
Hoodie Documentation

Hooodie Project

Nov 08, 2019





Contents

1 Welcome to Hoodie 1

2 Quickstart 3

3 Configuration 7

4 Plugins 11

5 Deployment 13

6 Using Hoodie as hapi plugin 17

7 Hoodie API 19

8 Contributing to Hoodie 47

9 Coding Style Guide 53

10 Triage new issues/PRs on GitHub 57

11 Contributing to Documentation 61

12 Documentation Style Guide 63

13 Hoodie’s Concepts 67

14 How Hoodie Works 69

15 Architecture 73

16 Files & Folders 75

17 Requirements 79

18 Glossary 81

i



ii



CHAPTER 1

Welcome to Hoodie

Hoodie is a backend for web applications with a JavaScript API for your frontend. If you love building apps with
HTML, CSS and JavaScript or a frontend framework, but dread backend work, Hoodie is for you.

Hoodie’s frontend API gives your code superpowers by allowing you to do things that usually only a backend can do
(user accounts, emails, payments, etc.).

All of Hoodie is accessible through a simple script include, just like jQuery or lodash:

<script src="/hoodie/client.js"></script>

From that point on, things get really powerful really quickly:

// In your front-end code:
hoodie.ready.then(function () {

hoodie.account.signUp({
username: username,
password: password

})
})

That’s how simple signing up a new user is, for example. But anyway:

Hoodie is a frontend abstraction of a generic backend web service. As such, it is agnostic to your choice of
frontend application framework. For example, you can use jQuery for your web app and Hoodie for your connection
to the backend, instead of raw jQuery.ajax. You could also use React with Hoodie as a data store, or any other frontend
framework or library, really.

1.1 Open Source

Hoodie is an Open Source project, so we don’t own it, can’t sell it, and it won’t suddenly vanish because we got
aquired. The source code for Hoodie is available on GitHub under the Apache License 2.0.

1



Hoodie Documentation

1.2 How to proceed

You could read up on some of the ideological concepts behind Hoodie, such as noBackend and Offline First. These
explain why Hoodie exists and why it looks and works the way it does.

If you’re more interested in the technical details of Hoodie, check out How Hoodie Works. Learn how Hoodie handles
data storage, does syncing, and where the offline support comes from.

Eager to build stuff? Skip ahead to the quickstart guide!

2 Chapter 1. Welcome to Hoodie



CHAPTER 2

Quickstart

In this guide you’ll learn how to create a demo Hoodie app, learn about the basic structure of a Hoodie project and its
folders, the endpoints and app URLs and how to include and use the Hoodie library in your project.

2.1 Prerequisites

For all operating systems, you’ll need Node.js installed. You can download Node from nodejs.org. We recommend
the LTS (Long Term Support) version.

Make sure you have version 4 or higher. You can find out with

$ node -v

2.2 Create a new Hoodie Backend

First you need to create a new folder, let’s call it testapp

$ mkdir testapp

Change into the testapp directory.

$ cd testapp

Now we need to create a package.json file. For that we can use npm which comes with Node by default. It will ask
you a few questions, you can simply press enter to leave the default values.

$ npm init -y

Now we can install hoodie using npm

3

https://glitch.com/edit/#!/remix/hoodie
https://nodejs.org/
https://www.npmjs.com/


Hoodie Documentation

$ npm install hoodie --save

The resulting package.json file in the current folder, should look something like this

{
"name": "testapp",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"start": "hoodie",
"test": "echo \"Error: no test specified\" && exit 1"

},
"keywords": [],
"author": "",
"license": "ISC"

}

Now you can start Hoodie with

$ npm start

Great, your Hoodie backend started up and is now telling you at which URL you can access it. By default that is
http://127.0.0.1:8080

Congratulations, you just created your first Hoodie Backend :) You can now load the Hoodie client on any website
with

<script src="http://127.0.0.1:8080/hoodie/client.js"></script>

You can also create a public/index.html file, which will be served at http://127.0.0.1:8080 after you restart the
server. All assets in the public folder, like images, CSS files or JavaScript files, will be served by your Hoodie Backend
at http://127.0.0.1:8080/<path/to/your/file.ext>.

If you just want to try, you can copy https://raw.githubusercontent.com/gr2m/sweet.la/master/public/index.html to
your index.html. (This code was created to present Hoodie in an event, you can watch it at https://www.youtube.com/
watch?v=TSDyxtVbbME&t=1272s) Open the Console and try:

hoodie

Also try:

hoodie.account.signUp({username: 'foo', password: 'secret'})

Now, test using it offline and back online. You can also open a second browser (incognito) and see the changes being
replicated.

2.2.1 Note for npm v2

Because of how npm v2 installs sub dependencies, the hoodie client cannot be bundled. As a workaround, just install
pouchdb-browser and @hoodie/client as a dependency of your hoodie app

$ npm install --save pouchdb-browser @hoodie/client

4 Chapter 2. Quickstart

http://127.0.0.1:8080
http://127.0.0.1:8080
https://raw.githubusercontent.com/gr2m/sweet.la/master/public/index.html
https://www.youtube.com/watch?v=TSDyxtVbbME&t=1272s
https://www.youtube.com/watch?v=TSDyxtVbbME&t=1272s


Hoodie Documentation

2.3 What’s next?

Our Hoodie Tracker App is a great place to see how to use a Hoodie backend. It’s an intentionally simple and well
commented application built with only HTML, JavaScript and CSS, without using any library or framework. You can
see it running at https://hoodie-app-tracker.now.sh/

2.4 Having Trouble?

Sorry it didn’t go smoothly for you. Come chat with us or ask a question on StackOverflow

2.3. What’s next? 5

https://github.com/hoodiehq/hoodie-app-tracker
https://hoodie-app-tracker.now.sh/
http://hood.ie/chat/
https://stackoverflow.com/questions/ask?tags=hoodie


Hoodie Documentation

6 Chapter 2. Quickstart



CHAPTER 3

Configuration

Your Hoodie back-end can be configured using default options that are part of your repository as well as using hidden
files, CLI arguments and environment variables.

3.1 Options

Here is a list of all available options

7



Hoodie Documentation

Option Default value CLI argument ENV variable description
address '127.0.0.1' --address hoodie_address Address to which

Hoodie binds
data '.hoodie' --data hoodie_data Data path
dbUrl – --dbUrl hoodie_dbUrl If provided, uses

external CouchDB.
Include creden-
tials in dbUrl, or
use dbUrlUser-
name and dbUrl-
Password. Sets
dbAdapter to
pouchdb-adapter-http

dbUrlUsername – dbUrlUsername hoodie_dbUrlUsernameIf dbUrl is
set, you can use
dbUrlUsername
to set the user-
name to use when
making requests to
CouchDB

dbUrlPassword – dbUrlPassword hoodie_dbUrlPasswordIf dbUrl is
set, you can use
dbUrlPassword
to set the pass-
word to use when
making requests to
CouchDB

dbAdapter 'pouchdb-adapter-fs'--dbAdapter hoodie_dbAdapterSets default
PouchDB adapter
<https://pouchdb.com/adapters.html>
unless inMemory
or dbUrl set

loglevel 'warn' --loglevel hoodie_loglevel One of: silent, error,
warn, http, info, ver-
bose, silly

inMemory false -m, --inMemory hoodie_inMemory Whether to start the
PouchDB Server
in memory. Sets
dbAdapter to
pouchdb-adapter-memory

port 8080 --port hoodie_port Port-number to run
the Hoodie App on

public 'public' --public hoodie_public path to static assets
url • --url hoodie_url Optional: ex-

ternal URL at
which Hoodie
Server is accessible
(e.g. http://
myhoodieapp.
com)

adminPassword • --adminPassword hoodie_adminPasswordPassword to login to
Admin Dashboard.
Login is not possi-
ble unless set

name package.json’s
name property

--name hoodie_name Name your applica-
tion.8 Chapter 3. Configuration



Hoodie Documentation

3.1.1 Defaults

Default options are set in your app’s package.json file, using the "hoodie" key. Here is an example with all
available options and their default values

{
"hoodie": {
"address": "127.0.0.1",
"port": 8080,
"data": ".hoodie",
"public": "public",
"dbUrl": "",
"dbAdapter": "pouchdb-adapter-fs",
"inMemory": false,
"loglevel": "warn",
"url": "",
"adminPassword": "",
"name": "my-hoodie-app"

}
}

3.2 .hoodierc

The .hoodierc can be used to set configuration when running your Hoodie backend in that folder. It should not be
committed to your repository.

The content can be in JSON or INI format. See the rc package on npm for more information

3.3 CLI arguments and environment variables

To pass CLI options when starting Hoodie, you have to separate them with --, for example:

$ npm start -- --port=8090 --inMemory

All environment variables are prefixed with hoodie_. So to set the port to 8090 and to start Hoodie in memory
mode, you have to

• set the hoodie_port environment variable to 8090

• set the hoodie_inMemory environment variable to true

Hoodie CLI is using rc for configuration, so the same options can be set with environment variables and config files.
Environment variables are prefixed with hoodie_.

3.4 The priority of configuration

1. Command line arguments

2. Environment variables

3. .hoodierc files

4. Your app’s defaults form the "hoodie" key in "package.json"

3.2. .hoodierc 9

https://www.npmjs.com/package/rc
https://www.npmjs.com/package/rc


Hoodie Documentation

5. Hoodie’s default values as shown in table above

10 Chapter 3. Configuration



CHAPTER 4

Plugins

You can extend your Hoodie app in two ways

1. App-specific plugins

2. 3rd party plugins

4.1 App-specific plugins

You can extend your Hoodie’s client by creating the file hoodie/client/index.js in your app’s repository,
which should export a Hoodie Client plugin <http://docs.hood.ie/en/latest/api/client/hoodie.html#hoodie-plugin>. It
will dynamically be bundled into your client /hoodie/client.js.

Example

// /hoodie/client/index.js
module.exports = function (hoodie) {

hoodie.hello = function (what) {
return Promise.resolve('Hello, ' + (what || 'world') + '!')

}
}

You can extend your Hoodie’s server routes and API by creating hoodie/server/index.js in your app’s, which
should export a hapi plugin. All server routes defined in the plugin will be prefixed with /hoodie/<app name>
where <app name> is your package.json “name” key.

Example

module.exports.register = register
module.exports.register.attributes = {

name: 'hoodie-app-plugin'
}

function register (server, options, next) {

(continues on next page)

11

https://hapijs.com/tutorials/plugins


Hoodie Documentation

(continued from previous page)

server.route({
method: 'GET',
path: '/api',
handler: function (request, reply) {

reply('Hello, world!')
}

})

next()
}

Try it it at http://localhost:8080/hoodie/<app name>/api

4.2 3rd party plugins

Hoodie plugins are npm modules <https://www.npmjs.com/search?q=hoodie-plugin->. We recommend to prefix your
plugin names with hoodie-plugin-, but it’s not required. The folder structure is the same as for app-specific
plugins:

The server plugin must be loadable via require('hoodie-plugin-foo/hoodie/server'). A Hoodie
server plugin is a hapi plugin. The client plugin must be loadable via require('hoodie-plugin-foo/
hoodie/client') A Hoodie client plugin can be a function or an object, it will be passed into hoodie.plugin()
<http://docs.hood.ie/en/latest/api/client/hoodie.html#hoodie-plugin>

Hoodie plugins can extend the Hoodie client, the Hoodie server and provide a web UI for /hoodie/<plugin name>. All
extension points are optional. The hoodie/public folder will be exposed at /hoodie/<plugin name> by the server
if it exists. All server routes will be prefixed with /hoodie/<plugin name>.

<plugin name> is the name property in your package.json file, but can be overridden with the hoodie.
name property.

After installing and adding a Hoodie plugin to your app’s dependencies, you also have to enable it by adding it to the
hoodie.plugins array in your app’s package.json file. The names are the npm package names.

The order in which server/client plugins are loaded is

1. core modules (account, store, task)

2. 3rd party plugins (npm dependencies)

3. app plugins

For an example plugin, have a look at Hoodie’s “Hello, world!” plugin .

