

Welcome to hokuyolx’s documentation!

This module aims to implement communication protocol with Hokuyo
laser rangefinder scaners, specifically with the following models:
UST-10LX, UST-20LX, UST-30LX. It was tested only with UST-10LX but should work
with others as well. For protocol specifications please refer to the following
documents:

	http://www.hokuyo-aut.jp/02sensor/07scanner/download/pdf/UTM-30LX-EW_protocol_en.pdf

	https://www.hokuyo-aut.jp/02sensor/07scanner/download/pdf/UST_protocol_en.pdf

Usage example:

>>> from hokuyolx import HokuyoLX
>>> laser = HokuyoLX()
>>> timestamp, scan = laser.get_dist() # Single measurment mode
>>> # Continous measurment mode
>>> for timestamp, scan in laser.iter_dist(10):
... print(timestamp)

For further information please refer to HokuyoLX class documentation

Installation

You can install hokuyolx using pip:

$ sudo pip install hokuyolx

Or for Python 3:

$ sudo pip3 install hokuyolx

Module contents

	
class hokuyolx.HokuyoLX(activate=True, info=True, tsync=True, addr=None, buf=512, timeout=5, time_tolerance=300, logger=None, convert_time=True)

	Class for working with Hokuyo laser rangefinders, specifically
with the following models: UST-10LX, UST-20LX, UST-30LX

Methods

	
__init__(activate=True, info=True, tsync=True, addr=None, buf=512, timeout=5, time_tolerance=300, logger=None, convert_time=True)

	Creates new object for communications with the sensor.

	Parameters:	activate : bool, optional

Switch sensor to the standby mode? (the default is True)

info : bool, optional

Update sensor information? (the default is True)

tsync : bool, optional

Perform time synchronization? (the default is True)

addr : tuple, optional

IP address and port of the sensor (the default is
(‘192.168.0.10’, 10940))

buf : int, optional

Buffer size for recieving messages from the sensor
(the default is 512)

timeout : int, optional

Timeout limit for connection with the sensor in seconds
(the default is 5)

time_tolerance : int, optinal

Time tolerance before attempting time synchronization in
milliseconds (the default is 300)

logger : logging._logger instance, optional

Logger instance, if none is provided new instance is created

convert_time : bool

Convert timestamps to UNIX time?

	
activate()

	Switches the sensor to the measurement state and starts
the measurement process by lighting (activating) the laser.
Valid in the standby state.

	Returns:	code : int

Command status code

description : str

Command status description

Examples

>>> laser.laser_state()
(0, 'Standby state')
>>> status, description = laser.activate()
>>> status
0
>>> description
'Normal. The sensor is in measurement state and the laser was lighted.'
>>> laser.laser_state()
(3, 'Single scan state')

	
close()

	Disconnects from the sensor closing TCP socket

	
get_angles(start=None, end=None, grouping=0)

	Returns array of angles for given start, end and grouping
parameters and according to the sensor parameters stored inside object.

	Parameters:	start : int, optional

Position of the starting step (the default is None,
which implies self.amin)

end : int, optional

Position of the ending step (the default is None,
which implies self.amax)

grouping : int, optional

Number of grouped steps (the default is 0, which regarded as 1)

	Returns:	ndarray

List of angles in radians

Examples

>>> laser.get_angles()
array([-1.17809725, -1.17591558, -1.17373392, ..., 1.17373392,
 1.17591558, 1.17809725])

	
get_dist(start=None, end=None, grouping=0)

	Measure distances for the given parameters

	Parameters:	start : int, optional

Position of the starting step (the default is None,
which implies self.amin)

end : int, optional

Position of the ending step (the default is None,
which implies self.amax)

grouping : int, optional

Number of grouped steps (the default is 0, which regarded as 1)

	Returns:	timestamp : int

Timestamp of the measurment

scan : ndarray

Array with measured distances

	
get_filtered_dist(start=None, end=None, grouping=0, dmin=None, dmax=None)

	Measure distances for the given parameters and perform basic
filtering. Returns array with angles and distances.

