

 Navigation

 	
 next

 	How to Hire a Rock Star Engineer (v3.1)

Detailed Contents

	Introduction
	Why This Guide?

	How to Hire a Rock Star

	How Not to Hire a Rock Star

	Key Hiring Philosophy

	Interview Areas
	Technical Interviews
	The Architecture Interview

	The Coding Interview
	Algorithms and Logic

	Robustness and Maintainability

	Programming

	Performance, Scalability, and Security

	The Domain Expertise Interview

	Craftsmanship Interviews
	Process and Schedule

	Team-Sized Projects

	Non-Technical Skills
	Team and Company “Fit”

	Communication

	Interviewing Techniques

	Candidates’ Questions

	The Interview Plan
	The Pre-Interview

	The Interviews
	Preparation

	During the Interviews

	Cutting It Off Early

	The Follow-Up Session

	Special Cases
	Hiring Friends and Past Colleagues

	Contractors

	In Conclusion...
	...We’re Just Getting Started

	About This Guide
	Author’s Note and Credits

	Make Your Own!

	License

 Next: How to Hire a Rock Star Engineer

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

How to Hire a Rock Star Engineer

A guide to interviewing engineers at our company

tl;dr

We want Rock Star Engineers joining our team, so:

	We hire aptitude, not just knowledge

	We divvy up several interview topics among the team,
covering technical skills, commercial software craftsmanship, and team fit

	Every interviewer must reach a yes or no decision—we
can’t hire “maybes”

	We make and follow a plan so that
interviews are efficient, effective, and respectful

[Wondering what this guide is and where it came from? See the about page.]

Why This Guide?

Our company is undergoing a period of dramatic change, in its products, its business, and even
its approach to engineering. We’re going to need more people—and the right people—to meet
the opportunities ahead:

	Hiring well is critical to our success

We must rapidly grow the engineering team. But we have to grow it carefully.
A single bad hire can drag down the entire team.

	Hiring takes time and effort

A full interview round, covering all of the areas we consider important, can take 4–5 hours or
more. Trying to shortchange the interviewing leads to bad hires.

	Hiring is a team sport

With this much hiring and interviewing, every engineer will need to participate—not just
managers and leads. (And besides, don’t you want some say in who’s joining the team?)

This guide is an attempt to make sure that everyone understands how we vet candidates,
agrees on what we’re looking for, and that everyone’s time interviewing is well-spent.

How to Hire a Rock Star

Hiring great engineers involves time and effort, but it’s not really that complicated.
What it takes is:

	Understanding our key hiring philosophy

	Covering all of the important topics during the interviews

	Having an efficient, effective interview plan

This guide goes into detail on these areas. It also covers some
special situations that may arise.

How Not to Hire a Rock Star

For comparison, here are some actual hiring approaches I’ve encountered
(and why they just didn’t work):

	“His resume looks good enough, and we can’t afford to wait for a better match.”

(The job market was really competitive and we needed “warm bodies fast.”
Problem is, his resume exaggerated his skills, his bugs delayed our release,
and we had to go in and undo virtually all of his code.)

	“He’s really friendly and easy to get along with. Perfect team fit.”

(Every interviewer had a great conversation with him—the
same great conversation, it turned out. Nobody went deep technically.
After he was on board, we realized he couldn’t cut it and had to fire him,
which was awful for everyone.)

	“She’s highly-recommended by [respected employee],
so we shouldn’t ask tough questions in the interview.”

(We were afraid a challenging interview would alienate her.
But our softball questions gave her the impression we were technical lightweights,
and she took a job with a competitor.)

 Next: Key Hiring Philosophy

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

Key Hiring Philosophy

One overriding philosophy applies to all of our hiring:

We hire aptitude, not just knowledge.

Some companies hire based solely on what you know. Things like:

	How long have you been programming in Clojure/Python/C++/Fortran?

	How would you implement a private method in JavaScript?
... a singleton in Java?
... a multithreaded COM object?

	What are some common gotchas in configuring nginx to run on EC2?
... creating bulletproof rounded corners in CSS?
... porting an MFC application to WPF?

That’s some companies. Not us.

It’s not that we object to knowledge; it’s just that
knowledge alone is insufficient to make someone a great engineer.

You might think the perfect hire would be someone who’s an absolute expert
on the problems we’re solving and the technologies we’re using today.
But this industry moves fast, and we won’t face exactly the same mix
of problems and technologies tomorrow. It’s guaranteed.

Raw knowledge goes stale—sometimes very rapidly. (Look at the examples above.)
Someone whose entire value is locked up in a specific area of knowledge
just won’t be able to evolve with our business.