12 Chapter 4. Plugins

http://localhost:8080/hoodie
http://hapijs.com/tutorials/plugins
https://github.com/hoodiehq/hoodie-plugin-hello-world


CHAPTER 5

Deployment

5.1 One line deploy

After you’ve built your Hoodie app you probably want to put it online. You can choose to deploy your app as read-only
or deploy the backend couchdb database as well. This video and the text below describes how to deploy your app using
one line of code. Alternatively, you can deploy your app using Docker, please refer to the Docker section.

5.2 Deploying to Now

Now allows you to deploy a Node application with its command line tool. It’s 100% free for Open Source projects.
You can deploy an app from your computer or right from a GitHub repository. For example, to deploy our Hoodie
Tracker demo app all you have to do is to run this command:

$ now hoodiehq/hoodie-app-tracker --npm -e NODE_ENV=production -e hoodie_inMemory=true

To describe this further:

• hoodiehq/hoodie-app-tracker is the GitHub repository slug.

• --npm tells now to deploy using npm as there is also Dockerfile in the repository.

• -e NODE_ENV=production sets the NODE_ENV environment variable to production, which makes the
deployment faster as no devDependencies will be installed.

• -e hoodie_inMemory=true makes the Hoodie app run in-memory mode, meaning that no data is per-
sisted and no files are written. This is important because now is a read-only file system. That means that all
user accounts and data will be lost on the next deployment, but it is great for for a quick test or demo of your
application.

Alternatively, add this script to your package.json and you are good to go:

"now-start": "hoodie --inMemory",

13

https://youtu.be/29Uclxq_1Vw
https://zeit.co/now
https://github.com/zeit/now-cli
https://github.com/hoodiehq/hoodie-app-tracker
https://github.com/hoodiehq/hoodie-app-tracker


Hoodie Documentation

5.3 Store Data With Cloudant

Cloudant is a DBaaS (database-as-a-service). It provides most of CouchDB’s APIs and can be used as Hoodie’s
database backend. Signing up for a free account only takes a moment. After sign up, you need to slightly adjust the
now deployment command above.

$ now hoodiehq/hoodie-app-tracker -e NODE_ENV=production -e hoodie_inMemory=true -e
→˓hoodie_dbUrl=https://username:password@username.cloudant.com/

The hoodie_inMemory environment variable makes sure that Hoodie does not try to write any files like the bun-
dled /hoodie/client.js library. The hoodie_dbUrl environment variable sets the address and credentials to your
CouchDB. Replace username and password to whatever you signed up with.

5.4 Test and set an alias

When you deploy with now you will receive a random subdomain where you can access your application. It looks
something like https://hoodie-app-tracker-randomxyz.now.sh/ and was already copied to your clipboard during the
deployment. Open the URL in your browser to give it a try. Once everything is good, you can change the subdomain
to your preference by running:

$ now alias set hoodie-app-tracker-randomxyz my-tracker-app

That will make your deployed Hoodie Tracker app accessible at https://my-tracker-app.now.sh. For example, here is
the app that I deployed myself: https://hoodie-app-tracker.now.sh/

5.5 Docker

We continuously deploy our Hoodie Tracker App using Docker. You can read about our continuous deployment set at
hoodie-app-tracker/deployment.md.

5.6 Deployment in linux

This guide is for Linux only at this point. I have tried to deploy Hoodie-App-Tracker as an example:

5.6.1 install dependencies

1. Install CouchDB 1.2.0 or later, 1.4.0 or later recommended for performance.

2. Install NodeJS LTS version or later. This includes npm.

3. Install git.

5.6.2 CouchDB

We assume you set up CouchDB with your package manager or manually following the installation procedure.

In order to test if CouchDB is running fine or not, we can simply run the following command which will retrieve the
information through curl.

14 Chapter 5. Deployment

https://cloudant.com/
https://hoodie-app-tracker-randomxyz.now.sh/
https://my-tracker-app.now.sh
https://hoodie-app-tracker.now.sh/
https://github.com/hoodiehq/hoodie-app-tracker
https://github.com/hoodiehq/hoodie-app-tracker/blob/master/deployment.md
https://github.com/hoodiehq/hoodie-app-tracker
http://linoxide.com/linux-how-to/install-couchdb-futon-ubuntu-1604/
https://nodejs.org/en/
https://www.digitalocean.com/community/tutorials/how-to-install-git-on-ubuntu-16-04
http://linoxide.com/linux-how-to/install-couchdb-futon-ubuntu-1604/


Hoodie Documentation

$ curl localhost:5984

If you are already using CouchDB for other things, we recommend starting a second instance of CouchDB that is
completely separate from your original one. See below for instructions.

In this guide, we assume that your CouchDB is available at port 5984.

Create a CouchDB admin user called admin with a strong password of your choice by clicking on the Fix this at
Apache CouchDB-Futon:Overview link in the lower right corner. Use admin as username and keep your password in
mind.

Next we have to change CouchDB’s default configuration on a few points. The easiest thing is to go to and change the
following fields (double click a value to enter the editing mode):

couchdb -> delayed_commits: false
couchdb -> max_dbs_open: 1024

5.6.3 System

Add this to /etc/security/limits.conf:

hoodie soft nofile 768
hoodie hard nofile 1024

5.6.4 Hoodie

Create a new system user:

$ sudo useradd --system \
-m \
--home /home/hoodie \
--shell /bin/bash \
--no-user-group \
-c "Hoodie Administrator" hoodie

This will create a new user and its home directory /home/hoodie. But unless you have a password, you can not be a
user. To set a password run:

$ sudo passwd hoodie

Give a password of your choice.

cd in to that directory.

To switch to hoodie user, run:

$ sudo su hoodie

As user Hoodie, install your application:

$ git clone <repo url>

make sure package.json has a valid name property.

cd into the directory.Run :

5.6. Deployment in linux 15

http://127.0.0.1:5984/
http://127.0.0.1:5984/_utils/


Hoodie Documentation

$ cd <repo name>

Now run:

$ npm install

To run Hoodie as the root:

$ sudo su hoodie

To launch Hoodie now, as root :

$ npm start -- --dbUrl=http://admin:yourpassword@localhost:5984/

Replace yourpassword with the password you choose when you created the admin user above.

That’s it. The app should be running by now.

16 Chapter 5. Deployment



CHAPTER 6

Using Hoodie as hapi plugin

Here is an example usage of Hoodie as a hapi plugin:

var Hapi = require('hapi')
var hoodie = require('hoodie').register
var PouchDB = require('pouchdb-core')

.plugin(require('pouchdb-mapreduce'))

.plugin(require('pouchdb-adapter-memory'))

var server = new Hapi.Server()
server.connection({

host: 'localhost',
port: 8000

})

server.register({
register: hoodie,
options: { // pass options here
inMemory: true,
public: 'dist',
PouchDB: PouchDB

}
}, function (error) {

if (error) {
throw error

}

server.start(function (error) {
if (error) {

throw error
}

console.log(('Server running at:', server.info.uri))
})

})

17



Hoodie Documentation

The available options are

option de-
fault

description

PouchDB – PouchDB constructor. See also custom PouchDB builds
paths.data'.

hoodie'
Data path

paths.public'public'Public path
admin-
Pass-
word

– Password to login to Admin Dashboard. Login is not possible if adminPassword option is
not set

in-
Mem-
ory

false If set to true, configuration and other files will not be read from / written to the file system

client {} Hoodie Client options. client.url `` is set based on hapi’s ``server.
info.host

ac-
count

{} Hoodie Account Server options. account.admins, account.secret and account.
usersDb are set based on db option above

store {} Hoodie Store Server options. store.couchdb, store.PouchDB are set based on db
option above. ‘‘store.hooks.onPreAuth‘ ‘ is set to bind user authentication for Hoodie Account
to Hoodie Store

plugins [] Array of npm names or paths of locations containing plugins. See also Hoodie plugins docs
app {} App specific options for plugins

18 Chapter 6. Using Hoodie as hapi plugin

https://pouchdb.com/api.html#defaults
https://pouchdb.com/2016/06/06/introducing-pouchdb-custom-builds.html
https://github.com/hoodiehq/hoodie-client#constructor
https://github.com/hoodiehq/hoodie-account-server/tree/master/plugin#options
https://github.com/hoodiehq/hoodie-store-server#options
http://docs.hood.ie/en/latest/guides/plugins.html


CHAPTER 7

Hoodie API

Hoodie provides two APIs

1. The Hoodie Client API

The Hoodie Client API is what you load into your web application using a script tag. It connects to your Hoodie
Backend’s routes

2. The Hoodie Server API

The Hoodie Server API is used within Hoodie’s route handlers and by plugins to manage accounts, data and to
securely integrate with 3rd party services.

7.1 The Hoodie Client API

7.1.1 hoodie

Introduction

This document describes the functionality of the hoodie base object. It provides a number of helper methods dealing
with event handling and connectivity, as well as a unique id generator and a means to set the endpoint which Hoodie
communicates with.

Initialisation

The Hoodie Client persists state in the browser, like the current user’s id, session or the connection status to the
backend.

hoodie.account.get('session').then(function (session) {
if (session) {
// user is signed in

} else {

(continues on next page)

19



Hoodie Documentation

(continued from previous page)

// user is signed out
}

})

Hoodie integrates Hoodie’s client core modules:

• The account API

• The store API

• The connectionStatus API

• The log API

Example

var Hoodie = require('@hoodie/client')
var hoodie = new Hoodie({

url: 'https://myhoodieapp.com',
PouchDB: require('pouchdb')

})

hoodie.account.signUp({
username: 'pat@Example.com',
password: 'secret'

}).then(function (accountAttributes) {
hoodie.log.info('Signed up as %s', accountAttributes.username)

}).catch(function (error) {
hoodie.log.error(error)

})

Constructor

new Hoodie(options)

Argu-
ment

Type Description Re-
quired

op-
tions.PouchDB

Con-
struc-
tor

PouchDB constructor, see also PouchDB custom builds Yes

op-
tions.url

String Set to hostname where Hoodie server runs, if your app runs on a different host Yes

op-
tions.account

String account options. options.url is always set to hoodie.url + ‘/account/api’ No

op-
tions.store

String store options. options.PouchDB is always set to Hoodie Client’s construc-
tor’s options.PouchDB. options.dbName is always set to hoodie.account.id.
options.remote is always set to hoodie.url + ‘/store/api’.

No

op-
tions.task

String task options. options.userId is always set to hoodie.account.id. options.remote is always
set to hoodie.url + ‘/task/api’

No

op-
tions.connectionStatus

String connectionStatus options. options.url is always set to hoodie.url +
‘/connection-status/api’. options.method is always set to HEAD

No

20 Chapter 7. Hoodie API

hoodie.account.html
hoodie.store.html
hoodie.connection-status.html
hoodie.log.html
https://pouchdb.com/custom.html
https://github.com/hoodiehq/hoodie-account-client#constructor
https://github.com/hoodiehq/hoodie-account-client#constructor
https://github.com/hoodiehq/hoodie-client#constructor
https://github.com/hoodiehq/hoodie-client#constructor
https://github.com/hoodiehq/hoodie-client-task#constructor
https://github.com/hoodiehq/hoodie-connection-status#constructor


Hoodie Documentation

hoodie.url

Read-only

hoodie.url

full url to the hoodie server, e.g. http://example.com/hoodie

hoodie.account

hoodie.account is an instance of hoodie-account-client. See account API

hoodie.store

hoodie.store is an instance of hoodie-store. See store API

hoodie.connectionStatus

hoodie.connectionStatus is an instance of hoodie-connection-status. See connectionStatus API

hoodie.log

hoodie.log is an instance of hoodie-log. See log API

hoodie.request

Sends an http request

hoodie.request(url)
// or
hoodie.request(options)

Argu-
ment

Type Description Re-
quired

url String Relative path or full URL. A path must start with / and sends a GET request
to the path, prefixed by hoodie.url. In case a full URL is passed, a GET
request to the url is sent.

Yes

op-
tions.url

String Relative path or full URL. A path must start with / and sends a GET request
to the path, prefixed by hoodie.url. In case a full URL is passed, a GET
request to the url is sent.

