and the wrapping software are set to the default
values, except you want to change them. Default values are stored in a file called
config_parser/generalDefault.cfg. The following table describes the
values you must provide: The file is divided into sections. You only need to
fill in values for the [HPOLIB] section.

	Key

	Description

	function

	The executeable for the target algorithm. The path can
either be either absolute or relative to an optimizer
directory in your benchmark folder (if the executeable
is not found you can try to prepend the parent directory
to the path)

	number_of_jobs

	number of evaluations that are performed by the
optimizers. NOTE:When using k-fold-crossvalidation,
SMAC will use k * number_of_jobs evaluations

	result_on_terminate

	If your algorithms crashes, is killed, takes too long
etc. This result is given to the optimizer.
Should be the worst possible, but realistic result
for a problem

An example can be found in the section [adding your own benchmark](manual.html#config_example).
The following parameters can be specified:

	Section

	Parameter

	Default value

	Description

	HPOLIB

	number_cv_folds

	1

	number of folds for a crossvalidation

	HPOLIB

	max_crash_per_cv

	3

	If some runs of the crossvalidation fail, stop the crossvalidation for this configuration after max_crash_per_cv failed folds.

	HPOLIB

	remove_target_algorithm_output

	True

	Per default, the target algorithm output is deleted. Set to False to keep the output. This is useful for debugging.

	HPOLIB

	console_output_delay

	1.0

	HPOlib reads the experiment pickle periodically to print the current status to the command line interface.
Doing this often can inhibit performance of your hard-drive (espacially if perform a lot of HPOlib experiments in parallel)
so you might want to increase this number if you experience delay when accessing your hard drive.

	HPOLIB

	runsolver_time_limit,
memory_limit, cpu_limit

	
	Enforce resource limits to a target algorithm run. If these limits are exceeded, the target algorithm will be killed by the runsolver. This can be used to ensure e.g. a runtime per algorithm or make sure an algorithm does not use too much space on a computing cluster.

	HPOLIB

	total_time_limit

	
	Enforce a total time limit on the hyperparameter optimization.

	HPOLIB

	leading_runsolver_info

	
	Important when using THEANO and CUDA, see Configure theano for gpu and openBlas usage

	HPOLIB

	use_HPOlib_time_measurement

	True

	When set to True (the default), the runsolver time measurement is saved. Otherwise, the time measured by the target algorithm is saved.

	HPOLIB

	number_of_concurrent_jobs

	1

	WARNING: this only works for spearmint and SMAC and is not tested!

	HPOLIB

	function_setup

	
	An executable which is called before the first target algorithm call. This can be for example check if everything is installed properly.

	HPOLIB

	function_teardown

	
	An executable which is called after the last target algorithm call. This can be for example delete temporary directories.

	HPOLIB

	experiment_directory_prefix

	
	Adds a prefix to the automatically generated experiment directory. Can be useful if one experiments is run several times with different parameter settings.

	HPOLIB

	handles_cv

	
	This flag determines whether optimization_interceptor or the optimizer handles cross validation. This is only set to 1 for SMAC and must only be used by optimization algorithm developers.

The following keys change the behaviour of the integrated hyperparameter
optimization packages:

	Section

	Parameter

	Default value Description

	

	TPE

	space

	space.py

	Name of the search space for tpe

	TPE

	path_to_optimizer

	./hyperopt_august2013_mod_src

	Please consult the SMAC documentation.

	SMAC

	p

	smac/params.pcs

	Please consult the SMAC documentation.

	SMAC

	run_obj

	QUALITY

	Please consult the SMAC documentation.

	SMAC

	intra_instance_obj

	MEAN

	Please consult the SMAC documentation.

	SMAC

	rf_full_tree_bootstrap

	False

	Please consult the SMAC documentation.

	SMAC

	rf_split_min

	10

	Please consult the SMAC documentation.

	SMAC

	adaptive_capping

	false

	Please consult the SMAC documentation.

	SMAC

	max_incumbent_runs

	2000

	Please consult the SMAC documentation.

