
HOP Ubiquitous Documentation
Documentation

Release 1.4.0

HOP Ubiquitous

Apr 04, 2018

Contents

1 Smart Spot - Quick Guide 1
1.1 What is a Smart Spot? . 3
1.2 Smart Spot Features . 3
1.3 First steps with your Smart Spot (Set up connectivity) . 3
1.4 How to install the device on a pole or on a wall? . 6
1.5 What is Homard Dashboard? . 7
1.6 Connecting and managing the device (default configuration) . 9
1.7 How to verify that the sensor is properly working? . 12
1.8 How to see the sensor information? . 13

2 Smart Spot - Development Guide 15
2.1 Homard API REST . 15
2.2 Homard RESTFul API Examples . 18
2.3 URL Manager (Physical Web configuration for advertising URLs) 28
2.4 Fiware Integration . 31
2.5 Orion Context Broker NGSI RESTFul API . 34
2.6 ANNEX 1: OMA LwM2M . 57
2.7 ANNEX 2: FIWARE-DOCKER Architecture . 61
2.8 ANNEX 3: STH-Comet RESTFul API . 65
2.9 ANNEX 4: Cygnus RESTFul API . 88
2.10 ANNEX 5: IoT Agent LwM2M RESTFul API . 109
2.11 ANNEX 6: Deploy and use of Grafana . 110
2.12 ANNEX 7: Perseo CEP . 113
2.13 ANNEX 7.1: Perseo-Core . 113
2.14 ANNEX 7.2: Perseo-Fe . 117
2.15 ANNEX 7.3: Perseo Use Cases . 124

3 HOP Ubiquitous - Relevant Links 131

i

ii

1

HOP Ubiquitous Documentation Documentation, Release 1.4.0

CHAPTER 1

Smart Spot - Quick Guide

2 Chapter 1. Smart Spot - Quick Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

1.1 What is a Smart Spot?

Smart Spot is a connected device that has the ability to create an area of interaction with citizens and visitors. These
devices send a URL (website link to open it in any browser such as smartphone Internet browser) to allow users to
connect to online contents and discover websites from physical locations. In addition, Smart Spot can optionally cap-
ture data regarding energy consumption, noise level and crowd-monitoring (people counting based on WiFi detection);
thereby, Smart Spot allows to monitor, define metrics and estimate the comfort level in a city area.

Smart Spot contextualizes the information of each Point of Interest sending notifications by proximity to mobile phones
through Bluetooth Low Energy in a range of 1 to 80 meters, without requiring to installing any native App over Android
OS or iOS, since it is directly supported by the Operating Systems via Physical Web and iBeacon technologies.

1.2 Smart Spot Features

1.3 First steps with your Smart Spot (Set up connectivity)

1. This is a Smart Spot.

2. On top of the Smart Spot there are four screws. Unscrew the cover and open the Smart Spot.

1.1. What is a Smart Spot? 3

HOP Ubiquitous Documentation Documentation, Release 1.4.0

3. When the Smart Spot is open, make sure the switch is on and insert the Micro SIM Card in its place.

4. Put the cover back and place the screws in their place.

4 Chapter 1. Smart Spot - Quick Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

5. When everything is ready inside the Smart Spot, you can start putting the probes and antennas on the back of
the device following the scheme of this figure.

6. Once all the probes and antennas are placed, the appearance of the Smart Spot would look like the figure.

1.3. First steps with your Smart Spot (Set up connectivity) 5

HOP Ubiquitous Documentation Documentation, Release 1.4.0

7. Finally, this is the aspect of a Smart Spot with all peripherals properly placed.

1.4 How to install the device on a pole or on a wall?

1. Put the clamps around the pole to hold the support. Screw the clamps until the support is fixed. On wall, hold
the support on the wall directly.

6 Chapter 1. Smart Spot - Quick Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2. Put the device on the support fitting the three pins in the three slots that the Smart Spot has in the back. Then,
drop it and fit it into the lower pin.

3. Once fitted on all the pins, insert the screw through the bottom and press it until the Smart Spot is fixed.

1.5 What is Homard Dashboard?

HOMARD is a device management platform for the OMA LwM2M protocol. HOMARD is our own platform.

The platform offers functionalities for device management, i.e., remote maintenance, fi rmware upgrade and
open/standard APIs for information reporting.

1.5.1 Software Management

Enabling the installation, removal of applications, and retrieval of inventory software components already installed on
the device and the most relevant fi rmware upgrades over the air.

1.5. What is Homard Dashboard? 7

HOP Ubiquitous Documentation Documentation, Release 1.4.0

1.5.2 Diagnostics and monitoring

Enabling remote diagnostics and data models to check devices status, memory status, battery status, radio performance,
Quality of Services (QoS) parameters, peripherals status, sensors status, and other relevant parameters for remote
monitoring.

1.5.3 Connectivity and Security

Bluetooth, cellular connectivity, proxies, list of authorized servers for remote fi rmware upgrade and also all the
relevant parameters for enabling secure communication.

1.5.4 Device Capabilities

Allowing to the Management Authority to remotely enable and disable device peripherals like cameras, Bluetooth,
USB, sensors (ultrasound, temperature, humidity, etc.) and other relevant peripherals from the nodes.

1.5.5 Lock and wipe

Allowing to remotely lock and/or wipe the device, for instance when the device is lost (relevant for devices in open
air, outdoor, etc.), or when the devices are stolen or sold. It enables the remote erase of personal/enterprise data when
they are compromised.

1.5.6 Policy management

Allowing the deployment on the device policies which the client (node, device, sensor) can execute and enforce
independently under some specifi c conditions, i.e., if some events happen, then it performs some operations.

8 Chapter 1. Smart Spot - Quick Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

1.6 Connecting and managing the device (default configuration)

The Smart Spots have a pre-configured WiFi Station where devices will connect. This Access Point (AP) can be easily
deployed from GSM/GPRS Routers, MiFi Routers, WiFi Access Points, etc.

The default configuration is:

• SSID name: defaultSSAP

• Password: defaultSSAP1234

It means that Smart Spot will search and try to connect by default to a WiFi network with the mentioned SSID and
password.

You need to create an access point in your smartphone or router with the default SSID name and Password for the
device to connect to the network. When this access point is created, the device will connect automatically and it will
be visible in Homard Dashboard.

From http://staging.hopu.eu, enter with your User and Password that we give you and can see the Homard Dashboard
options.

There are two ways to connect the Smart Spot to network other than default network:

• WiFi Connectivity.

• APN Connectivity (SIM Card).

1.6. Connecting and managing the device (default configuration) 9

http://staging.hopu.eu

HOP Ubiquitous Documentation Documentation, Release 1.4.0

1.6.1 WiFi Connectivity

To connect to a network other than default network:

1. Firstly create an access point with the default configuration of device.

2. Go to Device Management and you will see a list of devices connect to the network.

3. Locate the device to be configured and click it.

4. In the next column, a list of object of this device appears, therefore search the WLAN Connectivity object.

5. Create a new Instance and enter data:

• Instance ID: Number not equal to zero.

• Interface name: Human-readable identifier.

• Enable (True or False): True to connect with this configuration.

• SSID: SSID name of network to connect the device.

• Mode: Normally must be 1 (client), but there are others options.

• Channels: Choose a number of channel.

• Standard: Network type. Normally is the option 2.

• Authentication Mode: Resource can be anyone. It will be automatically configured by the stack.

• Encryption Mode: Defines which key is expected and used: * WPA2/WPA: Will require fi ll the “WPA Pre
Shared Key” field. * WEP: Will require fi ll the “WEP Key Index” and “WEP Key Index” must be 1.

6. In the list of objects, search Device object and click it.

7. Search the Reboot option and click on play icon.

Finally, the device will reboot and connect to the configured network. Note that multiple access points configurations
can be stored and Smart Spot will try to connect to all of them until that it gets Internet connectivity.

10 Chapter 1. Smart Spot - Quick Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

1.6.2 APN Connectivity (Cellular / M2M)

To connect the device to an APN network other than the default network:

1. Firstly create an access point with the default configuration of device.

2. Go to Device Management and you will see a list of devices connect to the network.

3. Locate the device to be configured and click it.

4. In the next column, a list of object of this device appears, therefore search the APN Connection object.

5. Create a new Instance and enter data:

• Profile name: This name cannot be longer than 16 characters. Identifies the profile name on the device.

• APN: This resource contains the APN which will be used to achieve cellular connectivity. This value is provided
by the SIM card telco provider.

• Enable Status: This resource allows to enable o disable the configuration. Usually it will be true. The OMA Ob-
ject only allows to add one instance corresponding to the SIM card inserted on the device. Modify or delete/add
the instance to change the configuration.

• Authentication Type: This resource has a value >=0 and <=3. The value introduced by default should be 0.
The authentication type will be automatically selected based on the connectivity provider.

• User name: Resource is used to specify the user name used to access the APN. Unless specified by the telco
provider, this resource could be empty.

• Secret: Resource is used to specify the user name used to access the APN. Unless specified by the telco provider,
this resource could be empty.

• SIM card PIN: Resource is used to introduce the PIN used to unblock the SIM card.

6. In the list of objects, search Device object and click it.

7. Search the Reboot option and click on play icon.

Finally, the device will reboot and connect to the configured APN.

1.6. Connecting and managing the device (default configuration) 11

HOP Ubiquitous Documentation Documentation, Release 1.4.0

1.7 How to verify that the sensor is properly working?

To ensure that device and sensors are working, you can enter to Health Monitoring section of Homard. Here you will
fi nd information about Device Status, Performance and Latency.

In Device Status you can observe data about the Smart Spot CPU and Memory consumption and the configuration of
the device.

The Performance section shows information about the Smart Spot reachability, lost messages and other alarms.

Finally, Latency section shows information about the time it takes to perform a test and communicate with the server.

To update the information you need to click on the Book icon at the top right of the page. The information will be
visible at that time.

12 Chapter 1. Smart Spot - Quick Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

1.8 How to see the sensor information?

To see the information for each of sensor, you need to ingress to Device Management section of Homard and, in the
list of objects, look for the sensor that you want information. In this figure you can see the Temperature Object and
all its resources.

Here, you can see the information for each resource of Temperature Sensor.

To update the information of all resources you need to click on the Book icon at the top right of the page. If you want
update the information of a single resource, you need to click on the Book icon at right of the resource name.

Here, you can also do more actions with the resources.

You can create a simple observer or composite observer in a resource clicking the Eye icon at the right of the resource
name. This will send notifi cations every time that these resource changes.

Finally, you can active actions such as start/stop or reset. To active this actions you need to click on the Play icon at
the right of the resource name.

1.8. How to see the sensor information? 13

HOP Ubiquitous Documentation Documentation, Release 1.4.0

14 Chapter 1. Smart Spot - Quick Guide

CHAPTER 2

Smart Spot - Development Guide

2.1 Homard API REST

Homard offers in top of the OMA LwM2M server a RESTFul services such as mechanism to communicate with the
OMA LwM2M server. This HTTP/HTTPS API RESTFul allows users to manage connected devices connected to the
server.

Homard shows connected devices, and manages each of them. Inherit from OMA, the devices expose a set of ob-
jects/resources, which can contain one or more instances, and each instance, contains the final resources. Some
objects allow multiple instances (such as a Digital I/O Object, which represents the different digital inputs and outputs
from the Smart Spot, which can be used to control relays, read external added digital sensors etc.) and others only one
instance (such as Device Object). Numbers are used to identify the tuple (Object ID / Instance ID / Resource ID).

There are two API types: Synchronous and Asynchronous:

• Synchronous API provides the data as part of the reply to a request in near-real time; it is used mainly for data
which is available in Homard platform internally. Therefore, non-external delays are introduced and a very fast
reply can be offered.

• Asynchronous API is required mainly for the data coming from the sensors (i.e. Smart Spot); since the value
will be available when the Smart Spot replies to the request to Homard; delays can be introduced due to issues
such as communication latency (GPRS, WiFi etc. latency), sensors reading time (specially sensors such as air
quality which includes a processing time of few seconds), and finally due to duty cycle from the Smart Spot in
order to optimize energy (battery or solar panels powered). For that reason, Asynchronous API will requires a
callback address to inform when the value is available.

Information returned by the API is encapsulated into a JSON data structure, since is the best way to communicate with
high level applications (commonly developed in Java, JavaScript and Android).

More info in: https://homard.hopu.eu/indexPage/wiki.html

15

https://homard.hopu.eu/indexPage/wiki.html

HOP Ubiquitous Documentation Documentation, Release 1.4.0

HTTP PATH MethodDescription Result
/api/rest GET Returns all OMA clients connected to HOMARD [{client1},{client2},. . . {clientN}]
/api/rest/{endpoint_id} GET Returns the client description for a {endpoint_id} {client}
/api/rest/{endpoint_id}/{resource}?proto={https|http}&cburl={DESTINATION_URL}GET Returns resource {resource} from client {endpoint_id} to des-

tination callback URL
[{re-
source1},{resource2},. . . ,{resourceN}]

/api/rest/{endpoint_id}/{resource}?proto={http|https}&cburl={DESTINATION_URL}PUT Changes value of the resource {resource} on client {end-
point_id}. Content type need to be application/JSON and in
the request body {“id”: 2, “value”: new_value}

/api/rest/{endpoint_id}/{resource}/co
(Requires POST JSON
payload)

POST Sets observe on the resource {resource} and, when the re-
source value is between ‘cbmin’ and ‘cbmax’, posts its value
on ‘URL’. Note that if cbmin and cbmax are omitted then all
values will be tracked.

/api/rest/{endpoint_id}/{resource}/observeDELETEStops the monitoring on resource {resource}

2.1.1 API-RESTFul

There are two API types synchronous and asynchronous, on one hand it is synchronous API, that corresponds with
Server request such as get the client list, get a client specific data or list the observes set on a device. On the other
hand it is device request. The device requests are launched on background, this means that the response will send to a
callback URL defined by the client. This API requires the HTTP basic authentication using a Homard account.

The following diagram shows the differences between synchronous and asynchronous API.

This subsection will present the synchronous API and an example. The available synchronous API resources are as
follows:

HTTP
METHOD

Path Description

GET /api/rest/ Lists all connected clients with their current data
GET /api/rest/{endpoint_id} Get specific connected client data
GET /api/rest/cached/{endpoint_id}/{resource} Read the resource cached value (last value)
GET /api/rest/{endpoint_id}/co List client observes
POST /api/rest/{endpoint_id}/{resource}/observe Observes the selected resource and updates the in-

ternal cache.
DELETE /api/rest/{endpoint_id}/{resource_path}/observeRemoves selected client observer
DELETE /api/rest/{endpoint_id}/{resource_path}/co/{coID}Removes selected client composite observer

16 Chapter 2. Smart Spot - Development Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.1.2 Cached Synchronous RESTFul API

Synchronous APIs are for requests which are directly resolved by Homard Server. Thereby, we get the last values
cached on the server directly, without any delay. At this way, Homard can be seen as a data broker.

HTTP METHOD Path Parame-
ters

Description

GET /api/rest /cached /{end-
point_id}/{resource}

None Read the resource cached value

The API is very useful in special for applications that can not setup a HTTP server in its architecture. This synchronous
API can be outdated, to solve it, the user can enable a simple observer, which constantly updates the resource. In order
to create an internal observer to maintain the value updated for a specific resource is as follows:

HTTP
METHOD

Path Parame-
ters

Description

POST /api/rest /{end-
point_id}/{resource}/observe

None Observes the selected resource and updates the
internal cache

2.1.3 Asynchronous RESTFul API

This subsection present the asynchronous API and an execution example. The available asynchronous API resources
are as follows:

HTTP
METHOD

Path Parameters Description

GET /api/rest/{endpoint_id}/{resource}cburl: Destination call-
back url

Read the value and returns it to the destina-
tion callback url

proto: Destination call-
back url protocol

PUT /api/rest/{endpoint_id}/{resource}cburl: Destination call-
back url

Write the value on resource and returns the
status to callback url

proto: Destination call-
back url protocol

2.1.4 Historical Data RESTFul API

Homard offers in top of the OMA LwM2M server a RESTFul services such as mechanism to communicate with
the OMA LwM2M server. This HTTP/HTTPS RESTFul API allow users to query the stored information such as
temperature and humidity. In addition, sensor status and maintenance parameters can be queried in order to know if
there are any problem with network connectivity.

2.1. Homard API REST 17

HOP Ubiquitous Documentation Documentation, Release 1.4.0

HTTP PATH MethodDescription Result
/api/hist GET Returns historic of

OMA clients con-
nected to HOMARD.

[{ “name”: “HOPf4b85eab98de”, “cn”: “Hop-
Core2” }, { “name”: “HOPf4b85eab98d6”,
“cn”: “HopCore9” }]

/api/hist/{endpoint_id}[?from={timestamp}}[&to={timestamp}][&limit={max_records}][&page={limited_page_requested}]GET Returns all his-
toric values of
{enpoint_id} device.

[{ “eid”: “HOPf4b85eab98de”, “tem-
perature”: 27.36767578125, “humidity”:
45.654815673828125, “date”: “Jun 21, 2016
2:10:36 PM” }, . . .]

/api/hist/{endpoint_id}/temp[?from={timestamp}][&to={timestamp}][&limit={max_records}][&page={limited_page_requested}]GET Returns temperature
historic values of
{enpoint_id} device.

{ values: [27.36767578125, 27.96767578125,
. . .], dates:[“Jun 21, 2016 2:10:36 PM”, “Jun
21, 2016 2:10:37 PM”, “Jun 21, 2016 2:10:48
PM”,] }

/api/hist/{endpoint_id}/hum[?from={timestamp}][&to={timestamp}][&limit={max_records}][&page={limited_page_requested}]GET Returns humidity
historic values of
{enpoint_id} device.

{ values: [27.36767578125, 27.96767578125,
. . .], dates:[“Jun 21, 2016 2:10:36 PM”, “Jun
21, 2016 2:10:37 PM”, “Jun 21, 2016 2:10:48
PM”,] }

/api/hist/events/{endpoint_id}/[?from={timestamp}][&to={timestamp}][&limit={max_records}][&page={limited_page_requested}]GET Returns device
events such as when
{enpoint_id} was
registered, updated
or deregistered.

[{ “name”: “HOPf4b85eab98de”,
“event”: “REGISTRATION”, “ts”: “Jun
21, 2016 2:08:09 PM” }, { “name”:
“HOPf4b85eab98de”, “event”: “UPDATED”,
“ts”: “Jun 21, 2016 2:08:56 PM” }, . . .]

/api/hist/events/recount/{endpoint_id}/[?from={timestamp}][&to={timestamp}]GET Returns a count of
{enpoint_id} events.

[{ “count”: 2, “event”: “DEREGISTRATION”
}, { “count”: 4, “event”: “REGISTRATION” },
{ “count”: 841, “event”: “UPDATED” }]

2.2 Homard RESTFul API Examples

2.2.1 Synchronous RESTFul API Examples

List connected clients: GET /api/rest/

Query:

GET /api/rest

Result:

[
{

“endpoint”:”HOP-Sensor-Debug”,
“registrationId”:”MTKt5ejSeu”,
“registrationDate”:”2015-02-16T01:06:27+01:00”,
“address”:”/127.0.0.1:54604”,
“lwM2MmVersion”:”1.0”,
“lifetime”:120,
“bindingMode”:”UQ”,
“rootPath”:”/”,
“objectLinks”:[

{
“url”:”/1/0”,
“attributes”:{
},
“objectId”:1,

18 Chapter 2. Smart Spot - Development Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

“objectInstanceId”:0
},
{

“url”:”/3”,
“attributes”:{
},
“objectId”:3

},
{

“url”:”/4”,
“attributes”:{
},
“objectId”:4

},
{

“url”:”/5”,
“attributes”:{
},
“objectId”:5

},
{

“url”:”/3201/0”,
“attributes”:{
},
“objectId”:3201,
“objectInstanceId”:0

},
{

“url”:”/3201/1”,
“attributes”:{
},
“objectId”:3201,
“objectInstanceId”:1

}
]

}
]

Get specific client: GET /api/rest/{endpoint_id}

Query:

GET /api/rest/HOP-Sensor-Debug

Result:

{
“endpoint”:”HOP-Sensor-Debug”,
“registrationId”:”MTKt5ejSeu”,
“registrationDate”:”2015-02-16T01:06:27+01:00”,
“address”:”/127.0.0.1:54604”,
“lwM2MmVersion”:”1.0”,
“lifetime”:120,
“bindingMode”:”UQ”,
“rootPath”:”/”,
“objectLinks”:[

{
“url”:”/1/0”,

2.2. Homard RESTFul API Examples 19

HOP Ubiquitous Documentation Documentation, Release 1.4.0

“attributes”:{
},
“objectId”:1,
“objectInstanceId”:0

},
{

“url”:”/3”,
“attributes”:{
},
“objectId”:3

},
{

“url”:”/4”,
“attributes”:{
},
“objectId”:4

},
{

“url”:”/5”,
“attributes”:{
},
“objectId”:5

},
{

“url”:”/3201/0”,
“attributes”:{
},
“objectId”:3201,
“objectInstanceId”:0

},
{

“url”:”/3201/1”,
“attributes”:{
},
“objectId”:3201,
“objectInstanceId”:1

}
]

}

Get client observes: GET /api/rest/{endpoint_id}/co

Query:

GET /api/rest/UBI8086f2759cbb/observes

Result:

[
{

“client”: “HOPf4b85eab962b”,
“path”:

{
“objectId”: 3303,
“objectInstanceId”: 0,
“resourceId”: 5700

},
“ocos”:

20 Chapter 2. Smart Spot - Development Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

[
{

“url”: “homard.hopu.eu:8090/co”,
“protocol”: “https://”,
“threshold”: 0,
“condition”: “>=”,
“method”: “POST”,
“oneShot”: false,
“outputFormat”:

[
{

“field”: “sensor”,
“value”: “$eID”

},
{

“field”: “value”,
“value”: “$value”

},
{

“field”: “r”,
“value”: “$resource”

},
{

“field”: “threshold”,
“value”: “$threshold”

}
],

“id”: 1,
“type”: 0,
“endpoint”: “HOPf4b85eab962b”,
“path”: “/3303/0/5700”

}
]

}
}

]

Remove client observe: DELETE /api/rest/{endpoint_id}/{resource_path}/observe

Query:

DELETE /api/rest/HOPf4b85eab9b03/3303/0/5700/observe

Result:

HTTP Response 200 OK

2.2.2 Asynchronous RESTFul API Examples

Read device resource: GET /api/rest/{endpoint_id}/{resource}

GET parameters:

• proto (mandatory): Determines the protocol to use (HTTP or HTTPS).

• cburl (mandatory): Determines the response destination url.

• cbauthusr (optional): Used if the destination server requires Basic authentication.

2.2. Homard RESTFul API Examples 21

HOP Ubiquitous Documentation Documentation, Release 1.4.0

• cbauthpass (optional): Used if the destination server requires Basic authentication.

Read Device Resource Query:

GET /api/rest/HOPf4b85eab9b03/1/0/5?proto=https&cburl=homard.hopu.eu:8090/co

Post Result on Callback Url:

{
“eid”:”HOPf4b85eab98de”,
”url”:”/1/0/5”,
”oID”:1,
”iID”:0,
”rID”:5,
”type”:”INTEGER”,
”value”:1

}

Post Error on Callback Url:

{
“eid”:”HOPf4b85eab98de”,
“operation”:”read”,
“resource”:”/1/0/5”,
“status”:”ERROR”

}

Write device resource: PUT /api/rest/{endpoint_id}/{resource}

PUT parameters: proto (mandatory), cburl (mandatory), cbauthusr (optative), cbauthpass (optative).