Yes

op-
tions.method

String Defaults to GET. One of GET, HEAD, POST, PUT, DELETE. No

op-
tions.data

Object, Array,
String or
Number

For PUT and POST requests, an optional payload can be sent. It will be stringi-
fied before sending the request.

No

op-
tions.headers

Object Map of Headers to be sent with the request. No

Examples

7.1. The Hoodie Client API 21

https://github.com/hoodiehq/hoodie-account-client
https://github.com/hoodiehq/hoodie-account-client#api
https://github.com/hoodiehq/hoodie-store
https://github.com/hoodiehq/hoodie-store#api
https://github.com/hoodiehq/hoodie-connection-status
https://github.com/hoodiehq/hoodie-connection-status#api
https://github.com/hoodiehq/hoodie-log
https://github.com/hoodiehq/hoodie-log#api


Hoodie Documentation

// sends a GET request to hoodie.url + '/foo/api/bar'
hoodie.request('/foo/api/bar')
// sends a GET request to another host
hoodie.request('https://example.com/foo/bar')
// sends a PATCH request to /foo/api/bar
hoodie.request({

method: 'PATCH',
url: '/foo/api/bar',
headers: {
'x-my-header': 'my value'

},
data: {
foo: 'bar'

}
})

hoodie.plugin

Initialise hoodie plugin

hoodie.plugin(methods)
hoodie.plugin(plugin)

Argu-
ment

Type Description Re-
quired

meth-
ods

Ob-
ject

Method names as keys, functions as values. Methods get directly set on hoodie, e.g.
hoodie.plugin({foo: function () {}}) sets hoodie.foo to function () {}

Yes

plug-
ins

Func-
tion

The passed function gets called with hoodie as first argument, and can directly set new
methods / properties on it.

Yes

Examples

hoodie.plugin({
sayHi: function () { alert('hi') }

})
hoodie.plugin(function (hoodie) {

hoodie.sayHi = function () { alert('hi') }
})

hoodie.on

Subscribe to event.

hoodie.on(eventName, handler)

Example

hoodie.on('account:signin', function (accountProperties) {
alert('Hello there, ' + accountProperties.username)

})

22 Chapter 7. Hoodie API



Hoodie Documentation

hoodie.one

Call function once at given event.

hoodie.one(eventName, handler)

Example

hoodie.one('mycustomevent', function (options) {
console.log('foo is %s', options.bar)

})
hoodie.trigger('mycustomevent', { foo: 'bar' })
hoodie.trigger('mycustomevent', { foo: 'baz' })
// logs "foo is bar"
// DOES NOT log "foo is baz"

hoodie.off

Removes event handler that has been added before

hoodie.off(eventName, handler)

Example

hoodie.off('connectionstatus:disconnect', showNotification)

hoodie.trigger

Trigger custom events

hoodie.trigger(eventName[, option1, option2, ...])

Example

hoodie.trigger('mycustomevent', { foo: 'bar' })

Events

Event Decription
account:* events, see account events
store:* events, see store events
connectionStatus:* events, see connectionStatus events

Testing

Local setup

git clone https://github.com/hoodiehq/hoodie-client.git
cd hoodie-client
npm install

7.1. The Hoodie Client API 23



Hoodie Documentation

Run all tests

npm test

Run test from one file only

node tests/specs/id

7.1.2 hoodie.account

The account object in the client-side Hoodie API covers all user and authentication-related operations, and enables
you to do previously complex operations, such as signing up a new user, with only a few lines of frontend code. Since
data in Hoodie is generally bound to a user, it makes sense to familiarise yourself with account before you move on
to store.

hoodie-account-client is a JavaScript client for the Account JSON API. It persists session information in
localStorage (or your own store API) and provides front-end friendly APIs for the authentication-related operations as
mentioned above.

Example

hoodie.account.get('session').then(function (sessionProperties) {
if (!sessionProperties) {
return redirectToHome()

}

renderWelcome(sessionProperties)
}).catch(redirectToHome)

hoodie.account.on('signout', redirectToHome)

hoodie.account.validate

Calls the function passed into the Constructor. Returns a Promise that resolves to true by default

hoodie.account.validate(options)

Argument Type Required
options.username String No
options.password String No
options.profile Object No

Resolves with an argument.

Rejects with any errors thrown by the function originally passed into the Constructor.

Example

hoodie.account.validate({
username: 'DocsChicken',
password: 'secret'

})

(continues on next page)

24 Chapter 7. Hoodie API

/camp/hoodieverse/glossary.html#private-user-store
/camp/techdocs/api/client/hoodie.store.html
http://docs.accountjsonapi.apiary.io/


Hoodie Documentation

(continued from previous page)

.then(function () {
console.log('Successfully validated!')

})

.catch(function (error) {
console.log(error) // should be an error about the password being too short

})

hoodie.account.signUp

Creates a new user account on the Hoodie server. Does not sign in the user automatically, hoodie.account.signIn must
be called separately.

hoodie.account.signUp(accountProperties)

Argument Type Required
accountProperties.username String Yes
accountProperties.password String Yes

Resolves with accountProperties:

{
"id": "account123",
"username": "pat",
"createdAt": "2016-01-01T00:00.000Z",
"updatedAt": "2016-01-01T00:00.000Z"

}

Rejects with:

InvalidError Username must be set
SessionError Must sign out first
ConflictError Username <username> already exists
ConnectionError Could not connect to server

Example

hoodie.account.signUp({
username: 'pat',
password: 'secret'

}).then(function (accountProperties) {
alert('Account created for ' + accountProperties.username)

}).catch(function (error) {
alert(error)

})

hoodie.account.signIn

Creates a user session

7.1. The Hoodie Client API 25



Hoodie Documentation

hoodie.account.signIn(options)

Argument Type Description Required
options.username String • Yes

options.password String • Yes

Resolves with accountProperties:

{
"id": "account123",
"username": "pat",
"createdAt": "2016-01-01T00:00.000Z",
"updatedAt": "2016-01-02T00:00.000Z",
"profile": {

"fullname": "Dr. Pat Hook"
}

}

Rejects with:

UnconfirmedError Account has not been confirmed yet
UnauthorizedErrorInvalid Credentials
Error A custom error set on the account object, e.g. the account could be blocked due to missing

payments
ConnectionError Could not connect to server

Example

hoodie.account.signIn({
username: 'pat',
password: 'secret'

}).then(function (sessionProperties) {
alert('Ohaj, ' + sessionProperties.username)

}).catch(function (error) {
alert(error)

})

hoodie.account.signOut

Deletes the user’s session

hoodie.account.signOut()

Resolves with sessionProperties like hoodie.account.signIn, but without the session id:

{
"account": {

"id": "account123",
"username": "pat",
"createdAt": "2016-01-01T00:00.000Z",

(continues on next page)

26 Chapter 7. Hoodie API



Hoodie Documentation

(continued from previous page)

"updatedAt": "2016-01-02T00:00.000Z",
"profile": {

"fullname": "Dr. Pat Hook"
}

}
}

Rejects with:

Error A custom error thrown in a before:signout hook

Example

hoodie.account.signOut().then(function (sessionProperties) {
alert('Bye, ' + sessionProperties.username)

}).catch(function (error) {
alert(error)

})

hoodie.account.destroy

Destroys the account of the currently signed in user.

hoodie.account.destroy()

Resolves with sessionProperties like hoodie.account.signIn, but without the session id:

{
"account": {

"id": "account123",
"username": "pat",
"createdAt": "2016-01-01T00:00.000Z",
"updatedAt": "2016-01-02T00:00.000Z",
"profile": {

"fullname": "Dr. Pat Hook"
}

}
}

Rejects with:

Error A custom error thrown in a before:destroy hook
ConnectionError Could not connect to server

Example

hoodie.account.destroy().then(function (sessionProperties) {
alert('Bye, ' + sessionProperties.username)

}).catch(function (error) {
alert(error)

})

7.1. The Hoodie Client API 27



Hoodie Documentation

hoodie.account.get

Returns account properties from local cache.

hoodie.account.get(properties)

Argu-
ment

Type Description Re-
quired

propertiesString or Array of
strings

When String, only this property gets returned. If array of strings, only
passed properties get returned

No

Returns object with account properties, or undefined if not signed in.

Examples

var properties = hoodie.account.get()
alert('You signed up at ' + properties.createdAt)
var createdAt = hoodie.account.get('createdAt')
alert('You signed up at ' + createdAt)
var properties = hoodie.account.get(['createdAt', 'updatedAt'])
alert('You signed up at ' + properties.createdAt)

hoodie.account.fetch

Fetches account properties from server.

hoodie.account.fetch(properties)

Argu-
ment

Type Description Re-
quired

propertiesString or
Array of
strings

When String, only this property gets returned. If array of strings, only passed
properties get returned. Property names can have ‘.’ separators to return nested
properties.

No

Resolves with accountProperties:

{
"id": "account123",
"username": "pat",
"createdAt": "2016-01-01T00:00.000Z",
"updatedAt": "2016-01-02T00:00.000Z"

}

Rejects with:

UnauthenticatedError Session is invalid
ConnectionError Could not connect to server

Examples

28 Chapter 7. Hoodie API



Hoodie Documentation

hoodie.account.fetch().then(function (properties) {
alert('You signed up at ' + properties.createdAt)

})
hoodie.account.fetch('createdAt').then(function (createdAt) {

alert('You signed up at ' + createdAt)
})
hoodie.account.fetch(['createdAt', 'updatedAt']).then(function (properties) {

alert('You signed up at ' + properties.createdAt)
})

hoodie.account.update

Update account properties on server and local cache

hoodie.account.update(changedProperties)

Argument Type Description Re-
quired

changedPropertiesOb-
ject

Object of properties & values that changed. Other properties remain
unchanged.

No

Resolves with accountProperties:

{
"id": "account123",
"username": "pat",
"createdAt": "2016-01-01T00:00.000Z",
"updatedAt": "2016-01-01T00:00.000Z"

}

Rejects with:

UnauthenticatedError Session is invalid
InvalidError Custom validation error
ConflictError Username <username> already exists
ConnectionError Could not connect to server

Example

hoodie.account.update({username: 'treetrunks'}).then(function (properties) {
alert('You are now known as ' + properties.username)

})

hoodie.account.profile.get

Returns profile properties from local cache.

hoodie.account.profile.get(properties)

7.1. The Hoodie Client API 29



Hoodie Documentation

Argu-
ment

Type Description Re-
quired

propertiesString or
Array of
strings

When String, only this property gets returned. If array of strings, only passed
properties get returned. Property names can have . separators to return nested
properties.

No

Returns object with profile properties, falls back to empty object {}. Returns undefined if not signed in.

Examples

var properties = hoodie.account.profile.get()
alert('Hey there ' + properties.fullname)
var fullname = hoodie.account.profile.get('fullname')
alert('Hey there ' + fullname)
var properties = hoodie.account.profile.get(['fullname', 'address.city'])
alert('Hey there ' + properties.fullname + '. How is ' + properties.address.city + '?
→˓')

hoodie.account.profile.fetch

Fetches profile properties from server.

hoodie.account.profile.fetch(options)

Argu-
ment

Type Description Re-
quired

propertiesString or
Array of
strings

When String, only this property gets returned. If array of strings, only passed
properties get returned. Property names can have ‘.’ separators to return nested
properties.

No

Resolves with profileProperties:

{
"id": "account123-profile",
"fullname": "Dr Pat Hook",
"address": {

"city": "Berlin",
"street": "Adalberststraße 4a"

}
}

Rejects with:

UnauthenticatedError Session is invalid
ConnectionError Could not connect to server

Examples

hoodie.account.fetch().then(function (properties) {
alert('Hey there ' + properties.fullname)

})
hoodie.account.fetch('fullname').then(function (fullname) {

(continues on next page)

30 Chapter 7. Hoodie API



Hoodie Documentation

(continued from previous page)

alert('Hey there ' + fullname)
})
hoodie.account.fetch(['fullname', 'address.city']).then(function (properties) {

alert('Hey there ' + properties.fullname + '. How is ' + properties.address.city
→˓+ '?')
})

hoodie.account.profile.update

Update profile properties on server and local cache

hoodie.account.profile.update(changedProperties)

Argument Type Description Re-
quired

changedPropertiesOb-
ject

Object of properties & values that changed. Other properties remain
unchanged.