	SMAC

	num_iterations

	2147483647

	Please consult the SMAC documentation.

	SMAC

	deterministic

	True

	Please consult the SMAC documentation.

	SMAC

	retry_target_algorithm_run_count

	0

	Please consult the SMAC documentation.

	SMAC

	intensification_percentage

	0

	Please consult the SMAC documentation.

	SMAC

	validation

	false

	Please consult the SMAC documentation.

	SMAC

	path_to_optimizer

	./smac_2_06_01-dev_src

	Please consult the SMAC documentation.

	SPEARMINT

	config

	config.pb

	

	SPEARMINT

	method

	GPEIOptChooser

	The spearmint chooser to be used. Please consult the spearmint documentation for possible choices. WARNING: Only the GPEIOptChooser is tested!

	SPEARMINT

	method_args

	
	Pass arguments to the chooser method. Please consult the spearmint documentation for possible choices.

	SPEARMINT

	grid_size

	20000

	Length of the Sobol sequence spearmint uses to optimize the Expected Improvement.

	SPEARMINT

	spearmint_polling_time

	3.0

	Spearmint reads its experiment pickle and checks for finished jobs periodically to find out whether a new job has to be started. For very short functions evaluations, this value can be decreased. Bear in mind that this puts load on your hard drive and can slow down your system if the experiment pickle becomes large (e.g. for the AutoWeka benchmark) or you run a lot of parallel jobs (>100).

	SPEARMINT

	path_to_optimizer

	./spearmint_april2013_mod_src

	

The config parameters can also be set via the command line. A use case for this
feature is to run the same experiment multiple times, but with different parameters.
The syntax is:

HPOlib-run -o spearmint/spearmint_april2013_mod --SECTION:argument value

To set for example the spearmint grid size to 40000, use the following call

HPOlib-run -o spearmint/spearmint_april2013_mod --SPEARMINT:grid_size 40000

If your target algorithm is a python script, you can also load the config file
from within your target algorithm. This allows you to specify extra parameters
for your target algorithm in the config file. Simply import
HPOlib.wrapping_util in your python script and call
HPOlib.wrapping_util.load_experiment_config_file().
The return value is a python config parser object [https://docs.python.org/2/library/configparser.html].

Configure theano for gpu and openBlas usage

The THEANO [http://deeplearning.net/software/theano/]-based benchmarks can
be speed-up by either running them on a nvidia GPU [http://en.wikipedia.org/wiki/CUDA] or with an optimized BLAS library [http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms].
Theano is either configured with theano flags, by changing the value of a variable
in the target program (not recommended as you have to change source code)
or by using a .theanorc file. The .theanorc file is good for
global configurations and you can find more information on how to use it on the
theano config page [http://deeplearning.net/software/theano/library/config.html].
For a more fine-grained control of theano you have to use theano flags.

Unfortunately, setting them in the shell before invoking HPOlib-run
does not work and therefore these parameters have to be added set via the
config variable leading_runsolver_info. This is already set to a
reasonable default for the respective benchmarks but has to be changed in order
to speed up calculations.

For openBlas, change the paths in the following paragraph and replace the value of the
config variable leading_runsolver_info. In case you want to change
more of the theano behaviour (e.g. the compile directory) you must append these
flags to the config variable.

OPENBLAS_NUM_THREADS=2 LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/the/openBLAS/lib LIBRARY_PATH=$LIBRARY_PATH:/path/to/the/openBLAS/lib THEANO_FLAGS=floatX=float32,device=cpu,blas.ldflags=-lopenblas

If you want to use CUDA on your nvidia GPU, you have to change
device=cpu to device=gpu and add
cuda.root=/usr/local/cuda to the THEANO flags. Change cuda.root
to your cuda installation directory if you did not install cuda to the
default location. For that, replace the path cuda.root=/usr/local/cuda
with the path to your CUDA installation.

How to run your own optimizer

Before you integrate your own optimization algorithm, make sure that you know
how the HPOlib is structured and read the section The HPOlib Structure.
The interface to include your own optimizer is straight-forward. Let’s assume
that you have written a hyperparameter optimization package called BayesOpt2.
You tell the HPOlib to use your software with the command line argument
-o or --optimizer. A call to
HPOlib-run -o /path/to/BayesOpt2 should the run
an experiment with your newly written software.