So instead, we hire ability, potential, aptitude...
We hire people who not only know current things, but also know how to learn new things.
We hire Rock Star Engineers who want to work on products and ideas that have never existed before,
because that’s what we’re building.

Interviewing for raw knowledge is relatively easy.
(In fact, you could just administer an online test
and not even bother with the hassle of an actual interview.)

Interviewing for aptitude takes more preparation and effort,
but it’s not so hard once you know how.
And it pays off right away.
That’s what this guide is all about.

 Next: Interview Areas

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

Interview Areas

We have to determine a candidate’s ability in several broad areas:

	Technical chops: the “software” part of software engineering
	Architecture: working on complex systems as a whole

	Coding: working on individual components

	Domain expertise: specific knowledge of tools, languages,
environments, etc.

	Craftsmanship: the “engineering” part of software engineering
	Process: commercial development processes and release cycles

	Team-sized projects: tools and techniques for complex projects

It’s important we get a firm read on the candidate in each of these areas.
Obviously, there’s no way that one interviewer could cover them all in an hour.
Instead, we divide up the topics between interviewers (more details later in
The Interview Plan).

There are also some topics that apply in every interview:

	Non-technical skills:
Will they enjoy working here? Will we enjoy having them work here?

	Our questions:
How we try to get valid answers that help us reach firm hiring decisions.

	Their questions:
What candidates ask us can be as revealing as how they answer our questions.

	Technical Interviews

	Craftsmanship Interviews

	Non-Technical Skills

	Interviewing Techniques

	Candidates’ Questions

 Next: Technical Interviews

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

 	Interview Areas

Technical Interviews

We have three technical interviews:

	The Architecture Interview

	The Coding Interview

	The Domain Expertise Interview

The next few pages go into detail on what each of these areas covers, but they’re meant as
guidelines and starting points—not as checklists.

If you’ll be conducting one of these interviews,
spend a few minutes ahead of time to figure out what you want to ask
and what directions you want to steer the conversation.

 Next: The Architecture Interview

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

 	Interview Areas

 	Technical Interviews

The Architecture Interview

Architecture interviews assess the candidates’ ability to work and think at the “whole-system”
level.

Architecture is not just for senior-level engineers. Junior engineers should understand how the
pieces they’ve worked on fit into the overall project, even if they might not know how to design
the system from scratch.

	Ask them to select a complex system they’ve designed/worked on, and have them explain to you
how the major pieces fit together.

	Get some sort of boxes-and-arrows diagram. What you’re looking for is the ability to
communicate the components of a complex system—not any particular diagramming methodology.
(It’s a good sign if they naturally gravitate to the whiteboard; if not, prompt them.)

	Find out what parts of the system they worked on, and how their pieces interfaced with the
others.

	Dig deep into pieces they worked on, but also dig into pieces they didn’t work on. It’s a great
sign if their knowledge extends beyond their own areas of responsibility.

	What were the requirements for the system? (You may not need to ask this—better engineers
will slip requirements into the discussion along the way.)

	Propose a requirements change, and discuss how they’d adapt the system to the new requirements.

	Why did they make the design choices they did? What were the trade-offs? (If they didn’t design
the system, can they explain the decisions that were made anyway?)

	Looking back, what would they change about the design? What parts worked particularly well or
particularly poorly?

Using a Design Problem

Rarely, you may come across a candidate whose previous projects just aren’t complex enough for a
meaningful architectural interview. In this case, you can give them a design problem. But this
is not ideal, for several reasons:

	It’s tricky to find a good architectural problem where candidates can grok the requirements
quickly and fit the design and discussion into a reasonable time.

	It’s extremely high-stress for the candidate. Some highly-qualified candidates just won’t do
well on a design-problem interview.

	Since you’re not talking about a real system, you can’t explore what went wrong or what they
would change.

If you must use a design problem in an architectural interview, here are some tips:

	Deliberately underspecify the requirements. Do they ask you to clarify requirements,
or do they just make assumptions?

	Give them time to think about their design—at least 10–15 minutes—before forcing them to
explain it to you. Offer to leave the room so they can think (and draw at the whiteboard).

	Pick something you’ve worked on before, so that you know the parameters and pitfalls. (But make
sure it’s general enough that the candidate can understand it. And don’t expect the candidate
to immediately intuit something that took you weeks to figure out.)

 Next: The Coding Interview

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

 	Interview Areas

 	Technical Interviews

The Coding Interview

Coding interviews cover the candidates’ ability to conceive and write great code. You can get
through an architectural interview without seeing a single line of (pseudo-)code; the opposite is
true for a coding interview.

Algorithms and Logic

Can they construct an algorithm? Do they understand basic logic?

	Design problems lasting about 10–15 minutes are completely appropriate here.

