
hophop Documentation
Release 2.4

Jan Oliver Oelerich

Mar 18, 2018

Documentation

1 Installing hophop 1

2 Algorithm 3

3 Input/Output 5

4 Parallel execution 9

5 How to contribute 11

6 Citing hophop 13

i

ii

CHAPTER 1

Installing hophop

To compile and run hophop, you need the following requirements:

1.1 Requirements

The following libraries and software is required to compile successfully:

• C compiler Any compiler fulfilling the C99 standard is suitable. hophop was tested with Gnu Compiler
Collection and LLVM CLang (with no significant speed differences).

• CMake > 3.0 We use CMake as a build system, so you need to have it installed.

• Gnu Scientific Library (GSL) The gnu scientific library provides many mathematical algorithms, func-
tions, constants and so on. It is heavily used within the program, mainly for pseudo random number
generation and probability distributions.

• OpenMP Required for shared-memory parallelization. This is usually shipped with the compiler.

• Lis >= 1.4.43 (optional, but recommended!) Lis (Library of Iterative Solvers for linear systems) is used
as a solver for the balance equations method. When it is not found, the mgmres solver is used, the
source code of which is shipped with hophop. However, we recommend using Lis where possible.

Note: You may find some of the requirements in the repositories of your Linux distribution, at least the compiler,
CMake, and OpenMP. On Debian or Ubuntu Linux, for example, you can simply run the following command to
download and install some the requirements:

$ apt-get install build-essential cmake

1.2 Downloading the code

Please either clone the master branch from hophop’s Github repository or download one of the stable releases
from hophop’s Release page.

1

https://gcc.gnu.org/
https://gcc.gnu.org/
https://clang.llvm.org/
https://cmake.org/
https://www.gnu.org/software/gsl/
http://www.openmp.org/
http://www.ssisc.org/lis/
https://github.com/janoliver/hophop
https://github.com/janoliver/hophop/releases

hophop Documentation, Release 2.4

1.3 Building

With all the requirements in standard (i.e., discoverable by CMake) paths, you may be lucky and the following
works instantly:

$ tar xzf hophop-2.4.tar.gz
$ mkdir build_hophop
$ cd build_hophop
$ cmake ../hophop-2.4
$ make
$ make install

Tip: You can change the install location with the CMAKE_INSTALL_PREFIX command line variable:

$ cmake ../hophop-2.4 -DCMAKE_INSTALL_PREFIX=/usr/local

When CMake can’t figure out the locations of Lis and GSL, you can specify the following variables to help
searching:

• LIS_ROOT_DIR=/path/to/lis/location

• GSL_ROOT_DIR=/path/to/gsl/location

The locations must contain an include/ and lib (or lib64) folder, where the headers and libraries are located.
Example:

$ cmake ../hophop-2.4 -DLIS_ROOT_DIR=/opt/lis/ -DGSL_ROOT_DIR=/opt/gsl
$ make
$ make install

Tip: You can save custom library locations in the binary’s rpath, so they are found without requiring
LD_LIBRARY_PATH to be set.

$ cmake ../hophop-2.4 -DCMAKE_EXE_LINKER_FLAGS='-Wl,-rpath,/opt/lis/lib:/opt/gsl/
→˓lib'

1.4 Running hophop

When everything is built correctly, you can try running hophop by simply typing

$ /path/to/install/location/hophop

It will use some default parameters to run.

Tip: When you get some library not found errors, set the LD_LIBRARY_PATH variable to the location
of the libraries:

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/lis/lib:/opt/gsl/lib \
/path/to/install/location/hophop

2 Chapter 1. Installing hophop

CHAPTER 2

Algorithm

hophop simulates hopping charge transport through a 3D system of localized states, which we’re going to refer to
as sites. Sites in hophop have no spatial extend.

Charge carriers (electrons or holes) move via incoherent tunnelling transitions between the sites. Such transitions
are called hop (hence, the name hophop). The rate for such a transition (between sites 𝑖 and 𝑗 is given by the
Miller-Abrahams expression:

𝜈𝑖𝑗 = 𝜈0 exp

{︂
−2𝑑𝑖𝑗

𝛼

}︂
exp

{︂
−𝜀𝑗 − 𝜀𝑖 + |𝜀𝑗 − 𝜀𝑖|

2𝑘𝑇

}︂
where 𝜈0 is of the order of the vibrational frequency of the atoms, 𝑑𝑖𝑗 is the spatial distance between the sites, 𝜀𝑖
and 𝜀𝑗 are the sites’ energies and 𝑘𝑇 is thermal energy.