	Parameters:	start : int, optional

Position of the starting step (the default is None,
which implies self.amin)

end : int, optional

Position of the ending step (the default is None,
which implies self.amax)

grouping : int, optional

Number of grouped steps (the default is 0, which regarded as 1)

dmin : int, optional

Minimal distance for filtering (the default is None,
which implies self.dmin)

dmax : int, optional

Maximum distance for filtering (the default is None,
which implies self.dmax)

	Returns:	timestamp : int

Timestamp of the measurment

scan : ndarray

Array with measured distances and angles

	
get_filtered_intens(start=None, end=None, grouping=0, dmin=None, dmax=None, imin=None, imax=None)

	Measure distances and intensities for the given parameters and
perform basic filtering. Returns array with angles, distances and
intensities.

	Parameters:	start : int, optional

Position of the starting step (the default is None,
which implies self.amin)

end : int, optional

Position of the ending step (the default is None,
which implies self.amax)

grouping : int, optional

Number of grouped steps (the default is 0, which regarded as 1)

dmin : int, optional

Minimum distance for filtering (the default is None,
which implies self.dmin)

dmax : int, optional

Maximum distance for filtering (the default is None,
which implies self.dmax)

imin : int, optional

Minimum intensity for filtering (the default is None,
which disables minimum intensity filter)

imax : int, optional

Maximum distance for filtering (the default is None,
which disables maximum intensity filter)

	Returns:	timestamp : int

Timestamp of the measurment

scan : ndarray

Array with measured angles, distances and intensities

	
get_intens(start=None, end=None, grouping=0)

	Measure distances and intensities for the given parameters

	Parameters:	start : int, optional

Position of the starting step (the default is None,
which implies self.amin)

end : int, optional

Position of the ending step (the default is None,
which implies self.amax)

grouping : int, optional

Number of grouped steps (the default is 0, which regarded as 1)

	Returns:	timestamp : int

Timestamp of the measurment

scan : ndarray

Array with measured distances and intensities

	
iter_dist(scans=0, start=None, end=None, grouping=0, skips=0)

	Generator for taking continous measurment of distances. If scan is
equal to 0 infinite number of scans will be taken until laser is
switched to the standby state.

	Parameters:	scans : int, optional

Number of scans to perform (the default is 0, which means infinite
number of scans)

start : int, optional

Position of the starting step (the default is None,
which implies self.amin)

end : int, optional

Position of the ending step (the default is None,
which implies self.amax)

grouping : int, optional

Number of grouped steps (the default is 0, which regarded as 1)

skips : int, optional

Number of scans to skip (the default is 0, 0 means all scans
will be yielded, 1 - every second, 2 - every third, etc.)

	Yields:	timestamp : int

Timestamp of the measurment

scan : ndarray

Array with measured distances

	
iter_filtered_dist(scans=0, start=None, end=None, grouping=0, skips=0, dmin=None, dmax=None)

	Generator for taking continous measurment of distances with
additional filtering. If scan is equal to 0 infinite number of scans
will be taken until laser is switched to the standby state.

	Parameters:	with_intensity : bool

Measure with intensities or only distances

scans : int, optional

Number of scans to perform (the default is 0, which means infinite
number of scans)

start : int, optional

Position of the starting step (the default is None,
which implies self.amin)

end : int, optional

Position of the ending step (the default is None,
which implies self.amax)

grouping : int, optional

Number of grouped steps (the default is 0, which regarded as 1)

skips : int, optional

Number of scans to skip (the default is 0, 0 means all scans
will be yielded, 1 - every second, 2 - every third, etc.)

dmin : int, optional

Minimal distance for filtering (the default is None,
which implies self.dmin)

dmax : int, optional

Maximum distance for filtering (the default is None,
which implies self.dmax)

	Yields:	timestamp : int

Timestamp of the measurment

scan : ndarray

Array with measured angles and distances

	
iter_filtered_intens(scans=0, start=None, end=None, grouping=0, skips=0, dmin=None, dmax=None, imin=None, imax=None)

	Generator for taking continous measurment of distances and
intensities with additional filtering. If scan is equal to 0 infinite
number of scans will be taken until laser is switched to the standby
state.