Write Device Resource Query:

PUT /api/rest/HOPf4b85eab9b03/1/0/5?proto=https&cburl=homard.hopu.eu:8090/co

Required Payload (Data to write):

{
“id”: 5,
“value”: 2

}

Post Result on Callback Url:

{
“eid”:”HOPf4b85eab98de”,
”url”:”/1/0/5”,
”oID”:1,
”iID”:0,
”rID”:5,
”type”:”INTEGER”,
”value”:1

}

Post Error on Callback Url:

{
“eid”:”HOPf4b85eab98de”,
“operation”:”write”,

22 Chapter 2. Smart Spot - Development Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

“resource”:”/1/0/5”,
“status”:”ERROR”

}

2.2.3 Asynchronous API: Observes

Observation creation requires a specific POST payload. This is a JSON object that contains the necessary parameters.
The necessary data to create an observer is as follows:

• Observe resource: POST /api/rest/{endpoint_id/{resource}/co

• Payload:

– threshold: Threshold value

– op: Operation condition (<=, >=, . . .)

– typeShot: Type shot could be “repeat” or “oneshot”

– method: The method of the request, usually POST

– durl: Destination URL where the observer will send the notifications

– proto: Protocol to use (“https://” or “http://”)

– authUsr: Destination URL Basic authentication user (Optional)

– authPass: Destination URL Basic authentication password (Optional)

Also the JSON schema for this object is:

{
“$schema”: “http://json-schema.org/draft-04/schema#”,
“id”: “http://jsonschema.net”,
“type”: “object”,
“properties”: {

“threshold”: {
“id”: “http://jsonschema.net/threshold”,
“type”: “string”

},
“op”: {

“id”: “http://jsonschema.net/op”,
“type”: “string”

},
“typeShot”: {

“id”: “http://jsonschema.net/typeShot”,
“type”: “string”

},
“method”: {

“id”: “http://jsonschema.net/method”,
“type”: “string”

},
“durl”: {

“id”: “http://jsonschema.net/durl”,
“type”: “string”

},
“proto”: {

“id”: “http://jsonschema.net/proto”,
“type”: “string”

},

2.2. Homard RESTFul API Examples 23

https://
http://

HOP Ubiquitous Documentation Documentation, Release 1.4.0

“authUsr”: {
“id”: “http://jsonschema.net/authUsr”,
“type”: “string”

},
“authPass”: {

“id”: “http://jsonschema.net/authPass”,
“type”: “string”

}
},
“required”: [

“threshold”,
“op”,
“typeShot”,
“method”,
“durl”,
“proto”

]
}

Example of request

Create observation:

POST /api/rest/HOPf4b85eab9b3a/3303/0/5700/co

Required Payload:

{
“threshold”: “0”,
“op”: “>=”,
“typeShot”:”repeat”,
“method”: “POST”,
“durl”:”homard.hopu.eu:8090/co”,
“proto”:”https://”,
“authUsr”: “”,
“authPass”: “”

}

Response Received:

HTTP response 200

Notification Received on Callback Url:

{
“eid”:”HOPf4b85eab9b3a”,
”url”:”3303/0/5700”,
”oID”:3303,
”iID”:0,
”rID”:5700,
”value”:”17.028683”

}

Error Notification Received on Callback Url:

{
“eid”:”HOPf4b85eab9b3a”,
“operation”:”observe”,

24 Chapter 2. Smart Spot - Development Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

“resource”:”/1/0/5”,
“status”:”ERROR”

}

2.2.4 Asynchronous API: Customizing observer notification message (integrating
with third party platform that requires a specific format)

Observation notifications have a standard output that can be formatted according to user needs. To achieve this we
must add a JSON array called “outputPacket” that contains the format of the notification packet.

This array contains field/value JSON objects This array contains one or more objects of type field/value
({“field”:”NameFile”, “value”:”Variable or Constant”}). The field “field” contains the attribute name of the notifi-
cation final object. The field “value” represents the value of that attribute, It can be constant or variable. The allowed
variable are the following:

• $eID: The Endpoint ID of the observed device.

• $resource: The OMA LwM2M resource observed.

• $value: The observation value received.

• $threshold: The observation threshold.

• **$condition:* The observation condition.

For example if we want to receive the following notification:

{
“sensor”: “HOPf4b85eab9b3a”,
“value”:15.32,
“uuid”: “067e6162-3b6f-4ae2-a171-2470b63dff00”

}

We have to set the following “outputPacket”:

{
...,
“outputPacket”:[

{
“field”:”name”,
“value”:”$eID”

},
{

“field”: “value”,
“value”:”$value”

},
{

“field”: “uuid”,
“value”:”067e6162-3b6f-4ae2-a171-2470b63dff00”

}
]

}

The JSON schema of the complete object is:

{
“$schema”: “http://json-schema.org/draft-04/schema#”,
“id”: “http://jsonschema.net”,

2.2. Homard RESTFul API Examples 25

HOP Ubiquitous Documentation Documentation, Release 1.4.0

“type”: “object”,
“properties”: {

“threshold”: {
“id”: “http://jsonschema.net/threshold”,
“type”: “string”

},
“op”: {

“id”: “http://jsonschema.net/op”,
“type”: “string”

},
“typeShot”: {

“id”: “http://jsonschema.net/typeShot”,
“type”: “string”

},
“method”: {

“id”: “http://jsonschema.net/method”,
“type”: “string”

},
“durl”: {

“id”: “http://jsonschema.net/durl”,
“type”: “string”

},
“proto”: {

“id”: “http://jsonschema.net/proto”,
“type”: “string”

},
“authUsr”: {

“id”: “http://jsonschema.net/authUsr”,
“type”: “string”

},
“authPass”: {

“id”: “http://jsonschema.net/authPass”,
“type”: “string”

},
“outputPacket”: {

“id”: “http://jsonschema.net/outputPacket”,
“type”: “array”,
“items”: [

{
“id”: “http://jsonschema.net/outputPacket/0”,
“type”: “object”,
“properties”: {

“field”: {
“id”: “http://jsonschema.net/outputPacket/0/field”,
“type”: “string”

},
“value”: {

“id”: “http://jsonschema.net/outputPacket/0/value”,
“type”: “string”

}
}

},
{

“id”: “http://jsonschema.net/outputPacket/1”,
“type”: “object”,
“properties”: {

“field”: {
“id”: “http://jsonschema.net/outputPacket/1/field”,

26 Chapter 2. Smart Spot - Development Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

“type”: “string”
},
“value”: {

“id”: “http://jsonschema.net/outputPacket/1/value”,
“type”: “string”

}
}

}
]

}
},
“required”: [

“threshold”,
“op”,
“typeShot”,
“method”,
“durl”,
“proto”

]
}

Example of request

Create Observation:

POST /api/rest/HOPf4b85eab9b3a/3303/0/5700/observe

Required Payload:

{
“threshold”: “0”,
“op”: “>=”,
“typeShot”:”repeat”,
“method”: “POST”,
“durl”:”homard.hopu.eu:8090/co”,
“proto”:”https://”,
“authUsr”: “”,
“authPass”: “”,
“outputPacket”:[

{
“field”:”name”,
“value”:”$eID”

},
{

“field”: “value”,
“value”:”$value”

}
]

}

Response Received:

HTTP response 200

Notification Received on Callback Url:

{
“name”:”HOPf4b85eab9b03”,

2.2. Homard RESTFul API Examples 27

HOP Ubiquitous Documentation Documentation, Release 1.4.0

”value”:17.028683
}

2.3 URL Manager (Physical Web configuration for advertising URLs)

Device URL Manager is the key component of the Industrial Physical Web solution offered to provide accessible and
intuitive user interfaces. In details, the Device URL manager is used to administer the URL broadcasted / transmitted
by the devices; this URL can be issued by BLE or Wi-Fi direct and must be coded with the Eddystone URL protocol1
from Google.

Nowadays, there is more than 3 million Apps hosted on Google Play, most of them are used a few times for their tem-
poral or location context and later they are forgotten wasting resources on mobile devices or at best cases uninstalled.
Google wants to solve this problem through Physical Web, this technology will allows service providers to interact
with users depending on the location, temporality context or directly with the objects surrounding the user without
the need of install any application on any device, These applications will be developed as progressive webs and they
will allow user to feel that they are interacting with the real world through native applications, these applications are
capable of interacting directly with mobile device hardware or even receiving notifications.

HOP Ubiquitous is a partner from Google for physical Web, and a service for the creation of secure and validated
URLs is available in HPOI.info. Contact HOP Ubiquitous team for more details.

Physical Web creates a communication channel that connects the physical and virtual worlds using the Bluetooth
Low Energy connection to send “push” notifications to nearby Smartphones that are in their range of action. This
connection does not need any tracker native app, only with Google Chrome installed and with bluetooth switched on
every user can interact with digital content directly in this physical point.

Thanks to technologies such as physical web and the Device URL Manager, Smart Spot is able to broadcast a URL
with temporal and spatial context that will send to people around the Smart Spot for use cases such as tourism,
infortainment, accesibility, marketing, make visible content or Webs available linked to a Physical place, etc

Device URL Manager provides an Open Source Core2 for users to be able to develop their own solutions which is
accessible through an API REST, which is developed in python using Open Source frameworks such as Django and
Django REST Framework that provides to the developers an ecosystem that allows an easy extension of the system
for introducing layers of security or registration of devices.

URL Manager: https://github.com/HOP-Ubiquitous/DeviceUrlManager

28 Chapter 2. Smart Spot - Development Guide

https://github.com/HOP-Ubiquitous/DeviceUrlManager

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.3.1 URL Manager RESTFul API

This tool is used for manage the physical web URL of any device by software.

Smart PhoneS detect the Eddystone URL advertisement with a fixed device url that point to the Device URL Manager,
then the Device URL Manager will redirect the request to the real uRL.

More information in the repository: https://github.com/HOP-Ubiquitous/DeviceUrlManager

2.3.2 URL Manager RESTFul API Examples

• Fixed device url (Request): https://hpoi.info/AA00BB11DD22

• Device URL Manager external device URL (Response): https://google.es

• MAC address: is a normal MAC without the two dots. E.g: 00:11:22:33:44:55 > shortened MAC:
001122334455

Create Device

URL Method URL
Params

Data Params Description

/api/v1/devices POST None Type: applica-
tion/json

Method to add a device with its MAC and a target
URL

Success Response:

Code: 201 (Created)

Content:
{

“mac”:”001122334455”,
”external_url”:“https://google.es/”

}

Error Response:

Code: 400 (Bad Request)

Content:
{

“bad_field_name”:[error causes]
}

Sample Call:

{
url: “/api/v1/devices”,
dataType: “json”,
data: {

“mac”: “001122334455”,
“external_url”: “https://google.es/”

},
type : “POST”,
success : function(r) {

console.log(r);

2.3. URL Manager (Physical Web configuration for advertising URLs) 29

https://github.com/HOP-Ubiquitous/DeviceUrlManager
https://hpoi.info/AA00BB11DD22
https://google.es

HOP Ubiquitous Documentation Documentation, Release 1.4.0

}
}

Show Device Data

URL Method URL Params Data
Params

Description

/api/v1/devices/:shortened_macGET short-
ened_mac=[String]

None Method to show the device infor-
mation

Success Response:

Code: 200 (Ok)

Content:
{

“mac”: “001122334455”,
“external_url”: “https://google.es/”

}

Error Response:

Code: 404 (Not Found)

Content:
{

“detail”: “Device Not Found”,
}

Sample Call:

{
url: “/api/v1/devices/001122334455”,
dataType: “json”,
type : “GET”,
success : function(r) {

console.log(r);
}

}

Update Device Data

URL Method URL
Params

Data Params Description

/api/v1/devices/:shortened_macPUT None Type: applica-
tion/json

Method to update the device infor-
mation

Success Response:

Code: 200 (Ok)

Content:

30 Chapter 2. Smart Spot - Development Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

{
“mac”: “001122334455”,
“external_url”: “https://google.es/”

}

Error Response:

Code: 404 (Not Found)

Content:

{
“detail”: “Device Not Found”,

}

Sample Call:

{
url: “/api/v1/devices/001122334455”,
dataType: “json”,
data: {

“external_url”: “https://google.es/”
},
type : “PUT”,
success : function(r) {

console.log(r);
}

}

2.4 Fiware Integration

FIWARE (www.fiware.org) in an open platform promoted by the European Commision and maintained by the FI-
WARE Foundation, where HOP Ubiquitous is Gold Member.

FIWARE offers an Open Ecosystem that join different technology enablers for scalable data mangement and make
feasible to integrate different services and Internet of Things devices into a common and interoperable framework
based on Open Standards. In particular, FIWARE is based on Open Standards such as OMA NGSI for the Services
Interface and ETSI ISG CIM for the data models. HOP Ubiquitous is an active member and contributor in ETSI
ISG CIM and also an active contributor in OMA; being one of pioneer and main companies working around OMA
LwM2M protocol.

In details, FIWARE has a strong role in the Smart Cities market, since the is key to the growth and functionality of
Smart Cities, for this reason we are committed to initiatives such as Open and Agile Smart Cities (OASC) association
with over 100 cities enrolled and FIWARE technology as the basis for making it feasible.

Smart Spot is a FIWARE-ready device, it means that Smart Spot has been validated, passed a set of tests, participated
in plugfests and the most important is supporting the APIs, FIWARE data models based on ETSI ISG CIM and it is
fully interoperable and integrated with key components from FIWARE such as Orion Context Broker.

In details, Orion Context Broker is the core of FIWARE platform; since it enables the common integration of het-
erogenous data sources into a common component, which enables the capacity to carry out advanced queries, cross
data among heterogenous domains (e.g., noise with crowd, weather and mobility, etc.), and finally it can exports data
to several data analytics components such as Hadoop / COSMOS (Big Data), SHT (Time Series), CKAN (Open Data),
MongoDB (Non-structured data), etc.

2.4. Fiware Integration 31

HOP Ubiquitous Documentation Documentation, Release 1.4.0

FIWARE and the solutions from HOP Ubiquitous are contributing to the creation of adapted and standardized solutions
to satisfy the described process from the cocreation and citizens engagement to the deployment of solutions based on
IoT to reach the digitalization and enhancement of different areas in the city.

Thanks to the LwM2M Bootstrap Server deployed and integrated in the Homard platform, it is really easy to setup the
server configuration for a the device. In this way, anyone can deploy its own LwM2M IOTAgent with a public server
IP and configure the device to integrate it in FIWARE.

A tutorial about Orion Context Broker has been developed by FIWARE and HOP Ubiquitous, which can be down-
loaded in: http://goo.gl/o1KXcT

2.4.1 OMA LwM2M IoT Agent

OMA LwM2M is a device management protocol created by the Open Mobile alliance (OMA) which allows the
remote manipulation of Internet of Things constrained devices. This complete protocol defines the procedures for
provisioning, commissioning and management of a device through the definition of the resources exposed by the
device.

The functionality of LwM2M protocol is carried out through a set of basic objects such as “Server”, “Security”, “De-
vice”, “Statistics”. . . but there are also more specific objects defined by the IPSO Alliance which aims to cover the need
common definitions for sensors such as temperature, humidity, presence, etc. Or actuators such as power/light/load
control, buzzers, etc.

CoAP (Constrained Application Protocol) defines the message header, request/response codes, message options and
retransmission mechanisms, this protocol together with UDP is used by LwM2M as a transport mechanism.

There are a large variety of topologies on the IoT but they have three common parts; devices, routers and backends.

In some scenarios, routers are transparent for the enddevices such as cellular technologies, examples are: GSM, Sig-
Fox, NarrowBand IoT or Wi-Fi Hallow, since they are already deployed by Telco’s. Others, such as Wi-Fi, Bluetooth,
6LoWPAN and Z-Wave are provided individually with the devices. In HOP Ubiquitous our technology is mainly
based on GSM and Bluetooth 4.0.

The FIWARE Foundation counts with its own set of services for the IOT. One of this kind of services is called FIWARE
IOT Agent, and we can find one that is fully compatible with our device architecture and connection protocols. HOP
Ubiquitous in collaboration with ATOS and Telefonica are maintaining the integration of OMA LwM2M protocol
with FIWARE via the Orion Context Broker. It is fully Open Source (URL al IoT Agent de HOPU en GitHub), and it
counts with a simple deployment over FIWARE and Linux-based platforms.

In addition, HOP Ubiquitous offers containers and Cloudenabled services with the integration of FIWARE and Orion
Context Broker (including OMA LwM2M IoT Agent). Contact HOP Ubiquitous support team for more details.

2.4.2 Orion Context Broker

In The architecture, a service for context and information storage, sharing and consumption is needed, in the FIWARE
Architecture this is the Orion Context Broker. This service is the one in charge to connect with the OMA LwM2M
IOT Agent in order to collect data coming from the IOT devices. One of the most important features of the Context
Broker is that it allows to model and gain access to context information in a way that is independent from the source
of that information. It uses a non-relational database (Mongodb) to store all the data, and counts with an easy to use
REST API with makes data accessible.

2.4.3 Cygnus

This is the FIWARE Service in charge of persisting data. It is based on Apache Flume, Cygnus offers as a data bus the
interconnection with several data sources and data platforms such as Hadoop, CKAN, STH Comet etc.

32 Chapter 2. Smart Spot - Development Guide

http://goo.gl/o1KXcT

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.4.4 FIWARE architecture

Taking the previous two components into account the FIWARE IoT platform is composed, in the following lines the
deployment of every service and the integration with the HOP Ubiquitous Smart Spot is described.

Deployment and integration with FIWARE

A previous setting up is needed before things can be switched on, taking into account the following steps. We will
assume that the user has a basic knowledge about DOCKER and LINUX CMD.

• Get and configure the Hopu modifi ed FiWARE IOTAgent:

1. git clone https://github.com/HOP-Ubiquitous/lightweightm2m-iotagent/tree/hopu

2. change the fi le content for config.js, omaRegistry.json and omaInverseRegistry.json in order to set
up our device confi guration to connect with.

3. execute: npm install

4. Launch a mongoDB instance for the IOTAgent with external port 7900.

• Prepare The orion context broker infrastructure:

1. Launch a mongoDB instance for the IoTAgent with external port 1026.

2. Launch a ORION Context Broker instance.

Docker makes really simple the previous steps.

• Make sure that the Smart Spot knows where is the IoTAgent to connect with:

1. Notify The Smart Spot about the IOTAgent IP with the bootstrap procedure.

• Rock & Roll:

1. Change directory (cd) to the IOTAgent one and execute ./bin/lwm2mAgent.js.

2. Turn on the Smart Spot

2.4. Fiware Integration 33

https://github.com/HOP-Ubiquitous/lightweightm2m-iotagent/tree/hopu

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.5 Orion Context Broker NGSI RESTFul API

Orion is a C++ implementation of the NGSIv2 REST API binding developed as a part of the FIWARE platform.

Orion Context Broker allows you to manage the entire lifecycle of context information including updates, queries,
registrations and subscriptions. It is an NGSIv2 server implementation to manage context information and its avail-
ability. Using the Orion Context Broker, you are able to create context elements and manage them through updates
and queries. In addition, you can subscribe to context information so when some condition occurs (e.g. the context
elements have changed) you receive a notification. These usage scenarios and the Orion Context Broker features are
described in this documentation.

2.5.1 Create entity v2

URL Method URL Params Definition
http://{{url}}:{{port-
orion}}/v2/entities

POST url:Link to the service that will be
consulted.

Method to put an entity in a
service.

port-orion: Port to connect with the
service.

Body:

{
id:”Entity ID”,
type:”Entity type”,
“attributeID0”: {

value:”Attribute value”,
type:”Attribute type”

},
“attributeID1”: {

value:”Attribute value”,
type:”Attribute type”

},...
}

Example of Body:

{
id:”Room7”,
type:”Room”,
“temperature”: {

value: 23,
type: ”Float”

},
“preassure”: {

value: 720,
type: ”Integer”

},...
}

Return:

Return an error message, if already exists an entity in the service with the same id.

34 Chapter 2. Smart Spot - Development Guide

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.5.2 Retrieve entity v2

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v2/entities/{{fiware-
entity}}

GET url:Link to the service that will be con-
sulted.

Method to retrieve an
entity of a service.

port-orion: Port to connect with the ser-
vice.
fiware-entity: ID of the entity which will
be retrieved from the service.

Return:

If the search has been successful then it returns the information else it returns an
→˓message error.

2.5.3 Retrieve entity as data model v2

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v2/entities/{{fiware-
entity}}?options=keyValues

GET url:Link to the service that will be
consulted.

Method to obtain an
entity of a service.

port-orion: Port to connect with the
service.
fiware-entity: ID of the entity which
will be retrieved from the service.

Return:

If the search has been successful then it returns the information of compressed way
→˓else returns an error message.

2.5.4 Retrieve entities v2

URL Method URL Params Definition
http://{{url}}:{{port-
orion}}/v2/entities?limit=50

GET url:Link to the service that will be
consulted.

Method to retrieve all
entities.

port-orion: Port to connect with
the service.

Return:

All entities of the service and for each entity shows their information

2.5. Orion Context Broker NGSI RESTFul API 35

http:/
http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.5.5 Retrieve entities as data model v2

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v2/entities?options=keyValues&limit=50

GET url:Link to the service that
will be consulted.

Method to retrieve all enti-
ties of a service.

port-orion: Port to connect
with the service.

Return:

All entities of the service and for each entity shows their information of compressed
→˓way.

2.5.6 Update entity v2

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v2/entities/{{fiware-
entity}}/attrs

PATCHurl:Link to the service that will be con-
sulted.

Method to update some
attributes of the entity.

port-orion: Port to connect with the
service.
fiware-entity: ID of the entity where
their attributes will be updated.

Body:

{
“attributeID”:{

value:”Attribute value”,
type:”Attribute type”

}
}

Example of Body:

{
“temperature”: {

“value”: 26.5,
“type”: “Float”

},
“pressure”: {

“value”: 763,
“type”: “Float”

}
}

36 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.5.7 Delete entity v2

URL Method URL Params Definition
http://{{url}}:{{port-
orion}}/v2/entities/{{fiware-entity}}

DELETEurl:Link to the service that will be
consulted.

Method to delete an en-
tity of a service.

port-orion: Port to connect with
the service.
fiware-entity: ID of the entity
which will be deleted.

2.5.8 Create attribute for entity v2

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v2/entities/{{fiware-
entity}}/attrs/

POST url:Link to the service that will be
consulted.

Method to add a new at-
tribute to the entity.

port-orion: Port to connect with the
service.
fiware-entity: ID of the entity which
will have new attributes.

Body:

{
“attributeID”:{

value:”Attribute value”,
type:”Attribute type”

}
}

Example of Body:

{
“temperature”: {

“value”: 26.5,
“type”: “Float”

}
}

2.5.9 Retrieve entity attribute v2

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v2/entities/{{fiware-
entity}}/attrs/{{fiware-attr}}

GET url:Link to the service that
will be consulted.

Method to retrieve an at-
tribute of an entity.

port-orion: Port to connect
with the service.
fiware-entity: ID of the entity
where is the attribute.
fiware-attr: ID of the at-
tribute.