But so far, the HPOlib does not know how to call your software. To let the HPOlib
know about the interface to your optimizer, you need to create the three following
files (replace BayesOpt2 if your optimization package has a different name):

	
	BayesOpt2.py: will create all files your optimization package needs in order

	to run

	
	BayesOpt2_parser.py: a parser which can change the configuration of your

	optimization algorithm based on HPOlib defaults

	BayesOpt2Default.cfg: default configuration for your optimization algorithm

Moreover, your algorithm has to call a script of the HPOlib namely
optimization_interceptor.py, which does bookkeeping and manages a
potential cross validation. The rest of this section will explain how to call
optimization_interceptor.py and the interface your scripts must provide
and the functionality which they must
perform.

Calling optimization_interceptor.py

BayesOpt2.py

To run BayesOpt2, HPOlib will call the main function of the script
bayesopt2.py. The function signature is as follows:

(call_string, directory) = optimizer_module.main(config=config, options=args, experiment_dir=experiment_dir, experiment_directory_prefix=experiment_directory_prefix)

Argument config is of type ConfigParser [http://docs.python.org/2/library/configparser.html],
options of type ArgumentParser [https://docs.python.org/2/library/argparse.html]
and experiment_dir is a string to the experiment directory. The return
value is a tuple (call_string, directory). call_string must
be a valid (bash) shell command which calls your hyperparameter optimization
package in the way you intend. You can construct the call string based on the
information in the config and the options you are provided with.
directory must be a new directory in which all experiment output will
be stored. HPOlib-run will the change in to the output directory
which your function returned and execute the call string. Your script must
therefore do the following in the main function:

	Set up an experiment directory and return the path to the experiment directory.
It is highly recommended to create a directory with the following name:

<experiment_directory_prefix><bayesopt2><time_string>

	Return a valid bash shell command, which will be used to call your optimizer
from the command line interface. The target algorithm you want to optimize
is mostly called optimization_interceptor.py, except for SMAC which
handles crossvalidation on its own. Calling
optimization_interceptor.py allows optimizer independend
bookkeeping. The actual function call is the invoked by the
HPOlib. Its interface is

python optimization_interceptor.py -param_name1 'param_value' -x '5' -y '3.0'`

etc… The function simply prints the loss to the command line.
If your hyperparameter optimization package is written in python, you can
also directly call the method doForTPE(params), where the params
argument is a dictionary with all parameter values (both key and value being strings).

Have a look at the bundled scripts smac_2_06_01-dev.py,
spearmint_april2013_mod.py and hyperopt_august2013_mod.py
to get an idea what can/must be done.

BayesOpt2_parser.py

The parser file implements a simple interface which only allows the manipulation
of the config file:

config = manipulate_config(config)

See the python documentation [http://docs.python.org/2/library/configparser.html]
for the documentation of the config object. Common usage of
manipulate_config is to check if mandatory arguments are provided.
This is also the recommended place to convert values from the HPOLIB section to
the appropriate values of the optimization package.

BayesOpt2Default.cfg

A configuration file for your optimization package as described in the
configuration section.

Convert Search Spaces

[image: Fork me on GitHub]

 Optimization algorithms

Optimization algorithms

HPOlib ships several optimization packages by default. These are:

	
	ConfigurationRunner

	Executes configurations which are saved in a csv file.

	
	SMAC v2.06.01

	Includes the ROAR and SMAC algorithm (Hutter et al., 2011 [http://www.cs.ubc.ca/labs/beta/Projects/SMAC/papers/11-LION5-SMAC.pdf]).

	
	SMAC v2.08.00

	Includes the ROAR and SMAC algorithm (Hutter et al., 2011 [http://www.cs.ubc.ca/labs/beta/Projects/SMAC/papers/11-LION5-SMAC.pdf]).