	Parameters:	with_intensity : bool

Measure with intensities or only distances

scans : int, optional

Number of scans to perform (the default is 0, which means infinite
number of scans)

start : int, optional

Position of the starting step (the default is None,
which implies self.amin)

end : int, optional

Position of the ending step (the default is None,
which implies self.amax)

grouping : int, optional

Number of grouped steps (the default is 0, which regarded as 1)

skips : int, optional

Number of scans to skip (the default is 0, 0 means all scans
will be yielded, 1 - every second, 2 - every third, etc.)

dmin : int, optional

Minimal distance for filtering (the default is None,
which implies self.dmin)

dmax : int, optional

Maximum distance for filtering (the default is None,
which implies self.dmax)

imin : int, optional

Minimum intensity for filtering (the default is None,
which disables minimum intensity filter)

imax : int, optional

Maximum distance for filtering (the default is None,
which disables maximum intensity filter)

	Yields:	timestamp : int

Timestamp of the measurment

scan : ndarray

Array with measured angles, distances and intensities

	
iter_intens(scans=0, start=None, end=None, grouping=0, skips=0)

	Generator for taking continous measurment of distances and
intensities. If scan is equal to 0 infinite number of scans will be
taken until laser is switched to the standby state.

	Parameters:	scans : int, optional

Number of scans to perform (the default is 0, which means infinite
number of scans)

start : int, optional

Position of the starting step (the default is None,
which implies self.amin)

end : int, optional

Position of the ending step (the default is None,
which implies self.amax)

grouping : int, optional

Number of grouped steps (the default is 0, which regarded as 1)

skips : int, optional

Number of scans to skip (the default is 0, 0 means all scans
will be yielded, 1 - every second, 2 - every third, etc.)

	Yields:	timestamp : int

Timestamp of the measurment

scan : ndarray

Array with measured distances and intensities

	
laser_state()

	Return the current sensor state. It is valid during any sensor state.

	Returns:	int

Sensor state code

str

Sensor state description

	
partial_reset()

	This command forces the sensor to switch to the standby state
and performs the following tasks:

	Turns off (deactivates) the laser.

	Sets the internal sensor timer to zero.

	Sets the measurement sensitivity to the default (normal) value.

This is similar to the reset command, except the motor rotational
(scanning) speed and the serial transmission speed are not changed.
When the sensor is in the abnormal condition state, the partial_reset
command is not received.

	
reboot()

	This command reboots the sensor and performs the following tasks:

	Waits for 1 second, during this time the host system disconnects
from the sensor.

	The sensor stops all communications.

	Turns off (deactivates) the laser.

	Sets the motor rotational speed (scanning speed) to the default
initialization value.

	Sets the serial transmission speed (bit rate) to the default
initialization value.

	Sets the internal sensor timer to zero.

	Sets the measurement sensitivity to the default (normal) value.

	Initializes other internal parameters, and waits until the
scanning speed is stable.

	Switches to standby state.

It is the only state transition command that can be received
during abnormal condition state

	
reset()

	This command forces the sensor to switch to the standby state
and performs the following tasks:

	Turns off (deactivates) the laser.

	Sets the motor rotational speed (scanning speed) to the default
initialization value.

	Sets the serial transmission speed (bit rate) to the default
initialization value.

	Sets the internal sensor timer to zero.

	Sets the measurement sensitivity to the default (normal) value.

However, when the sensor is in the abnormal condition state,
the reset command is not received.

	
sensor_parameters()

	Obtains sensor internal parameters information.
This command is valid during any sensor state except
the time synchronization state.

	
sensor_state()

	Obtains status information of the sensor.
This command is valid during any sensor state.

	
sleep()

	Switches the sensor to the sleep state. When the sensor receives
the sleep command, it stops the current measurement process,
switches to the sleep state, turns off (deactivates) the laser and
stops the motor. Valid in the standby state or in the
measurement state.

Examples

>>> laser.laser_state()
(0, 'Standby state')
>>> laser.sleep()
>>> laser.laser_state()
(5, 'Sleep state')

	
standby()

	Stops the current measurement process and switches the sensor to the
standby state. Valid in the measurement state or in the measurement and
scan response state.