2.5. Orion Context Broker NGSI RESTFul API 37

http:/
http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

Return:

If the search has been successful then the attribute is retrieved and shows their
→˓information else an error message is returned.

2.5.10 Retrieve entity attribute as data model v2

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v2/entities/{{fiware-
entity}}?options=keyValues

GET url:Link to the service that
will be consulted.

Method to retrieve an at-
tribute of an entity.

port-orion: Port to connect
with the service.
fiware-entity: ID of the entity
where is the attribute.
fiware-attr: ID of the at-
tribute.

Return:

If the search has been successful then the attribute is retrieved and shows their
→˓information, else it returns a message error.

2.5.11 Delete attribute for entity v2

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v2/entities/{{fiware-
entity}}/attrs/{{fiware-attr}}

DELETEurl:Link to the service that will
be consulted.

Method to delete an at-
tribute of an entity.

port-orion: Port to connect with
the service.
fiware-entity: ID of the entity
which will delete attributes
fiware-attr: ID of the attribute
which will delete

Retrieve type v2

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v2/types/{{fiware-
service}}

GET url:Link to the service that will be con-
sulted.

Method to retrieve an en-
tity type of the service.

port-orion: Port to connect with the ser-
vice.
fiware-service: ID of type of the entity
which will be searched in the service.

Return:

If the search has been successful then type is retrieved and shows all their
→˓information, else an error message is returned.

38 Chapter 2. Smart Spot - Development Guide

http:/
http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.5.12 Retrieve types v2

URL Method URL Params Definition
http://{{url}}:{{port-
orion}}/v2/types

GET url:Link to the service that will
be consulted.

The different entity types in the service
and their information.

port-orion: Port to connect
with the service.

2.5.13 Create subscription v2

URL Method URL Params Definition
http://{{url}}:{{port-
orion}}/v2/subscriptions

POST url:Link to the service that
will be consulted.

Method to create a subscription to one
or many entities.

port-orion: Port to connect
with the service.

Body:

{
“description”: “Definition of the subscription”,
“subject”: {

“entinties”: [
{

“id”: “Room1”
“type: “Room”

}
],
“condition”: {

“attrs”: [
“pressure”

]
}

},
“notification”: {

“http”: {
“url”: “http://localhost:1028/accumulate”

},
“attrs”: [

“temperature”
]

},
“expires”: “2040-01-01T14:00:00.00Z”,
“throttling”: “5”

}

• condition: It defines the “trigger” for the subscription.

• url: URL where to send notifications

• throttling: It is used to specify a minimum inter-notification arrival time.

• notification.attr: Attributes which you will received in a notification when “condition.attr” changes.

2.5. Orion Context Broker NGSI RESTFul API 39

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.5.14 Retrieve subscriptions v2

URL Method URL Params Definition
http://{{url}}:{{port-
orion}}/v2/subscriptions

GET url:Link to the service that will
be consulted.

Method to retrieve all subscrip-
tions of a service.

port-orion: Port to connect
with the service.

Return:

All existing subscriptions of the service and for each subscription show their
→˓information.

2.5.15 Remove subscriptions v2

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v2/subscriptions/{{fiware-
subscription}}

DELETEurl:Link to the service that will be
consulted.

Method to delete a sub-
scription of a service.

port-orion: Port to connect with
the service.
fiware-subscription: ID of the
subscription will be deleted.

2.5.16 Create context entity v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/registry/registerContext

POST url:Link to the service that
will be consulted.

Method to create a context of entity,
an entity without values.

port-orion: Port to connect
with the service.

Body:

{
“contextRegistrations”: [

{
“entities”: [

{
“type”: “entity_type”,
“isPattern”: “false”,
“id”: “entity_id”

}
],
“attributes”: [

{
“name”: “nombre_atributo”,
“type”: “attribute_type”,
“isDomain”: “false”

}
],

40 Chapter 2. Smart Spot - Development Guide

http:/
http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

“providingApplication”: “http://homard.hopu.
eu:1026/v2/entities”

}
],
“duration”: “P1M”

}

• isPattern: Nowadays, it is not being used. Threfore, value is always “false”.

• isDomain: The attribute domains aren’t supported. Always ‘false’.

• providingApplication: The URL that represents the context information of the registered entities and attributes.

• duration: The duration of the element. In ISO 8601 standard format.

Return:

Returns a confirmation that the item has been created correctly

{
“duration”: “P1M”,
“registrationId”: “5a79812d777fc523840b8446”

}

2.5.17 Retrieve context entity v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/registry/discoverContextAvailability

POST url:Link to the service
that will be consulted.

Method to retrieve a context of entity, an en-
tity without values, depends on ID and type.

port-orion: Port to
connect with the ser-
vice.

Body:

{
“entities”: [

{
“type”: “entity_type”,
“isPattern”: “false”,
“id”: “entity_id”

}
]

}

• isPattern: Nowadays, it is not being used. Threfore, value is always “false”.

Return:

In case of finding this element, it returns the information.

In case of not finding this element, it returns a 404 error “No context element
→˓found”.

2.5. Orion Context Broker NGSI RESTFul API 41

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.5.18 Create/update entity v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/updateContext

POST url:Link to the service that
will be consulted.

Method to create or update an entity, de-
pends on method’s body.

port-orion: Port to connect
with the service.

Body (creation):

{
“contextElements”: [

{
“type”: “entity_type”,
“isPattern”: “false”,
“id”: “entity_id “,
“attributes”: [

{
“name”:”attribute_id “,
“type”: “attribute_type”,
“value”: “attribute_value”

}
]

}
],
“updateAction”: “APPEND”

}

Body (updating):

{
“contextElements”: [

{
“type”: “entity_type”,
“isPattern”: “false”,
“id”: “entity_id “,
“attributes”: [

{
“name”:”attribute_id”,
“type”: “attribute_type”,
“value”: “attribute_value”

}
]

}
],
“updateAction”: “UPDATE”

}

• isPattern: Nowadays, it is not being used. Threfore, value is always “false”.

• updateAction: Action to be carried out (“APPEND” or “UPDATE”). In case of “APPEND” creates the entity,
if else “UPDATE” updatdes the entity.

Return:

In case of performing the method correctly, it return 200 OK together with the
→˓information of the entity.

42 Chapter 2. Smart Spot - Development Guide

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

In UPDATE, in case of not find that entity, it return a 404 ERROR “No context element
→˓found”.

2.5.19 Create entity v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/contextEntities/{{fiware-
entity}}

POST url:Link to the service that will be con-
sulted.

Method to create a
new entity.

port-orion: Port to connect with the
service.
fiware-entity: ID of the entity that will
be create of the service.

Body:

{
“type”: “entity_type”,
“attributes”: [

{
“name”: “attribute_id”,
“type”: “attribute_type”,
“value”: “attribute_value”

}
]

}

Return:

In case of performing the method correctly, it return 200 OK together with the
→˓information of the new entity.

2.5.20 Retrieve entity standard v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/contextEntities/{{fiware-
entity}}

GET url:Link to the service that will be
consulted.

Method that return a defined
entity passed as parameter.

port-orion: Port to connect with
the service.
fiware-entity: ID of the entity that
will be create of the service.

Return:

In case of performing the method correctly, it return 200 OK together with the
→˓information of the entity.

In case of not find that entity, it return a 404 ERROR “No context element found”.

2.5. Orion Context Broker NGSI RESTFul API 43

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.5.21 Retrieve entity as object standard v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/contextEntities/{{fiware-
entity}}?attributeFormat=object

GET url:Link to the service that
will be consulted.

Method that return a defined
entity with object JSON for-
mat.port-orion: Port to connect

with the service.
fiware-entity: ID of the en-
tity that will be create of the
service.

Return:

In case of performing the method correctly, it returns 200 OK together with the
→˓information of the entity with object JSON format.

In case of not find that entity, it return a 404 ERROR “No context element found”.

2.5.22 Retrieve entity convenience v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/queryContext

POST url:Link to the service that
will be consulted.

Method that returns a defined entity passed
in the body of the method.

port-orion: Port to connect
with the service.

Body:

{
“entities”: [

{
“type”: “entity_type”,
“isPattern”: “false”,
“id”: “entity_id”

}
]

}

Return:

In case of performing the method correctly, it returns 200 OK together with the
→˓information of the entity.

In UPDATE, in case of not finding that entity, it returns a 404 ERROR “No context
→˓element found”.

44 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.5.23 Retrieve entities as object convenience v1

URL MethodURL Params Definition
http:
//{{url}}:{{portorion}}/v1/queryContext?attributeFormat=object

POST url:Link to the ser-
vice that will be
consulted.

Method that return a defined entity with object
JSON format. The entity ID is passed in the body
of method.

port-orion: Port to
connect with the ser-
vice.

Body:

{
“entities”: [

{
“type”: “entity_type”,
“isPattern”: “false”,
“id”: “entity_id”

}
]

}

Return:

In case of performing the method correctly, it returns 200 OK together with the
→˓information of the entity with object JSON format.

In UPDATE, in case of not finding that entity, it returns a 404 ERROR “No context
→˓element found”.

2.5.24 Retrieve entities v1

URL Method URL Params Definition
http://{{url}}:{{port-
orion}}/v1/contextEntities

GET url:Link to the service that will be
consulted.

Method that return all
entities.

port-orion: Port to connect with the
service.

Return:

Show all existing entities.

2.5.25 Retrieve entities as object v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/contextEntities?attributeFormat=object

GET url:Link to the service
that will be consulted.

Method that return all entities
with object JSON format.

port-orion: Port to con-
nect with the service.

2.5. Orion Context Broker NGSI RESTFul API 45

http:/
http:/
http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

Return:

Show all existing entities with object JSON format.

2.5.26 Retrieve entities for type v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/registry/contextEntityTypes/{{fiware-
type}}

GET url:Link to the service that
will be consulted.

Method that returns all en-
tities of a concrete type.

port-orion: Port to connect
with the service.
fiware-type: Type of entities
that we want to receive.

Return:

In case of performing the method correctly, it returns 200 OK together with the
→˓information of the all entities of this type.

In UPDATE, in case of not finding that entity, it returns a 404 ERROR “No context
→˓element found”.

2.5.27 Retrieve entities for type as object v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/registry/contextEntityTypes/{{fiware-
type}}?attributeFormat=object

GET url:Link to the service
that will be consulted.

Method that return all entities of
a concrete type with object JSON
format.port-orion: Port to

connect with the ser-
vice.
fiware-type: Type of
entities that we want to
receive.

Return:

In case of performing the method correctly, it returns 200 OK together with the
→˓information of the all entities of this type with object JSON format.

In UPDATE, in case of not finding that entity, it returns a 404 ERROR “No context
→˓element found”.

46 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.5.28 Delete entity v1

URL Method URL Params Definition
http://{{url}}:{{port-
orion}}/v1/contextEntities/{{fiware-
entity}}

DELETEurl:Link to the service that will
be consulted.

Method to delete a de-
fined entity.

port-orion: Port to connect with
the service.
fiware-entity: ID of the entity
we want to delete.

Return:

In case of performing the method correctly and delete the entity defined, it returns
→˓200 OK.

In case of not finding that entity, it returns a 404 ERROR “No context element found”.

2.5.29 Create/update entity attribute v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/contextEntities/{{fiware-
entity}}/attributes

POST url:Link to the service
that will be consulted.

Method to update the values of one or many at-
tributes of an entity passed as parameter. In addition,
this method can create new attributes for an entity.port-orion: Port to

connect with the ser-
vice.
fiware-entity: ID of
the entity that will be
created of the service.

Body (creation):

Create a new attribute. We transmit a new attribute in the body:

{
“attributes”: [

{
“name”: “attribute_id”,
“type”: “attribute_type”,
“value”: “attribute_value”

}
]

}

Body (updating):

Update an attribute. We transmit an existing/available attribute with a new value.

{
“attributes”: [

{
“name”: “attribute_id_new”,
“type”: “attribute_type_new”,
“value”: “attribute_value_new”

2.5. Orion Context Broker NGSI RESTFul API 47

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

}
]

}

Return:

In case of performing the method correctly, it returns 200 OK together with the
→˓information of the entity updating.

In case of not finding that entity, it returns a 404 ERROR “No context element found”.

2.5.30 Retrieve entity attribute v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/contextEntities/{{fiware-
entity}}/attributes/{{fiware-attr}}

GET url:Link to the service that
will be consulted.

Method that retrieves the defined
attribute depending on the ID of a
specific entity.port-orion: Port to connect

with the service.
fiware-entity: ID of the en-
tity that will be retrieved of
the service.
fiware-attr: Attribute ID
we want to receive.

Return:

In case of performing the method correctly, it returns 200 OK together the attribute
→˓value defining by its ID for a specific entity.

In case of not finding that entity or attribute, it returns 404 ERROR “No context
→˓element found”.

In UPDATE, in case of not finding that entity, it returns a 404 ERROR “No context
→˓element found”.

2.5.31 Delete entity attribute as object v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/contextEntities/{{fiware-
entity}}/attributes/{{fiware-
attr}}?attributeFormat=object

GET url:Link to the service
that will be consulted.

Method that retrieves the defined at-
tribute depending on the ID of a spe-
cific entity with object JSON format.port-orion: Port to

connect with the ser-
vice.
fiware-entity: ID of
the entity that will be
retrieved of the service.
fiware-attr: Attribute
ID we want to receive.

Return:

48 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

In case of performing the method correctly, it returns 200 OK together the attribute
→˓value defined by its ID for a specific entity with object JSON format.

In case of not finding that entity or attribute, it returns 404 ERROR “No context
→˓element found”.

2.5.32 Retrieve entities attribute for type v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/registry/contextEntityTypes/{{fiware-
type}}/attributes/{{fiware-attr}}

GET url:Link to the service that
will be consulted.

Method that returns the de-
fined attribute of all entities of
a specific type.port-orion: Port to con-

nect with the service.
fiware-type: Type of enti-
ties that we want to receive.
fiware-attr: Attribute of
type of entities that we
want to receive.

Return:

In case of performing the method correctly, it returns 200 OK together with the
→˓information of defined attributes of all entities of this type.

In UPDATE, in case of not finding that entity, it returns a 404 ERROR “No context
→˓element found”.

2.5.33 Retrieve entities attribute for type as object v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/registry/contextEntityTypes/{{fiware-
type}}/attributes/{{fiware-
attr}}?attributeFormat=object

GET url:Link to the service
that will be consulted.

Method that returns the defined at-
tribute of all entities of a specific
type with object JSON format.port-orion: Port to

connect with the ser-
vice.
fiware-type: Type of
entities that we want
to receive.
fiware-attr: Attribute
of type of entities that
we want to receive.

Return:

In case of performing the method correctly, it returns 200 OK together with the
→˓information of defined attributes of all entities of this type with object JSON
→˓format.

In UPDATE, in case of not finding that entity, it returns a 404 ERROR “No context
→˓element found”.

2.5. Orion Context Broker NGSI RESTFul API 49

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.5.34 Delete entity attribute v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/contextEntities/{{fiware-
entity}}/attributes/{{fiware-attr}}

DELETEurl:Link to the service that
will be consulted.

Method to delete the defined at-
tribute depending on the ID of a
concrete entity.port-orion: Port to connect

with the service.
fiware-entity: ID of the en-
tity that will be retrieve of
the service.
fiware-attr: Attribute ID
we want to receive.

Return:

In case of performing the method correctly and delete the entity defined, it returns
→˓200 OK.

In case of not finding that entity or attribute, it returns 404 ERROR “No context
→˓element found”.

2.5.35 Retrieve type v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/contextTypes/{{fiware-
type}}

GET url:Link to the service that will
be consulted.

Method to receive an en-
tity type concrete.

port-orion: Port to connect with
the service.
fiware-type: Type of entities that
we want to receive.

Return:

In case of performing the method correctly, it returns 200 OK together the
→˓information of this entities type.

In case of not finding that entities type, it returns 404 ERROR “No context element
→˓found”.

2.5.36 Retrieve types v1

URL Method URL Params Definition
http://{{url}}:{{port-
orion}}/v1/contextTypes

GET url:Link to the service that will
be consulted.

Method to receive the existing
entities types.

port-orion: Port to connect with
the service.

Return:

50 Chapter 2. Smart Spot - Development Guide

http:/
http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

In case of performing the method correctly, it returns 200 OK together the
→˓information of all entities type.

In case of not finding that entities type, it returns 404 ERROR “No context element
→˓found”.

2.5.37 Create context subscription standard v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/subscribeContextAvailability

POST url:Link to the service that
will be consulted.

Method to create a subscription to
one or many context entities.

port-orion: Port to con-
nect with the service.

Body:

{
“entities”: [

{
“type”: “id_entity_type”,
“isPattern”: “false”,
“id”: “.*”

}
],
“attributes”: [

“id_attribute”
],
“reference”: “http://cygnus:5050/notify”,
“duration”: “P1M”

}

• isPattern: Nowadays, it is not being used. Threfore, value is always “false”.

• id: To which entity it wants to subscribe. In this case, to all entities of those type.

• reference: URL of client that it want to subscribe.

• duration: The duration of the subscription. In ISO 8601 standard format.

Return:

{
“subscriptionId”: “subscription_id”,
“duration”: “P1M”

}

2.5.38 Update context subscription standard v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/updateContextAvailabilitySubscriptions

POST url:Link to the service that
will be consulted.

Method to update a subscrip-
tion of a context entity.

port-orion: Port to con-
nect with the service.

2.5. Orion Context Broker NGSI RESTFul API 51

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

Body:

{
“entities”: [

{
“type”: “id_entity_type”,
“isPattern”: “false”,
“id”: “.*”

}
],
“duration”: “P1M”
“subscriptionId”: “subscription_id”

}

Return:

{
“subscribeResponse”: {

“subscriptionId”: “id_subscription”,
“id_parameter”: “value_parameter”

}
}

2.5.39 Update context subscription convenience v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/registry/contextAvailabilitySubscriptions/{{fiware-
subscription}}

PUT url:Link to the service that
will be consulted.

Method to update a sub-
scription of a context en-
tity.port-orion: Port to connect

with the service.
fiware-subscription: ID of
the subscription will be up-
dated.

Body:

{
“entities”: [

{
“type”: “id_entity_type”,
“isPattern”: “false”,
“id”: “.*”

}
],
“duration”: “P1M”
“subscriptionId”: “subscription_id”

}

Return:

{
“subscribeResponse”: {

“subscriptionId”: “id_subscription”,
“id_parameter”: “value_parameter”

52 Chapter 2. Smart Spot - Development Guide

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

}
}

2.5.40 Delete context subscription standard v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/unsuscribeContextAvailability

POST url:Link to the service that
will be consulted.

Method to delete a subscription
of a context entity.

port-orion: Port to connect
with the service.

Body:

{
“subscriptionId”: “5a785788777fc523840b843e”

}

Return:

In case of performing the method correctly and delete the entity defined, it returns
→˓200 OK together with the removed subscription ID.

In case of not finding that subscription, it returns 404 ERROR “No context element
→˓found”.

2.5.41 Delete context subscription convenience v1

URL MethodURL Params Definition
http://{{url}}:{{portorion}}/v1/contextAvailabilitySubscriptions/{{fiware-
subscription}}

POST url:Link to the service that
will be consulted.

Method to delete a sub-
scription of a context en-
tity.port-orion: Port to con-

nect with the service.
fiware-subscription: ID
of subscription to remove.

Return:

In case of performing the method correctly and delete the entity defined, it returns
→˓200 OK together with the removed subscription ID.

In case of not finding that subscription, it returns 404 ERROR “No context element
→˓found”.

2.5. Orion Context Broker NGSI RESTFul API 53

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.5.42 Create subscription standard v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/suscribeContext

POST url:Link to the service that
will be consulted.

Method to create a subscription to
one or many entities.

port-orion: Port to connect
with the service.

Body:

{
“entities”: [

{
“type”: “entity_type”,
“isPattern”: “false”,
“id”: “.*”

}
],
“attributes”: [

“attribute_id”
],
“reference”: “http://cygnus:5050/notify”,
“duration”: “P1M”
“notifyConditions”: [

{
“type”: “ONCHANGE”,
“condValues”: [

“attribute_id”
]

}
],
“throttling”: “PT5S”

}

• isPattern: Currently is hasn’t use. Always ‘false’.

• id: To which entity it wants to subscribe. In this case, to all entities of those type.

• reference: URL of client that it want to subscribe.

• duration: The duration of the subscription. In ISO 8601 standard format.

• notifyConditions: Define the launcher to notify the subscriptions. In this case, when change a value ofattributes
transmitted via the “condValues” of an entity ,then it will trigger a notification.

• throttling: Specify a minimum inter-notification arrival time. In this case, 5 seconds.

Return:

{
“subscribeResponse”: {

“subscriptionId”: “id_subscription”,
“duration”: “P1M”

}
}

54 Chapter 2. Smart Spot - Development Guide

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.5.43 Create subscription convenience v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/contextSubscriptions

POST url:Link to the service that
will be consulted.

Method to create a subscription to
one or many entities.

port-orion: Port to connect
with the service.

Body:

{
“entities”: [

{
“type”: “entity_type”,
“isPattern”: “false”,
“id”: “.*”

}
],
“attributes”: [

“attribute_id”
],
“reference”: “http://cygnus:5050/notify”,
“duration”: “P1M”
“notifyConditions”: [

{
“type”: “ONCHANGE”,
“condValues”: [

“attribute_id”
]

}
],
“throttling”: “PT5S”

}

• isPattern: Currently is hasn’t use. Always ‘false’.

• id: To which entity it wants to subscribe. In this case, to all entities of those type.

• reference: URL of client that it want to subscribe.

• duration: The duration of the subscription. In ISO 8601 standard format.

• notifyConditions: Define the launcher to notify the subscriptions. In this case, when change a value ofattributes
transmitted via the “condValues” of an entity ,then it will trigger a notification.

• throttling: Specify a minimum inter-notification arrival time. In this case, 5 seconds.

Return:

{
“subscribeResponse”: {

“subscriptionId”: “id_subscription”,
“duration”: “P1M”

}
}

2.5. Orion Context Broker NGSI RESTFul API 55

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.5.44 Update subscription standard v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/updateContextSubscription

POST url:Link to the service that
will be consulted.

Method to update a subscrip-
tion of an entity.

port-orion: Port to connect
with the service.

Body:

{
“subscriptionId”: “id_subscription”,
“id_parameter”: “value_parameter”

}

Return:

{
“subscribeResponse”: {

“subscriptionId”: “id_subscription”,
“id_parameter”: “value_parameter”

}
}

2.5.45 Update subscription convenience v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/contextSubscriptions/{{fiware-
subscription}}

POST url:Link to the service that
will be consulted.

Method to update a sub-
scription of an entity.

port-orion: Port to connect
with the service.
fiware-subscription: ID of
subscription to update.

Body:

{
“subscriptionId”: “id_subscription”,
“id_parameter”: “value_parameter”

}

Return:

{
“subscribeResponse”: {

“subscriptionId”: “id_subscription”,
“id_parameter”: “value_parameter”

}
}

56 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.5.46 Delete subscription v1

URL MethodURL Params Definition
http://{{url}}:{{port-
orion}}/v1/contextSubscriptions/{{fiware-
subscription}}

POST url:Link to the service that
will be consulted.

Method to delete the sub-
scription to an entity.

port-orion: Port to connect
with the service.
fiware-subscription: ID of
subscription to remove.