In hophop, there are two main algorithms that can be used for simulating transport:

• Kinetic Monte Carlo (KMC) Highly optimized KMC implementation that is able to simulate multiple
charge carriers. The memory footprint of the KMC mode is smaller than that of the Balance Equations,
however, especially for small systems (up to about 1e6 sites), KMC may be perform worse. Before
statistics about hopping can be collected, one should do a number of relaxation transitions so that the
system can reach thermal equilibrium.

• Balance Equation approach (BE) Solving the linearized BE for the system results in the occupations of
each sites in thermal equilibrium. The current implementation always assumes an empty system, i.e.,
a single charge carrier. A steady state (thermal equilibrium) is ensured.

For a description of the two algorithms and deeper insights into the theory of hopping transport, please have a look
at Part I of Jan Oliver Oelerich’s PhD Thesis, in particular Chapter 7 for a description of the numerics.

2.1 Units

hophop uses the following units in input and output:

• Length The parameters specifying the length of the sample, are given in units of 𝑁− 1
3 , where 𝑁 is the

total number of sites in the system. Choosing -l20 on the command line, for example, would result
in 20 × 20 × 20 sites. 𝑁− 1

3 is thus also the length scale in the simulation. Internally, the sample is
split into cells of with 2 * –rc * –llength (cutoff radius * loc. length).

3

https://www.staff.uni-marburg.de/~oelericj/theses/Oelerich_PhD.pdf

hophop Documentation, Release 2.4

• Energies/Temperatures All energies are measured in units of the disorder parameter 𝜎. Since:

𝜎/𝑘𝑇 ≈ 3.0

is a realistic value, the temperature T is usually around 0.3.

• Times Times are measured in 𝜈−1
0 , where 𝜈0 is the prefactor of the Miller-Abrahams hopping rates (see the

top of this page).

• Charges Units of the elementary charge 𝑒.

All other units are derived from these:

• Electric field: 𝜎/𝑒𝑁− 1
3

• Mobility: 𝑁− 2
3 /(𝑒𝜎𝜈−1

0)

• and so on. . . For other quantities, please just express them in terms of the above units.

4 Chapter 2. Algorithm

CHAPTER 3

Input/Output

Read here to learn how to set input parameters to hophop and how output is written.

3.1 Input

Parameters are specified in hophop on the command line only. The following is the output of hophop -h, that
describes all available CLI parameters.

HOP 2.4

This software simulates hopping in disordered semiconductors with hopping on
localized states. It uses Monte-Carlo simulation techniques. See the README.rst
file to learn more.

Usage: HOP [-h|--help] [-V|--version] [-q|--quiet]
[-fSTRING|--conf_file=STRING] [-m|--memreq] [--rseed=LONG]
[-iINT|--nruns=INT] [-P|--parallel] [-tINT|--nthreads=INT]
[-FFLOAT|--field=FLOAT] [-TFLOAT|--temperature=FLOAT]
[-lINT|--length=INT] [-XINT|--X=INT] [-YINT|--Y=INT] [-ZINT|--Z=INT]
[-NINT|--nsites=INT] [-nINT|--ncarriers=INT] [--rc=FLOAT]
[-pFLOAT|--exponent=FLOAT] [-aFLOAT|--llength=FLOAT] [--gaussian]
[--lattice] [--removesoftpairs] [--softpairthreshold=FLOAT]
[--cutoutenergy=FLOAT] [--cutoutwidth=FLOAT]
[-ILONG|--simulation=LONG] [-RLONG|--relaxation=LONG]
[-xINT|--nreruns=INT] [--many] [--be] [--mgmres] [--be_it=LONG]
[--be_oit=LONG] [--tol_abs=FLOAT] [--tol_rel=FLOAT] [--an]
[-BFLOAT|--percolation_threshold=FLOAT]
[-oSTRING|--outputfolder=STRING] [--transitions]
[-ySTRING|--summary=STRING] [-cSTRING|--comment=STRING]

-h, --help Print help and exit
-V, --version Print version and exit
-q, --quiet Don't say anything. (default=off)
-f, --conf_file=STRING Location of a configuration file for the

simulation.
-m, --memreq Estimates the used memory for the specified

parameter set. Print's the information and
exits immediately (default=off)

5

hophop Documentation, Release 2.4

--rseed=LONG Set the random seed manually.
-i, --nruns=INT The number of runs to average over.