	How they approach the problem can be as interesting as whether the solution is correct.
Under-specify the requirements, and see if they prompt you for more details
or just make assumptions.

	You can also get them to talk about an elegant algorithm they designed in a past project.
Note: confusing and baroque is not elegant. Good sign: complex problem, simple solution.

	Try to avoid questions where the answer is trivial if you know the trick.
These don’t tell you a lot about the candidate,
other than what trick answers he or she already knows.
(A lot of “brain-teaser” type questions fall into this category.)

Open-Source Projects

If a candidate has contributed to an open-source project, this can be a great way for you to
get a first-hand look at their actual code.

But don’t just let them point you at GitHub and leave it at that.
Use their public code as the basis for this coding interview.

(Think of it a bit like you’re conducting a code review with a new engineer.)

Robustness and Maintainability

	How does their code smell? (Try to start with what they’ve actually done on past projects,
not just what they would or should do. Hypotheticals tend to be rose-scented.)

	How does their code account for errors and exception conditions?

	When, how, and why have they refactored code?
Have they made continuous, incremental improvements to the code they’ve touched?
All-at-once replacements of major subsystems?
(With the rest of the team’s cooperation? When they weren’t looking?)
Or do they prefer coding by copy-and-paste?

	Have they taken any steps or created any systems to prevent errors from occurring,
or to detect them early? (Answers might involve unit testing, “asserts,” debug-only code,
test harnesses, internal self-validation, etc.)

	What approaches have they favored for tracking down bugs? (Their own or other coders’ bugs.)
Can they follow a coherent diagnostic plan to fix the root cause,
or will they “play Whack-a-Mole” with our code and introduce as many bugs as they fix?

	Some of these questions veer toward engineering religion.
(And candidates’ past teams may have been more or less religious than our own.)
Ask about the pluses and minuses of the approaches they took.
Did everyone on their team adopt those approaches?

Programming

	Are they locked into a single language or platform, or have they demonstrated the
ability and willingness to move between environments as the needs arise?
Have they created domain-specific languages to address particular problems?

	How have they applied design patterns? Is the approach thoughtful and intended to address
specific needs, or do they sprinkle inappropriate design patterns throughout their code in the
hope of achieving magic results?

	Do they understand the differences between object-oriented, procedural, declarative,
functional, and other types of programming? (Even if they don’t use those terms.) Are they
locked into a single approach, or more flexible?

	Do they have a working understanding of fundamental computer science concepts?
What do they understand (or not) about multithreading? Asynchronous processing,
remote procedure calls, event-driven programming? Memory allocation, garbage collection?
(Not so much the specifics of any given environment, but an understanding of the underlying
mechanisms in general.)

Performance, Scalability, and Security

	What performance and scalability issues have they encountered? How did they discover them and
track down the causes? How did they address them?

	When and how do they optimize their code? In the design stage? Everywhere throughout the code?
Only in specific areas where they had problems? Based on rumors?

	Do they understand the difference between performance, availability, and scalability?

	What security concerns have been important in their coding? What’s their level of awareness of
security issues, and how have they avoided them?

There may also be specific performance, scalability, and security areas your
team will want to dig into as part of the
domain expertise interview. E.g., web
engineers should be aware of SQL injection attacks as part of their web domain expertise.

 Next: The Domain Expertise Interview

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

 	Interview Areas

 	Technical Interviews

The Domain Expertise Interview

You’ll recall that we hire ability, not just knowledge.
But we do expect candidates to have some current knowledge in their fields.
(It’s definitely a red flag if the candidate shows a complete lack
of expertise in any relevant domain.)

Also, understanding what a candidate has learned in the past
can help indicate what he or she is capable of learning in the future.

	Find out how they acquired their domain expertise. E.g., “what technical area have you learned
about most recently, why did you need to learn it, and how did you learn it?”

	If you’re going to ask about quirks of a particular environment, be certain that those quirks
are ones that any engineer would absolutely have to know to be successful in that environment.
(Coding is not a trivia contest. That’s what we have Google for. And Stack Overflow.)

	“I don’t know exactly, but here’s how I’d find the answer”
is often a perfectly good response to a domain-specific question.

	Does their knowledge cover a breadth of domains (tools, programming languages, environments,
etc.)? Have they shown a consistent history of picking up new domains? These are some of the
best predictors of a candidate’s ability to succeed.

 Next: Craftsmanship Interviews

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

 	Interview Areas

Craftsmanship Interviews

Commercial software development is all about the difference between tinkering and shipping. In our
industry, it doesn’t matter how brilliant and elegant your code is if it never ships.

Get the candidates talking about what they’ve actually done, not how things should be done.
Although you can learn about development best practices in school or from books, you don’t truly
know them until you’ve been through the process.