Return:

{
“subscribeResponse”: {

“subscriptionId”: “id_subscription”,
“id_parameter”: “value_parameter”

}
}

2.6 ANNEX 1: OMA LwM2M

OMA LightweightM2M is a device management protocol designed for sensor networks and the demands of a machine-
to-machine (M2M) environment. With LwM2M, OMA has responded to demand in the market for a common standard
for managing lightweight and low power devices on a variety of networks necessary to realize the potential of IoT.
The LwM2M protocol, designed for remote management of M2M devices and related service enablement, features a
modern architectural design based on REST, defines an extensible resource and data model and builds on an efficient
secure data transfer standard called the Constrained Application Protocol (CoAP). LwM2M has been specified by a
group of industry experts at the Open Mobile Alliance’s Device Management Working Group and is based on protocol
and security standards from the IETF.

More information about OMA LwM2M Protocol: http://www.openmobilealliance.org/release/LightweightM2M/V1_
0_1-20170704-A/OMA-TS-LightweightM2M-V1_0_1-20170704-A.pdf

2.6.1 Resource model

The LwM2M Enabler defines a simple resource model where each piece of information made available by the LwM2M
Client is a Resource. Resources are organized into Objects, and each Resource is given a unique identifier within that
Object.

Each Objec is assigned a unique OMA LwM2M Object identifier allocated and maintained by the OMA Naming
Authority (OMNA). Further Objects may be added by OMA or other organizations to enable additional M2M Services.

As an Object only specifies a grouping of Resources, an Object must be firstly instantiated so that the LwM2M Client
can use the Resources of such an Object and the associated functionalities.

When an Object is instantiated an Object Instance is created with a subset of the Resources defined in the Object
specification; a LwM2M Server can then access that Object Instance and its set of instantiated Resources.

A Resource which is instantiated within an Object Instance is a Resource which can either:

• contain a value (if the Resource is Readable and/or Writeable)

• or can be addressed by a LwM2M Server to trigger an action in the LwM2M Client (if the Resource is Exe-
cutable)

2.6. ANNEX 1: OMA LwM2M 57

http:/
http://www.openmobilealliance.org/release/LightweightM2M/V1_0_1-20170704-A/OMA-TS-LightweightM2M-V1_0_1-20170704-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_0_1-20170704-A/OMA-TS-LightweightM2M-V1_0_1-20170704-A.pdf

HOP Ubiquitous Documentation Documentation, Release 1.4.0

The Object specification defines the operations (Read, Write, Execute) which are individually supported by the Re-
sources belonging to that Object; this specification also defines the Mandatory or Optional characteristics of such
Resources.

Objects and Resources have the capability to have multiple instances. Multiple-Instances Resources can be instantiated
by LwM2M Server operations in using JSON or TLV formats. The LwM2M Client also has the capability to instantiate
Single or Multiple-Instances Resources.

The LwM2M Enabler defines an access control mechanism per Object Instance. Object Instances should have an
associated Access Control Object Instance. An Access Control Object Instances contains Access Control Lists (ACLs)
that define which operations on a given Object Instance are allowed for which LwM2M Server(s).

2.6.2 Objects

Each Object definition, which may be found in the LwM2M specification, features the following information:

• Name: specifies the Object name.

• Object ID: specifies the Object ID.

• Instances: indicates whether this Object supports multiple Object Instances or not. If this field is “Multiple”
then the number of Object Instance can be from 0 to many. If this field is “Single” then the number of Object
Instance can be from 0 to 1.

• Mandatory: if this field is “Mandatory”, then the LwM2M Client MUST support this Object. If this field is
“Optional”, then the LwM2M Client SHOULD support this Object.

• Object URN

• Resource definitions

2.6.3 Attributes

Attributes are metadata which can be attached to an Object, an Object Instance or a Resource. The value of an Attribute
is LwM2M Server specific.

Regardless to the LwM2M entity a given Attribute is attached to, the value of such an Attribute can be set at various
levels: Object, Object Instance, Resource levels.

• <PROPERTIES> Class Attributes: The role of these Attributes is to provide metadata which may communicate helpful information to LwM2M Server for example easing data management. These include:

– Dimension (dim): Number of Instantiations for a Multiple Resource.

– Object Version (ver): Provide the version of the associated Object.

• <NOTIFICATION> Class Attributes: The role of these R-Attributes is to provide parameters to the “Notify”
operation; any readable Resource can have such Rattributes. In the message sent by a LwM2M Client in response
to an “Observe” operation, the current Resource value is reported; this event can be considered as the initial
notification.

Each time a Resource notification is sent, the “Minimum Period” and “Maximum Period” timers
associated to this Resource are restarted.

The notification of a Resource value will be sent when the combination of a change value condition
(“Greater Than”, “Less Than”, or “Step”) and the “Minimum Period” timing conditions are both
fulfilled for that Resource.

This behaviour can be modified using the following available attributes:

58 Chapter 2. Smart Spot - Development Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

– Minimum Period (pmin): The Minimum Period Attribute indicates the minimum time in sec-
onds the LwM2M Client must wait between two notifications.

– Maximum Period (pmax): The Maximum Period Attribute indicates the maximum time in
seconds the LwM2M Client MAY wait between two notifications.

– Greater Than (gt) and Less Than (lt): This Attributes defines a threshold high value and low
value. When these Attributes is present, the LwM2M Client must notify the Server each time the
Observed Resource value crosses these thresholds with respect to pmin parameter and to pmax
parameter.

– Step (st): This Attribute defines a minimum change value between two notifications. When this
Attribute is present, the change value condition will occur when the value variation since the last
notification of the Observed Resource, is greater or equal to the “Step” Attribute value.

2.6.4 Clients and servers

This enabler defines the application layer communication protocol between a LwM2M Server and a LwM2M Client,
which is located in a LwM2M Device. The OMA Lightweight M2M enabler includes device management and ser-
vice enablement for LwM2M Devices. The target LwM2M Devices for this enabler are mainly resource constrained
devices. Therefore, this enabler makes use of a light and compact protocol as well as an efficient resource data model.

A Client-Server architecture is introduced for the LwM2M Enabler, where the LwM2M Device acts as a LwM2M
Client and the M2M service, platform or application acts as the LwM2M Server. The LwM2M Enabler has two
components, LwM2M Server and LwM2M Client. Four interfaces are designed between these two components:

• Bootstrap

• Client Registration

• Device management and service enablement

• Information Reporting

2.6.5 Bootstrap Interface

The Bootstrap Interface is used to provision essential information into the LwM2M Client to enable the LwM2M
Client to perform the operation “Register” with one or more LwM2M Servers.

During the Bootstrap Phase, the Client may ignore requests and flush all pending responses not related to the Bootstrap
sequence. There are four bootstrap modes supported by the LwM2M Enabler:

• Factory Bootstrap

• Bootstrap from Smartcard

• Client Initiated Bootstrap

• Server Initiated Bootstrap

The last two Bootstrap modes require the help of a LwM2M Bootstrap-Server to achieve the ultimate goal to connect
a LwM2M Client to their LwM2M Server(s).

The LwM2M Client must support at least one bootstrap mode specified in the Bootstrap Interface.

The LwM2M Bootstrap-Server must support Client Initiated Bootstrap and Server Initiated Bootstrap modes specified
in the Bootstrap Interface.

2.6. ANNEX 1: OMA LwM2M 59

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.6.6 Client Registration Interface

The LwM2M Server must support all the operations in this interface and the LwM2M Client must support “Register”
and “Update” and should support “De-register” operation.

The Client Registration Interface is used by a LwM2M Client to register with one or more LwM2M Servers, main-
tain each registration and de-register from a LwM2M Server. The registration is based on the Resource Model and
Identifiers defined in Section 6 Identifiers and Resources. When registering, the LwM2M Client performs the “Reg-
ister” operation and provides the properties the LwM2M Server requires to contact the LwM2M Client (e.g., End
Point Name); maintain the registration and session (e.g., Lifetime, Queue Mode) between the LwM2M Client and
LwM2M Server as well as knowledge of the Objects the LwM2M Client supports and existing Object Instances in
the LwM2M Client. The registration is soft state, with a lifetime indicated by the Lifetime Resource of that LwM2M
Server Object Instance. The LwM2M Client periodically performs an update of its registration information to the
registered LwM2M Server(s) by performing the “Update” operation– possibly without any parameters. If the lifetime
of a registration expires without receiving an update from the LwM2M Client:

• The LwM2M Server must remove the registration of that Client.

• The LwM2M Client must re-register (“Update” is not sufficient) to the LwM2M Server in order to be connected
again, before initiating any further communication.

If the LwM2M Server or the LwM2M Client set a value to the Lifetime Resource of the Server Object Instance, this
value becomes the new lifetime of the Registration session.

During “Register” or “Update” Operations, the parameter Lifetime – if present – must match the current value of the
Mandatory Lifetime Resource of the LwM2M Server Object Instance. Finally, when shutting down or discontinuing
use of a LwM2M Server, the LwM2M Client performs a “De-register” operation.

The Binding Resource of the LwM2M Server Object informs the LwM2M Client of the transport protocol preferences
of the LwM2M Server for the communication session between the LwM2M Client and LwM2M Server.

The LwM2M Client should perform the operations with the modes indicated by the Binding Resource of the LwM2M
Server Object Instance.

2.6.7 Device Management and Service Enablement Interface

The LwM2M Server and the LwM2M Client must support all the operations in this interface.

The Device Management and Service Enable Interface is used by the LwM2M Server to access Object Instances and
Resources available from a registered LwM2M Client. The interface provides this access through the use of “Create”,
“Read”, “Write”, “Delete”, “Execute”, “Write-Attributes”, or “Discover” operations.

The Device Management and Service Enablement interface defines the following commands:

• Read operation is used to access the value of a Resource, an array of Resource Instances, an Object Instance or
all the Object Instances of an Object.

• Discover operation is used to discover LwM2M Attributes attached to an Object, Object Instances, and Re-
sources. This operation can be used to discover which Resources are instantiated in a given Object Instance.

• Write operation is used to change the value of a Resource, the values of an array of Resources Instances or the
values of multiple Resources from an Object Instance.

• Write-Attributes: In LwM2M 1.0, only Attributes from the <NOTIFICATION> class may be changed in
using the “Write-Attributes” operation. The operation permits multiple Attributes to be modified within the
same operation.

• Execute operation is used by the LwM2M Server to initiate some action, and can only be performed on individ-
ual Resources. A LwM2M Client must return an error when the “Execute” operation is received for an Object
Instance(s) or Resource Instance(s).

60 Chapter 2. Smart Spot - Development Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

• Create operation is used by the LwM2M Server to create Object Instance(s) within the LwM2M Client. The
“Create” operation must target an Object. If any error occurs, nothing must be created.

• Finally, the Delete operation is used for LwM2M Server to delete an Object Instance within the LwM2M Client.

The Object Instance that is deleted in the LwM2M Client by the LwM2M Server must be an Object Instance that is
announced by the LwM2M Client to the LwM2M Server using the “Register” and “Update” operations of the Client
Registration Interface.

2.6.8 Information Reporting Interface

The LwM2M Server and the LwM2M Client must support all the operations in this interface.

The Information Reporting Interface is used by a LwM2M Server to observe any changes in a Resource on a registered
LwM2M Client, receiving notifications when new values are available. This observation relationship is initiated by
sending an “Observe” operation to the LwM2M Client for an Object, an Object Instance or a Resource. An observation
ends when a “Cancel Observation” operation is performed.

• Observe: The LwM2M Server initiates an observation request for changes of a specific Resource, Resources
within an Object Instance or for all the Object Instances of an Object within the LwM2M Client.

• Notify: The “Notify” operation is sent from the LwM2M Client to the LwM2M Server during a valid obser-
vation on an Object Instance or Resource. This operation includes the new value of the Object Instance or
Resource. The “Notify” operation should be sent when all the conditions (i.e., Minimum Period, Maximum
Period, Greater Than, Less Than, Step) configured by “Write-Attributes” operation for “Observe” operation are
met.

• Cancel Observation: The “Cancel Observation” operation is sent from the LwM2M Server to the LwM2M
Client to end an observation relationship for Object Instance or Resource.

2.7 ANNEX 2: FIWARE-DOCKER Architecture

FIWARE IoT Stack allows you to connect devices and receive data. Though to FIWARE IoT Stack we can under-
stand, interpret and process the data relative to physical devices. In this document, we have exposed and defined the
components of FIWARE IoT Stack we have used in a summarized fashion.

2.7.1 MongoDB

MongoDB is a free and open-source database. It is classified as a NoSQL database. Instead of save the data on tables
like is done in relational databases, MongoDB save data structure on documents similar to JSON with a dynamic
diagram, making that the data integration on certain application be more easy and quickly.

This database is connected with:

• STH Comet save aggregated data.

• Cygnus save raw data.

• Orion Context Broker save subscriptions.

• IoT Agent save device mapping.

More information about the component can be found in the MongoDB documentation: https://docs.mongodb.com

2.7. ANNEX 2: FIWARE-DOCKER Architecture 61

https://docs.mongodb.com

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.7.2 STH-Comet

The Short Time Historic (STH) is a component of the FIWARE in charge of manage historical time series information
about the evolution of context data registered in an Orion Context Broker instance over time. STH can be considered
as a Time Series Database. This component has a main functionality:

• Retrieves, store, update or delete raw and aggregated time series context information.

Also, STH is connected to:

• MongoDB is in charge of store the desired raw and aggregated time series context information managed by the
STH component.

• Cygnus is needs to store the raw and aggregated time series context information into the STH component fol-
lowing the formal option, because Cygnus is in charge of store the context

information managed by an Orion Context Broker instance over time. In other words, Cygnus notify to STH-Comet
with data received.

More information about the component can be found in the Fiware-STH-Comet documentation: https://
fiware-sthcomet.readthedocs.io/en/latest/index.html

2.7.3 Cygnus

Cygnus is based on Apache Flume, a distributed service for collecting, aggregating and moving data. Cygnus is a
connector in charge of persisting Orion context data. Store the Orion Context Broker entities data, allows create a
historical view of this data. Cygnus subscribes to Orion and receive entities data when this entities are modified.
Cygnus defined what data it is interested in an Orion entity. Cygnus allows:

• Store the last value of an entity’s attribute. If and older value is required, Cygnus receives it and sends to the
applicant.

Cygnus is connected to:

• STH-Comet. Cygnus notify to STH-Comet when a data received. A STH database built on top of MongoDB.

• Orion. Cygnus is subscribed to Orion Context Broker for receive data about entities it interesting.

• MongoDB. Cygnus store the context data in a MongoDB database.

More information about the component can be found in the Cygnus documentation: http://fiware-cygnus.readthedocs.
io/en/1.7.1/index.html

2.7.4 Orion Context Broker

Orion is a C++ implementation developed as a part of FIWARE platform. Orion Context Broker is in charge of manage
all the lifecycle of context information including update, queries, registrations and delete. Orion allows subscribe to
a context information for notify when any modify occur and create and modify entities through queries. Currently
coexist the NGSIv1 version and the NGSIv2.

Orion Context Broker allows:

• Manage of entities. OCB is in charge of create, update, retrieve and delete an entity or list of entities. Also,
allows manage entities by their type.

• Manage of context information. OCB allows create, update and delete a context information.

• Manage of subscription. OCB is in charge of create, update, retrieve and delete a subscription.

Also, Orion Context Broker depends on:

62 Chapter 2. Smart Spot - Development Guide

https://fiware-sthcomet.readthedocs.io/en/latest/index.html
https://fiware-sthcomet.readthedocs.io/en/latest/index.html
http://fiware-cygnus.readthedocs.io/en/1.7.1/index.html
http://fiware-cygnus.readthedocs.io/en/1.7.1/index.html

HOP Ubiquitous Documentation Documentation, Release 1.4.0

• MongoDB. This database store the subscriptions they want to be notified when modify occur.

• IoT Agent. IoT Agent is subscribed to Orion Context Broker for receive data about entities it interesting.

• Cygnus. Cygnus is subscribed to Orion Context Broker for receive data about entities it interesting.

• QuantumLeap. QuantumLeap is subscribed to Orion Context Broker for receive data about entities it interesting.

• Perseo-fe. Perseo-fe is subscribed to Orion Context Broker for receive data about entities it interesting.

More information about the component can be found in the Orion Context Broker documentation: https://fiware-orion.
readthedocs.io/en/master/index.html

2.7.5 IoT Agent

IoT Agent it’s a component in charge on stores devices data. IoT Agent receive data in M2M language and then it
translate to standard platform language to can be processed for Orion Context Broker. In other words, IoT Agent
converts the physical devices to an Orion Context Broker entity. Also, IoT Agent allows to send commands to devices.
IoT Agents supports OMA lightweight M2M protocol and JSON protocol.

IoT Agent has various functionalities:

• Transforms the physical devices to an entities it can be manage in Orion Context Broker.

• IoT Agent take part between OMA LWM2M and JSON Objects.

• Store the translation of a physical device in a persistent storage.

Also, IoT Agent is connected to:

• Orion. IoT Agent send the JSON objects representing physical devices to Orion.

• MongoDB. Store the mapping of the physical device in a MongoDB database.

More information about the component can be found in the IoT Agent for OMA LWM2M documentation: http:
//fiwareiotagent-lwm2m.readthedocs.io/en/latest/index.html

2.7.6 Grafana

Grafana is an open source application allows generate dashboards from data contained in CrateDB database. The
CrateDB data is displayed in a dashboards, and the user can display the data the way his want it. However, Orion
Context Broker store the information in MongoDB database. To store the relevant Orion Context Information data in
a CrateDB database we need QuantumLeap to convert the OCB data to CrateDB data.

Grafana has a main functionality:

• Show the values of the Orion Context Broker entities as a graph order by data time.

Grafana is connected to:

• CrateDB. Grafana shows data belonging to CrateDB database.

• QuantumLeap. Convert the storage of NGSI FIWARE NGSIv2 data into a time series database for CrateDB.

More information about the component can be found in the Grafana experiments: https://github.com/smartsdk/
ngsitimeseries-api/tree/master/experiments/grafana

2.7. ANNEX 2: FIWARE-DOCKER Architecture 63

https://fiware-orion.readthedocs.io/en/master/index.html
https://fiware-orion.readthedocs.io/en/master/index.html
http://fiwareiotagent-lwm2m.readthedocs.io/en/latest/index.html
http://fiwareiotagent-lwm2m.readthedocs.io/en/latest/index.html
https://github.com/smartsdk/ngsitimeseries-api/tree/master/experiments/grafana
https://github.com/smartsdk/ngsitimeseries-api/tree/master/experiments/grafana

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.7.7 QuantumLeap

QuantumLeap is an API that supports the storage of NGSI FIWARE NGSIv2 data into a time series database. The
client create an Orion subscription to notify QuantumLeap of the update in the entities it interesting. QuantumLeap
translate the NGSI information receive to Orion subscription to CrateDB database, and persisting it.

QuantumLeap allows:

• Convert the Orion Context Broker information to CrateDB data.

• Supported integration with dashboard application like Grafana.

QuantumLeap is connected to:

• CrateDB. QuantumLeap allows to CrateDB store the Orion Context Broker entities data.

• Orion Context Broker. QuantumLeap is subscribed to Orion Context Broker for receive data about entities it
interesting.

More information about the component can be found in the QuantumLeap documentation: https://smartsdk.github.io/
ngsi-timeseries-api/

2.7.8 CrateDB

CrateDB is a distributed SQL database in charge to store and analyze machine data in real-time. Crate is the database
where NGSI data will be persisted after its converts to a data time series. Once the Orion subscription of Quantum-
Leap is created, when QuantumLeap receives NGSI information, coverts it and stores this information in a CrateDB
database.

CrateDB has various functionalities:

• Stores the data as a data time series.

• Allows show the data it contained with dashboards application.

CrateDB is connected to:

• QuantumLeap. CrateDB is the QuantumLeap’s backend where NGSI data converted will be stored.

• Grafana. Grafana generate dashboards from data of CrateDB database, it obtains thanks to QuantumLeap.

More information about the component can be found in the CrateDB documentation: https://crate.io/docs/clients/
admin-ui/en/latest/index.html

2.7.9 Perseo-core

Perseo-core is the rules engine of Perseo CEP, the “back-end”. It receives the events through a POST a JSON object
and apply the functions generate by this JSON object. In case of must to execute an action, it informs to Perseo-fe
through a POST request. EPL is the language of rules of Esper. Esper is a Java library in charge of event processing
logic and the rules engine. The defined rules aren’t stored persistently, but kept in memory, and it can update from
Perseo-fe.

Perseo-core has the following functionality:

• Perseo-core trigger events through a POST request to Perseo-fe if any rule is complied it.

• Acts as the rules engine and event process logic of Perseo CEP.

Perseo-core is connected to:

• Perseo-fe. Perseo-fe send to perseo-core a rule and event, Perseo-core process the information and, if any rule
is complied it, send an action to Perseo-fe.

64 Chapter 2. Smart Spot - Development Guide

https://smartsdk.github.io/ngsi-timeseries-api/
https://smartsdk.github.io/ngsi-timeseries-api/
https://crate.io/docs/clients/admin-ui/en/latest/index.html
https://crate.io/docs/clients/admin-ui/en/latest/index.html

HOP Ubiquitous Documentation Documentation, Release 1.4.0

More information about the component can be found in the Perseo-core documentation: https://github.com/
telefonicaid/perseo-core/tree/master/documentation

2.7.10 Perseo-fe

Perseo-fe is a component that together with Perseo-core form the Perseo CEP, the “front-end”. It processing incoming
events a rules, storing rules and executing actions. When Perseo-core send an action to Perseo-fe, it is responsible of
send an action via SMS, e-mail o HTTP. We must have configured the following servers if we can send a notification:
SMPP, SMTP and HTTP.

Perseo-fe allows:

• Send a SMS, e-mail, HTT Post or a tweet if it receive from Perseo-fe any action.

• Receives events of creation or update of Orion Context Broker entities.

• Store the rules to check when it receive an events.

Perseo-fe is connected to:

• Orion. Perseo-fe is subscribed to Orion Context Broker for receive data about entities it interesting.

• Perseo-core. Perseo-core is the event processing logic and the rules engine of Perseo-fe, his brain.

More information about the component can be found in the Perseo-fe documentation: https://github.com/telefonicaid/
perseo-fe/tree/master/documentation

2.8 ANNEX 3: STH-Comet RESTFul API

2.8.1 Retrieve raw values with pagination

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?hLimit={{fiware-limit}}&hOffset={{fiware-
offset}}

GET url: Link to the service will
be consulted.

Method to
retrieve all
changes of an
attribute.

port-sth: Port to connect
with the service.
fiware-type: Type of the en-
tity.
fiware-entity: ID of the en-
tity which will be consulted
in the service.
fiware-attr: ID of the at-
tribute which will be con-
sulted.
fiware-limit: Entries num-
ber for each page.
fiware-offset: The offset
to apply to the requested
search of raw context infor-
mation.

Return:

2.8. ANNEX 3: STH-Comet RESTFul API 65

https://github.com/telefonicaid/perseo-core/tree/master/documentation
https://github.com/telefonicaid/perseo-core/tree/master/documentation
https://github.com/telefonicaid/perseo-fe/tree/master/documentation
https://github.com/telefonicaid/perseo-fe/tree/master/documentation
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

From all registered changes of the attribute will choose the number of changes
→˓specified in “fiware-limit” and depending on the value of “fiware-offset” will
→˓return certain changes.