No

Resolves with profileProperties:

{
"id": "account123-profile",
"fullname": "Dr Pat Hook",
"address": {

"city": "Berlin",
"street": "Adalberststraße 4a"

}
}

Rejects with:

UnauthenticatedError Session is invalid
InvalidError Custom validation error
ConnectionError Could not connect to server

Example

hoodie.account.profile.update({fullname: 'Prof Pat Hook'}).then(function (properties)
→˓{

alert('Congratulations, ' + properties.fullname)
})

hoodie.account.request

Sends a custom request to the server, for things like password resets, account upgrades, etc.

hoodie.account.request(properties)

Argument Type Description Required
properties.type String Name of the request type, e.g. “passwordreset” Yes
properties Object Additional properties for the request No

7.1. The Hoodie Client API 31



Hoodie Documentation

Resolves with requestProperties:

{
"id": "request123",
"type": "passwordreset",
"contact": "pat@example.com",
"createdAt": "2016-01-01T00:00.000Z",
"updatedAt": "2016-01-01T00:00.000Z"

}

Rejects with:

ConnectionError Could not connect to server
NotFoundError Handler missing for “passwordreset”
InvalidError Custom validation error

Example

hoodie.account.request({type: 'passwordreset', contact: 'pat@example.com'}).
→˓then(function (properties) {

alert('A password reset link was sent to ' + properties.contact)
})

hoodie.account.on

hoodie.account.on(event, handler)

Example

hoodie.account.on('signin', function (accountProperties) {
alert('Hello there, ' + accountProperties.username)

})

hoodie.account.one

Call function once at given account event.

hoodie.account.one(event, handler)

Example

hoodie.account.one('signin', function (accountProperties) {
alert('Hello there, ' + accountProperties.username)

})

hoodie.account.off

Removes event handler that has been added before

hoodie.account.off(event, handler)

Example

32 Chapter 7. Hoodie API



Hoodie Documentation

hoodie.account.off('singin', showNotification)

Events

Event Description Arguments
signup New user account created successfully accountProperties with .

session property
signin Successfully signed in to an account accountProperties with .

session property
signout Successfully signed out accountProperties with .

session property
passwordresetEmail with password reset token sent
unauthenticateServer responded with “unauthenticated” when check-

ing session
reauthenticateSuccessfully signed in with the same username (useful

when session has expired)
accountProperties with .
session property

update Successfully updated an account’s properties accountProperties with .
session property

Hooks

// clear user’s local store signin and after signout
hoodie.account.hook.before('signin', function (options) {

return localUserStore.clear()
})
hoodie.account.hook.after('signout', function (options) {

return localUserStore.clear()
})

Hook Arguments
signin options as they were passed into hoodie.account.signIn(options)
signout {}

See before-after-hook for more information.

Requests

Hoodie comes with a list of built-in account requests, which can be disabled, overwritten or extended in hoodie-
account-server.

When a request succeeds, an event with the same name as the request type gets emitted. For
example, hoodie.account.request({type: 'passwordreset', contact: 'pat@example.
com') triggers a passwordreset event, with the requestProperties passed as argument.

passwordreset Request a password reset token

7.1. The Hoodie Client API 33

https://www.npmjs.com/package/before-after-hook
https://github.com/hoodiehq/hoodie-account-server/tree/master/plugin#optionsrequests
https://github.com/hoodiehq/hoodie-account-server/tree/master/plugin#optionsrequests


Hoodie Documentation

Testing

Local setup

git clone https://github.com/hoodiehq/hoodie-account-client.git
cd hoodie-account-client

In Node.js

Run all tests and validate JavaScript Code Style using standard

npm test

To run only the tests

npm run test:node

To test hoodie-account-client in a browser you can link it into hoodie-account, which provides a dev-server:

git clone https://github.com/hoodiehq/hoodie-account.git
cd hoodie-account
npm install
npm link /path/to/hoodie-account-client
npm start

hoodie-account bundles hoodie-account-client on npm start, so you need to restart hoodie-account to see your
changes.

7.1.3 hoodie.store

If you want to do anything with data in Hoodie, this is where it happens and this is the Hoodie Client for data
persistence & offline sync.

Example

var Store = require('@hoodie/store-client')
var store = new Store('mydbname', {
PouchDB: require('pouchdb'),
remote: 'http://localhost:5984/mydbname'

})

Or

var PresetStore = Store.defaults({
PouchDB: require('pouchdb'),
remoteBaseUrl: 'http://localhost:5984'

})
var store = new PresetStore('mydb')

Store.defaults

Store.defaults(options)

34 Chapter 7. Hoodie API

https://www.npmjs.com/package/standard
https://github.com/hoodiehq/hoodie-account


Hoodie Documentation

Argument Type Description Re-
quired

options.
remoteBaseUrl

String Base url to CouchDB. Will be used as remote prefix for store
instances

No

options.PouchDB Construc-
tor

PouchDB custom builds Yes

Returns a custom Store Constructor with passed default options.

Example

var PresetStore = Store.defaults({
remoteBaseUrl: 'http://localhost:5984'

})
var store = new PresetStore('mydb')
store.sync() // will sync with http://localhost:5984/mydb

Constructor

new Store(dbName, options)

Argument Type Description Required
dbName String name of the database Yes
options.
remote

String name or URL of remote
database

Yes (unless remoteBaseUrl is preset, see
Store.defaults)

options.
PouchDB

Construc-
tor

PouchDB custom builds Yes (unless preset using Store.defaults))

Returns store API.

Example

var Store = require('@hoodie/store-client')
var store = new Store('mydb', { remote: 'http://localhost:5984/mydb' })
store.sync() // will sync with http://localhost:5984/mydb

store.add(properties)

store.add(properties)

Argument Type Description Required
properties Object properties of document Yes
properties._id String If set, the document will be stored at given id No

Resolves with properties and adds _id (unless provided), createdAt and updatedAt properties.

{
"foo": "bar",
"hoodie": {

"createdAt": "2016-05-09T12:00:00.000Z",

(continues on next page)

7.1. The Hoodie Client API 35

https://pouchdb.com/custom.html


Hoodie Documentation

(continued from previous page)

"updatedAt": "2016-05-09T12:00:00.000Z"
},
"_id": "12345678-1234-1234-1234-123456789ABC",
"_rev": "1-b1191b8cfee045f495594b1cf2823683"

}

Rejects with:

Add expected Errors: #102

table

Example

store.add({foo: 'bar'}).then(function (doc) {
alert(doc.foo) // bar

}).catch(function (error) {
alert(error)

})

store.add(arrayOfProperties)

store.add(arrayOfProperties)

Argument Type Description Required
‘’arrayOfProperties’‘ Array Array of properties, see store.add(properties) Yes

Resolves with properties and adds _id (unless provided), createdAt and updatedAt properties. Resolves with array of
properties items if called with propertiesArray.

{
"foo": "bar",
"hoodie": {

"createdAt": "2016-05-09T12:00:00.000Z",
"updatedAt": "2016-05-09T12:00:00.000Z"

},
"_id": "12345678-1234-1234-1234-123456789ABC",
"_rev": "1-b1191b8cfee045f495594b1cf2823683"

}

Rejects with:

Add expected Errors: #102

Example: add single document

store.add({foo: 'bar'}).then(function (doc) {
alert(doc.foo) // bar

}).catch(function (error) {
alert(error)

})

Example: add multiple documents

36 Chapter 7. Hoodie API

https://github.com/hoodiehq/hoodie-store-client/issues/102


Hoodie Documentation

store.add([{foo: 'bar'}, {bar: 'baz'}]).then(function (docs) {
alert(docs.length) // 2

}).catch(function (error) {
alert(error)

})

store.find(id)

store.find(id)

Argument Type Description Required
id String Unique id of document Yes

Resolves with properties

{
"id": "12345678-1234-1234-1234-123456789ABC",
"foo": "bar",
"createdAt": "2016-05-09T12:00:00.000Z",
"updatedAt": "2016-05-09T12:00:00.000Z"

}

Rejects with:

Add expected Errors: #102

Example

store.find('12345678-1234-1234-1234-123456789ABC').then(function (doc) {
alert(doc.id)

}).catch(function (error) {
alert(error)

})

store.find(doc)

store.find(doc)

Argument Type Description Required
doc Object document with id property Yes

Resolves with properties

{
"id": "12345678-1234-1234-1234-123456789ABC",
"foo": "bar",
"createdAt": "2016-05-09T12:00:00.000Z",
"updatedAt": "2016-05-09T12:00:00.000Z"

}

Rejects with:

Add expected Errors: #102

7.1. The Hoodie Client API 37



Hoodie Documentation

store.find(doc).then(function (doc) {
alert(doc.id)

}).catch(function (error) {
alert(error)

})

store.find(idsOrDocs)

store.find(idsOrDocs)

Argument Type Description Required
idsOrDocs Array Array of id (String) or doc (Object) items Yes

Resolves with array of properties

[{
"id": "12345678-1234-1234-1234-123456789ABC",
"foo": "bar",
"createdAt": "2016-05-09T12:00:00.000Z",
"updatedAt": "2016-05-09T12:00:00.000Z"

}]

Rejects with:

Add expected Errors: #102

Example

store.find(doc).then(function (doc) {
alert(doc.id)

}).catch(function (error) {
alert(error)

})

Testing

Local setup

git clone https://github.com/hoodiehq/hoodie-store-client.git
cd hoodie-store-client
npm install

In Node.js

Run all tests and validate JavaScript Code Style using standard

npm test

To run only the tests

npm run test:node

Run tests in browser

38 Chapter 7. Hoodie API



Hoodie Documentation

npm run test:browser:local

This will start a local server. All tests and coverage will be run at http://localhost:8080/__zuul

7.1.4 hoodie.connectionStatus

hoodie-connection-status is a browser library to monitor a connection status. It emits disconnect &
reconnect events if the request status changes and persists its status.

Example

var connectionStatus = new ConnectionStatus('https://example.com/ping')

connectionStatus.on('disconnect', showOfflineNotification)
connectionStatus.on('reconnect reset', hideOfflineNotification)
myOtherRemoteApiThing.on('error', connectionStatus.check)

Constructor

new ConnectionStatus(options)

Argument Type Description Required
options.
url

String Full url to send pings to Yes

options.
method

String Defaults to HEAD. Must be valid http verb like 'GET' or 'POST' (case
insensitive)

No

options.
interval

Num-
ber

Interval in ms. If set a request is send immediately. The interval starts after
each request response. Can also be set to an object to differentiate intervals
by connection status, see below

No

options.
interval.
connected

Num-
ber

Interval in ms while connectionStatus.ok is not false. If set, a
request is send immediately. The interval starts after each request response.

No

options.
interval.
disconnected

Num-
ber

Interval in ms while connectionStatus.ok is false. If set, a request
is send immediately. The interval starts after each request response.

No

options.
cache

Ob-
ject
or
false

Object with .get(), .set(properties) and .unset() methods to
persist the connection status. Each method must return a promise, .get()
must resolve with the current state or an empty object. If set to false the
connection status will not be persisted.

De-
faults to a
localStorage-
based API

options.
cacheTimeout

Num-
ber

time in ms after which a cache shall be invalidated. When invalidated on
initialisation, a reset event gets triggered on next tick.

No

Example

var connectionStatus = new ConnectionStatus('https://example.com/ping')

connectionStatus.on('disconnect', showOfflineNotification)
connectionStatus.check()

7.1. The Hoodie Client API 39

http://localhost:8080/__zuul
https://github.com/gr2m/async-get-set-store
https://github.com/gr2m/async-get-set-store


Hoodie Documentation

connectionStatus.ready

Read-only

Promise that resolves once the ConnectionStatus instance loaded its current state from the cache.

connectionStatus.ok

Read-only

connectionStatus.ok

• Returns undefined if no status yet

• Returns true last check responded ok

• Returns false if last check failed

The state is persisted in cache.

connectionStatus.isChecking

Read-only

connectionStatus.isChecking

• Returns undefined if status not loaded yet, see connectionStatus.ready

• Returns true if connection is checked continuously

• Returns false if connection is not checked continuously

connectionStatus.check(options)

connectionStatus.check(options)

Argument Type Description Re-
quired

options.
timeout

Num-
ber

Time in ms after which a ping shall be aborted with a timeout
error

No

Resolves without value.