We try to look at two broad areas of commercial engineering savvy:

	Process and Schedule

	Team-Sized Projects

As before, the details on the next few pages are meant as guidelines and starting points for
discussion, not as checklists for what you should ask if this is your interview area.

 Next: Process and Schedule

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

 	Interview Areas

 	Craftsmanship Interviews

Process and Schedule

	Do they understand the commercial software development cycle? Do they use an agile approach,
or waterfall? (Waterfall-sprinkled-with-agile?) Are they religious about it? Zealots?

	How do they define “done”? (Or alpha, beta, release, etc., if those terms applied to their
approach.)

	What kind of schedule was their last project on? Did it last weeks, months, or years?
How long were iterations/sprints?

	Have they ever worked on a project that released late? Failed to ship at all? What happened,
and why? (And if all their projects shipped on time, to what do they credit that success?)

	How did specifications or user stories fit in? Who wrote them? How were changes handled?

	Was there dedicated QA? What were its responsibilities? How did they interact with QA?
What do they expect out of a QA team?

	What kinds of release processes have they encountered, and how do they work? Devops? Hand-off to
ops team? Continuous deployment? Send a master disc image to the manufacturing plant in Ireland?

	Where did project management and/or program management fit in?

	What other groups in the company have they interacted with, and what was that experience like?
Product management? Documentation? Marketing? Business development?

	How did their endgames work? What kind of effort did they (personally) have to put in to get
the product out the door? How did they (team or personally) manage change and minimize risk
during the endgame?

	What were some trade-offs they had to make during the process? What bug did they feel worst
about deferring, and why did they defer it anyway? (Candidates who think software ships without
bugs won’t be happy in the real world.)

	What have they learned from projects they’ve released? What would they change on their next
project?

 Next: Team-Sized Projects

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

 	Interview Areas

 	Craftsmanship Interviews

Team-Sized Projects

There are substantial differences between working alone and working on a team.
You’ll want to make sure that candidates will be comfortable working on your code,
and that you’ll be comfortable working on theirs.

	Have they worked on team projects? How big was the team? How big was the codebase?

	What was the division of labor? Did it change between releases? During the course of a single
release?

	What tools did they use to help manage team-sized projects and codebases? Did they (personally)
create any tools or processes to improve team efficiency or code quality?

	What bug/issue tracking systems have they used? Pluses and minuses?

	What revision control systems have they used? Positives and negatives? Do they have a religious
objection to our choice of source code management?
(Aside: using revision control even on solo projects is a great sign.)

	How will they feel about working with existing code? (You won’t get a real answer if you ask
this outright. Try digging into past situations where they’ve inherited code and what that
experience was like for them.)

	What tools and techniques did they use to assure quality? (Continuous integration? Code
reviews? Debugging libraries? Etc.)

	Have they ever rewritten (refactored) a substantial portion of the code during a
release/iteration (or over the course of multiple iterations)?
What kind of planning went into that? How did it work out?

 Next: Non-Technical Skills

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

 	Interview Areas

Non-Technical Skills

Every interviewer should be assessing the candidate’s team fit and communication skills.

Team and Company “Fit”

“Fit” is one of those areas that’s tough to describe, but you’ll know it when you see it.
The team should discuss (before interviewing any candidates) what qualities are important to them.

In addition, there are a few specific qualities that we’re always looking for, in any engineer,
and the hiring manager should be sure to probe these areas:

	Passion

	Does their enthusiasm for what they’re been doing show? Is it infectious? Will they
get as excited about working here? Or is it just a paycheck?

	Drive and endurance

	We’re a high-intensity company working in a competitive space. Do they
thrive on that kind of environment, pace, and pressure? Or would they be happier at a larger,
more-structured, slower-moving company?

(At the same time, do they have the self-awareness to avoid burning out?)

	Self-direction (and leadership potential)

	How do they respond to unclear, conflicting,
or missing direction? Will they set out to proactively resolve issues and drive
the product forward, or will they wait to be told what to do? Over time, will they establish
areas of technical leadership and become a resource to the team?

(Obviously there are different expectations here based on their seniority, but you should be on
the lookout for leadership potential at any level.)

	The right blend of humility and arrogance

	This is a tricky balance, and a well-functioning team can handle a variety of engineers
throughout this spectrum. But you want to avoid the extremes.

Some level of arrogance isn’t uncommon—Rock Stars tend to be aware of their skills. But nobody
wants to work with an engineer who won’t listen to others’ thoughts and who won’t function as
part of a team. At the opposite end, an engineer won’t be effective if they’re so humble that
they’ll never speak up and defend their own ideas.