	
	SMAC v2.10.00

	Includes the ROAR and SMAC algorithm (Hutter et al., 2011 [http://www.cs.ubc.ca/labs/beta/Projects/SMAC/papers/11-LION5-SMAC.pdf]).

	
	Spearmint (github clone from april 2013)

	Performs Bayesian optimization with Gaussian Processes as described in
Snoek et al. (2012) [http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf].

	
	Hyperopt (github clone from august 2013)

	Includes random search (Bergstra and Bengio, 2012 [http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf]) and the Tree Parzen
Estimator (Bergstra et al., 2011 [http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf])

Configuration Runner

The ConfigurationRunner is an optimizer which runs configurations saved in
a csv file. It is useful to evaluate configurations which do not come from an
optimization algorithm and still benefit from HPOlib’s functionality.

By default, it expects a csv file called configurations as input. The first
line determines the names of the hyperparameters, every following line
determines a single configuration.

The following is an example file for the branin function:

x,y
0,0
1,1
2,2
3,3
4,4
5,5
6,6
7,7
8,8
9,9
10,10

WARNING: ConfigurationRunner does not check if the configurations
adhere to any configuration space. This must be done by the user.

Furthermore, ConfigurationRunner can execute the function evaluations in
parallel. This is governed by the argument n_jobs and only useful if the
target machine has enough processors/cores or the jobs are distributed across
several machines.

 Plotting results

Plotting results

Exporting results

To process results with programming languages different than python we
provide a script called HPOlib-export, which can convert HPOlib
experiment pickles into different formats:

HPOlib-export input output [-t|--type output_type]

Example

HPOlib-export benchmarks/branin/smac_2_06_01-dev_1_2014-11-24--16-6-19-290280/smac_2_06_01-dev.pkl output/smac_branin_seed1 -t json

The output looks something like this:

{"instance_order": [[0, 0], [1, 0], [2, 0], [3, 0], [4, 0], [5, 0], [6, 0], [7, 0], [8, 0], [9, 0]], "cv_endtime": [1416846588.037684, 1416846588.714215, 1416846589.185275, 1416846589.71545, 1416846590.240511, 1416846590.645061, 1416846591.157578, 1416846591.588725, 1416846592.075068, 1416846592.565032], "optimizer_time": [], "title": null, "folds": 1, "total_wallclock_time": 89.56732000000001, "trials": [{"status": 3, "std": 0.0, "test_additional_data": {"0": "../logreg.py"}, "test_duration": 3.9904310000000001, "instance_results": [0.0906], "test_std": 0.0, "additional_data": {"0": "../logreg.py"}, "test_instance_durations": [3.9904310000000001], "params": {"batchsize": "0", "l2_reg": "0", "lrate": "0", "n_epochs": "0"}, "result": 0.0906, "test_instance_status": [3], "duration": 3.9904310000000001, "test_status": 3, "test_result": 0.0906, "test_instance_results": [0.0906], "instance_status": [3], "instance_durations": [3.9904310000000001]}, {"status": 3, "std": 0.0, "test_additional_data": {"0": "../logreg.py"}, "test_duration": 2.6245590000000001, "instance_results": [0.20121], "test_std": 0.0, "additional_data": {"0": "../logreg.py"}, "test_instance_durations": [2.6245590000000001], "params": {"batchsize": "4", "l2_reg": "6", "lrate": "3", "n_epochs": "0"}, "result": 0.20121, "test_instance_status": [3], "duration": 2.6245590000000001, "test_status": 3, "test_result": 0.20121, "test_instance_results": [0.20121], "instance_status": [3], "instance_durations": [2.6245590000000001]}, {"status": 3, "std": 0.0, "test_additional_data": {"0": "../logreg.py"}, "test_duration": 3.3856489999999999, "instance_results": [0.15843699999999999], "test_std": 0.0, "additional_data": {"0": "../logreg.py"}, "test_instance_durations": [3.3856489999999999], "params": {"batchsize": "5", "l2_reg": "2", "lrate": "3", "n_epochs": "1"}, "result": 0.15843699999999999, "test_instance_status": [3], "duration": 3.3856489999999999, "test_status": 3, "test_result": 0.15843699999999999, "test_instance_results": [0.15843699999999999], "instance_status": [3], "instance_durations": [3.3856489999999999]}, {"status": 3, "std": 0.0, "test_additional_data": {"0": "../logreg.py"}, "test_duration": 16.756257000000002, "instance_results": [0.13843800000000001], "test_std": 0.0, "additional_data": {"0": "../logreg.py"}, "test_instance_durations": [16.756257000000002], "params": {"batchsize": "5", "l2_reg": "1", "lrate": "6", "n_epochs": "7"}, "result": 0.13843800000000001, "test_instance_status": [3], "duration": 16.756257000000002, "test_status": 3, "test_result": 0.13843800000000001, "test_instance_results": [0.13843800000000001], "instance_status": [3], "instance_durations": [16.756257000000002]}, {"status": 3, "std": 0.0, "test_additional_data": {"0": "../logreg.py"}, "test_duration": 2.7620979999999999, "instance_results": [0.13769999999999999], "test_std": 0.0, "additional_data": {"0": "../logreg.py"}, "test_instance_durations": [2.7620979999999999], "params": {"batchsize": "2", "l2_reg": "10", "lrate": "2", "n_epochs": "0"}, "result": 0.13769999999999999, "test_instance_status": [3], "duration": 2.7620979999999999, "test_status": 3, "test_result": 0.13769999999999999, "test_instance_results": [0.13769999999999999], "instance_status": [3], "instance_durations": [2.7620979999999999]}, {"status": 3, "std": 0.0, "test_additional_data": {"0": "../logreg.py"}, "test_duration": 3.5262229999999999, "instance_results": [0.272984], "test_std": 0.0, "additional_data": {"0": "../logreg.py"}, "test_instance_durations": [3.5262229999999999], "params": {"batchsize": "4", "l2_reg": "7", "lrate": "9", "n_epochs": "0"}, "result": 0.272984, "test_instance_status": [3], "duration": 3.5262229999999999, "test_status": 3, "test_result": 0.272984, "test_instance_results": [0.272984], "instance_status": [3], "instance_durations": [3.5262229999999999]}, {"status": 3, "std": 0.0, "test_additional_data": {"0": "../logreg.py"}, "test_duration": 2.293974, "instance_results": [0.28349999999999997], "test_std": 0.0, "additional_data": {"0": "../logreg.py"}, "test_instance_durations": [2.293974], "params": {"batchsize": "1", "l2_reg": "8", "lrate": "3", "n_epochs": "1"}, "result": 0.28349999999999997, "test_instance_status": [3], "duration": 2.293974, "test_status": 3, "test_result": 0.28349999999999997, "test_instance_results": [0.28349999999999997], "instance_status": [3], "instance_durations": [2.293974]}, {"status": 3, "std": 0.0, "test_additional_data": {"0": "../logreg.py"}, "test_duration": 2.1435740000000001, "instance_results": [0.23150000000000001], "test_std": 0.0, "additional_data": {"0": "../logreg.py"}, "test_instance_durations": [2.1435740000000001], "params": {"batchsize": "1", "l2_reg": "1", "lrate": "10", "n_epochs": "1"}, "result": 0.23150000000000001, "test_instance_status": [3], "duration": 2.1435740000000001, "test_status": 3, "test_result": 0.23150000000000001, "test_instance_results": [0.23150000000000001], "instance_status": [3], "instance_durations": [2.1435740000000001]}, {"status": 3, "std": 0.0, "test_additional_data": {"0": "../logreg.py"}, "test_duration": 5.0202150000000003, "instance_results": [0.275781], "test_std": 0.0, "additional_data": {"0": "../logreg.py"}, "test_instance_durations": [5.0202150000000003], "params": {"batchsize": "7", "l2_reg": "0", "lrate": "8", "n_epochs": "2"}, "result": 0.275781, "test_instance_status": [3], "duration": 5.0202150000000003, "test_status": 3, "test_result": 0.275781, "test_instance_results": [0.275781], "instance_status": [3], "instance_durations": [5.0202150000000003]}, {"status": 3, "std": 0.0, "test_additional_data": {"0": "../logreg.py"}, "test_duration": 2.2806799999999998, "instance_results": [0.13469999999999999], "test_std": 0.0, "additional_data": {"0": "../logreg.py"}, "test_instance_durations": [2.2806799999999998], "params": {"batchsize": "1", "l2_reg": "1", "lrate": "3", "n_epochs": "4"}, "result": 0.13469999999999999, "test_instance_status": [3], "duration": 2.2806799999999998, "test_status": 3, "test_result": 0.13469999999999999, "test_instance_results": [0.13469999999999999], "instance_status": [3], "instance_durations": [2.2806799999999998]}], "experiment_name": "smac_2_06_01-dev", "starttime": [1416846586.877219], "cv_starttime": [1416846587.882512, 1416846588.544788, 1416846589.009884, 1416846589.546839, 1416846590.061855, 1416846590.515719, 1416846590.983617, 1416846591.416308, 1416846591.905041, 1416846592.386514], "optimizer": "/home/feurerm/mhome/HPOlib/Software/HPOlib/optimizers/smac/smac_2_06_01-dev", "endtime": [1416846592.735704, 1416846608.662255], "max_wallclock_time": ""}