Examples

>>> laser.laser_state()
(3, 'Single scan state')
>>> laser.standby()
>>> laser.laser_state()
(0, 'Standby state')

	
time_sync(N=10, dt=0.1)

	Performs time synchronization by doing tsync_get`requests each `dt
seconds N times. After that it finds mean time shift, saving it into
self.tzero. This value also can be interpreted as the time when
the sensor was turned in.

	Parameters:	N : int, optional

Number of times to request time from the sensor (the default is 10)

dt : float, optional

Time between time requests (the default is 0.1)

	
tsync_enter()

	Transition from standby state to time synchronization state.

	
tsync_exit()

	Transition from time synchronization state to standby state.

	
tsync_get()

	Get time value for time synchronization

	
update_info()

	Updates sensor information stored in the object attributes using
sensor_parameters method.

	
version()

	Obtains manufacturing (version) information of the sensor.
This command is valid during any sensor state.

Submodules

hokuyolx.exceptions module

Exceptions used in hokuyolx module

	
exception hokuyolx.exceptions.HokuyoChecksumMismatch

	Bases: hokuyolx.exceptions.HokuyoException

Exception class which represents checksum mismatch errors inside Hokuyo
communication protocol

	
exception hokuyolx.exceptions.HokuyoException

	Bases: Exception

Basic exception class for Hokuyo laser scanners

	
exception hokuyolx.exceptions.HokuyoStatusException(code)

	Bases: hokuyolx.exceptions.HokuyoException

Exception class which represents unexpected reply status errors inside
Hokuyo communication protocol

	
code = None

	

	
get_status()

	Returns status description

	Returns:	str

Status description

hokuyolx.statuses module

Various statuses, their codes and descriptions used in the hokuyolx

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hokuyolx	

 	
 	
 hokuyolx.exceptions	

 	
 	
 hokuyolx.statuses	

Index

 _
 | A
 | C
 | G
 | H
 | I
 | L
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	__init__() (hokuyolx.HokuyoLX method)

A

 	
 	activate() (hokuyolx.HokuyoLX method)

C

 	
 	close() (hokuyolx.HokuyoLX method)

 	
 	code (hokuyolx.exceptions.HokuyoStatusException attribute)

G

 	
 	get_angles() (hokuyolx.HokuyoLX method)

 	get_dist() (hokuyolx.HokuyoLX method)

 	get_filtered_dist() (hokuyolx.HokuyoLX method)

 	
 	get_filtered_intens() (hokuyolx.HokuyoLX method)

 	get_intens() (hokuyolx.HokuyoLX method)

 	get_status() (hokuyolx.exceptions.HokuyoStatusException method)

H

 	
 	HokuyoChecksumMismatch

 	HokuyoException

 	HokuyoLX (class in hokuyolx)

 	
 	hokuyolx (module)

 	hokuyolx.exceptions (module)

 	hokuyolx.statuses (module)

 	HokuyoStatusException

I

 	
 	iter_dist() (hokuyolx.HokuyoLX method)

 	iter_filtered_dist() (hokuyolx.HokuyoLX method)

 	
 	iter_filtered_intens() (hokuyolx.HokuyoLX method)

 	iter_intens() (hokuyolx.HokuyoLX method)

L

 	
 	laser_state() (hokuyolx.HokuyoLX method)

P

 	
 	partial_reset() (hokuyolx.HokuyoLX method)

R

 	
 	reboot() (hokuyolx.HokuyoLX method)

 	
 	reset() (hokuyolx.HokuyoLX method)

S

 	
 	sensor_parameters() (hokuyolx.HokuyoLX method)

 	sensor_state() (hokuyolx.HokuyoLX method)

 	
 	sleep() (hokuyolx.HokuyoLX method)

 	standby() (hokuyolx.HokuyoLX method)

T

 	
 	time_sync() (hokuyolx.HokuyoLX method)

 	tsync_enter() (hokuyolx.HokuyoLX method)

 	
 	tsync_exit() (hokuyolx.HokuyoLX method)

 	tsync_get() (hokuyolx.HokuyoLX method)

U

 	
 	update_info() (hokuyolx.HokuyoLX method)

V

 	
 	version() (hokuyolx.HokuyoLX method)

 nav.xhtml

 Table of Contents

 		Welcome to hokuyolx's documentation!

_static/ajax-loader.gif

_static/comment-close.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