(Big red flag though: if you hear the candidate attacking people on a personal level,
rather than attacking ideas, that’s not going to work out. “That was an idiotic idea” is OK;
but “she was an idiot for proposing that idea” has no place in our team.)

Communication

Every interview is an opportunity to assess candidates’ communication skills.

	Is their communication “high bandwidth”? Do they express their thoughts clearly? Do they get
what you’re saying quickly? Will you have to slow down to communicate with them? Will you try to
avoid meetings with them?

	Do they listen to what you ask/say? Do their responses indicate they’ve understood you? Do they
ask for clarification when they don’t? Or do they make assumptions?

	Will they give other engineers’ ideas a fair hearing, or be immediately dismissive?

	Can they use the whiteboard effectively?

	Do you leave the interview feeling that you’ve had a conversation? A fruitful exchange of ideas?

	Our engineering teams are often split between locations and time zones. Have they worked with
geographically-dispersed teams before? How did it work for them? What are their concerns about
it?

 Next: Interviewing Techniques

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

 	Interview Areas

Interviewing Techniques

You must reach a yes or no decision about the candidate during your session (on the area you’re
covering). Do everything you can to avoid exiting with a “maybe”—we can’t hire “maybes.”

	If you’re unsure on something, immediately ask follow-up questions that will help confirm or
refute your initial impressions.

	Test the limits of their knowledge—dig until you can’t get any further.
For technical areas, you can use “what if” questions and on-the-fly requirements changes to probe
beyond what you’ve already heard. (“How would your design have been different if you had to...?”)

	Don’t be afraid to wait for an answer. You’re asking tough questions—hopefully ones they
haven’t heard and memorized before—and they’ll need time to think about their answers. Long
pauses are OK.

	If you’re getting snap answers that are poorly thought-out, it may just be interviewing jitters.
Gently prompt the candidate that pausing to think is OK: start your next question with something
like, “Take a moment to think about how you (rest of question).”

	Always start with what they actually did, not what they would or should do.
(“How should an agile development process be implemented” will get you a textbook answer.
“How did your agile process work” will get you real information.) Once you have
this baseline, you can start to explore hypotheticals like, “what would you want to change?”

	Don’t accept stock answers, and don’t be afraid to cut off memorized speeches—especially ones
that don’t answer the question you asked.

	Watch for “we.” If all of a candidate’s answers use “we,” it may be modesty or a sense of team
ownership, but it could also be that the candidate wasn’t personally involved. Ask follow-up
questions until it’s clear.

	Be conscious of “echoing.” Clever interviewees will pick up on the issues facing our team from
their early interviews, and then tailor their answers in later sessions to respond to (echo)
these issues.

This isn’t necessarily a bad thing (it shows a certain ability to think on the fly), but don’t
mistake this technique for deep and spontaneous insight into our needs.

	Ask open-ended questions, not yes-or-no ones.

	Don’t guess or assume. Ask!

Just because something is on their resume, or their name is in the product
credits, or they allude to something, that doesn’t make it so. Ask them to be sure.

Many of these techniques are part of an approach called “behavioral interviewing,” which can
help you arrive at a firm decision on whether or not we should hire the candidate.

Things You Can’t Ask

There are a bunch of questions you must not ask candidates, because they violate our own
policies, or for legal reasons (which can vary by location).

HR provides this information as part of interview training;
we don’t try to duplicate their information here.

 Next: Candidates’ Questions

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

 	Interview Areas

Candidates’ Questions

Be sure to leave some time to answer the candidate’s questions during the interview. Everyone
should allow 5–10 minutes for this, and hiring managers substantially more. (However, later
interviewers will tend to find the candidates’ questions have been answered in earlier sessions.)

You can sometimes learn as much about a candidate from the questions they ask as from the answers
they provide you. Candidates’ questions often reflect their own top concerns from their current
jobs. (People who are good at interviewing will also ask questions that point out their own
strengths, so don’t necessarily read too much into what they ask.)

Candidates’ questions are a good opportunity for you to sell the company and the position. Be
prepared to answer questions such as:

	“What’s it like to work here?”

	“What do you see as most important for this job?” (Seasoned interviewees will ask this of
everyone they talk to, and then compare the answers.)

	“Why did you want to work here?”

	“What’s it like to work for (the hiring manager)?”

Even as you’re selling the company, you should represent things accurately. We can determine
whether candidates are a good match for us, but we largely rely on their judgment to figure out
whether our company is a good match for them. Candidates need an accurate picture of the company
to be able to make this decision for themselves.

 Next: The Interview Plan

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

The Interview Plan

Interviews are a lot of effort, for everyone involved. They consume multiple hours of the
engineering team’s time, and usually take the candidate away from work. It’s important that this
time not be wasted.