2.8.2 Retrieve raw values with pagination and filetype

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?hLimit={{fiware-limit}}&hOffset={{fiware-
offset}}&filetype={{fiware-filetype}}

GET url: Link to the service will be
consulted.

Method to
retrieve all
changes of
an attribute.

port-sth: Port to connect with
the service.
fiware-type: Type of the entity.
fiware-entity: ID of the entity
which will be consulted in the
service.
fiware-attr: ID of the attribute
which will be consulted.
fiware-limit: Entries number
for each page.
fiware-offset: Entries offset
number.
fiware-filetype: File format
will be saved the changes of the
attribute. Currently, the only
supported value is “csv”.

Return:

Setting file with the number of changes of the attribute specified in “fiware-limit”
→˓and from all changes registered, certain changes are chosen depending on the value
→˓of “fiware-offset”.

2.8.3 Retrieve n raw values

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?lastN={{fiware-lastN}}

GET url: Link to the service
will be consulted.

Method to retrieve
the last “n” changes
of an attribute.port-sth: Port to connect

with the service.
fiware-type: Type of the
entity.
fiware-entity: ID of the
entity which will be con-
sulted in the service.
fiware-attr: ID of the at-
tribute which will be con-
sulted.
fiware-lastN: Entries
number will be returned.

66 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

Return:

The last “n” changes of the attribute.

2.8.4 Retrieve n raw values with pagination

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?hLimit={{fiware-limit}}&hOffset={{fiware-
offset}}

GET url: Link to the service
will be consulted.

Method to re-
trieve the last “n”
changes of an
attribute.

port-sth: Port to con-
nect with the service.
fiware-type: Type of
the entity.
fiware-entity: ID of
the entity which will
be consulted in the ser-
vice.
fiware-attr: ID of the
attribute which will be
consulted.
fiware-limit: Entries
number for each page.
fiware-offset: Entries
offset number.
fiware-lastN: En-
tries number will be
returned.

Return:

From last “n” registered changes of the attribute will choose the number of changes
→˓specified in “fiware-limit” and depending on the value of “fiware-offset” will
→˓return certain changes.

2.8. ANNEX 3: STH-Comet RESTFul API 67

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.5 Retrieve n raw with filetype

URL MethodURL Params Definition
http://{{url}}:{{port-
sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?lastN={{fiware-lastN}}&filetype={{fiware-
filetype}}

GET url: Link to the service will be
consulted.

Method to re-
trieve the last
“n” changes of
an attribute.

port-sth: Port to connect with the
service.
fiware-type: Type of the entity.
fiware-entity: ID of the entity
which will be consulted in the ser-
vice.
fiware-attr: ID of the attribute
which will be consulted.
fiware-lastN: Entries number
will be returned.
fiware-filetype: File format will
be saved all changes of the at-
tribute. Currently, the only sup-
ported value is “csv”.

Return:

Setting file with the last “n” registered changes of the attribute.

2.8.6 Retrieve n raw values with pagination and filetype

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?hLimit={{fiware-limit}}&hOffset={{fiware-
offset}}&lastN={{fiware-lastN}}&filetype={{fiware-
filetype}}

GET url: Link to the service will
be consulted.

Method to
retrieve the
last “n”
changes of an
attribute.

port-sth: Port to connect
with the service.
fiware-type: Type of the en-
tity.
fiware-entity: ID of the en-
tity which will be consulted
in the service.
fiware-attr: ID of the at-
tribute which will be con-
sulted.
fiware-limit: Entries number
for each page.
fiware-offset: Entries offset
number.
fiware-lastN: Entries num-
ber will be returned.
fiware-filetype: File format
will be saved all changes
of the attribute. Currently,
the only supported value is
“csv”.

68 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

Return:

Setting file with the number of changes of the attribute specified in “fiware-limit”
→˓and from the last “n” changes registered certain changes are chosen depending on
→˓the value of
“fiware-offset”.

2.8.7 Retrieve raw values between two dates with pagination

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateFrom={{fiware-dateFrom}}&dateTo={{fiware-
dateTo}}&hLimit={{fiware-limit}}&hOffset={{fiware-
offset}}

GET url: Link to the service
will be consulted.

Method to
retrieve all
changes of
an attribute
between two
dates.

port-sth: Port to con-
nect with the service.
fiware-type: Type of the
entity.
fiware-entity: ID of the
entity which will be con-
sulted in the service.
fiware-attr: ID of the
attribute which will be
consulted.
fiware-dateFrom: The
starting date and time
from which the raw con-
text information is de-
sired.
fiware-dateTo: The fi-
nal date and time until
which the raw context
information is desired.
fiware-limit: Entries
number for each page.
fiware-offset: Entries
offset number.

Return:

From all registered changes of the attribute between the two specified dates will
→˓choose the number of changes specified in “fiware-limit” and depending on the value
→˓of
“fiware-offset” will return certain changes.

2.8. ANNEX 3: STH-Comet RESTFul API 69

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.8 Retrieve n raw values between two dates

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateFrom={{fiware-
dateFrom}}&dateTo={{fiware-
dateTo}}&lastN={{fiware-lastN}}

GET url: Link to the service
will be consulted.

Method to retrieve
the last “n” changes
of an attribute be-
tween two dates.

port-sth: Port to connect
with the service.
fiware-type: Type of the
entity.
fiware-entity: ID of the
entity which will be con-
sulted in the service.
fiware-attr: ID of the at-
tribute which will be con-
sulted.
fiware-dateFrom: The
starting date and time
from which the raw con-
text information is de-
sired.
fiware-dateTo: The final
date and time until which
the raw context informa-
tion is desired.
fiware-lastN: Entries
number will be returned.

Return:

The last “n” registered changes of the attribute between the two specified dates.

70 Chapter 2. Smart Spot - Development Guide

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.9 Retrieve raw value between two dates with pagination and filetype

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateFrom={{fiware-dateFrom}}&dateTo={{fiware-
dateTo}}&hLimit={{fiware-limit}}&hOffset={{fiware-
offset}}&filetype={{fiware-filetype}}

GET url: Link to the service will
be consulted.

Method to
retrieve all
changes of
an attribute
between two
dates.

port-sth: Port to connect
with the service.
fiware-type: Type of the
entity.
fiware-entity: ID of the en-
tity which will be consulted
in the service.
fiware-attr: ID of the at-
tribute which will be con-
sulted.
fiware-dateFrom: The
starting date and time from
which the raw context
information is desired.
fiware-dateTo: The final
date and time until which
the raw context information
is desired.
fiware-limit: Entries num-
ber for each page.
fiware-offset: Entries offset
number.
fiware-filetype: File format
will be saved all changes of
the attribute. Currently, the
only supported value and
file type is “csv”.

Return:

Setting file with the number of changes of the attribute specified in “fiware-limit”
→˓and from all changes registered between the two specified dates, certain changes
→˓are chosen
depending on the value of “fiware-offset”.

2.8. ANNEX 3: STH-Comet RESTFul API 71

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.10 Retrieve n raw values between two dates with pagination

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateFrom={{fiware-dateFrom}}&dateTo={{fiware-
dateTo}}&lastN={{fiware-lastN}}&hLimit={{fiware-
limit}}&hOffset={{fiware-offset}}

GET url: Link to the ser-
vice will be consulted.

Method to re-
trieve the last
“n” changes
of an attribute
between two
dates.

port-sth: Port to con-
nect with the service.
fiware-type: Type of
the entity.
fiware-entity: ID of
the entity which will
be consulted in the ser-
vice.
fiware-attr: ID of the
attribute which will be
consulted.
fiware-dateFrom:
The starting date and
time from which the
raw context informa-
tion is desired.
fiware-dateTo: The
final date and time un-
til which the raw con-
text information is de-
sired.
fiware-lastN: Entries
number will be re-
turned.
fiware-limit: Entries
number for each page.
fiware-offset: Entries
offset number.

Return:

From the last “n” registered changes of the attribute between the two specified dates
→˓will choose the number of changes specified in “fiware-limit” and depending on the
→˓value of
“fiware-offset” will return certain changes.

72 Chapter 2. Smart Spot - Development Guide

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.11 Retrieve n raw values between two dates with filetype

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateFrom={{fiware-
dateFrom}}&dateTo={{fiware-
dateTo}}&lastN={{fiware-
lastN}}&filetype={{fiware-filetype}}

GET url: Link to the service will
be consulted.

Method to re-
trieve the last
“n” changes
of an attribute
between two
dates.

port-sth: Port to connect
with the service.
fiware-type: Type of the en-
tity.
fiware-entity: ID of the en-
tity which will be consulted
in the service.
fiware-attr: ID of the at-
tribute which will be con-
sulted.
fiware-dateFrom: The start-
ing date and time from which
the raw context information
is desired.
fiware-dateTo: The final
date and time until which
the raw context information
is desired.
fiware-lastN: Entries number
will be returned.
fiware-filetype: File format
will be saved all changes of
the attribute. Currently, the
only supported value and file
type is “csv”.

Return:

Setting file with the last “n” registered changes of the attribute between the two
→˓specified dates.

2.8. ANNEX 3: STH-Comet RESTFul API 73

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.12 Retrieve n raw values between two dates with pagination and filetype

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateFrom={{fiware-dateFrom}}&dateTo={{fiware-
dateTo}}&lastN={{fiware-lastN}}&hLimit={{fiware-
limit}}&hOffset={{fiware-offset}}&filetype={{fiware-
filetype}}

GET url: Link to the service
will be consulted.

Method to re-
trieve the last
“n” changes
of an attribute
between two
dates.

port-sth: Port to connect
with the service.
fiware-type: Type of the
entity.
fiware-entity: ID of the
entity which will be con-
sulted in the service.
fiware-attr: ID of the at-
tribute which will be con-
sulted.
fiware-dateFrom: The
starting date and time
from which the raw con-
text information is de-
sired.
fiware-dateTo: The final
date and time until which
the raw context informa-
tion is desired.
fiware-limit: Entries
number for each page.
fiware-offset: Entries off-
set number.
fiware-filetype: File for-
mat will be saved all
changes of the attribute.
Currently, the only sup-
ported value and file type
is “csv”.

Return:

Setting file with the number of changes of the attribute specified in “fiware-limit”
→˓and from the last “n” changes registered between the two specified dates, certain
→˓changes
are chosen depending on the value of “fiware-offset”.

74 Chapter 2. Smart Spot - Development Guide

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.13 Retrieve raw values after a date with pagination

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateFrom={{fiware-
dateFrom}}&hLimit={{fiware-
limit}}&hOffset={{fiware-offset}}

GET url: Link to the service
will be consulted.

Method to
retrieve all
changes of an
attribute after a
date.

port-sth: Port to connect
with the service.
fiware-type: Type of the
entity.
fiware-entity: ID of the
entity which will be con-
sulted in the service.
fiware-attr: ID of the at-
tribute which will be con-
sulted.
fiware-dateFrom: The
starting date and time from
which the raw context
information is desired.
fiware-limit: Entries num-
ber for each page.
fiware-offset: Entries off-
set number.

Return:

From all registered changes of the attribute after the specified date will choose the
→˓number of changes specified in “fiware-limit” and depending on the value of
“fiware-offset” will return certain changes.

2.8. ANNEX 3: STH-Comet RESTFul API 75

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.14 Retrieve n raw values after date with pagination

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateFrom={{fiware-dateFrom}}&hLimit={{fiware-
limit}}&hOffset={{fiware-offset}}&lastN={{fiware-
lastN}}

GET url: Link to the service
will be consulted.

Method to re-
trieve the last
“n” of an at-
tribute after a
date.

port-sth: Port to connect
with the service.
fiware-type: Type of the
entity.
fiware-entity: ID of the
entity which will be con-
sulted in the service.
fiware-attr: ID of the at-
tribute which will be con-
sulted.
fiware-dateFrom: The
starting date and time
from which the raw con-
text information is de-
sired.
fiware-limit: Entries
number for each page.
fiware-offset: Entries
offset number.
fiware-lastN: Entries
number will be returned.

Return:

From the last “n” registered changes of the attribute after the specified date will
→˓choose the number of changes pecified in “fiware-limit” and depending on the value
→˓of
“fiware-offset” will return certain changes.

76 Chapter 2. Smart Spot - Development Guide

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.15 Retrieve raw values after date with pagination and filetype

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateFrom={{fiware-
dateFrom}}&hLimit={{fiware-
limit}}&hOffset={{fiware-offset}}&filetype={{fiware-
filetype}}

GET url: Link to the service will be
consulted.

Method to
retrieve all
changes of an
attribute after
a date.

port-sth: Port to connect with
the service.
fiware-type: Type of the en-
tity.
fiware-entity: ID of the entity
which will be consulted in the
service.
fiware-attr: ID of the at-
tribute which will be con-
sulted.
fiware-dateFrom: The start-
ing date and time from which
the raw context information is
desired.
fiware-limit: Entries number
for each page.
fiware-offset: Entries offset
number.
fiware-lastN: File format will
be saved all changes of the at-
tribute. Currently, the only
supported value and file type
is “csv”.

Return:

Setting file with the number of changes of the attribute specified in “fiware-limit”
→˓and from all changes registered after the specified date, certain changes are chosen
depending on the value of “fiware-offset”.

2.8. ANNEX 3: STH-Comet RESTFul API 77

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.16 Retrieve n raw values after date

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateFrom={{fiware-
dateFrom}}&lastN={{fiware-lastN}}

GET url: Link to the service will
be consulted.

Method to re-
trieve the last “n”
of an attribute
after a date.

port-sth: Port to connect
with the service.
fiware-type: Type of the en-
tity.
fiware-entity: ID of the en-
tity which will be consulted
in the service.
fiware-attr: ID of the at-
tribute which will be con-
sulted.
fiware-dateFrom: The start-
ing date and time from which
the raw context information
is desired.
fiware-lastN: Entries number
will be returned.

Return:

The last “n” registered changes of the attribute and after the specified date.

2.8.17 Retrieve n raw values after date with filetype

URL MethodURL Params Definition
http://{{url}}:{{port-
sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateFrom={{fiware-
dateFrom}}&lastN={{fiware-
lastN}}&filetype={{fiware-filetype}}

GET url: Link to the service will be
consulted.

Method to re-
trieve the last
“n” of an at-
tribute after a
date.

port-sth: Port to connect with
the service.
fiware-type: Type of the entity.
fiware-entity: ID of the entity
which will be consulted in the
service.
fiware-attr: ID of the attribute
which will be consulted.
fiware-dateFrom: The starting
date and time from which the
raw context information is de-
sired.
fiware-lastN: Entries number
will be returned.
fiware-filetype: File format will
be saved all changes of the at-
tribute. Currently, the only sup-
ported value and file type is
“csv”.

78 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

Return:

Setting file with the last “n” registered changes of the attribute after the
→˓specified date.

2.8.18 Retrieve n raw values after date with pagination and filetype

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateFrom={{fiware-dateFrom}}&hLimit={{fiware-
limit}}&hOffset={{fiware-offset}}&lastN={{fiware-
lastN}}&filetype={{fiware-filetype}}

GET url: Link to the service
will be consulted.

Method to re-
trieve the last
“n” of an at-
tribute after a
date.

port-sth: Port to con-
nect with the service.
fiware-type: Type of
the entity.
fiware-entity: ID of
the entity which will
be consulted in the ser-
vice.
fiware-attr: ID of the
attribute which will be
consulted.
fiware-dateFrom: The
starting date and time
from which the raw
context information is
desired.
fiware-lastN: En-
tries number will be
returned.

Return:

Setting file with the number of changes of the attribute specified in “fiware-limit”
→˓and from the last “n” changes registered after the specified date, certain
changes are chosen depending on the value of “fiware-offset”.

2.8. ANNEX 3: STH-Comet RESTFul API 79

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.19 Retrieve n raw values before date with pagination and filetype

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateTo={{fiware-dateTo}}&hLimit={{fiware-
limit}}&hOffset={{fiware-offset}}&lastN={{fiware-
lastN}}&filetype={{fiware-filetype}}

GET url: Link to the service will
be consulted.

Method to
retrieve the
last “n” regis-
tered changes
before a date.

port-sth: Port to connect
with the service.
fiware-type: Type of the en-
tity.
fiware-entity: ID of the en-
tity which will be consulted
in the service.
fiware-attr: ID of the at-
tribute which will be con-
sulted.
fiware-dateTo: The final
date and time until which the
raw context information is
desired.
fiware-lastN: Entries num-
ber will be returned.
fiware-limit: Entries num-
ber for each page.
fiware-offset: Entries offset
number.
fiware-filetype: File format
will be saved all changes of
the attribute. Currently, the
only supported value and file
type is “csv”.

Return:

Setting file with the number of changes of the attribute specified in “fiware-limit”
→˓and from the last “n” changes registered before the specified date, certain changes
→˓are
chosen depending on the value of “fiware-offset”.

80 Chapter 2. Smart Spot - Development Guide

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.20 Retrieve n raw values before date with pagination

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateTo={{fiware-dateTo}}&hLimit={{fiware-
limit}}&hOffset={{fiware-offset}}&lastN={{fiware-
lastN}}

GET url: Link to the service
will be consulted.

Method to re-
trieve the last
“n” registered
changes before a
date.

port-sth: Port to con-
nect with the service.
fiware-type: Type of
the entity.
fiware-entity: ID of
the entity which will be
consulted in the service.
fiware-attr: ID of the
attribute which will be
consulted.
fiware-dateTo: The fi-
nal date and time until
which the raw context
information is desired.
fiware-lastN: En-
tries number will be
returned.
fiware-limit: Entries
number for each page.
fiware-offset: Entries
offset number.

Return:

From the last “n” registered changes of the attribute before the specified date will
→˓choose the number of changes specified in “fiware-limit” and depending on the value
→˓of
“fiware-offset” will return certain changes.

2.8. ANNEX 3: STH-Comet RESTFul API 81

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.21 Retrieve n raw values before date with filetype

URL MethodURL Params Definition
http://{{url}}:{{port-
sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateTo={{fiware-dateTo}}&lastN={{fiware-
lastN}}&filetype={{fiware-filetype}}

GET url: Link to the service will be
consulted.

Method to re-
trieve the last
“n” registered
changes before
a date.

port-sth: Port to connect with
the service.
fiware-type: Type of the entity.
fiware-entity: ID of the entity
which will be consulted in the
service.
fiware-attr: ID of the attribute
which will be consulted.
fiware-dateTo: The final date
and time until which the raw
context information is desired.
fiware-lastN: Entries number
will be returned.
fiware-filetype: File format will
be saved all changes of the at-
tribute. Currently, the only sup-
ported value and file type is
“csv”.

Return:

Setting file with the last “n” registered changes of the attribute before the
→˓specified date.

2.8.22 Retrieve n raw values before date

URL MethodURL Params Definition
http://{{url}}:{{port-
sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateTo={{fiware-dateTo}}&lastN={{fiware-
lastN}}

GET url: Link to the service will
be consulted.

Method to retrieve
the last “n” regis-
tered changes be-
fore a date.

port-sth: Port to connect
with the service.
fiware-type: Type of the
entity.
fiware-entity: ID of the en-
tity which will be consulted
in the service.
fiware-attr: ID of the at-
tribute which will be con-
sulted.
fiware-dateTo: The final
date and time until which
the raw context information
is desired.
fiware-lastN: Entries num-
ber will be returned.

82 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

Return:

The last “n” changes of the attribute before the specified date.

2.8.23 Retrieve raw values before date with pagination

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateTo={{fiware-dateTo}}&hLimit={{fiware-
limit}}&hOffset={{fiware-offset}}

GET url: Link to the service
will be consulted.

Method to re-
trieve all reg-
istered changes
before a date.

port-sth: Port to connect
with the service.
fiware-type: Type of the
entity.
fiware-entity: ID of the
entity which will be con-
sulted in the service.
fiware-attr: ID of the at-
tribute which will be con-
sulted.
fiware-dateTo: The final
date and time until which
the raw context informa-
tion is desired.
fiware-limit: Entries
number for each page.
fiware-offset: Entries off-
set number.

Return:

From all registered changes of the attribute before the specified date will choose
→˓the number of changes specified in “fiware-limit” and depending on the value of
“fiware-offset” will return certain changes.

2.8. ANNEX 3: STH-Comet RESTFul API 83

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.24 Retrieve raw values before date with pagination and filetype

URL MethodURL Params Definition
http://{{url}}:{{port-sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-entity}}/attributes/{{fiware-
attr}}?dateTo={{fiware-dateTo}}&hLimit={{fiware-
limit}}&hOffset={{fiware-
offset}}&filetype={{fiware-filetype}}

GET url: Link to the service will
be consulted.

Method to re-
trieve all reg-
istered changes
before a date of
an attribute.

port-sth: Port to connect with
the service.
fiware-type: Type of the en-
tity.
fiware-entity: ID of the entity
which will be consulted in the
service.
fiware-attr: ID of the at-
tribute which will be con-
sulted.
fiware-dateTo: The final date
and time until which the raw
context information is de-
sired.
fiware-limit: Entries number
for each page.
fiware-offset: Entries offset
number.
fiware-filetype: File format
will be saved all changes of
the attribute. Currently, the
only supported value and file
type is “csv”.

Return:

Setting file with the number of changes of the attribute specified in “fiware-limit”
→˓and from all changes registered before the specified date, certain changes are
→˓chosen
depending on the value of “fiware-offset”.

84 Chapter 2. Smart Spot - Development Guide

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.25 Retrieve aggregated values

URL MethodURL Params Definition
http://{{url}}:{{port-
sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-
entity}}/attributes/{{fiware-
attr}}?aggrMethod={{fiware-
method}}&aggrPeriod={{fiware-
period}}

GET url: Link to the service will be consulted. Method to
retrieve aggre-
gated value
of an attribute
based on “fi-
waremethod”
with a reso-
lution defined
in “fiware-
period”.

port-sth: Port to connect with the service.

fiware-type: Type of the entity.

fiware-entity: ID of the entity which will be consulted in the
service.
fiware-attr: ID of the attribute which will be consulted.
fiware-method: The aggregation method. The STH component
supports the following aggregation methods: max (maximum
value), min (minimum value), sum (sum of all the samples) and
sum2 (sum of the square value of all the samples) for numeric
attribute values and occur for attributes values of type string.
Combining the information provided by these aggregated meth-
ods with the number of samples, it is possible to calculate prob-
abilistic values such as the average value, the variance as well as
the standard deviation.
fiware-period: Aggregation period or resolution. A fixed res-
olution determines the origin time format and the possible off-
sets. The STH component supports the following aggregation
periods: month, day, hour, minute and second.

Return:

If the type is String then returns the number of samples and for each value that has
→˓been registered the number of times it appears in the samples.

If the type is numerical then returns the number of samples of the attribute and
→˓depending on the value of “fiwaremethod” will calculated a value from all samples.