(default=`1')
-P, --parallel If the runs given with the --nruns option

should be executed using mutliple cores and
parallelization. This suppresses any progress
output of the runs but will be very fast on
multicore systems. (default=off)

-t, --nthreads=INT The number of threads to use during parallel
computing. 0 means all there are.
(default=`0')

External physical parameters:
Some external physical quantities.
-F, --field=FLOAT The electric field strength in z-direction.

(default=`0.01')
-T, --temperature=FLOAT The temperature of the simulation.

(default=`0.3')

System information:
Parameters describing the distribution of sites in the system
-l, --length=INT This parameter specifies the length of the

(cubic) sample. If it parameter is set, the
options X,Y,Z are ignored!

-X, --X=INT The x-length of the sample. Right now, only
cubic samples should be used, so rather use
the parameter --length. (default=`50')

-Y, --Y=INT The y-length of the sample. Right now, only
cubic samples should be used, so rather use
the parameter --length. (default=`50')

-Z, --Z=INT The z-length of the sample. Right now, only
cubic samples should be used, so rather use
the parameter --length. (default=`50')

-N, --nsites=INT The number of localized states. This value has
to be bigger than --ncarriers. Deprecated!
Scale the number os states using --length.
(default=`125000')

-n, --ncarriers=INT The number of charge carriers in the system.
(default=`1')

--rc=FLOAT Determines up to which distance sites should be
neighbors. (default=`3')

-p, --exponent=FLOAT The exponent of the DOS g(x) = exp(-(x)^p)
(default=`2.0')

-a, --llength=FLOAT Localization length of the sites, assumed equal
for all of them. (default=`0.215')

--gaussian Use a Gaussian DOS with std. dev. 1. g(x) =
exp(-1/2*(x)^2) (default=off)

--lattice Distribute sites on a lattice with distance
unity. Control nearest neighbor hopping and
so on with --rc (default=off)

--removesoftpairs Remove softpairs. (default=off)
--softpairthreshold=FLOAT The min hopping rate ratio to define a softpair

(default=`0.95')
--cutoutenergy=FLOAT States below this energy will be cut out of the

DOS (default=`0')
--cutoutwidth=FLOAT The width of energies who are cutted.

(default=`0.5')

Monte carlo simulation:
The following options matter only, when the system is simulated using a Monte
Carlo simulation (which is the default)
-I, --simulation=LONG The number of hops during which statistics are

collected. (default=`1000000000')

6 Chapter 3. Input/Output

hophop Documentation, Release 2.4

-R, --relaxation=LONG The number of hops to relax.
(default=`100000000')

-x, --nreruns=INT How many times should the electron be placed at
some random starting position? (default=`1')

--many Instead of using the mean field approach,
simulate multiple charge carriers. (slow!!!)
(default=off)

Balance equations:
These options only matter, when the solution is found by solving the balance
equations. (setting the --be flag)

--be Solve balance equations (default=off)
--mgmres Force use of mgmres instead of lis

(default=off)
--be_it=LONG Max inner iterations after which the

calculation is stopped. (default=`300')
--be_oit=LONG Max outer iterations or restarts of the

algorithm. (default=`10')
--tol_abs=FLOAT absolute tolerance for finding the solution

(default=`1e-8')
--tol_rel=FLOAT relative tolerance for finding the solution

(default=`1e-8')

Analytic calculations:
These options control the analytic calculation of several properties of the
system, like the transport energy or the mobility.