Our engineering interview process:

	Tries to weed out unlikely candidates early, before we commit the entire team’s time

	Spends enough time with likely candidates to truly get to know them,
so we (and they) can make a well-informed decision

	Allocates some time before and after the interview to ensure the process runs smoothly and
effectively

	Treats all candidates with respect, even if we don’t end up making an offer

People we don’t hire may end up working for partners, vendors, customers, or competitors.
(There’s no value in making enemies.)

	The Pre-Interview

	The Interviews

	The Follow-Up Session

 Next: The Pre-Interview

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

 	The Interview Plan

The Pre-Interview

All candidates should be pre-interviewed before bringing them in for a full interview round.
The pre-interview can be a phone screen or a brief in-person interview.
It has two purposes:

	It confirms that the candidate’s interest, availability,
and compensation expectations match our own.
(This can be handled by the hiring manager or HR/recruiting.)

	It assesses background and technical skills to make sure the candidate is a plausible match.
(This should be handled by hiring manager or a team member.
Although HR/recruiting is able to do some filtering of the candidate pool,
a sanity check on technical skills needs to come directly from one of us.)

Only the most-promising candidates from the pre-interview
should be brought in for a full interview round.

 Next: The Interviews

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

 	The Interview Plan

The Interviews

For candidates who pass our pre-interview,
the next step is scheduling a full interview round with the team,
covering all of our interview topics.

Preparation

Our engineering interview covers a lot of ground, and takes a lot of time. Some preparation
beforehand will make sure everything runs smoothly.

Identify an “interview coordinator” to own the process. This could be the hiring manager or
someone on the team. The coordinator should:

	Figure out who’s on the interviewing team: this should include the hiring manager, peers,
people who will report to or be led by the candidate, and people from other groups or
departments who will work closely with the candidate.

	Make sure everyone on the interviewing team is clear on what the position involves
and what qualities and skills we’re looking for.

	Divide up interview areas discussed earlier in this guide:
everyone on the interview team should be assigned particular areas for their sessions.
This ensures that every important area is covered by at least one person;
it also helps avoid everyone asking the candidate the same questions.

	Make the schedule: a typical session will last one hour.
Some interviewers may want slightly more or less time,
but trying to schedule less than 45 minutes for a session guarantees
that either you’ll fall off schedule
or you won’t go deep enough to make a decision in your area.
Include the follow-up session (described later) in the schedule.

	The coordinator should send out a complete interview schedule
to everyone who will be interviewing.
Include the candidate’s resume and any relevant profile links.

Use a meaningful subject on the email (e.g., “Gerald Fang interview, Tuesday 1:00-5:00 p.m.”,
not “FW: Job opening”). Copy reception and HR/recruiting on the schedule.

	Reserve a conference room, if necessary. You don’t want to waste your time (or the candidate’s)
searching for a private place to talk at the start of your session.

	On the day of the interviews, be sure to let reception
(or whomever answers the door at your location)
know the candidate is coming in and who’s first on our schedule.
And double check that interviewer knows they’re up first, too.

Don’t let a candidate be left standing in the lobby (or out on the sidewalk)
while we run around trying to figure out who they’re supposed to be meeting—it’s
a terrible first impression.

During the Interviews

	Try hard to stay on schedule. There may be several interviews and other meetings intricately
scheduled within a day, and if you push the schedule late, everything can fall apart.

	Make clean hand-offs between sessions. Let the candidate know whom he or she will be speaking
with next and what they do. Make sure the next interviewer is aware that you are finished and
they are up.

	Keep the candidate comfortable: Interviews are already stressful, and nobody’s at their best when
they’re thirsty or desperately in need of a bathroom break.
Offer to let them head for the kitchen/restroom in between interviews, as you head off to find
the next interviewer.

	Similarly, if the interview schedule runs the better part of the day, you’ll need to make sure
the candidate gets lunch and/or dinner at the appropriate times.

	If the hiring manager is not last on the schedule, he or she should usually return at the very
end to check the candidate’s impressions and discuss next steps.
Let the candidate know when he or she will hear back from us (and then make sure it happens
as promised!).

	Do not let two candidates cross. If you have two people interviewing for the same position on
the same day, schedule them to arrive at different times and generally avoid each other.
Do not take competing candidates out to lunch together. (A possible exception here is college
recruiting, when there are several positions open for the same pool of candidates.)

Cutting It Off Early

Extremely rarely, it will become apparent during the interview sessions that a candidate
absolutely isn’t going to fit. (Because of our pre-interview screening,
we will almost never bring in a candidate who is a total wash-out, but it can occur.)

Only the hiring manager should cut the interview schedule short. If you’ve become certain that the
candidate is a complete mismatch, find the hiring manager at the end of the interview (rather than
handing off to the next interviewer), and explain the situation.