2.8. ANNEX 3: STH-Comet RESTFul API 85

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.26 Retrieve aggregate values between two dates

URL MethodURL Params Definition
http://{{url}}:{{port-
sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-
entity}}/attributes/{{fiware-
attr}}?aggrMethod={{fiware-
method}}&aggrPeriod={{fiware-
period}}&dateFrom={{fiware-
dateFrom}}&dateTo={{fiware-
dateTo}}

GET url: Link to the service will be consulted. Method to
retrieve ag-
gregated value
of an at-
tribute between
two dates
based on “fi-
waremethod”
with a reso-
lution defined
in “fiware-
period”.

port-sth: Port to connect with the service.

fiware-type: Type of the entity.

fiware-entity: ID of the entity which will be consulted in
the service.
fiware-attr: ID of the attribute which will be consulted.

fiware-method: The aggregation method. The STH com-
ponent supports the following aggregation methods: max
(maximum value), min (minimum value), sum (sum of all
the samples) and sum2 (sum of the square value of all
the samples) for numeric attribute values and occur for at-
tributes values of type string. Combining the information
provided by these aggregated methods with the number of
samples, it is possible to calculate probabilistic values such
as the average value, the variance as well as the standard
deviation.
fiware-period: Aggregation period or resolution. A fixed
resolution determines the origin time format and the pos-
sible offsets. The STH component supports the following
aggregation periods: month, day, hour, minute and second.

Return:

If the type is String then returns the number of samples and for each value that has
→˓been registered the number of times it appears in the samples.

If the type is numerical then returns the number of samples of the attribute and
→˓depending on the value of “fiwaremethod” will calculated a value from all samples.

86 Chapter 2. Smart Spot - Development Guide

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.27 Retrieve aggregate values after date

URL MethodURL Params Definition
http://{{url}}:{{port-
sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-
entity}}/attributes/{{fiware-
attr}}?aggrMethod={{fiware-
method}}&aggrPeriod={{fiware-
period}}&dateFrom={{fiware-
dateFrom}}

GET url: Link to the service will be consulted. Method to
retrieve ag-
gregated value
of an attribute
between two
dates based on
“fiwaremethod”
with a reso-
lution defined
in “fiware-
period”.

port-sth: Port to connect with the service.

fiware-type: Type of the entity.

fiware-entity: ID of the entity which will be consulted in the
service.
fiware-attr: ID of the attribute which will be consulted.
fiware-method: The aggregation method. The STH com-
ponent supports the following aggregation methods: max
(maximum value), min (minimum value), sum (sum of all
the samples) and sum2 (sum of the square value of all the
samples) for numeric attribute values and occur for attributes
values of type string. Combining the information provided
by these aggregated methods with the number of samples, it
is possible to calculate probabilistic values such as the aver-
age value, the variance as well as the standard deviation.
fiware-period: Aggregation period or resolution. A fixed
resolution determines the origin time format and the pos-
sible offsets. The STH component supports the following
aggregation periods: month, day, hour, minute and second.
fiware-dateFrom: The starting date and time from which
the aggregated time series information is desired.

Return:

If the type is String then returns the number of samples and for each value that has
→˓been registered the number of times it appears in the samples.

If the type is numerical then returns the number of samples of the attribute and
→˓depending on the value of “fiwaremethod” will calculated a value from all samples.

2.8. ANNEX 3: STH-Comet RESTFul API 87

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.8.28 Retrieve aggregate values before date

URL MethodURL Params Definition
http://{{url}}:{{port-
sth}}/STH/v1/contextEntities/type/{{fiware-
type}}/id/{{fiware-
entity}}/attributes/{{fiware-
attr}}?aggrMethod={{fiware-
method}}&aggrPeriod={{fiware-
period}}&dateTo={{fiware-
dateTo}}

GET url: Link to the service will be consulted. Method to
retrieve ag-
gregated value
of an attribute
after a date
based on “fi-
waremethod”
with a reso-
lution defined
in “fiware-
period”.

port-sth: Port to connect with the service.

fiware-type: Type of the entity.

fiware-entity: ID of the entity which will be consulted in the
service.
fiware-attr: ID of the attribute which will be consulted.
fiware-method: The aggregation method. The STH compo-
nent supports the following aggregation methods: max (max-
imum value), min (minimum value), sum (sum of all the sam-
ples) and sum2 (sum of the square value of all the samples)
for numeric attribute values and occur for attributes values of
type string. Combining the information provided by these ag-
gregated methods with the number of samples, it is possible
to calculate probabilistic values such as the average value, the
variance as well as the standard deviation.
fiware-period: Aggregation period or resolution. A fixed res-
olution determines the origin time format and the possible
offsets. The STH component supports the following aggrega-
tion periods: month, day, hour, minute and second.
fiware-dateTo:The final date and time until which the aggre-
gated time series information is desired.

Return:

If the type is String then returns the number of samples and for each value that has
→˓been registered the number of times it appears in the samples.

If the type is numerical then returns the number of samples of the attribute and
→˓depending on the value of “fiwaremethod” will calculated a value from all samples.

2.9 ANNEX 4: Cygnus RESTFul API

2.9.1 Retrieve admin login v0

URL Method URL Params Definition
http://{{url}}:{{port-
cygnus}}/admin/login

GET url: Link to the service that will
be consulted.

Method to retrieve the logging
level of Cygnus.

port-cygnus: Port to connect
with the service.

Return:

88 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

In case of performing the method correctly, returns the logging level of cygnus and
→˓“200 OK”.

In case of wrong execution, return “500 Internal Server Error”.

2.9.2 Update admin login v0

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/admin/log?level={{fiware-
logLevel}}

PUT url: Link to the service that will be consulted. Method to update the
logging level of Cygnus
for an admin.

port-cygnus: Port to connect with the service.
fiware-logLevel: New level of log we want as-
signed. The valid loggins level are: debug, info,
warning, error and fatal.

Return:

In case of performing the method correctly, returns “200 OK”.

In case of wrong execution or invalid level, return “400 Bad Request”.

2.9.3 Create agent parameter v0

URL MethodURL Params Definition
http://{{url}}:{{port-cygnus}}/admin/configuration/agent/cygnus/apache-
flume-1.4.0-bin/conf/{{fiware-agent}}?param={{fiware-
param}}&value={{fiware-paramValue}}

POST url: Link to the
service that will be
consulted.

Method to create a
new parameter in an
agent configuration
file.port-cygnus: Port

to connect with the
service.
fiware-agent:
Name of agent
configuration file.
fiware-param:
Name of parameter
we want to create.
fiware-
paramValue:
Value of parameter
we want to create.

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution by invalid configuration file, existing value or invalid
→˓path to the agent configuration file, return “success: false”.

2.9. ANNEX 4: Cygnus RESTFul API 89

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.9.4 Retrieve agent parameter v0

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/admin/configuration/agent/cygnus/apache-
flume-1.4.0-bin/conf/{{fiware-
agent}}¶m={{fiware-param}}

GET url: Link to the ser-
vice that will be con-
sulted.

Method to retrieve a
defined parameter in an
agent configuration file.

port-cygnus: Port to
connect with the ser-
vice.
fiware-agent: Name
of agent configura-
tion file.
fiware-param:
Name of parameter
we want to retrieve.

Return:

In case of performing the method correctly, returns “success: true” with the
→˓attribute and it value.

In case of wrong execution by invalid configuration file, not found the parameter or
→˓invalid path to the agent configuration file, return “success: false”.

2.9.5 Retrieve agent parameters v0

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/admin/configuration/agent/cygnus/apacheflume-
1.4.0-bin/conf/{{fiware-agent}}

GET url: Link to the ser-
vice that will be con-
sulted.

Method to retrieve all pa-
rameters in an agent config-
uration file.

port-cygnus: Port to
connect with the ser-
vice.
fiware-agent: Name
of agent configura-
tion file.

Return:

In case of performing the method correctly, returns “success: true” with the
→˓attributes and its values.

In case of wrong execution by invalid configuration file or invalid path to the agent
→˓configuration file, return “success: false”.

90 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.9.6 Update agent parameter v0

URL MethodURL Params Definition
http://{{url}}:{{port-cygnus}}/admin/configuration/agent/cygnus/apache-
flume-1.4.0-bin/conf/{{fiware-agent}}?param={{fiware-
param}}&value={{fiware-paramValue}}

PUT url: Link to the ser-
vice that will be con-
sulted.

Method to create a
new parameter in an
agent configuration
file.port-cygnus: Port

to connect with the
service.
fiware-agent:
Name of agent
configuration file.
fiware-param:
Name of parameter
we want to update.
fiware-
paramValue:
Value of parameter
wue wat to update.

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution by invalid configuration file, not found the parameter or
→˓invalid path to the agent configuration file, return “success: false”.

2.9.7 Delete agent parameter v0

URL MethodURL Params Definition
http://{{url}}:{{port-cygnus}}/admin/configuration/agent/cygnus/apache-
flume-1.4.0-bin/conf/{{fiware-
agent}}?param={{fiware-param}}

DELETEurl: Link to the ser-
vice that will be con-
sulted.

Method to delete a pa-
rameter in an agent
configuration file.

port-cygnus: Port to
connect with the ser-
vice.
fiware-agent: Name
of agent configura-
tion file.
fiware-param:
Name of parameter
we want to delete.

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution by invalid configuration file, not found the attribute or
→˓invalid path to the agent configuration file, return “success: false”.

2.9. ANNEX 4: Cygnus RESTFul API 91

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.9.8 Create instance parameter v0

URL MethodURL Params Definition
http://{{url}}:{{port-cygnus}}/admin/configuration/instance/usr/cygnus/conf/{{fiwareinstance}}?param={{fiwareparam}}&value={{fiware-
paramValue}}

POST url: Link to the ser-
vice that will be con-
sulted.

Method to create a
new parameter in an
instance configuration
file.port-cygnus: Port to

connect with the ser-
vice.
fiware-instance:
Name of instance
configuration file.
fiware-param:
Name of parameter
we want to delete.
fiware-paramValue:
Value of parameter
we want to create.

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution by invalid configuration file, existing value or invalid
→˓path to the instance configuration file, return “success: false”.

2.9.9 Retrieve instance parameter v0

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/admin/configuration/instance/usr/cygnus/conf/{{fiware-
instance}}?param={{fiware-param}}

GET url: Link to the ser-
vice that will be con-
sulted.

Method to retrieve a de-
fined parameter in an in-
stance configuration file.

port-cygnus: Port to
connect with the ser-
vice.
fiware-instance:
Name of instance
configuration file.
fiware-param: Name
of parameter we want
to retrieve.

Return:

In case of performing the method correctly, returns “success: true” with the
→˓attribute and it value.

In case of wrong execution by invalid configuration file, not found the parameter or
→˓invalid path to the instance configuration file, return “success: false”.

92 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.9.10 Retrieve instance parameter v0

URL MethodURL Params Definition
http://{{url}}:{{port-cygnus}}/admin/configuration/instance/usr/cygnus/conf/{{fiware-
instance}}?param={{fiware-param}}&value={{fiware-
paramValue}}

PUT url: Link to the ser-
vice that will be con-
sulted.

Method to update a pa-
rameter in an instance
configuration file.

port-cygnus: Port to
connect with the ser-
vice.
fiware-instance:
Name of instance
configuration file.
fiware-param:
Name of parameter
we want to update.
fiware-paramValue:
Value of parameter
we want to update.

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution by invalid configuration file, not found the parameter or
→˓invalid path to the instance configuration file, return “success: false”.

2.9.11 Delete parameter instance v0

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/admin/configuration/instance/usr/cygnus/conf/{{fiware-
instance}}?param={{fiware-param}}

DELETEurl: Link to the ser-
vice that will be con-
sulted.

Method to delete a param-
eter in an instance config-
uration file.

port-cygnus: Port to
connect with the ser-
vice.
fiware-instance:
Name of instance
configuration file.
fiware-param: Name
of parameter we want
to delete.

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution by invalid configuration file, not found the attribute or
→˓invalid path to the instance configuration file, return “success: false”.

2.9. ANNEX 4: Cygnus RESTFul API 93

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.9.12 Create agent parameter v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-cygnus}}/v1/admin/configuration/agent/cygnus/apache-
flume-1.4.0-bin/conf/{{fiware-agent}}?param={{fiware-
param}}&value={{fiware-paramValue}}

POST url: Link to the
service that will be
consulted.

Method to create a
new parameter in an
agent configuration
file.port-cygnus: Port

to connect with the
service.
fiware-agent:
Name of agent
configuration file.
fiware-param:
Name of parameter
we want to create.
fiware-
paramValue:
Value of parameter
we want to create.

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution by invalid configuration file, existing value or invalid
→˓path to the agent configuration file, return “success: false”.

2.9.13 Retrieve agent parameter v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-cygnus}}/v1/admin/configuration/agent/cygnus/apache-
flume-1.4.0-bin/conf/{{fiware-
agent}}¶m={{fiware-param}}

GET url: Link to the ser-
vice that will be con-
sulted.

Method to retrieve a de-
fined parameter in an
agent configuration file.

port-cygnus: Port to
connect with the ser-
vice.
fiware-agent: Name
of agent configura-
tion file.
fiware-param:
Name of parameter
we want to retrieve.

Return:

In case of performing the method correctly, returns “success: true” with the
→˓attribute and it value.

In case of wrong execution by invalid configuration file, not found the parameter or
→˓invalid path to the agent configuration file, return “success: false”.

94 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.9.14 Retrieve agent parameters v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/admin/configuration/agent/cygnus/apache-
flume-1.4.0-bin/conf/{{fiware-agent}}

GET url: Link to the ser-
vice that will be con-
sulted.

Method to retrieve all pa-
rameters in an agent config-
uration file.

port-cygnus: Port to
connect with the ser-
vice.
fiware-agent: Name
of agent configura-
tion file.

Return:

In case of performing the method correctly, returns “success: true” with the
→˓attribute and it value.

In case of wrong execution by invalid configuration file, not found the parameter or
→˓invalid path to the agent configuration file, return “success: false”.

2.9.15 Update agent parameter v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-cygnus}}/v1/admin/configuration/agent/cygnus/apache-
flume-1.4.0-bin/conf/{{fiware-agent}}?param={{fiware-
param}}&value={{fiware-paramValue}}

PUT url: Link to the
service that will be
consulted.

Method to create a
new parameter in an
agent configuration
file.port-cygnus: Port

to connect with the
service.
fiware-agent:
Name of agent
configuration file.
fiware-param:
Name of parameter
we want to update.
fiware-
paramValue:
Value of parameter
we want to update.

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution by invalid configuration file, not found the parameter or
→˓invalid path to the agent configuration file, return “success: false”.

2.9. ANNEX 4: Cygnus RESTFul API 95

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.9.16 Delete agent parameter v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-cygnus}}/v1/admin/configuration/agent/cygnus/apache-
flume-1.4.0-bin/conf/{{fiware-
agent}}?param={{fiware-param}}

DELETEurl: Link to the ser-
vice that will be con-
sulted.

Method to delete a pa-
rameter in an agent
configuration file.

port-cygnus: Port to
connect with the ser-
vice.
fiware-agent: Name
of agent configura-
tion file.
fiware-param:
Name of parameter
we want to delete.

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution by invalid configuration file, not found the parameter or
→˓invalid path to the instance configuration file, return “success: false”.

2.9.17 Delete parameter instance v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/admin/configuration/instance/usr/cygnus/conf/{{fiware-
instance}}?param={{fiware-param}}

DELETEurl: Link to the ser-
vice that will be con-
sulted.

Method to create a new pa-
rameter in an instance con-
figuration file.

port-cygnus: Port to
connect with the ser-
vice.
fiware-instance:
Name of instance
configuration file.
fiware-param: Name
of parameter we want
to delete.

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution by invalid configuration file, not found the attribute or
→˓invalid path to the instance configuration file, return “success: false”.

96 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.9.18 Retrieve version v1 (beta)

URL Method URL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/version

GET url: Link to the service that will
be consulted.

Method to retrieve the version of the
running software.

port-cygnus: Port to connect
with the service.

Return:

In case of performing the method correctly, returns “success: true” and the version.

In case of wrong execution return “success: false”.

2.9.19 Create grouping rules v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/groupingrules

POST url: Link to the service that
will be consulted.

Method to create a new grouping
rules, to join related data.

port-cygnus: Port to connect
with the service.

Body:

{
“regex”: “SmartSpot”,
“destination”: “othersmartspots”,
“fiware_service_path”: “smartspot”,
“fields”: [“entityType”]

}

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution return “success: false”.

2.9.20 Retrieve grouping rules v1 (beta)

URL Method URL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/groupingrules

GET url: Link to the service that will be
consulted.

Method to retrieve all
grouping rules.

port-cygnus: Port to connect with
the service.

Body:

{
“grouping_rules”: [

{

2.9. ANNEX 4: Cygnus RESTFul API 97

http:/
http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

“destination”: “group_id”,
“fields”: [

“entityType”
],
“fiware_service_path”: “service_path”,
“id”: 1,
“regex”: “entity_id”

}
],
“success”: “true”

}

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution return “success: false”.

2.9.21 Update grouping rules v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/groupingrules?id={{fiware-
groupID}}

POST url: Link to the service that will
be consulted.

Method to update a
grouping rules.

port-cygnus: Port to connect
with the service.
fiware-gropuID: Name of
group we want to update.

Body:

{
“regex”: “SmartSpot”,
“destination”: “othersmartspots”,
“fiware_service_path”: “smartspot”,
“fields”: [“entityType”]

}

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution return “success: false”.

2.9.22 Delete grouping rules v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/groupingrules?id={{fiware-
groupID}}

DELETEurl: Link to the service that
will be consulted.

Method to delete a grouping
rules defined as a parameter.

port-cygnus: Port to con-
nect with the service.
fiware-gropuID: Name of
group we want to delete.

98 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution return “success: false”.

2.9.23 Create subscription for Orion v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/subscriptions?id=ngsi_version=1

POST url: Link to the service
that will be consulted.

Method to create a subscription to
one or many entities in Orion.

port-cygnus: Port to con-
nect with the service.

Body:

{
“subscription”:{

“entities”: [
{

“type”: “entity_type”,
“isPattern”: “false”,
“id”: “entity_id”

}
],
“attributes”: [],
“reference”: “http://reference_host:reference_port”,
“duration”: “P1M”,
“notifyConditions”: [

{
“type”: “ONCHANGE”,
“condValues”: []

}
],
“throttling”: “PT5S”

},
“endpoint”:{

“host”:”endpoint_host”,
“port”:”endpoint_port”,
“ssl”:”false”,
“xauthtoken”:”234123123123123”

}
}

• isPattern: Currently is hasn’t use. Always ‘false’.

• id: To which entity it wants to subscribe. In this case, to all entities of those type.

• reference: URL of client that it want to subscribe.

• duration: The duration of the subscription. In ISO 8601 standard format.

• notifyConditions: Define the launcher to notify the subscriptions. In this case, when change a value of attributes
passed in the point “condValues” of an entity will launch a notification.

• throttling: Specify a minimum inter-notification arrival time. In this case, 5 seconds.

• endpoint: URL of Orion server.

2.9. ANNEX 4: Cygnus RESTFul API 99

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

Return:

In case of performing the method correctly, returns “success: true” with information
→˓about the subscription (duration, throttling, subscriptionId).

In case of wrong execution return “success: false”.

2.9.24 Create subscription for Orion v2 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/subscriptions?id=ngsi_version=2

POST url: Link to the service
that will be consulted.

Method to create a subscription to
one or many entities in Orion.

port-cygnus: Port to con-
nect with the service.

Body:

{
“subscription”:{

“description”: “subscription_description”,
“subject”: {

“entities”: [
{

“idPattern”: “.*”,
“type”: “entity_type”

}
],
“condition”: {

“attrs”: [
“attribute_entity”

],
“expression”: {

“q”: “attribute_entity>40”
}

}
},
“notification”: {

“http”: {
“url”: “http://localhost:1234”

},
“attrs”: [

“attribute_entity”
]

},
“expires”: “2016-05-05T14:00:00.00Z”,
“throttling”: 5

},
“endpoint”:{

“host”:”<endpoint_host>”,
“port”:”<endpoint_port>”,
“ssl”:”false”,
“xauthtoken”:”QsENv6AJj7blCqJ0YvfS5hMWYs”

}
}

• type: To which entity it wants to subscribe. In this case, to all entities of those type.

100 Chapter 2. Smart Spot - Development Guide

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

• condition: Conditions that have to be fulfill for launch to notification.

• expires: The duration of the subscription, when it expires.

• notification: URL of client that it want to subscribe (cygnus_url) and the attributes that we want know.

• throttling: Specify a minimum inter-notification arrival time. In this case, 5 seconds.

• **endpoint: URL of Orion server.

Return:

In case of performing the method correctly, returns “success: true” with information
→˓about the subscription (duration, throttling, subscriptionId).

In case of wrong execution return “success: false”.

2.9.25 Retrieve subscription v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/subscriptions?id=ngsi_version={{orion-
version}}&subscription_id={{fiware-
subscription}}

GET url: Link to the
service that will be
consulted.

Method to retrieve a subscrip-
tion to one or many entities in
Orion of cygnus.

port-cygnus: Port
to connect with the
service.
orion-version: Ver-
sion of Orion to do
this method.

Return:

In case of performing the method correctly, returns “success: true” with information
→˓about the subscription.

In case of wrong execution by inexistent subscription id, invalid or not implemented
→˓NGSI version or missing parameters return “success: false”.

2.9.26 Retrieve subscriptions v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/subscriptions?id=ngsi_version={{orion-
version}}

GET url: Link to the service
that will be consulted.

Method to retrieve all
subscriptions in Orion of
cygnus.port-cygnus: Port to con-

nect with the service.
orion-version: Version of
Orion to do this method.

Return:

2.9. ANNEX 4: Cygnus RESTFul API 101

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

In case of performing the method correctly, returns “success: true” with information
→˓about all subscriptions.

In case of wrong execution by invalid or not implemented NGSI version or missing
→˓parameters return “success: false”.

2.9.27 Delete subscription v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-cygnus}}/v1/subscriptions?id=ngsi_version={{orion-
version}}&subscription_id={{subscription-id}}

GET url: Link to the service
that will be consulted.

Method to delete a
subscription in Orion
of cygnus.port-cygnus: Port to

connect with the ser-
vice.
orion-version: Version
of Orion to do this
method.
subscription-id: ID of
subscription we want to
delete.

Return:

In case of performing the method correctly, returns “success: true, result:
→˓subscription deleted”.

In case of wrong execution by invalid or not implemented NGSI version, wrong
→˓subscription id, missing authentication token or missing fields return “success:
→˓false”.

2.9.28 Create appender v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{portcygnus}}/v1/admin/log/appenders?transient={{fiware-
transient}}

POST url: Link to the service that will be con-
sulted.

Method to create an
appender in a running
logger.port-cygnus: Port to connect with the ser-

vice.
fiware-trasient: If false the appenders
are retrieved from Cygnus, if true are re-
trieved from file.

Body:

{
“appender”: {

“name”:”appender_id”,
“class”:”appender_class”

},
“pattern”: {

“layout”:”.....”,

102 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

“ConversionPattern”:”.....”
}

}

Return:

In case of performing the method correctly, returns “success: true, result: Appender
→˓‘appender_id’ put”.

In case of wrong execution by invalid transient or without JSON return “success:
→˓false”.

2.9.29 Retrieve appender v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{portcygnus}}/v1/admin/log/appenders?name={{fiware-
appender}}&transient={{fiware-transient}}

GET url: Link to the service that will be
consulted.

Method to re-
trieve a defined
appender.port-cygnus: Port to connect with the

service.
fiware-trasient: If false the appenders
are retrieved from Cygnus, if true are
retrieved from file.
fiware-appender: Name of appender
we want to retrieve.