--an Also try to calculate stuff analytically
(default=off)

-B, --percolation_threshold=FLOAT
The percolation threshold. (default=`2.7')

Output:
-o, --outputfolder=STRING The name of the output folder if one wants

output files.
--transitions Save all transitions to a file. (Can be big,

scales with -l^3!) Only valid when
--outputfolder is given (default=off)

-y, --summary=STRING The name of the summary file to which one
summary result line is then written.

-c, --comment=STRING Specify a string that is appended to the line
in the summary file for better overview over
the simulated data.

3.2 Output

There are three ways to get output from the simulation:

3.2.1 -o, --outputfolder

When the CLI parameter --outputfolder (or, equivalently, -o) is specified, hophop creates a directory with
that value and writes results.

The following files are written:

• params.conf: A file with the command line parameters given for that simulation. A simulation can be
started from such a file using the CLI parameter -f, --conf_file.

• 1/results.dat: A column-based text file with some simulation parameters and results. Each simula-
tion is one line. When the file already exists, a new line will be added. The descriptions of the columns
are given in the first two lines of the file.

3.2. Output 7

hophop Documentation, Release 2.4

When multiple runs are simulated, with the parameter -i, --nruns, then a folder is created for
each run, e.g., 1/results.dat, 2/results.dat etc.

• 1/sites.dat: The generated system and the number of times each site was visited. The columns of the
file are as follows:

x y z energy times_visited times_visited_upward

times_visited_upward is the number of times this site was visited in a hop, where the original
energy is lower than that of the target site (i.e., the hop is energetically an upward hop).

times_visited and times_visited_upward are only non-zero in KMC mode.

When multiple runs are simulated, with the parameter -i, --nruns, then a folder is created for
each run, e.g., 1/sites.dat, 2/sites.dat etc.

3.2.2 -y, --summary

Path to a single columnar summary file, in which system parameters and results are written. Each simulation is
one line. When the file already exists, a new line will be added. The descriptions of the columns are given in the
first two lines of the file.

In BE mode, some columns will be NaN or zero.

3.2.3 stdout

Some results will also be written to stdout.

8 Chapter 3. Input/Output

CHAPTER 4

Parallel execution

hophop can use OpenMP to execute multiple realizations of a simulation in parallel. This can be specified with
the -P, --parallel and the -t, --nthreads CLI parameters, in combination with -i, --nruns.

Typically, one averages over many realizations of the system, so -i, --nruns is greater than 1. For best
performance, the value of -i, --nruns can be evenly distributed between the number of threads.

9

hophop Documentation, Release 2.4

10 Chapter 4. Parallel execution

CHAPTER 5

How to contribute

We are happy to accept pull requests.

We use a modified gnu coding style. The code can and should be formatted using the indent tool like this:

indent -gnu -fc1 -i4 -bli0 -nut -cdb -sc -bap -l80 *.c && rm -rf *~

Block comments should look like this and precede functions etc.:

/*
* I am a block comment!

*/

For one-lined comments, use //

11

hophop Documentation, Release 2.4

12 Chapter 5. How to contribute

CHAPTER 6

Citing hophop

Please cite one or multiple of the following publications when you use simulation results generated with hophop.

• Fundamental characteristic length scale for the field dependence of hopping charge transport in disordered organic semiconductors
J. O. Oelerich, A. V. Nenashev, A. V. Dvurechenskii, F. Gebhard, and S. D. Baranovskii, Phys. Rev.
B 96, 195208 (2017). doi: 10.1103/PhysRevB.96.035204

• Theoretical tools for the description of charge transport in disordered organic semiconductors A. V.
Nenashev, J. O. Oelerich, and S. D. Baranovskii, J. Phys. Condens. Matter 27, 93201 (2015). doi:
10.1088/0953-8984/27/9/093201

• Field dependence of hopping mobility: Lattice models against spatial disorder A. V. Nenashev, J. O.
Oelerich, A. V. Dvurechenskii, F. Gebhard, and S. D. Baranovskii, Phys. Rev. B 96, 35204 (2017).
doi: 10.1103/PhysRevB.96.195208

13

https://doi.org/10.1103/PhysRevB.96.035204
https://doi.org/10.1088/0953-8984/27/9/093201
https://doi.org/10.1103/PhysRevB.96.195208

	Installing hophop
	Algorithm
	Input/Output
	Parallel execution
	How to contribute
	Citing hophop