The hiring manager should talk to the candidate and try to assess why there was such a difference
between the pre-interview and the current session. If the interviewee is just having an incredibly
off day, the interview should be rescheduled. Or if the candidate misrepresented skills,
experience, or interest during the pre-interview, explain the problem and end the session.

 Next: The Follow-Up Session

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

 	The Interview Plan

The Follow-Up Session

After all of the interviews are completed, the interview team gets together to discuss the
candidate. Ideally, this should happen the same day, while the interviews are fresh in everyone’s
minds.

Schedule this post-interview session at the same time you schedule the interviews. Don’t rely on it
“just happening,” as it probably won’t.

There are three possible outcomes of this session:

	Hire

	Everyone agrees, based on their interview areas, that the candidate is a
Rock Star Engineer who should be part of our team.

Good job! The process worked. Now it’s up to the hiring manager and HR to put together an
offer and get the candidate on board. (All of which is beyond the scope of this document.)

	Reject

	In at least one area, the candidate was clearly not rock star material.

There’s no provision for partial credit here.
A clear “no” in any one interview area is a “no” for the candidate.
We don’t hire “good enough.” We hire Rock Stars.
(A bunch of vague impressions or “maybes” also argue for rejecting the candidate.)

Good job! The process worked.
True, you invested your time to not hire this candidate—and
you’ll invest some more time to consider the next candidate.
But that’s time well spent to maintain the quality of our team.

The hiring manager should contact the candidate to communicate the decision.
(Promptly and respectfully. HR has some tips on how to constructively deliver
disappointing news.)

	Need More Information

	There are conflicting impressions or dissension.

This outcome is something of a problem, as it’s going to involve
bringing the candidate back in for another session.

For the return visit, make certain everyone understands
what information was missing or conflicting in the first round,
and agree on a plan to reach a solid decision during the second round.

Be straightforward with the candidate.
(“We didn’t get a consistent read on your commercial development experience,
so we’d like to have you back to explore this area more.”)

In the future, you can try to avoid this outcome by using interviewing techniques
that lead to a firm yes or no decision.

Close the Loop

No matter what the outcome, make sure exactly one person is responsible
for communicating it to the candidate. (Typically the hiring manager.)

And then make sure the follow-up communication happens promptly.
Don’t leave candidates dangling.

 Next: Special Cases

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

Special Cases

The earlier pages covered our standard approach for interviewing engineers:
what we’re looking for and how we verify that candidates have it.

But what about the exceptions? Are there cases where we can use a simpler process?

Hiring Friends and Past Colleagues

The rule is simple: everyone gets a serious interview.
It doesn’t matter who you know or where you’ve worked before.
If you want to work here, our engineering team is going to make sure
you’re up to our standards.

Good candidates will understand and respect this.
In fact, they’ll be suspicious if they don’t get an in-depth interview:
it would suggest we’re not careful about who we hire.
And good engineers don’t want to—or have to—work for companies that hire carelessly.

Contractors

You should approach hiring for contract positions every bit as seriously as you’d approach hiring
a full-time engineer.

Even if the contractor will only be working on the product for a few months, we’ll (you’ll)
have to deal with the code they create for a long time after they’re gone. And many
people who start here as contractors end up joining the organization full-time later on.

Hey, wait a sec...

Did you pick up the theme here?

These aren’t actually special cases.
We carefully vet anyone we’d consider letting onto our team.

 Next: In Conclusion...

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	How to Hire a Rock Star Engineer (v3.1)

In Conclusion...

We’ve covered a lot of information here.
But since you’re a Rock Star Engineer yourself,
we already know you’re adept at picking up new skills.

Just remember:

	We hire aptitude, not just knowledge.

	To make sure we cover everything that’s important,
we allocate several interview topics among the team.

	During your interview, you must reach a yes or no decision
on the candidate for the area you’re covering.

	We want our interview process to be efficient, effective, and respectful,
so we make and follow a plan for the interviews.

...We’re Just Getting Started

This guide collects what we’ve learned about hiring Rock Star Engineers—so far.
Nearly every time we hire someone, we find ways to improve the process.

The “hire a rock star” approach is meant to evolve along with our team.
So please help make the guide better.
(It’s deliberately editable by the whole team.)

We’ve said throughout that this guide is only a starting point,
and no matter how many times we update it, that will always be true.
We’re still just getting started.

 Next: About This Guide

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 Navigation

 	
 previous

 	How to Hire a Rock Star Engineer (v3.1)

About This Guide

Author’s Note and Credits

How to Hire a Rock Star Engineer is a collection of best practices
for interviewing great software developers.