Rejects with:

name status message
TimeoutError 0 Connection timeout
ServerError as returned by server as returned by server
ConnectionError undefined Server could not be reached

Example

40 Chapter 7. Hoodie API



Hoodie Documentation

connectionStatus.check()

.then(function () {
// Connection is good, connectionStatus.ok is true
})

.catch(function () {
// Cannot connect to server, connectionStatus.ok is false
})

connectionStatus.startChecking(options)

Starts checking connection continuously

connectionStatus.startChecking(options)

Argument Type Description Re-
quired

options.
interval

Num-
ber

Interval in ms. The interval starts after each request response. Can also be
set to an object to differentiate interval by connection state, see below

Yes

options.
interval.
connected

Num-
ber

Interval in ms while connectionStatus.ok is not false. The in-
terval starts after each request response.

No

options.
interval.
disconnected

Num-
ber

Interval in ms while connectionStatus.ok is false. The interval
starts after each request response.

No

options.
timeout

Num-
ber

Time in ms after which a ping shall be aborted with a timeout error. No

Resolves without values.

Example

connectionStatus.startChecking({interval: 30000})
.on('disconnect', showOfflineNotification)

connectionStatus.stopChecking()

Stops checking connection continuously.

connectionStatus.stopChecking()

Resolves without values. Does not reject.

connectionStatus.reset(options)

Clears status & cache, aborts all pending requests.

connectionStatus.reset(options)

7.1. The Hoodie Client API 41



Hoodie Documentation

options is the same as in Constructor

Resolves without values. Does not reject.

Example

connectionStatus.reset(options).then(function () {
connectionStatus.ok === undefined // true

})

Events

disconnect Ping fails and connectionStatus.ok isn’t false
reconnect Ping succeeds and connectionStatus.ok is false
reset Cache invalidated on initialisation or connectionStatus.reset() called

Example

connectionStatus.on('disconnect', function () {})
connectionStatus.on('reconnect', function () {})
connectionStatus.on('reset', function () {})

Testing

Local setup

git clone git@github.com:hoodiehq/hoodie-connection-status.git
cd hoodie-connection-status
npm install

Run all tests and code style checks

npm test

Run all tests on file change

npm run test:watch

Run specific tests only

# run unit tests
node tests/specs

# run .check() unit tests
node tests/specs/check

# run walkthrough integration test
node tests/integration/walkthrough

7.1.5 hoodie.log

hoodie-log is a standalone JavaScript library for logging to the browser console. If available, it takes advantage of
CSS-based styling of console log outputs.

42 Chapter 7. Hoodie API

https://developer.mozilla.org/en-US/docs/Web/API/Console#Styling_console_output


Hoodie Documentation

Example

var log = new Log('hoodie')

log('ohaj!')
// (hoodie) ohaj!
log.debug('This will help with debugging.')
// (hoodie:debug) This will help with debugging.
log.info('This might be of interest. Or not.')
// (hoodie:info) This might be of interest. Or not.
log.warn('Something is fishy here!')
// (hoodie:warn) Something is fishy here!
log.error('oooops')
// (hoodie:error) oooops

var fooLog = log.scoped('foo')
fooLog('baz!')
// (hoodie:foo) baz!

Constructor

new Log(prefix)
// or
new Log(options)

Argu-
ment

Type Description Re-
quired

prefix String Prefix for log messages Yes
options.
prefix

String Prefix for log messages Yes

options.
level

String Defaults to warn. One of debug, info, warn or error. debug is the lowest level,
and everything will be logged to the console. error is the highest level and nothing
but errors will be logged.

No

styles Boolean
or Ob-
ject

Defaults to true. If set to false, all log messages are prefixed by (<prefix>:<log
type>), e.g. (fooprefix:warn) bar is not available.. If set to true,
styles are applied to the prefix. The styles can be customised, see below

No

styles.
default

String Defaults to color: white; padding: .2em .4em; border-radius:
1em. Base CSS styles for all log types

No

styles.
reset

String Defaults to background: inherit; color: inherit. Reset CSS styles,
applied for message after prefix

No

styles.
log

String Defaults to background: gray. CSS Styles for default log calls without log level No

styles.
debug

String Defaults to background: green. CSS Styles for debug logs No

styles.
info

String Defaults to background: blue. CSS Styles for info logs No

styles.
warn

String Defaults to background: orange. CSS Styles for warn logs No

styles.
error

String Defaults to background: red. CSS Styles for error logs No

7.1. The Hoodie Client API 43



Hoodie Documentation

Example

var log = new Log({
prefix: 'hoodie',
level: 'warn',
styles: {

default: 'color: white; padding: .2em .4em; border-radius: 1em',
debug: 'background: green',
log: 'background: gray',
info: 'background: blue',
warn: 'background: orange',
error: 'background: red',
reset: 'background: inherit; color: inherit'

}
}

log.prefix

Read-only

log.prefix

Prefix used in log messages

Example

log = new Log('hoodie')
log.prefix // hoodie
log.warn("Something is fishy here!")
// (hoodie:warn) Something is fishy here!

log.level

One of debug, info, warn or error. debug is the lowest level, and everything will be logged to the console.
error is the highest level and nothing but errors will be logged.

log.level

Example

log.level = 'debug'
log.debug('This will help with debugging.')
// (hoodie:debug) This will help with debugging.
log.level = 'info'
log.debug('This will help with debugging.')
// <no log>
log.level = 'foo'
// throws InvalidValue error

log()

Logs message to browser console. Accepts same arguments as console.log.

44 Chapter 7. Hoodie API

https://developer.mozilla.org/en-US/docs/Web/API/Console/log


Hoodie Documentation

log("ohaj!")

log.debug()

Logs debug message to browser console if level is set to debug. Accepts same arguments as console.log.

log.debug('This will help with debugging.')

log.info()

Logs info message to browser console if level is set to debug or info. Accepts same arguments as console.log.

log.info('This might be of interest. Or not.')

log.warn()

Logs warning to browser console unless level is set to error. Accepts same arguments as console.log.

log.warn('Something is fishy here!')

log.error()

Logs error message to browser console. Accepts same arguments as console.log.

log.error('oooops')

log.scoped()

log.scoped(prefix)

Argument Type Description Required
prefix String Prefix for log messages Yes

Returns log API with extended prefix

Example

var log = new Log('hoodie')
log('ohaj!')
// (hoodie) ohaj!
var fooLog = log.scoped('foo')
fooLog('baz!')
// (hoodie:foo) baz!

7.1. The Hoodie Client API 45

https://developer.mozilla.org/en-US/docs/Web/API/Console/log
https://developer.mozilla.org/en-US/docs/Web/API/Console/log
https://developer.mozilla.org/en-US/docs/Web/API/Console/log
https://developer.mozilla.org/en-US/docs/Web/API/Console/log


Hoodie Documentation

Testing

Local setup

git clone git@github.com:hoodiehq/hoodie-log.git
cd hoodie-log
npm install

Run all tests and code style checks

npm test

Run all tests on file change

npm run test:watch

Run specific tests only

# run .debug() unit tests
node tests/specs/debug.js

This library, commonly called Hoodie Client, is what you’ll be working with on the client side. It consists of:

• The Hoodie Client API, which has a couple of useful helpers

• The account API, which lets you do user authentication, such as signing users up, in and out

• The store API, which provides means to store and retrieve data for each individial user

• The connectionStatus API, which provides helpers for connectivity.

• The log API, which provides a nice API for logging all the things

7.2 The Hoodie Server API

The Hoodie Server API is currently work-in-progress. But you can have a look at the Account Server API and the
Store Server API for a sneak peak.

46 Chapter 7. Hoodie API

client/hoodie.html
client/hoodie.account.html
client/hoodie.store.html
client/hoodie.connection-status.html
client/hoodie.log.html
https://github.com/hoodiehq/hoodie-account-server-api
https://github.com/hoodiehq/hoodie-store-server-api


CHAPTER 8

Contributing to Hoodie

Please take a moment to review this document in order to make the contribution process easy and effective for everyone
involved.

Following these guidelines helps to communicate that you respect the time of the developers managing and developing
this open source project. In return, they should reciprocate that respect in addressing your issue, assessing changes,
and helping you finalize your pull requests.

As for everything else in the project, the contributions to Hoodie are governed by our Code of Conduct.

8.1 Using the issue tracker

First things first: Do NOT report security vulnerabilities in public issues! Please disclose responsibly by letting the
Hoodie team know upfront. We will assess the issue as soon as possible on a best-effort basis and will give you an
estimate for when we have a fix and release available for an eventual public disclosure.

The issue tracker is the preferred channel for bug reports, features requests and submitting pull requests, but please
respect the following restrictions:

• Please do not use the issue tracker for personal support requests. Use the Hoodie Chat.

• Please do not derail or troll issues. Keep the discussion on topic and respect the opinions of others.

8.2 Bug reports

A bug is a demonstrable problem that is caused by the code in the repository. Good bug reports are extremely helpful
- thank you!

Guidelines for bug reports:

1. Use the GitHub issue search — check if the issue has already been reported.

2. Check if the issue has been fixed — try to reproduce it using the latest master or next branch in the
repository.

47

http://hood.ie/code-of-conduct/
mailto:team@thehoodiefirm.com?subject=Security
mailto:team@thehoodiefirm.com?subject=Security
http://hood.ie/chat/


Hoodie Documentation

3. Isolate the problem — ideally create a reduced test case.

A good bug report shouldn’t leave others needing to chase you up for more information. Please try to be as detailed
as possible in your report. What is your environment? What steps will reproduce the issue? What OS experiences the
problem? What would you expect to be the outcome? All these details will help people to fix any potential bugs.

Example:

Short and descriptive example bug report title

A summary of the issue and the browser/OS environment in which it occurs. If suitable, include the steps
required to reproduce the bug.

1. This is the first step

2. This is the second step

3. Further steps, etc.

<url> - a link to the reduced test case

Any other information you want to share that is relevant to the issue being reported. This might include
the lines of code that you have identified as causing the bug, and potential solutions (and your opinions
on their merits).

8.3 Feature requests

Feature requests are welcome. But take a moment to find out whether your idea fits with the scope and aims of the
project. It’s up to you to make a strong case to convince the project’s developers of the merits of this feature. Please
provide as much detail and context as possible.

8.4 Pull requests

Good pull requests - patches, improvements, new features - are a fantastic help. They should remain focused in scope
and avoid containing unrelated commits.

Please ask first before embarking on any significant pull request (e.g. implementing features, refactoring code),
otherwise you risk spending a lot of time working on something that the project’s developers might not want to merge
into the project.

8.4.1 For new Contributors

If you never created a pull request before, welcome :tada: :smile: Here is a great tutorial on how to send one :)

1. Fork the project, clone your fork, and configure the remotes using command line:

# Clone your fork of the repo into the current directory
git clone https://github.com/<your-username>/<repo-name>

# Navigate to the newly cloned directory
cd <repo-name>

# Assign the original repo to a remote called "upstream"
git remote add upstream https://github.com/hoodiehq/<repo-name>

2. If you cloned a while ago, get the latest changes from upstream:

48 Chapter 8. Contributing to Hoodie

https://egghead.io/series/how-to-contribute-to-an-open-source-project-on-github
http://help.github.com/fork-a-repo/


Hoodie Documentation

git checkout master git pull upstream master

3. Create a new topic branch (off the main project development branch) to contain your feature, change, or fix:

git checkout -b <topic-branch-name>

4. Make sure to update, or add to the tests when appropriate. Patches and features will not be accepted without
tests. Run npm test to check that all tests pass after you’ve made changes. Look for a Testing section in
the project’s README for more information.