Return:

In case of performing the method correctly, returns “success: true” join to appender
→˓information.

In case of wrong execution by invalid transient or invalid appender name return
→˓“success: false”.

2.9.30 Retrieve appenders v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/admin/log/appenders?transient={{fiware-
transient}}

GET url: Link to the service that will be con-
sulted.

Method to retrieve all
appenders in a running
logger.port-cygnus: Port to connect with the

service.
fiware-trasient: If false the appenders
are retrieved from Cygnus, if true are re-
trieved from file.

Return:

In case of performing the method correctly, returns “success: true” join to the
→˓information about all appenders.

In case of wrong execution by invalid transient or appenders not be shown return
→˓“success: false”.

2.9. ANNEX 4: Cygnus RESTFul API 103

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.9.31 Update appender v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/admin/log/appenders?transient={{fiware-
transient}}

PUT url: Link to the service that will be con-
sulted.

Method to update an
appender in a running
logger.port-cygnus: Port to connect with the

service.
fiware-trasient: If false the appenders
are retrieved from Cygnus, if true are re-
trieved from file.

Body:

{
“appender”: {

“name”:”appender_id”,
“class”:”appender_class”

},
“pattern”: {

“layout”:”.....”,
“ConversionPattern”:”.....”

}
}

Return:

In case of performing the method correctly, returns “{"success": "true","result":
→˓"Appender 'appender_id' updated successfully”}”.

In case of wrong execution by invalid transient or without JSON return “success:
→˓false”.

2.9.32 Delete appender v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/admin/log/appenders?name={{fiware-
appender}}&transient={{fiware-transient}}

DELETEurl: Link to the service that will be
consulted.

Method
to delete
a defined
appender.

port-cygnus: Port to connect with the
service.
fiware-trasient: If false the appenders
are retrieved from Cygnus, if true are
retrieved from file.
fiware-appender: Name of appender
we want to delete.

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution by invalid transient or invalid appender name return
→˓“success: false”.

104 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.9.33 Delete appenders v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/admin/log/appenders?transient={{fiware-
transient}}

DELETEurl: Link to the service that will be con-
sulted.

Method to
delete all
appenders.port-cygnus: Port to connect with the ser-

vice.
fiware-trasient: If false the appenders are
retrieved from Cygnus, if true are retrieved
from file.

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution by invalid transient return “success: false”.

2.9.34 Create logger v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/admin/log/loggers?transient={{fiware-
transient}}

POST url: Link to the service that will be con-
sulted.

Method to create a
logger in a running
Cygnus.port-cygnus: Port to connect with the ser-

vice.
fiware-trasient: If false the appenders are
retrieved from Cygnus, if true are retrieved
from file.

Body:

{
“logger”: {

“name”:”logger_id”,
“level”:”.....”

}
}

Return:

In case of performing the method correctly, returns “success: true, result: logger
→˓‘logger_id’ put.”

In case of wrong execution by invalid transient or without JSON return “success:
→˓false”.

2.9. ANNEX 4: Cygnus RESTFul API 105

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.9.35 Retrieve logger v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/admin/log/loggers?name={{fiware-
logger}}&transient={{fiware-transient}}

GET url: Link to the service that will be con-
sulted.

Method to
retrieve a
defined logger.port-cygnus: Port to connect with the

service.
fiware-trasient: If false the appenders
are retrieved from Cygnus, if true are re-
trieved from file.
fiware-logger: Name of logger we want
to retrieve.

Return:

In case of performing the method correctly, returns “success: true” join to logger
→˓information.

In case of wrong execution by invalid transient or invalid logger name return
→˓“success: false”.

2.9.36 Retrieve loggers v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/admin/log/loggers?transient={{fiware-
transient}}

GET url: Link to the service that will be con-
sulted.

Method to retrieve all
loggers in a running
Cygnus.port-cygnus: Port to connect with the ser-

vice.
fiware-trasient: If false the appenders
are retrieved from Cygnus, if true are re-
trieved from file.

Return:

In case of performing the method correctly, returns “success: true” join to the
→˓information about all loggers.

In case of wrong execution by invalid transient or loggers not be shown return
→˓“success: false”.

2.9.37 Update logger v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/admin/log/loggers?transient={{fiware-
transient}}

PUT url: Link to the service that will be con-
sulted.

Method to update a
logger in a running
Cygnus.port-cygnus: Port to connect with the ser-

vice.
fiware-trasient: If false the appenders are
retrieved from Cygnus, if true are retrieved
from file.

106 Chapter 2. Smart Spot - Development Guide

http:/
http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

Body:

{
“appender”: {

“name”:”logger_id”,
“class”:”logger_class”

},
“pattern”: {

“layout”:”.....”,
“ConversionPattern”:”.....”

}
}

Return:

In case of performing the method correctly, returns “{"success": "true","result":
→˓"Logger 'logger_id' updated successfully”}”.

In case of wrong execution by invalid transient or without JSON return “success:
→˓false”.

2.9.38 Delete logger v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/admin/log/loggers?name={{fiware-
logger}}&transient={{fiware-transient}}

DELETEurl: Link to the service that will be con-
sulted.

Method to
delete a de-
fined logger.port-cygnus: Port to connect with the

service.
fiware-trasient: If false the appenders
are retrieved from Cygnus, if true are re-
trieved from file.
fiware-appender: Name of logger we
want to delete.

Return:

In case of performing the method correctly, returns “success: true”.

In case of wrong execution by invalid transient or invalid logger name return
→˓“success: false”.

2.9.39 Delete loggers v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/admin/log/loggers?transient={{fiware-
transient}}

DELETEurl: Link to the service that will be consulted. Method to
delete all
loggers.

port-cygnus: Port to connect with the service.
fiware-trasient: If false the appenders are re-
trieved from Cygnus, if true are retrieved from
file.

Return:

2.9. ANNEX 4: Cygnus RESTFul API 107

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

In case of performing the method correctly, returns “success: true”.

In case of wrong execution by invalid transient return “success: false”.

2.9.40 Metrics

The metrics defined in a Cygnus agent are:

• incomingTransactions: Number of incoming transactions. In other words, number of NGSI notifications re-
ceived.

• incomingTransactionRequestSize: Total size of the requests related to incoming transactions (bytes).

• incomingTransactionResponseSize: Total size of the responses related to incoming transactions (bytes).

• incomingTransactionError: Number of incoming transactions causing an error.

• serviceTime: Average time between transaction requests reception and transaction responses sending.

• outgoingTransactions: Number of outgoing transactions. In other words, number of persistence operations.

• outgoingTransactionRequestSize: Total size of the requests related to outgoing transactions (bytes).

• outgoingTransactionResponseSize: Total size of the responses related to outgoing transactions (bytes).

• outgoingTransactionError: Number of outgoing transactions causing an error.

2.9.41 Retrieve metrics v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/admin/metrics?reset={{fiware-
reset}}

GET url: Link to the service that will be consulted. Method to retrieve all
metrics for a Cygnus
agent.

port-cygnus: Port to connect with the service.
fiware-reset: If true return metrics and in-
mediatelly after they are deleted , if false met-
rics don’t delete.

Return:

In case of performing the method correctly, returns “200 OK” join to all metrics
→˓information.

2.9.42 Delete metrics v1 (beta)

URL MethodURL Params Definition
http://{{url}}:{{port-
cygnus}}/v1/admin/metrics

DELETEurl: Link to the service that
will be consulted.

Method to delete all metrics for a Cygnus
agent (putting counters to zero).

port-cygnus: Port to con-
nect with the service.

Return:

In case of performing the method correctly, returns “200 OK”.

108 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.10 ANNEX 5: IoT Agent LwM2M RESTFul API

2.10.1 Create device Provisioning

URL MethodURL Params Definition
http://{{url}}:{{port-
iotagent}}/iot/devices

POST url: Link to the service that
will be consulted.

Method to create a device that we want to
convert it in an entity.

port-iotagent: Port to connect
with the service.

Body:

{
“devices”: [

{
“device_id”: “name_device”,
“entity_type”: “type_id”,
“attributes”: [

{
“name”: “attribute_name “,
“type”: “attribute_type”,

}
],
“lazy”: [

{
“name”: “attribute_name “,
“type”: “attribute_type”

}
],
“commands”: [

{
“name”: “command_id”,
“type”: “command_type”

}
],
“internal_attributes”: {

“lmw2mResourceMapping”: {
“attribute_id”: {

“objectType”:
“objecInstance”:
“objectResource”: 1

}
}

}
}

]
}

• lazy: It a attribute to need explicit specification to can be read.

• commands: Commands you can send to the device.

• internal_attributes: Mapped of m2m language to entity attributes. Type, instance and source of each attribute
of a entity.

Return:

2.10. ANNEX 5: IoT Agent LwM2M RESTFul API 109

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

In case of performing the method correctly, returns a confirmation that the device
→˓has been created correctly “201 Created”. In case of already any device with the
→˓same name,
return “400 Bad Request” with this message:

{
“name”: “DUPLICATE_DEVICE_ID”,
“message”: “A device with the same pair (Service, DeviceId) was found:...”

}

2.11 ANNEX 6: Deploy and use of Grafana

2.11.1 Creation and execution of the image in Docker

HOP Ubiquitous has a version of their fiware avaiable in a Docker container which “se puede” can download from
Github. If you haven´t done this step we recommend you that you download the repository https://github.com/
HOP-Ubiquitous/fiware-docker-infrastructure and you follow the recommend steps for its running.

Once we have execute the HOP Ubiquitous’s container, we must have the next processes execute on Docker (we can
see it using the command “docker ps” in terminal):

CONTAINER ID IMAGE PORTS
3996f3dc01b5 iotagent 0.0.0.0:5693->5683/udp dockercompose_
→˓iotagent_1
e94378a74a38 smartsdk/quantumleap 0.0.0.0:8668->8668/tcp dockercompose_
→˓quantumleap_1
a57a750c86c8 grafana/grafana 0.0.0.0:3000->3000/tcp dockercompose_
→˓grafana_1
e6ef4afd30f7 telefonicaiot/fiware-sth-comet 0.0.0.0:8666->8666/tcp dockercompose_
→˓sth_1
fa5fbce0c89e fiware/orion 0.0.0.0:1026->1026/tcp dockercompose_
→˓orion_1
6a22f61d772f fiware/cygnus-ngsi 5050/tcp 0.0.0.0:8081->8081/tcp dockercompose_
→˓cygnus_1
a29f3c7f682f crate:1.0.5 0.0.0.0:4200->4200/tcp, 0.0.0.0:4300->
→˓4300/tcp, 5432-5532/tcp dockercompose_crate_1
a4652c49e3fa mongo:3.2 0.0.0.0:27016->27017/tcp dockercompose_
→˓mongo_1

In case it is not executing some of this processes (as Grafana), we do the next process:

1. We stop the execution from Docker container – “docker-compose down”.

2. We remove the image of the application which is not running. – “docker rmi imageName”.

3. We back to execute the Docker container – “docker-compose up - d”.

2.11.2 Data source definition to Grafana

Grafana is an open source API to generate dashboards from data contained in a CrateDB database. CrateDB is an open
source SQL database design to store data of IoT devices. CrateDB is not suitable with Orion Context Broker, which
manage the entire lifecycle of information, so we need a connector between CrateDB and Orion Context Broker.

QuantumLeap is an API to connect CrateDB and Orion Context Broker, in other words, it convert Orion Context
Broker information in a suitable datatype with CrateDB and store it in this database.

110 Chapter 2. Smart Spot - Development Guide

https://github.com/HOP-Ubiquitous/fiware-docker-infrastructure
https://github.com/HOP-Ubiquitous/fiware-docker-infrastructure

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.11.3 Create QuantumLeap’s subscription to Orion

The next step is connect Data Source to Grafana. First we have to create a subscription from QuantumLeap to Orion
to receive the changes from devices and it save on CrateDB database. For it, we execute the POSTMAN program and
we open the Orion collection. We enter in the “v2” / “subscriptions” / “create subscription v2” section and the body
section we defined the next subscription:

{
“description”: “grafana_subscription”,
“subject”: {

“entities”: [
{

“idPattern”: “.*”,
“type”: “SmartSpot”

}
]

},
“notification”: {

“http”: {
“url”: “http://192.168.1.16:8668/notify”

},
“attrs”: [

“CO”,
“H2S”,
“NO2”,
“O3”,
“SO2”,
“batteryLevel”,
“humidity0”,
“humidity1”,
“temperature0”,
“temperature1”,
“nearDevicesHour”,
“nearDevicesMinute”,
“nearDevicesTenMinutes”,
“noise”

],
“metadata”: [“dateCreated”, “dateModified”]

}
}

We prove that the subscription has been made correctly and it is active. Once it is active, we check the Quantum-
Leap log to see if work correctly. To access the log, we execute the command “docker logs –follow dockercom-
pose_quantumleap_1”. We must prove that QuantumLeap receive the subscription and it support the attributes of an
entity type that we want store in CrateDB.

We have already connect our devices with the CrateDB database from QuantumLeap. Now is the moment to defined
our data source on Grafana. Before configured CrateDB, we can check if it is executing correctly. For it, we execute in
Orion a GET method to the next address: http:/your_ip:4200/_sql and we check that exist the adequate data structure.

2.11. ANNEX 6: Deploy and use of Grafana 111

http:/your_ip:4200/_sql

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.11.4 Connection of Grafana with CrateDB

The fi rst step is discover what our device ip is (with ifconfig command). Once we know our IP, we access to the next
URL: http://your_ip:3000 (3000 is the port of grafana).

In the login from this URL we write in the user field: “admin” and in the password field: “admin”. We enter the data
source section and we leave the setting file like this.

• Data source type in our case is, as we have named before, CrateDB.

• The URL is you IP again, and 4200 is CrateDB port by default.

• When everything is working inside the localhost, the access is direct.

• QuantumLeap create a table “et” + name of the entity type which we have subscribed. In our case, being
SmartSpot entities, the table it call “etsmartspot”.

• The name of the index from time column is “dateobserved”. This name can see in the CrateDB structure.

Grafana configuration to administrative level do it in the file /etc/grafana/grafana.ini

2.11.5 Create graphs in the dashboard

The first step is to go to create menu and then pulse in new dashboard and we select the option “graph” and will
appears a new graph. We press in “panel title” and different options will appear.

The first that we have to do to create the graph is select the source where collect the data, for it in the “Data Source”
section we have to press the “default” option and select “Data Source” that we want to use.

Once the source is selected we have to realise a query to the database so that Grafana creates us a graph with that data.
In the next section the Grafana interface provide us a query structure to the database.

To select which attribute to show on the graph, we have to write on the “value” box of the “Select” section the attribute
name which we want to look for. If we want to on the graph appears the change of more than one attribute we have to
press on “+” symbol which place on the right part of the “Select” section and another “Select” section will be shown
us.

112 Chapter 2. Smart Spot - Development Guide

http://your_ip:3000

HOP Ubiquitous Documentation Documentation, Release 1.4.0

The “Select” section has by default the “Avg/Mean” option. This option returns the data mean of that attribute. This
option is useful if we want to know all changes of an attribute over time and there are multiple entities in the database.
In the case that only we want to show the change of values of an attribute belonging to an entity, we have to insert in
the “Where” section the comparison “id == EntityName” and we have to press on “Avg/Mean” and select the “raw”
option so that return us the changes of the attribute underwent over time.

Once written the query we press the “Query Inspector” button and if the query which we have inserted it has been
success then Grafana create a graph with the data of the attributes insert in the query, else show us an error and reason
for the error.

2.11.6 Realise the query to the CrateDB database

To realise the query to the database we have to execute the “POSTMAN” program and inside “fiware-grafana”
collection there is a method called “retrieve grafana database”. This method returns all IDs of the attributes and for
each entity the values of their attributes, for it in the method body we define the next query:

{
“stmt”: “SELECT * FROM \”doc\”.\”etsmartspot\””

}

If we want to realise a query more specific to the database we only have to modify the method body and insert the
query which we want to realise.

2.12 ANNEX 7: Perseo CEP

Perseo CEP is a distributed rule engine. It main objective is analyze the Orion’s entities data and perform actions
(events) to notify the clients about the service. To notify, Perseo can send a SMS or an e-mail. Events are received
through a POST that contains the JSON representation, the rules to check and actions to generate in case the rules are
complied with.

Basically, the Perseo operation is an event to trigger a rule, causing the selected values by EPL statements to send as a
JSON to a set of URLs in a configuration file. In case of trigger many of a rule, each will generate their own POST to
the defined URL.

2.13 ANNEX 7.1: Perseo-Core

Perseo is compose of Perseo-core and Perseo-fe. Perseo-core is the back-end of the CEP, her rule engine. It is
responsible of the incoming event’s checking through a POST that it contains the EPL rules defining and, in case
of must to execute an action, it informs to the Perseo-fe through a POST request. The defined rules aren’t stored
persistently, but kept in memory, and it can be update from Perseo-fe.

The rules is defined from a request POST with the rule expression in EPL, rule language of Esper. Esper is a Java
library that contains the rule engine and the events processing logic.

2.12. ANNEX 7: Perseo CEP 113

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.13.1 Retrieve rules

URL Method URL Params Definition
http://{{url}}:{{port-perseo-
core}}/perseo-core/rules/

GET url: Link to the service that will be
consulted.

Method to retrieve all
exists rules.

port-perseo-core: Port to connect
with the service.

Return:

In case of performing the method correctly, returns in the body the rules with a JSON
→˓representation and “200 OK”.

In case of not have any rule, return “[]”.

2.13.2 Retrieve rule

URL MethodURL Params Definition
http://{{url}}:{{port-perseo-
core}}/perseo-core/rules/{{fiware-rule}}

GET url: Link to the service that
will be consulted.

Method to retrieve the de-
fined rule as parameter.

port-perseo-core: Port to
connect with the service.
fiware-rule: Name of the rule
we want retrieve.

Return:

In case of performing the method correctly, returns in the body the defined rule with
→˓a JSON representation and “200 OK”.

In case of not have any rule with this name, return “404”.

2.13.3 Create/Update rule

URL MethodURL Params Definition
http://{{url}}:{{port-perseo-
core}}/perseo-core/rules/

POST url: Link to the service that
will be consulted.

Method to create a new rule or update
it if exist the defined rule.

port-perseo-core: Port to
connect with the service.

Body:

{
“name”: “
CO_email”,
“text”: “select *,\”CO_email\” as ruleName, *,smartspot.CO? as CO, smartspot.id?

→˓as SmartSpot from pattern [every smartspot=iotEvent(cast(cast(SmartSpot?,String),
→˓float)>1.5 and type=\”SmartSpot\”)]”,

“action”: [
{

114 Chapter 2. Smart Spot - Development Guide

http:/
http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

“type”: “email”,
“template”: “CO ${SmartSpot} tiene un CO ${CO} (GEN RULE)”,
“parameters”: {

“to”: “user@hopu.eu”,
“from”: “admin@hopu.eu”,
“subject”: “${SmartSpot} ha cambiado”

}
}

]
}

Return:

In case of performing the method correctly, returns in the body the new rule created
→˓or updated in a JSON representation and “200 OK”.

In case of wrong execution, return “400 Bad Request”.

2.13.4 Update rule

URL Method URL Params Definition
http://{{url}}:{{port-perseo-
core}}/perseo-core/rules/

PUT url: Link to the service that will be
consulted.

Method to update a rule or
set of rules.

port-perseo-core: Port to connect
with the service.

Body:

{
“name”: “co_update”,
“text”: “select *,\”co_update\” as ruleName from pattern [every

→˓ev=iotEvent(cast(cast(CO?,String),float)>1.5 and type=\”SmartSpot\”)]”,
“action”: {

“type”: “update”,
“parameters”: {

“attributes”: [
{

“name”: “abnormal”,
“value”: “true”,
“type”: “boolean”

},
{

“name”: “CO”,
“value”: 12.34,
“type”: “Number”

}
]

}
}

}

Return:

2.13. ANNEX 7.1: Perseo-Core 115

http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

In case of performing the method correctly, returns “200 OK” with an empty JSON
→˓object “[]”.

In case of wrong execution, return “400 Bad Request”.

2.13.5 Delete rule

URL Method URL Params Definition
http://{{url}}:{{port-perseo-
core}}/perseo-core/rules/{{fiware-rule}}

DELETEurl: Link to the service that
will be consulted.

Method to delete a defined
rule as parameter.

port-perseo-core: Port to con-
nect with the service.
fiware-rule: Name of the rule
we want retrieve.

Return:

In case of performing the method correctly, returns in the body the deleted rule in a
→˓JSON representation and “200 OK”.

In case of not have any rule with this name, return “200” OK with an empty JSON
→˓object “[]”.

2.13.6 Create event

URL MethodURL Params Definition
http://{{url}}:{{port-perseo-
core}}/perseo-core/events

POST url: Link to the service that will
be consulted.

Method to send an event to
the rule engine.

port-perseo-core: Port to connect
with the service.

Body:

{
“noticeId”:”21f12c40-1ca6-11e4-a992-f1e158aa3052”,
“received”:”2014-08-05T13:40:58.756Z”,
“id”:”Prueba_de_ubicacion”,
“type”:”SmartSpot”,
“isPattern”:”false”,
“CO”:”2.3202312”,
“CO type”:”number”,
“TimeInstant”:”2014-04-29T13:18:05Z”,
“TimeInstant type”:”urn:x-ogc:def:trs:IDAS:1.0:ISO8601”

}

Return:

In case of performing the method correctly, returns “200 OK” with an empty JSON
→˓object “[]”.

In case of wrong execution, return “400 Bad Request”.

116 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.13.7 Retrieve log

URL MethodURL Params Definition
http://{{url}}:{{port-perseo-
core}}/perseo-core/admin/log

GET url: Link to the service that will
be consulted.

Method to retrieve the logging
level of Perseo-Core.

port-perseo-core: Port to con-
nect with the service.

Return:

In case of performing the method correctly, returns the logging level of Perseo-Core
→˓and “200 OK”. The loggins level can be “DEBUG”, “INFO”, “WARN”, “WARNING”,
“ERROR” and “FATAL”.

In case of wrong execution, return “400 Bad Request”.

2.13.8 Update log level

URL MethodURL Params Definition
http://{{url}}:{{port-
perseocore}}/perseo-
core/admin/log?level={{perseo-
level}}

PUT url: Link to the service that will be consulted. Method to update
the logging level of
Perseo-Core.port-perseo-core: Port to connect with the ser-

vice.
perseo-level: Logging level of Perseo-Core. Can
be “DEBUG”, “INFO”, “WARN”, “WARNING”,
“ERROR” and “FATAL”.

Return:

In case of performing the method correctly, returns “200 OK” with an empty JSON
→˓object “[]”.

In case of wrong execution by incorrect value in “perseo-level”, return “400 Bad
→˓Request”.

2.14 ANNEX 7.2: Perseo-Fe

Perseo-fe is a component that together with Perseo-core form the Perseo fiware. Perseo-fe refresh all of set of rules
of Perseo-core. When Perseo-core send a “action” to Perseo-fe, it is responsible of send an action via SMS, email o
HTTP.

In order for Perseo can send a notification, it must have configured the following servers: SMPP, SMTP and HTTP.

SMPP server allows Perseo to send an action to a recipient via SMS. In order to create the SMS, the action must have
in one of its fields the number of recipient who that to will receive the SMS.