This guide and its predecessors have helped engineering teams small and large,
early-stage and established, improve their hiring results.
And while I can confidently tell you that I’ve found it useful in actual practice,
you should of course form your own opinions.
(If you’ve got a better way, I encourage you to improve on what I’ve written
and share it with the rest of us.)

I’m a some-time software engineer, engineering manager, and occasional startup executive
with a bit of experience [https://www.linkedin.com/in/medmunds]. I created my first version of this guide in 2005.
But its roots are much older.

Macromedia’s then-VP of Engineering Joe Dunn [http://cloudbreak.com/] introduced me to the “How to Hire a Rock Star”
concept in the late 90’s, around the time I was transitioning into engineering management.
Sadly, I didn’t keep a copy, and Joe’s document seems to have been lost in that earlier millennium.

My attempt to recreate the guide was based partly on (hazy) memories of Joe’s document,
but also drew on the collective wisdom of the many outstanding engineering teams,
managers, technical recruiters, and HR professionals I’ve worked with throughout the years.

So while the title of this work can be attributed to Joe, the ideas in it come from a wide
range of sources—before, at, and after Macromedia.
And any interpretation, mangling, and (likely) outright misrepresentation
of their ideas here is entirely my own fault.

(Joe has since informed me that his version was loosely based on something he’d encountered at a
former company. It seems likely that variations on this theme have been circulating within the tech
industry—and been spontaneously rediscovered—for decades.)

The guide been updated a few times since 2005, primarily to freshen the
technologies used as (recently-trendy) counterexamples in the philosophy
section.

For this update I’m calling “v3” I’ve completely restructured it for web consumption,
converted it to an easily-forked-and-adapted format,
and released it on GitHub under a Creative Commons license.
I hope you’ll find it a helpful starting point to use with your own team.

Mike Edmunds [http://www.mikeedmunds.com/]

March, 2013

Make Your Own!

What you’re reading here is one take on how to hire the best engineers.
You may have your own ideas on the subject. Great!

This guide is meant to be adapted for your company, team, and circumstances. It’s released under
a permissive license and maintained as forkable, editable, trackable source code.

To make your own version:

	Get yourself a copy of Sphinx [http://sphinx-doc.org/]

	Fork the How to Hire a Rock Star source [https://github.com/medmunds/how-to-hire-a-rockstar/] on GitHub

	Edit away

	Run make dirhtml to build the updated html

(Sphinx offers several other output formats, too—see the Sphinx [http://sphinx-doc.org/] docs.)

License

How to Hire a Rock Star Engineer

Copyright © 2005-2013, Mike Edmunds

[image: Creative Commons License]
 [http://creativecommons.org/licenses/by/3.0/deed.en_US]
This work is licensed under a

Creative Commons Attribution 3.0 Unported License [http://creativecommons.org/licenses/by/3.0/deed.en_US].

You are welcome to use, distribute, and adapt this guide
under the terms of the license.

Adaptations should indicate that they are based on “How to Hire a Rock Star Engineer [http://how-to-hire-a-rockstar.readthedocs.org/]”
by Mike Edmunds [http://www.mikeedmunds.com/]. Please provide a link back to this site.

(This license was deliberately selected to encourage maximal reuse of this guide.
Commercial use is permitted. And though you’re welcome to re-share any changes you or
your organization may make, you can also keep those changes proprietary if you’d prefer.)

 Please enable JavaScript to view the
 comments powered by Disqus.

 Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

 _images/cc_by_30_88x31.png

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/comment.png

_static/up.png

search.html

 Navigation

 		How to Hire a Rock Star Engineer (v3.1) »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2005-2013, Mike Edmunds.
 Created using Sphinx 1.2.2.

_static/down.png

_static/down-pressed.png

copyright.html

 Navigation

 		How to Hire a Rock Star Engineer (v3.1) »

Copyright

How to Hire a Rock Star Engineer

Copyright © 2005-2013, Mike Edmunds

[image: Creative Commons License]
 [http://creativecommons.org/licenses/by/3.0/deed.en_US]
This work is licensed under a

Creative Commons Attribution 3.0 Unported License [http://creativecommons.org/licenses/by/3.0/deed.en_US].

You are welcome to use, distribute, and adapt this guide
under the terms of the license.

Adaptations should indicate that they are based on “How to Hire a Rock Star Engineer [http://how-to-hire-a-rockstar.readthedocs.org/]”
by Mike Edmunds [http://www.mikeedmunds.com/]. Please provide a link back to this site.

(This license was deliberately selected to encourage maximal reuse of this guide.
Commercial use is permitted. And though you’re welcome to re-share any changes you or
your organization may make, you can also keep those changes proprietary if you’d prefer.)

 © Copyright 2005-2013, Mike Edmunds [image: Creative Commons License].
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up-pressed.png