5. If you added or changed a feature, make sure to document it accordingly in the README.md file.

6. Push your topic branch up to your fork:

git push origin <topic-branch-name>

8. Open a Pull Request with a clear title and description.

8.4.2 For Members of the Hoodie Contributors Team

1. Clone the repo and create a branch

git clone https://github.com/hoodiehq/<repo-name>
cd <repo-name>
git checkout -b <topic-branch-name>

2. Make sure to update, or add to the tests when appropriate. Patches and features will not be accepted without
tests. Run npm test to check that all tests pass after you’ve made changes. Look for a Testing section in
the project’s README for more information.

3. If you added or changed a feature, make sure to document it accordingly in the README.md file.

4. Push your topic branch up to our repo

git push origin <topic-branch-name>

5. Open a Pull Request using your branch with a clear title and description.

Optionally, you can help us with these things. But don’t worry if they are too complicated, we can help you out and
teach you as we go :)

1. Update your branch to the latest changes in the upstream master branch. You can do that locally with

git pull --rebase upstream master

Afterwards force push your changes to your remote feature branch.

2. Once a pull request is good to go, you can tidy up your commit messages using Git’s interactive rebase. Please
follow our commit message conventions shown below, as they are used by semantic-release to automatically
determine the new version and release to npm. In a nutshell:

8.4.3 Commit Message Conventions

• Commit test files with test: ... or test(scope): ... prefix

• Commit bug fixes with fix: ... or fix(scope): ... prefix

• Commit breaking changes by adding BREAKING CHANGE: in the commit body (not the subject line)

8.4. Pull requests 49

https://help.github.com/articles/using-pull-requests/
https://help.github.com/articles/interactive-rebase
https://github.com/semantic-release/semantic-release


Hoodie Documentation

• Commit changes to package.json, .gitignore and other meta files with
chore(filenamewithoutext): ...

• Commit changes to README files or comments with docs: ...

• Cody style changes with style: standard

IMPORTANT: By submitting a patch, you agree to license your work under the same license as that used by the
project.

8.5 Triagers

There is a defined process to manage issues, because this helps to speed up releases and minimizes user pain. Triaging
is a great way to contribute to Hoodie without having to write code. If you are interested, please leave a comment here
asking to join the triaging team.

8.6 Maintainers

If you have commit access, please follow this process for merging patches and cutting new releases.

8.6.1 Reviewing changes

1. Check that a change is within the scope and philosophy of the component.

2. Check that a change has any necessary tests.

3. Check that a change has any necessary documentation.

4. If there is anything you don’t like, leave a comment below the respective lines and submit a “Request changes”
review. Repeat until everything has been addressed.

5. If you are not sure about something, mention @hoodie/maintainers or specific people for help in a com-
ment.

6. If there is only a tiny change left before you can merge it and you think it’s best to fix it yourself, you can directly
commit to the author’s fork. Leave a comment about it so the author and others will know.

7. Once everything looks good, add an “Approve” review. Don’t forget to say something nice

8. If the commit messages follow our conventions

9. If there is a breaking change, make sure that BREAKING CHANGE: with exactly that spelling (incl. the “:”) is
in body of the according commit message. This is very important, better look twice :)

10. Make sure there are fix: ... or feat: ... commits depending on whether a bug was fixed or a
feature was added. Gotcha: look for spaces before the prefixes of fix: and feat:, these get ignored by
semantic-release.

11. Use the “Rebase and merge” button to merge the pull request.

12. Done! You are awesome! Thanks so much for your help

13. If the commit messages do not follow our conventions

14. Use the “squash and merge” button to clean up the commits and merge at the same time:

15. Is there a breaking change? Describe it in the commit body. Start with exactly BREAKING CHANGE: followed
by an empty line. For the commit subject:

50 Chapter 8. Contributing to Hoodie

TRIAGING.html
https://github.com/hoodiehq/discussion/issues/50


Hoodie Documentation

16. Was a new feature added? Use feat: ... prefix in the commit subject

17. Was a bug fixed? Use fix: ... in the commit subject

Sometimes there might be a good reason to merge changes locally. The process looks like this:

8.6.2 Reviewing and merging changes locally

git checkout master # or the main branch configured on github
git pull # get latest changes
git checkout feature-branch # replace name with your branch
git rebase master
git checkout master
git merge feature-branch # replace name with your branch
git push

When merging PRs from forked repositories, we recommend you install the hub command line tools.

This allows you to do:

hub checkout link-to-pull-request

meaning that you will automatically check out the branch for the pull request, without needing any other steps like
setting git upstreams! :sparkles:

8.6. Maintainers 51

https://github.com/github/hub


Hoodie Documentation

52 Chapter 8. Contributing to Hoodie



CHAPTER 9

Coding Style Guide

Please see Contributing to Hoodie for more guidelines on contributing to Hoodie.

Hoodie uses the Standard JavaScript coding style.

This file explains coding-style considerations that are beyond the syntax check of Standard.

There are three sections:

• General: coding styles that are applicable to all JavaScript code.

• Client: coding styles that are only applicable to in-browser code.

• Server: coding styles that are only applicable in server code.

Note: Client and Server coding styles can be contradicting, make sure to read these carefully.

9.1 General

9.1.1 File Structure

A typical JavaScript file looks like this (without the comments). Sort all modules that you require alphabetically
within their blocks.

// If your module exports something, put it on top
module.exports = myMethod

// require Node.js core modules in the 1st block (separaeted by empty line).
// These are modules that come with Node.js and are not listed in package.json.
// See https://nodejs.org/api/ for a list of Node.js core modules
var EventEmitter = require('events').EventEmitter
var util = require('util')

// In the 2nd block, require all modules listed in package.json
var async = require('async')

(continues on next page)

53

CONTRIBUTING.html
https://github.com/feross/standard


Hoodie Documentation

(continued from previous page)

var lodash = require('lodash')

// in the 3rd block, require all modules using relative paths
var helpers = require('./utils/helpers')
var otherMethod = require('./other-method')

function myMethod () {
// code here

}

9.1.2 Avoid “this” and object-oriented coding styles.

Do this

function MyApi (options) {
var state = {
foo: options.foo

}
return {
doSomething: doSomething.bind(null, state)

}
}

function doSomething (state) {
return state.foo ? 'foo!' : 'bar'

}

Instead of

function MyApi (options) {
this.foo = options.foo

}

MyApi.prototype.doSomething = function () {
return this.foo ? 'foo!' : 'bar'

}

The bind method allows for partially applied functions, that way we can pass internal state between different methods
without exposing in the public API. At the same time we can easily test the different methods in isolation by setting
the internal state to what ever context we want to test with.

9.1.3 Folder Structure

In the root, have

• package.json

• .gitignore (should at least list node_modules)

• README.md

• LICENSE (Apache License Version 2.0)

In most cases you will have index.js file which is listed in package.json as the "main" property.

54 Chapter 9. Coding Style Guide

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind#Partially_applied_functions_%28currying%29


Hoodie Documentation

If you want to split up logic into separate files, move them into a server/ folder. Put reusable, state-less helper
methods into server/utils/

For tests, create a test/ folder. If your module becomes a bit more complex, split up the tests in test/unit and
test/integration/. All files that contain tests should end with -test.js.

9.1.4 Misc

• Prefer lodash over underscore.

9.2 Client

9.2.1 Testing

Client code should be tested using tape. The reason we use tape is its support for browserify.

9.2.2 Libraries with sub-modules that can be required individually, like lodash

For client-side JavaScript code, it is important to limit the amount of code that is downloaded to the client to the code
that is actually needed. The loadash library is a collection of utilities that are useful individually and in combination.

For example, if you want to use the merge function of lodash, require it like this:

var merge = require('lodash/merge')

If you want to use more than one function within one module, or if you want to combine multiple functions for a single
operation, require the full lodash module:

var _ = require('lodash')

If multiple modules use the same lodash function, our frontend bundling tool will do the right thing and only include
that code once.

9.3 Server

9.3.1 Testing

Server code should be tested using tap.

9.3.2 Libraries with sub-modules that can be required individually, like lodash

For server-side code, it is important to load the minimal amount of code into memory.

On the server require the full library, e.g.

var _ = require('lodash')

var c = _.merge(a, b)

That way, all of our server code will only ever load a single instance of lodash into memory.

9.2. Client 55

https://lodash.com
http://underscorejs.org
https://www.npmjs.com/package/tape
https://www.npmjs.com/package/browserify
https://lodash.com
http://browserify.org
https://www.npmjs.com/package/tap


Hoodie Documentation

56 Chapter 9. Coding Style Guide



CHAPTER 10

Triage new issues/PRs on GitHub

This document illustrates the steps the Hoodie community is taking to triage issues. The labels are used later on for
assigning work. If you want to help by sorting issues please leave a comment here asking to join the triaging team.

10.1 Triaging Process

This process based on the idea of minimizing user pain from this blog post.

1. Open the list of non triaged issues

• Sort by submit date, with the newest issues first

• You don’t have to do issues in order; feel free to pick and choose issues as you please.

• You can triage older issues as well

• Triage to your heart’s content

2. Assign yourself: Pick an issue that is not assigned to anyone and assign it to you

3. Understandable? - verify if the description of the request is clear.

• If not, close it according to the instructions below and go to the last step.

4. Duplicate?

• If you’ve seen this issue before close it, and go to the last step.

• Check if there are comments that link to a dupe. If so verify that this is indeed a dupe, close it, and go to
the last step.

5. Bugs:

• Label Type: Bug

• Reproducible? - Steps to reproduce the bug are clear. If they are not, ask for a clarification. If there’s no
reply after a week, close it.

• Reproducible on master?

57

https://github.com/hoodiehq/discussion/issues/50
http://www.lostgarden.com/2008/05/improving-bug-triage-with-user-pain.html
https://github.com/hoodiehq/hoodie/issues


Hoodie Documentation

6. Non bugs:

• Label Type: Feature, Type: Chore, or Type: Perf

• Belongs in core? – Often new features should be implemented as a plugin rather than an addition to the
core. If this doesn’t belong, close it, and go to the last step.

• Label needs: breaking change - if needed

• Label needs: public api - if the issue requires introduction of a new public API

7. Label frequency: * – How often does this issue come up? How many developers does this affect?

• low - obscure issue affecting a handful of developers

• moderate - impacts a common usage pattern

• high - impacts most or all Hoodie apps

8. Label severity: * - How bad is the issue?

• regression

• memory leak

• broken expected use - it’s hard or impossible for a developer using Hoodie to accomplish something that
Hoodie should be able to do

• confusing - unexpected or inconsistent behavior; hard-to-debug

• inconvenience - causes ugly/boilerplate code in apps

9. Label starter - These issues are good targets for PRs from the open source community. Apply to issues
where the problem and solution are well defined in the comments, and it’s not too complex.

10. Label milestone: * – Assign a milestone:

• Backlog - triaged fixes and features, should be the default choice

• x.y.z - e.g. 0.3.0

1. Unassign yourself from the issue

10.2 Closing an Issue or PR

We’re grateful to anyone who takes the time to submit an issue, even if we ultimately decide not to act on it. Be kind
and respectful as you close issues. Be sure to follow the code of conduct.

1. Always thank the person who submitted it.

2. If it’s a duplicate, link to the older or more descriptive issue that supersedes the one you are closing.

3. Let them know if there’s some way for them to follow-up.

• When the issue is unclear or reproducible, note that you’ll reopen it if they can clarify or provide a better
example. Mention jsbin for examples. Watch your notifications and follow-up if they do provide clarifica-
tion. :)

• If appropriate, suggest implementing a feature as a third-party module.

If in doubt, ask a core team member what to do.

Example:

58 Chapter 10. Triage new issues/PRs on GitHub

http://hood.ie/code-of-conduct.html
https://jsbin.com


Hoodie Documentation

Thanks for submitting this issue! Unfortunately, we don’t think this functionality belongs in core. The
good news is that you could implement this as a plugin and publish it to npm with the hoodie-plugin
keyword.