Currently supported output types/formats are:

	json [http://www.json.org/]

 The HPOlib Structure

The HPOlib Structure

To be written…

 Citing the HPOlib

Citing the HPOlib

If you use the HPOlib for your research, please cite our paper introducing
the HPOlib:

Towards an Empirical Foundation for Assessing Bayesian Optimization of
Hyperparameters[pdf [http://www.automl.org/papers/13-BayesOpt_EmpiricalFoundation.pdf]]
[poster [http://www.automl.org/papers/13-BayesOpt_EmpiricalFoundation_poster.pdf]]

NIPS Workshop on Bayesian Optimization in Theory and Practice (BayesOpt ‘13)

with the following Bibtex file:

@inproceedings{eggensperger2013,
 title = {Towards an Empirical Foundation for Assessing Bayesian Optimization of Hyperparameters},
 booktitle = {{NIPS} workshop on Bayesian Optimization in Theory and Practice},
 author = {Eggensperger, K. and Feurer, M. and Hutter, F. and Bergstra, J. and Snoek, J. and Hoos, H. and Leyton-Brown, K.},
 year = {2013}
}

 Index

Index

_static/ajax-loader.gif

_images/MeanTrace_comparison.png
Loss

10

20 30
#Function evaluations

40

_images/MeanTrace_fr.png
FIRSTRUN(1)

10

20 30
#Function evaluations

40

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/MeanTrace_all.png
Loss

L

SMAC(1)

TPE(1)
SPEARMINT(1)

10

20 30
#Function evaluations

40

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to HPOlib’s documentation!

 		
 Installation Instructions For HPOlib

 		
 Installing inside an virtualenv

 		
 Algorithms and Datasets

 		
 Benchmarks Overview

 		
 Description

 		
 Branin, RKHS, Hartmann 6d, Michalewicz and Camelback Function

 		
 LDA ongrid/SVM ongrid

 		
 Manual

 		
 How to run listed benchmarks

 		
 How to run your own benchmarks

 		
 Example

 		
 Configure the HPOlib

 		
 Configure theano for gpu and openBlas usage

 		
 How to run your own optimizer

 		
 Calling optimization_interceptor.py

 		
 BayesOpt2.py

 		
 BayesOpt2_parser.py

 		
 BayesOpt2Default.cfg

 		
 Convert Search Spaces

 		
 Test/Validate the Best Configuration(s)

 		
 Dispatchers: Different ways to invoke the Target Algorithm

 		
 Runsolver Wrapper

 		
 Python Function

 		
 Optimization algorithms

 		
 Configuration Runner

 		
 Plotting results

 		
 Exporting results

 		
 Example

 		
 The HPOlib Structure

 		
 Citing the HPOlib

_static/up-pressed.png

_static/minu