SMTP server allows Perseo to send to a recipient an action via SMS. In order to create the e-mail, the action must have
in one of its field the e-mail of the sender and the e-mail of the recipient.

HTTP server allows an HTTP POST to be performed to a URL provided in a field of the action.

2.14. ANNEX 7.2: Perseo-Fe 117

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.14.1 Retrieve version

URL Method URL Params Definition
http://{{url}}:{{port-
perseoFe}}/version

GET url: Link to the service that will
be consulted.

Method to retrieve the currently
version of Perseo.

port-perseoFe: Port to connect
with the service.

Return:

In case of performing the method correctly, returns “200 OK” with information of
→˓Perseo version.

In case of wrong execution, return “400 Bad Request”.

2.14.2 Retrieve rules

URL Method URL Params Definition
http://{{url}}:{{port-
perseoFe}}/rules

GET url: Link to the service that will be
consulted.

Method to retrieve all rules
from Perseo.

port-perseoFe: Port to connect with
the service.

Return:

In case of performing the method correctly, returns in the body the rules with a JSON
→˓representation and “200 OK”.

In case of not have any rule, return “[]”.

2.14.3 Retrieve rule

URL Method URL Params Definition
http://{{url}}:{{port-
perseoFe}}/rules/{{rule-id}}

GET url: Link to the service that will be
consulted.

Retrieve a rule from the
service.

port-perseoFe: Port to connect with
the service.
rule-id: ID of the rule which will be
retrieved.

Return:

In case of performing the method correctly, returns in the body the defined rule with
→˓a JSON representation and “200 OK”.

In case of not have any rule with this name, return “404”.

118 Chapter 2. Smart Spot - Development Guide

http:/
http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.14.4 Delete rule

URL Method URL Params Definition
http://{{url}}:{{port-
perseoFe}}/rules/{{rule-id}}

DELETE url: Link to the service that will be con-
sulted.

Method to delete
a rule.

port-perseoFe: Port to connect with the
service.
rule-id: ID of the rule which will be
deleted from Perseo.

Return:

In case of performing the method correctly, returns in the body the deleted rule in a
→˓JSON representation and “200 OK”.

In case of not have any rule with this name, return “200” OK with an empty JSON
→˓object “[]”.

2.14.5 Create rule

URL Method URL Params Definition
http://{{url}}:{{port-
perseoFe}}/rules

POST url: Link to the service that will be con-
sulted.

Method to create a new
rule.

port-perseoFe: Port to connect with the
service.

Body:

{
“name”: “CO_email”,
“text”: “select *,\”CO_email\” as ruleName, *,ev.CO? as CO, ev.id? as SmartSpot

→˓from pattern [every ev=iotEvent(cast(cast(CO?,String),float)>1.5 and
→˓type=\”SmartSpot\”)]”,

“action”: [
{

“type”: “email”,
“template”: “SmartSpot ${SmartSpot} has CO ${CO} (GEN RULE)”,
“parameters”: {

“to”: “user@hopu.eu”,
“from”: “admin@hopu.eu”,
“subject”: “${CO} has changed”

}
}

]
}

Return:

In case of performing the method correctly, returns in the body the new rule created
→˓in a JSON representation and “200 OK”.

In case of wrong execution, return “400 Bad Request”.

2.14. ANNEX 7.2: Perseo-Fe 119

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.14.6 Create notification

URL Method URL Params Definition
http://{{url}}:{{port-
perseoFe}}/notices

POST url: Link to the service that will be
consulted.

Method to create a new no-
tification.

port-perseoFe: Port to connect with
the service.

Body:

{
“contextResponses”: [

{
“contextElement”:{

“attributes”: [
{

“metadatas”: [
{

“name”: “previousValue”,
“type”: “Number”,
“value”: “11”

},
{

“name”: “actionType”,
“type”: “Text”,
“value”: “update”

}
],
“name”: “A”,
“type”: “Number”,
“value”: “12”

}
],
“id”: “Prueba_de_ubicacion”,
“isPattern”: “false”,
“type”: “SmartSpot”

},
“statusCode”: {

“code”: “200”,
“reasonPhrase”: “OK”

}
}

],
“originator”: “localhost”,
“subscriptionId”: “123456789”

}

2.14.7 Retrieve visual rules

URL Method URL Params Definition
http://{{url}}:{{port-
perseoFe}}/m2m/vrules

GET url: Link to the service that will
be consulted.

Method to retrieve all visual rules
from Perseo.

port-perseoFe: Port to connect
with the service.

120 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

Return:

All visual rules from Perseo.

2.14.8 Retrieve visual rule

URL MethodURL Params Definition
http://{{url}}:{{port-
perseoFe}}/m2m/vrules/{{rule-id}}

GET url: Link to the service that will be
consulted.

Retrieve a visual rule
from the service.

port-perseoFe: Port to connect
with the service.
rule-id: ID of the visual rule which
will be retrieved.

Return:

In case of performing the method correctly, returns in the body the defined visual
→˓rule with a JSON representation and “200 OK”.

In case of not have any rule with this name, return “404”.

2.14.9 Create visual rule

URL Method URL Params Definition
http://{{url}}:{{port-
perseoFe}}/m2m/vrules

POST url: Link to the service that will be
consulted.

Method to create a new vi-
sual rule.

port-perseoFe: Port to connect with
the service.

Body:

{
“name” : “prueba-test”,
“active” : 1,
“cards” : [

{
“type” : “ActionCard”,
“actionData” : {

“userParams” : [
{

“name” : “mail.from”,
“value” : “dca_support@tid.es”

}
],
“name” : “email”,
“type” : “SendEmailAction”

},
“id” : “card_42”,
“connectedTo” : []

}
]

}

2.14. ANNEX 7.2: Perseo-Fe 121

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

Return:

In case of performing the method correctly, returns in the body the new visual rule
→˓created in a JSON representation and “200 OK”.

In case of wrong execution, return “400 Bad Request”.

2.14.10 Delete visual rule

URL Method URL Params Definition
http://{{url}}:{{port-
perseoFe}}/m2m/vrules/{{vrule-id}}

DELETEurl: Link to the service that will be con-
sulted.

Method to
delete a rule.

port-perseoFe: Port to connect with the
service.
vrule-id: ID of the virtual rule which will
be deleted from Perseo.

Return:

In case of performing the method correctly, returns in the body the deleted virtual
→˓rule in a JSON representation and “200 OK”.

In case of not have any virtual rule with this name, return “200” OK with an empty
→˓JSON object.

2.14.11 Update visual rule

URL MethodURL Params Definition
http://{{url}}:{{port-
perseoFe}}/m2m/vrules/{{vrule-
id}}

PUT url: Link to the service that will be con-
sulted.

Method to update an ex-
isting visual rule.

port-perseoFe: Port to connect with the
service.
vrule-id: ID of the virtual rule which
will be updated from Perseo.

Body:

{
“name” : “prueba-test”,
“active” : 1,
“cards” : [

{
“type” : “ActionCard”,
“actionData” : {

“userParams” : [
{

“name” : “mail.from”,
“value” : “dca_support@tid.es”

}
],
“name” : “email”,
“type” : “SendEmailAction”

122 Chapter 2. Smart Spot - Development Guide

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

},
“id” : “card_42”,
“connectedTo” : []

}
]

}

Return:

In case of performing the method correctly, returns in the body the visual rule
→˓updated in a JSON representation and “200 OK”.

In case of wrong execution, return “400 Bad Request”.

2.14.12 Retrieve log

URL Method URL Params Definition
http://{{url}}:{{port-
perseoFe}}/admin/log

GET url: Link to the service that will
be consulted.

Method to retrieve the logging
level of Perseo-Fe.

port-perseoFe: Port to connect
with the service.

Return:

In case of performing the method correctly, returns the logging level of Perseo-Core
→˓and “200 OK”. The loggins level can be “DEBUG”, “INFO”, “WARN”, “WARNING”,
“ERROR” and “FATAL”.

In case of wrong execution, return “400 Bad Request”.

2.14.13 Retrieve log level

URL MethodURL Params Definition
http://{{url}}:{{port-
perseoFe}}/admin/log?level={{perseo-
level}}

PUT url: Link to the service that will be consulted. Method to update
the logging level of
Perseo-Fe.

port-perseoFe: Port to connect with the service.
perseo-level: Logging level of Perseo-Core. Can be
“DEBUG”, “INFO”, “WARN”, “WARNING”, “ER-
ROR” and “FATAL”.

Return:

In case of performing the method correctly, returns “200 OK” with an empty JSON
→˓object “[]”.

In case of wrong execution by incorrect value in “perseo-level”, return “400 Bad
→˓Request”.

2.14. ANNEX 7.2: Perseo-Fe 123

http:/
http:/

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2.15 ANNEX 7.3: Perseo Use Cases

As we have seen in the introduction, Perseo-Fe makes an action before changes of values of Entities of Orion. These
actions usually are notifications to user. Currently, the notification to user can be done of the following ways:

• Update. Update the attributes of an Orion entity when some value of an attribute is different to expected.

• Post. Send to a REST service a HTTP message to notify different situation than normal.

• Twitter. Post a tweet with the information relevant to notify some value.

• E-mail. Send an e-mail when an entity has some attribute a value different to the optimum.

• SMS. Send a SMS when the values of an Orion entity are different to expected.

In addition to normal notifications, there are complex notifications which add on the notification message statistics
about the values (as means, totals, etc.).

For our use cases, we go to notify to user when CO value in a concrete SmartSport exceed a determinate value.

In first place, we must make a series of initial steps for the connection of Orion and Perseo:

1. Create the subscription from Perseo-Fe to Orion.

Perseo-Fe must be subscribe to Orion for be notified when the values of one or several attributes of one or several
entities of a type concrete change. In our case, we want to be notify when the CO value of the SmartSpot change. We
make the next subscription on Orion:

{
“entities”: [

{
“type”: “SmartSpot”,
“isPattern”: “true”,
“id”: “.*”

}
],
“attributes”: [

“CO”
],
“reference”: “http://perseo-fe:9090/notices”,
“duration”: “P1Y”,
“notifyConditions”: [

{
“type”: “ONCHANGE”,
“condValues”: [

“CO”
]

}
],
“throttling”: “PT1S”

}

2. Create a SmartSpot.

In case don´t have some SmartSpot create on Orion, we create the next test SmartSpot.

{
“contextElements”: [

{
“type”: “SmartSpot”,
“isPattern”: “false”,

124 Chapter 2. Smart Spot - Development Guide

HOP Ubiquitous Documentation Documentation, Release 1.4.0

“id”: “Prueba_de_ubicacion”,
“attributes”: [

{
“name”: “CO”,
“type”: “Number”,
“value”: “0.7626428598980013”

}
]

}
],
“updateAction”: “APPEND”

}

We can verify if Perseo-Fe receive correct notifications from Orion checking their log, for it, we execute about terminal
the next command: docker logs dockercompose_perseo-fe_1 –follow

2.15.1 Update

It serves to update or put attributes of an Orion entity when the value of the CO of the SmartSport excedes 1’5. The
steps to follow:

1. Create an UPDATE rule in Peseo-Fe.

We create the next rule which add the attributes “abnormal” and “other” in case the CO of any “SmartSpot” entity
have a value greater than 1’5.

{
“name”: “CO_update”,
“text”: “select *,\”CO_update\” as ruleName from pattern [every

→˓ev=iotEvent(cast(cast(CO?,String),float)>1.5 and type=\”SmartSpot\”)]”,
“action”: {

“type”: “update”,
“parameters”: {

“attributes”: [
{

“name”: “abnormal”,
“value”: “true”,
“type”: “boolean”

},
{

“name”: “other”,
“value”: 12.34,
“type”: “Number”

}
]

}
}

}

2. Update our SmartSpot.

We update the value of the CO of our SmartSpot of test increasing the CO to a value greater than 1’5.

{
“contextElements”: [

{
“type”: “SmartSpot”,

2.15. ANNEX 7.3: Perseo Use Cases 125

HOP Ubiquitous Documentation Documentation, Release 1.4.0

“isPattern”: “false”,
“id”: “Prueba_de_ubicacion”,
“attributes”: [

{
“name”: “CO”,
“type”: “Number”,
“value”: “1.7626428598980013”

}
]

}
],
“updateAction”: “UPDATE”

}

3. Check the results.

We back obtain the entity of test of our SmartSpot to check that , in effect, these two attributes have been created.

[
{

“id”: “Prueba_de_ubicacion”,
“type”: “SmartSpot”,
“CO”: {

“type”: “Number”,
“value”: “1.7626428598980013”,
“metadata”: {}

},
“abnormal”: {

“type”: “boolean”,
“value”: “true”,
“metadata”: {}

},
“other”: {

“type”: “Number”,
“value”: “12.34”,
“metadata”: {}

}
}

]

2.15.2 Post

In this example: Perseo-Fe sends a HTTP message when the value of the CO of the SmartSpot of test exceed 10’5.
The steps to follow:

1. Create a POST rule in Perseo-Fe.

When the CO of some SmartSpot entity is greater than 10’5, we send a HTTP message with PUT method to URL
http://localhost:8080/${type}/${id}. We define also header and body of the method.

{
“name”:”CO_post”,
“text”:”select \”CO_post\” as ruleName, * from pattern

→˓[everyev=iotEvent(cast(cast(CO?,String),float)>10.5 and type=\”SmartSpot\”)]”,
“action”:{

“type”:”post”,
“parameters”:{

126 Chapter 2. Smart Spot - Development Guide

http://localhost:8080

HOP Ubiquitous Documentation Documentation, Release 1.4.0

“url”: “http://localhost:8080/${type}/${id}”,
“method”: “PUT”,
“headers”: {

“Content-type”: “application/json”,
“X-CO”: “${CO}”

},
“qs”: {

“bp”: “${CO}”,
“id”: “${id}”,
“${type}”: “${type}”

},
“json”: {

“CO”: “${CO}”
}

}
}

}

2. Update our SmartSpot.

We update the value of the CO of our SmartSpot of test increasing the CO to a value greater that 10‘5.

{
“contextElements”: [

{
“type”: “SmartSpot”,
“isPattern”: “false”,
“id”: “Prueba_de_ubicacion”,
“attributes”: [

{
“name”: “CO”,
“type”: “Number”,
“value”: “20.7626428598980013”

}
]

}
],
“updateAction”: “UPDATE”

}

2.15.3 Twitter

In this use case, Perseo-Fe publish a tweet in the Twitter account that we have passed the keys when, again, the CO
value of the SmartSpot exceeds 1’5.

To normal operation of this action, we must obtain the Twitter keys to Perseo can connect with a defined Twitter
account.

1. Create a Twitter rule in Perseo-Fe.

This rule is launched when the CO value of any entity of SmartSpot type exceeds 1’5. In this moment, Perseo
publish the next Tweet: “SmartSpot ${SmartSpot} tiene un CO ${CO}. Prueba realizada en @HOPUbiquitous”. As
parameters, we must have passed the Twitter keys.

{
“name”:”CO_twitter”,
“text”:”select *,\”CO_twitter\” as ruleName, *, ev.CO? as CO, ev.id? as SmartSpot

→˓from pattern [every ev=iotEvent(cast(cast(CO?,String),float)>1.5 and
→˓type=\”SmartSpot\”)]”,

2.15. ANNEX 7.3: Perseo Use Cases 127

HOP Ubiquitous Documentation Documentation, Release 1.4.0

“action”:{
“type”:”twitter”,
“template”:”SmartSpot ${SmartSpot} tiene un CO ${CO}. Prueba realizada en

→˓@HOPUbiquitous”,
“parameters”:{

“consumer_key”: “XX”,
“consumer_secret”: “XX”,
“access_token_key”: “XX”,
“access_token_secret”: “XX”

}
}

}

2. Update our SmartSpot.

We update the CO value of our SmartSpot increase the CO to a value greater than 1’5.

{
“contextElements”: [

{
“type”: “SmartSpot”,
“isPattern”: “false”,
“id”: “Prueba_de_ubicacion”,
“attributes”: [

{
“name”: “CO”,
“type”: “Number”,
“value”: “1.7626428598980013”

}
]

}
],
“updateAction”: “Update”

}

2.15.4 E-mail

In this example, Perseo-Fe send an e-mail to defined recipient when, again, the CO value of the SmartSpot exceeds
1’5.

To normal operation of this action, first, we must configured Perseo-Fe to define the SMTP server parameters.

1. Configure the SMTP Server.

We must configure SMTP server in the Perseo-Fe configuration. To that, in docker-compose.yml file, inside of Docker
container fiware-docker-infraestructure of Hop Ubiquitous, we added in the Perseo-Fe configuration file the next
configuration lines:

• PERSEO_SMTP_HOST = smtp.servidor.com -> Host of the SMTP server.

• PERSEO_SMTP_PORT = 465 -> Port of the SMTP server.

• PERSEO_SMTP_SECURE = true -> true if SSL should be used with the SMTP server.

• PERSEO_SMTP_AUTH_USER = usuario@hopu.eu -> Authentication data, the username.

• PERSEO_SMTP_AUTH_PATH = xxx -> Authentication data, the password for the user.

In order for this changes have effect, we must reset the Docker container in case it is already booted.

128 Chapter 2. Smart Spot - Development Guide

mailto:usuario@hopu.eu

HOP Ubiquitous Documentation Documentation, Release 1.4.0

2. Create an E-mail rule in Perseo-Fe.

This rule is launched when the CO value of any entity of SmartSpot type exceeds 1’5. In this moment, Perseo send
the next e-mail: “CO ${SmartSpot} tiene un CO ${CO}. Es peligroso.”. The e-mail will have “${SmartSpot} ha
cambiado” as subject, the sender will be usuario@hopu.eu and the recipient will be usuario@gmail.com.

{
“name”: “CO_email”,
“text”: “select *,\”CO_email\” as ruleName, *,smartspot.CO? as CO, smartspot.id?

→˓as Smart-Spot from pattern [every smartspot=iotEvent(cast(cast(SmartSpot?,String),
→˓float)>1.5 and type=\”SmartSpot\”)]”,

“action”: [
{

“type”: “email”,
“template”: “CO ${SmartSpot} tiene un CO ${CO}. Es peligroso.”,
“parameters”: {

“to”: “usuario@gmail.com”,
“from”: “usuario@hopu.eu”,
“subject”: “${SmartSpot} ha cambiado”

}
}

]
}

3. Update our SmartSpot.

We update the CO value of our SmartSpot increase the CO to a value greater than 1’5.

{
“contextElements”: [

{
“type”: “SmartSpot”,
“isPattern”: “false”,
“id”: “Prueba_de_ubicacion”,
“attributes”: [

{
“name”: “CO”,
“type”: “Number”,
“value”: “20.7626428598980013”

}
]

}
],
“updateAction”: “Update”

}

2.15.5 SMS

In this example, Perseo-Fe send an SMS to defined recipient when, again, the CO value of the SmartSpot exceeds 1’5.

To normal operation of this action, first, we must configured Perseo-Fe to define the SMPP server parameters and the
SMS parameters.

1. Configure the SMPP Server.

We must configure SMTP server in the Perseo-Fe configuration. To that, in docker-compose.yml file, inside of Docker
container fiware-docker-infraestructure of Hop Ubiquitous, we added in the Perseo-Fe configuration file the next
configuration lines:

2.15. ANNEX 7.3: Perseo Use Cases 129

mailto:usuario@hopu.eu
mailto:usuario@gmail.com

HOP Ubiquitous Documentation Documentation, Release 1.4.0

• PERSEO_SMS_URL = localhost -> URL for sending SMSs (SMPP Adapter).

• PERSEO_SMS_API_KEY API KEY = XXX -> API KEY for sending SMS, if necessary.

• PERSEO_SMS_API_SECRET API SECRET = XXX -> API SECRET for sending SMS, if necessary.

• PERSEO_SMS_FROM = 987654123 -> Field from for the outgoing SMSs.

• PERSEO_SMPP_HOST = localhost -> Host of the SMPP server.

• PERSEO_SMPP_PORT = 3550 -> Port of the SMPP server.

• PERSEO_SMPP_SYSTEMID = user -> SystemID for the user of the SMPP server.

• PERSEO_SMPP_PASSWORD = password -> Password for the user of the SMPP server.

• PERSEO_SMPP_FROM = 987654123 -> Number from SMS are sending by SMPP server.

• PERSEO_SMPP_ENABLED = true -> SMPP is default method for SMS instead of use SMS gateway.

In order for this changes have effect, we must reset the Docker container in case it is already booted.

2. Create a SMS rule in Perseo-Fe.

This rule is launched when the CO value of any entity of SmartSpot type exceeds 1’5. In this moment, Perseo send
the next SMS: “SmartSpot ${SmartSpot} tiene un CO ${CO}.”. The recipient will be 636254XXX.

{
“name”:”CO_sms”,
“text”:”select *,\”CO_sms\” as ruleName, *, smartspot.CO? as CO, smartspot.id? as

→˓SmartSpot from pattern [every smartspot=iotEvent(cast(cast(CO?,String),float)>1.5
→˓and type=\”SmartSpot\”)]”,

“action”:{
“type”:”sms”,
“template”:”SmartSpot ${SmartSpot} tiene un CO ${CO}.”,
“parameters”:{

“to”:”636254XXX”
}

}
}

3. Update our SmartSpot.

We update the CO value of our SmartSpot increase the CO to a value greater than 1’5.

{
“contextElements”: [

{
“type”: “SmartSpot”,
“isPattern”: “false”,
“id”: “Prueba_de_ubicacion”,
“attributes”: [

{
“name”: “CO”,
“type”: “Number”,
“value”: “20.7626428598980013”

}
]

}
],
“updateAction”: “Update”

}

130 Chapter 2. Smart Spot - Development Guide

CHAPTER 3

HOP Ubiquitous - Relevant Links

• HOP Ubiquitous Web: http://www.hopu.eu/

• HOP Ubiquitous Smartcities: http://smartcities.hopu.eu/

• HOP Ubiquitous Dashboard: https://live.hopu.eu

• Homard App: http://staging.hopu.eu

• Homard Wiki: https://homard.hopu.eu/indexPage/wiki.html

131

http://www.hopu.eu/
http://smartcities.hopu.eu/
https://live.hopu.eu
http://staging.hopu.eu
https://homard.hopu.eu/indexPage/wiki.html

	Smart Spot - Quick Guide
	What is a Smart Spot?
	Smart Spot Features
	First steps with your Smart Spot (Set up connectivity)
	How to install the device on a pole or on a wall?
	What is Homard Dashboard?
	Connecting and managing the device (default configuration)
	How to verify that the sensor is properly working?
	How to see the sensor information?

	Smart Spot - Development Guide
	Homard API REST
	Homard RESTFul API Examples
	URL Manager (Physical Web configuration for advertising URLs)
	Fiware Integration
	Orion Context Broker NGSI RESTFul API
	ANNEX 1: OMA LwM2M
	ANNEX 2: FIWARE-DOCKER Architecture
	ANNEX 3: STH-Comet RESTFul API
	ANNEX 4: Cygnus RESTFul API
	ANNEX 5: IoT Agent LwM2M RESTFul API
	ANNEX 6: Deploy and use of Grafana
	ANNEX 7: Perseo CEP
	ANNEX 7.1: Perseo-Core
	ANNEX 7.2: Perseo-Fe
	ANNEX 7.3: Perseo Use Cases

	HOP Ubiquitous - Relevant Links