10.3 Assigning Work

These criteria are then used to calculate a “user pain” score. Work is assigned weekly to core team members starting
with the highest pain, descending down to the lowest.

pain = severity × frequency

severity:

• regression (5)

• memory leak (4)

• broken expected use (3)

• confusing (2)

• inconvenience (1)

frequency:

• low (1)

• moderate (2)

• high (3)

Note: Regressions and memory leaks should almost always be set to frequency: high.

10.3. Assigning Work 59



Hoodie Documentation

60 Chapter 10. Triage new issues/PRs on GitHub



CHAPTER 11

Contributing to Documentation

This guide describes how to make changes to Hoodie documentation.

11.1 Make small changes

We love small contributions, if you spot small errors or additions please feel free to request a change. Every page on
Hoodie documentation has an “Edit on GitHub” button on the top right corner, please use this to make changes.

Hoodie documentation uses the reStructuredText format. This may be unfamiliar but provides advanced features which
are useful for complex documentation.

The Github editor is very basic, if you need more editing tools try copying and pasting into this online editor. You can
then click ‘commit’ and create a ‘pull request’ on Github. The pull request will be automatically tested for grammar,
style and common misspellings. Your changes will then be reviewed by a Hoodie Admin, who may suggest changes.
Please read the Documentation Style Guide for advice on writing and more info on testing.

11.2 Make big changes

For big changes, follow the Contributing to Hoodie guidelines for new contributors. This allows you to build and test
the documentation locally. For example, adding, moving or updating several documents. The index.rst file in the docs/
folder controls the order in which the documents are displayed on the docs webpages. Remember to update the index
file if you have removed, added or want to reorder the documents.

To build the docs locally, you will need to install python 2.7+

Then install two pip packages: Sphinx and sphinx_rtd_theme.

sudo pip install sphinx

sudo pip install sphinx_rtd_theme

Change directory to ..hoodie/docs/

make html

61

http://hoodie.readthedocs.io/
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://rst.ninjs.org/
DOCS_STYLE.html
CONTRIBUTING.html#for-new-contributors
https://www.python.org/downloads/
http://www.sphinx-doc.org/en/stable/
https://pypi.python.org/pypi/sphinx_rtd_theme


Hoodie Documentation

If you are using windows powershell, note there is a little deviation.

pip install sphinx

pip install sphinx_rtd_theme

Before execute the make html command you have to install make in windows if you are not already done. You can
also see this Stackoverflow link for a clear understanding.

Now change directory to ..hoodie/docs/

make html

After building, your updated documents are in the docs/_build/html subdirectory. Click on any .html document, this
will open your web browser and the documents will be viewable.

Get in touch if you have any questions or want to contribute to Hoodie documentation.

62 Chapter 11. Contributing to Documentation

http://gnuwin32.sourceforge.net/packages/make.htm
http://stackoverflow.com/questions/12881854/how-to-use-gnu-make-on-windows
http://hood.ie/contact/


CHAPTER 12

Documentation Style Guide

This guide provides style advice for how to write documentation. Please take the time to read this before contributing
a large change or update to documentation.

12.1 Style helps you and your reader

Word choice and writing style are a personal choice and we understand documentation can be difficult to write. These
recommendations have been designed to help you write clear and beautiful documents.

12.2 Testing

The contributing to docs guide describes the process to follow when updating documentation. This process includes
automatic testing. Testing provides you peace of mind that your contribution won’t contain typos, broken links or
other style whoopsies. Testing is not used to criticise your writing, we really love and appreciate any contributions.
Please be patience through the testing and review process. Together we can keep Hoodie documentation awesome!

12.3 Style guidance

Please see the helpful guide provided by OpenStack documentation. This guide will further explain these key style
tips:

• Use standard English

• Write in active voice

• Use the present simple tense

• Write in second person

• Use appropriate mood

63

CONTRIBUTING_DOCS.html
https://docs.openstack.org/contributor-guide/writing-style/general-writing-guidelines.html


Hoodie Documentation

• Keep sentences short

• Avoid ambiguous titles

• Be clear and concise

• Write objectively

• Describe the most common use case first

• Do not humanize inanimate objects

• Write positively

• Avoid prepositions at the end of sentences

• Do no overuse this, that, these, and it

• Do not split infinitives

• Avoid personification

• Eliminate needless politeness

• Use consistent terminology

• Use spelling and grammar checking tools

12.4 Automatic testing

The current tests we run on pull requests using Travis Continuous Integration (CI) service:

Style guide Tested Test
type

Pack-
age

Keep sentences short, concise and readable XXX Warning rousseau
Write in the active voice XXX Warning rousseau
Avoid “Lexical illusion’s” – cases where a word is repeated XXX Warning rousseau
Check for ‘So’ at the beginning of sentences XXX Warning rousseau
Avoid adverbs that can weaken meaning: really, very, extremely, etc XXX Warning rousseau
Use the most simple expressions XXX Warning rousseau
Avoid using “weasel words”: quite, several, mostly etc XXX Warning rousseau
Leave no space between a sentence and its ending punctuation XXX Warning rousseau
Spell checker - we test for common misspelling but please check technical
words

XXX Error common

Broken or dead links (excluding redirects) XXX Error awesome

• Remember, follow the Code of Conduct

12.4.1 Bonus style points

• Be fun and friendly as long as it does not distract or confuse the reader

• Include videos or gifs to demostrated a feature

• You can use Humour but remember the reader is looking for an answer not a comedy sketch

• Cultural references and puns don’t always translate - keep jokes light

64 Chapter 12. Documentation Style Guide

https://github.com/GitbookIO/rousseau
https://docs.openstack.org/contributor-guide/writing-style/general-writing-guidelines.html#write-in-active-voice
https://github.com/GitbookIO/rousseau
https://github.com/GitbookIO/rousseau
https://github.com/GitbookIO/rousseau
https://github.com/GitbookIO/rousseau
https://github.com/GitbookIO/rousseau
https://github.com/GitbookIO/rousseau
https://github.com/GitbookIO/rousseau
https://github.com/io-monad/textlint-rule-common-misspellings
https://github.com/dkhamsing/awesome_bot
http://hood.ie/code-of-conduct/


Hoodie Documentation

• Remember English is not the first language for many readers - keep language simple where possible

12.5 Further reading

This guide is influenced by the Open Stack style guide.

12.5. Further reading 65

https://docs.openstack.org/contributor-guide/writing-style/general-writing-guidelines.html#use-standard-english


Hoodie Documentation

66 Chapter 12. Documentation Style Guide



CHAPTER 13

Hoodie’s Concepts

Hoodie was designed around a few core beliefs and concepts, and they explain a lot of the choices made in the code
and the functionality. They are:

• Dreamcode

• noBackend

• Offline First

13.1 Dreamcode

While designing Hoodie’s API, we realised that we wanted to do more than simply expose some server code to the
frontend. We wanted to reduce complexity, not move it around. And to make something simple and intuitive, you
can’t start with the tech stack, you have to start with the humans that are going to use it. What would their dream API
look like? Dreamcode is essentially user-centered design for APIs.

To put it bluntly: Hoodie’s API is optimized for being awesome. For being intuitive and accessible. And it’s
optimized for making the lives of frontend developers as good as possible. It’s also an API first: it’s a promise -
everything else can change or is replaceable. The API is all that matters.

Forget all the constraints of today’s browsers. Then write down the code of your dreams for all the tasks you need to
build your app. The implementation behind the API doesn’t matter, it can be simple or tough as nails, but crucially:
the users shouldn’t have to care. This is dreamcode.

Everything is hard until someone makes it easy. We’re making web app development easy.

Here’s some further information and links to Dreamcode examples.

13.2 noBackend

Servers are difficult. Databases are difficult. The interplay between client and server is difficult, there are many moving
parts, there are many entertaining mistakes to make, and the barrier to entry for web app development is, in our

67



Hoodie Documentation

mind, needlessly high. You shouldn’t have to be a full stack developer to build a functioning app prototype, or code
a small tool for yourself or your team, or launch a simple MVP.

People have been building web apps for quite a while now, and their basic operations (sign up, sign in, sign out, store
and retrieve data, etc.) must have been written a million separate times by now. These things really shouldn’t be
difficult anymore. So we’re proposing Hoodie as a noBackend solution. Yes, a backend does exist, but it doesn’t have
to exist in your head. You don’t have to plan it or set it up. You simply don’t have to worry about it for those basic
operations, you can do all of them with Hoodie’s frontend API. Of course, we let you dig as deep as you want, but for
the start, you don’t have to.

noBackend gives you time to work on the hard problems, the parts of the app that are justifiably difficult and non-
abstractable, like the interface, the user experience, the things that make your product what it is.

With Hoodie, you scaffold out your app with

and you’re good to go. Sign up users, store data. . . it’s all right there, immediately. It’s a backend in a box, empowering
frontend developers to build entire apps without thinking about the backend at all. Check out some example Hoodie
apps if you’d like to see some code.

13.2.1 More information about noBackend

See nobackend.org, Examples for noBackend solutions and @nobackend on Twitter.

13.3 Offline First

We make websites and apps for the web. The whole point is to be online, right? We’re online when we build these
things, and we generally assume our users to be in a state of permanent connectivity. That state, however, is a myth,
and that assumption causes all sorts of problems.

With the stellar rise of mobile computing, we can no longer assume anything about our users’ connections. Just as
we all had to learn to accept that screens now come in all shapes and sizes, we’ll have to learn that connections
can be present or absent, fast or slow, steady or intermittent, free or expensive. . . We reacted to the challenge
of unknowable screen sizes with Responsive Webdesign and Mobile First, and we will react to the challenge of
unknowable connections with Offline First.

Offline First means: build your apps without the assumption of permanent connectivity. Cache data and apps
locally. Build interfaces that accommodate the offline state elegantly. Design user interactions that will not break
if their train goes into a tunnel. Don’t freak out your users with network error messages or frustrate them with
inaccessible data. Offline First apps are faster, more robust, more pleasant to use, and ultimately: more useful.

13.3.1 More information about Offline First

See offlinefirst.org, on GitHub and discussions and research

13.4 So now you know what motivates us

We hope this motivated you too! So let’s continue to the system requirements for Hoodie.

68 Chapter 13. Hoodie’s Concepts



CHAPTER 14

How Hoodie Works

Hoodie has several components that work together in a somewhat atypical way to deliver our promise of simplicity,
out-of-the-box syncing, and offline capability.

Everything starts in the frontend, with your app. This is your user interface, your client side business logic, etc.

The app code only talks to the Hoodie frontend API, never directly to the server-side code, the database, or even the
in-browser storage.

Hoodie uses PouchDB for storing data locally, which uses IndexedDb or WebSQL, whatever is available. Hoodie
saves all data here first, before doing anything else. So if you’re offline, your data is safely stored locally.

69



Hoodie Documentation

70 Chapter 14. How Hoodie Works



Hoodie Documentation

This, by itself, is already enough for an app. But if you want to save your data remotely or send an email, for example,
you’ll need a bit more.

Hoodie relies on CouchDB, the database that replicates. We use it to sync data back and forth between the server and
the clients, which is something that CouchDB happens to be really good at.

A small aside: In CouchDB, each user has their own private database which only they can access, so all user data is
private by default. It can be shared to the public if the user decides to do so, but it can’t happen by accident. This is
why we’ll often mention sharing and global data as a separate feature.

Behind the database, we have the actual server code in the form of a small node.js core with various plugins running
alongside it. These then act upon the data in the CouchDB, which then replicates the changes back to the clients.

So Hoodie does client database server instead of the traditional client server database, and this is where many of
its superpowers come from.

The clever bit is indicated by the dotted line in the middle; the connection between clients and server can be severed at
any time without breaking the system. Frontend and backend never talk directly to each other. They only leave each
other messages and tasks. It’s all very loosely-coupled and event-based, and designed for eventual consistency.

71



Hoodie Documentation

72 Chapter 14. How Hoodie Works



CHAPTER 15

Architecture

After installing hoodie, npm start will run cli/index.js which reads out the configuration from all the different
places using the rc package, then passes it as options to server/index.js, the Hoodie core hapi plugin.

In server/index.js, the passed options are merged with defaults and parsed into configuration for the Hapi server. It
passes the configuration on to hoodie-server, which combines the core server modules. It also bundles the Hoodie
client on first request to /hoodie/client.js and passes in the configuration for the client. It also makes the app’s
public folder accessible at the / root path, and Hoodie’s Core UIs at /hoodie/admin, /hoodie/account
and /hoodie/store.

Hoodie uses CouchDB for data persistence. If options.dbUrl is not set, it falls back to PouchDB.

Once all configuration is taken care of, the internal plugins are initialised (see server/plugins/index.js). We define
simple Hapi plugins for logging and for serving the app’s public assets and the Hoodie client.

Once everything is setup, the server is then started at the end of cli/start.js and the URL where hoodie is running is
logged to the terminal.

15.1 Modules

Hoodie is a server built on top of hapi with frontend APIs for account and store related tasks. It is split up in many
small modules with the goal to lower the barrier to new code contributors and to share maintenance responsibilities.

1. server

Hoodie’s core server logic as hapi plugin. It integrates Hoodie’s server core modules: account-server,
store-server

1. account-server

Hapi plugin that implements the Account JSON API routes and exposes a corresponding
API at server.plugins.account.api.*.

2. store-server

73

../guides/quickstart.html
https://github.com/hoodiehq/hoodie/blob/master/cli/index.js
../guides/configuration.html
https://www.npmjs.com/package/rc
http://hapijs.com
https://github.com/hoodiehq/hoodie/blob/master/server/index.js
https://github.com/hoodiehq/hoodie-server#readme
https://couchdb.apache.org/
https://pouchdb.com/
https://github.com/hoodiehq/hoodie/blob/master/server/plugins/index.js
https://github.com/hoodiehq/hoodie/blob/master/server/plugins/logger.js
https://github.com/hoodiehq/hoodie/blob/master/server/plugins/public.js
https://github.com/hoodiehq/hoodie/blob/master/cli/index.js
http://hapijs.com
https://travis-ci.org/hoodiehq/hoodie-server
https://coveralls.io/r/hoodiehq/hoodie-server?branch=master
https://david-dm.org/hoodiehq/hoodie-server
https://github.com/hoodiehq/hoodie-account-server
https://github.com/hoodiehq/hoodie-store-server
https://travis-ci.org/hoodiehq/hoodie-account-server
https://coveralls.io/r/hoodiehq/hoodie-account-server?branch=master
https://david-dm.org/hoodiehq/hoodie-account-server
http://hapijs.com/
http://docs.accountjsonapi.apiary.io
https://travis-ci.org/hoodiehq/hoodie-store-server
https://coveralls.io/r/hoodiehq/hoodie-store-server?branch=master
https://david-dm.org/hoodiehq/hoodie-store-server


Hoodie Documentation

Hapi plugin that implements CouchDB’s Document API. Compatible with CouchDB
and PouchDB for persistence.

2. client

Hoodie’s front-end client for the browser. It integrates Hoodie’s client core modules: account-client,
store-client, connection-status and log

1. account-client

Client for the Account JSON API. It persists session information on the client and pro-
vides front-end friendly APIs for things like creating a user account, confirming, reset-
ting a password, changing profile information, or closing the account.

2. store-client

Store client for data persistence and offline sync.

3. connection-status

Browser library to monitor a connection status. It emits disconnect & reconnect
events if the request status changes and persists its status on the client.

4. log

JavaScript library for logging to the browser console. If available, it takes advantage of
CSS-based styling of console log outputs.

5. admin

Hoodie’s built-in Admin Dashboard, built with Ember.js

1. admin-client

Hoodie’s front-end admin client for the browser. Used in the Admin Dashboard, but can
also be used standalone for custom admin dashboard.

74 Chapter 15. Architecture

http://hapijs.com/
https://wiki.apache.org/couchdb/HTTP_Document_API
https://couchdb.apache.org/
https://pouchdb.com/
https://travis-ci.org/hoodiehq/hoodie-client
https://coveralls.io/r/hoodiehq/hoodie-client?branch=master
https://david-dm.org/hoodiehq/hoodie-client
https://github.com/hoodiehq/hoodie-account-client
https://github.com/hoodiehq/hoodie-store-client
https://github.com/hoodiehq/hoodie-connection-status
https://github.com/hoodiehq/hoodie-log
https://travis-ci.org/hoodiehq/hoodie-account-client
https://coveralls.io/r/hoodiehq/hoodie-account-client?branch=master
https://david-dm.org/hoodiehq/hoodie-account-client
http://docs.accountjsonapi.apiary.io
https://travis-ci.org/hoodiehq/hoodie-store-client
https://coveralls.io/r/hoodiehq/hoodie-store-client?branch=master
https://david-dm.org/hoodiehq/hoodie-store-client
https://travis-ci.org/hoodiehq/hoodie-connection-status
https://coveralls.io/r/hoodiehq/hoodie-connection-status?branch=master
https://david-dm.org/hoodiehq/hoodie-connection-status
https://travis-ci.org/hoodiehq/hoodie-log
https://coveralls.io/r/hoodiehq/hoodie-log?branch=master
https://david-dm.org/hoodiehq/hoodie-log
https://developer.mozilla.org/en-US/docs/Web/API/Console#Styling_console_output
https://travis-ci.org/hoodiehq/hoodie-admin
https://david-dm.org/hoodiehq/hoodie-admin
http://emberjs.com
https://travis-ci.org/hoodiehq/hoodie-admin-client
https://coveralls.io/r/hoodiehq/hoodie-admin-client?branch=master
https://david-dm.org/hoodiehq/hoodie-account-client


CHAPTER 16

Files & Folders

16.1 package.json

The package.json file describes your project in JSON. It its dependencies, scripts needed to run or use or develop
on your project, and other information described in the NPM documentation for package.json.

The file is created when you run this:

npm init

It will prompt you for details about your projects, such as its name, version, description, test suite, author, and software
license. Fill it out or leave it for later. You can always edit the file directly.

Hoodie modifies your package.json when it is installed to add a “start” script that starts your server by running hoodie
without options.

When adding new dependencies, you can save their name and version information to package.json by using the
--save flag, like this:

npm install --save <package name>

With your dependencies documented in package.json, you can install all your dependencies at once by running
this:

npm install

This makes it very easy for others to get your project up and running quickly.

16.2 README.md

The README.md file describes your project in Markdown. It is intended for humans to read, and should include
information about what your project is or does, how to install it, use it, test it, and contribute to it if appropriate.

For an example readme, try the one used by Hoodie :)

75

http://www.json.org/
https://docs.npmjs.com/files/package.json
https://daringfireball.net/projects/markdown/syntax
https://github.com/hoodiehq/hoodie/#hoodie


Hoodie Documentation

16.3 .hoodie/

The .hoodie/ folder contains compiled client assets and database records, including query indexes. You should
never need to modify these files directly.

16.4 hoodie/

The hoodie/ folder contains the JavaScript code that runs in your server and the user’s browser, and the code that
they share. Hoodie uses two files as hooks to package code for the client and server:

• hoodie/client/index.js is included as a Hoodie plugin using Browserify, so it can use require()
to include code from dependencies or other folders.

• hoodie/server/index.js is included in the server as a Hapi plugin. It can define new routes and other
server-side logic.

Hoodie does not create a hoodie/ folder, so you will need to create it:

mkdir hoodie
mkdir hoodie/{client,server}
touch hoodie/{client,server}/index.js

Although Hoodie doesn’t treat it in any special way, you can use a folder like hoodie/lib/ to store code shared
between the client and the server. Client and server scripts can require() code from other folders like hoodie/
lib/.

The hoodie/client/index.js file exports a Hoodie plugin. A Hoodie plugin exports a function that accepts a
‘hoodie’ object as its sole parameter. This object contains the interfaces to Hoodie’s client APIs: ‘account’, ‘store’,
‘connectionStatus’, and ‘log’.

You can also attach new methods to the ‘hoodie’ object, like the ‘hello’ method in this example hoodie/client/
index.js file:

module.exports = function (hoodie) {
hoodie.hello = function (what) {
return Promise.resolve('Hello, ' + (what || 'world') + '!')

}
}

The hoodie/server/index.js exports a Hapi plugin, like this:

module.exports.register = function (server, options, next) {
server.route({
method: 'GET',
path: '/hello',
handler: function (request, reply) {

reply({ hello: 'world' })
}

})
next()

}

module.exports.register.attributes = {
name: '<app name>',
version: '<app version>'

}

76 Chapter 16. Files & Folders

http://docs.hood.ie/en/latest/guides/plugins.html
http://browserify.org/
https://hapijs.com/tutorials/plugins
http://docs.hood.ie/en/latest/api/client/hoodie.html


Hoodie Documentation

In this example, the register function is used to add a route to the server at /hoodie/<app name>/hello that
responds with a JSON object like this: { "hello": "world" }. All of your app’s server routes are prefixed
with /hoodie/<app name>/.

The ‘register’ method allows you to modify the server by adding routes and other server logic. You can read more
about how to do that on Hapi’s website. You can access Hoodie’s server-side libraries via server.plugins.

16.5 public/

When you open your app in the browser you will see Hoodie’s default page telling you that your app has no public/
folder. So let’s create it

mkdir public
touch public/index.html

Now edit the public/index.html file and pass in the following content.

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>My Hoodie App</title>

</head>
<body>
<h1>My Hoodie App</h1>

<script src="/hoodie/client.js"></script>
</body>

</html>

You need to stop the server now (ctrl + c) and start it again. If you reload your app in your browser, you will now see
your HTML file.

16.5. public/ 77

https://hapijs.com/tutorials/plugins
http://docs.hood.ie/en/latest/api/index.html#the-hoodie-server-api


Hoodie Documentation

78 Chapter 16. Files & Folders



CHAPTER 17

Requirements

Before you start working with Hoodie, here’s what you need to know regarding your development/server environment
and the browsers Hoodie will run in.

17.1 System Requirements for Hoodie Server

• Mac OSX

• Windows 7 and up

• Linux (Ubuntu, Fedora 19+)

17.2 Browser Compatibilities (all latest stable)

• Firefox (29+)

• Chrome (34+)

• Desktop Safari (7+)

• Internet Explorer 10+

• Opera (21+)

• Android 4.3+

• iOS Safari (7.1+)

Important: This list is currently based on PouchDB’s requirements, since Hoodie is using PouchDB for its in-browser
storage.

79

https://pouchdb.com/learn.html#browser_support


Hoodie Documentation

80 Chapter 17. Requirements



CHAPTER 18

Glossary

18.1 CouchDB

CouchDB is a non-relational, document-based database that replicates, which means it’s really good at syncing data
between multiple instances of itself. All data is stored as JSON, all indices (queries) are written in JavaScript, and it
uses regular HTTP as its API.

18.2 PouchDB

PouchDB is an in-browser datastore inspired by CouchDB. It enables applications to store data locally while offline,
then synchronize it with CouchDB.

18.3 hapi

hapi is a rich framework for building applications and services, enabling developers to focus on writing reusable
application logic and not waste time with infrastructure logic. You can load hoodie as a hapi plugin to use it in your
existing hapi application.

18.4 Users

Hoodie isn’t a CMS, but a backend for web apps, and as such, it is very much centered around users. All of the offline
and sync features are specific to each individual user’s data, and each user’s data is encapsulated from that of all others
by default. This allows Hoodie to easily know what to sync between a user’s clients and the server: simply all of the
user’s private data.

81

http://couchdb.apache.org/
https://pouchdb.com/
https://hapijs.com/
https://github.com/hoodiehq/hoodie#hapi-plugin


Hoodie Documentation

18.5 Private User Store

Every user signed up with your Hoodie app has their private little database. Anything you do in the hoodie.store
methods stores data in here.

82 Chapter 18. Glossary


	Welcome to Hoodie
	Quickstart
	Configuration
	Plugins
	Deployment
	Using Hoodie as hapi plugin
	Hoodie API
	Contributing to Hoodie
	Coding Style Guide
	Triage new issues/PRs on GitHub
	Contributing to Documentation
	Documentation Style Guide
	Hoodie’s Concepts
	How Hoodie Works
	Architecture
	Files & Folders
	Requirements
	Glossary

