

Welcome to Histonets Computer Vision’s documentation!

Contents:

	Histonets Computer Vision
	Features

	Commands

	Credits

	Installation
	Stable release

	From sources

	Usage

	histonets_cv
	histonets_cv package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	History
	0.1.0 (2016-11-17)

Indices and tables

	Index

	Module Index

	Search Page

Histonets Computer Vision

[image: _images/histonets.svg]
 [https://pypi.python.org/pypi/histonets][image: _images/histonets-cv.svg]
 [https://travis-ci.org/sul-cidr/histonets-cv][image: Documentation Status]
 [https://histonets.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/sul-cidr/histonets-cv/][image: Test Coverage]
 [https://codecov.io/gh/sul-cidr/histonets-cv]Computer vision part of the Histonets project

	Free software: Apache Software License 2.0

	Documentation: https://histonets.readthedocs.io.

Features

Usage: histonets [OPTIONS] COMMAND [ARGS]…

Histonets computer vision application for image processing

	Options:

	
	--rst

	Show help in ReST format.

	--version

	Show the version and exit.

	--help

	Show this message and exit.

Commands

binarize

Usage: histonets binarize [OPTIONS] [IMAGE]

Binarize IMAGE using a thresholding method.

Example:

histonets binarize -m otsu file://...

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-m, –method [sauvola|isodata|otsu|li]

	Thresholding method to obtain the binary
image. For reference, see http://scikit-imag
e.org/docs/dev/auto_examples/xx_applications
/plot_thresholding.html. Defaults to ‘li’.

	-o, --output FILENAME

	File name to save the output. For images, if
the file extension is different than IMAGE,
a conversion is made. When not given,
standard output is used and images are
serialized using Base64; and to JSON
otherwise.

blobs

Usage: histonets blobs [OPTIONS] [IMAGE]

Binarize using threshold and remove white blobs of contiguous pixels
of size between min and max from IMAGE, turning them into black.

Example:

histonets blobs -max 100 -c 8 file://...

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-min, --minimum-area INTEGER

	Minimum area in pixels of the white blobs to
detect. Defaults to 0.

	-max, --maximum-area INTEGER

	Maximum area in pixels of the white blobs to
detect. Defaults to 9223372036854775807.

	-th, –threshold INTEGER RANGE Threshold to binarize before detecting

	blobs. Ranges from 0 to 255. Defaults to
128.

	-c, –connectivity [4|8|16] Connectivity method to consider blobs

	boundaries. It can take adjacent pixels in a
4 pixels cross neighborhood (top, right,
bottom, left), 8 pixels (all around), or 16
pixels (anti-aliased). Defaults to 4
neighbors.

	-m, --mask

	Returns a black and white mask instead.

	-o, --output FILENAME

	File name to save the output. For images, if
the file extension is different than IMAGE,
a conversion is made. When not given,
standard output is used and images are
serialized using Base64; and to JSON
otherwise.

brightness

Usage: histonets brightness [OPTIONS] VALUE [IMAGE]

Adjust brightness of IMAGE.

	VALUE ranges from 0 to 200.

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-o, --output FILENAME

	File name to save the output. For images, if the file
extension is different than IMAGE, a conversion is
made. When not given, standard output is used and
images are serialized using Base64; and to JSON
otherwise.

clean

Usage: histonets clean [OPTIONS] [IMAGE]

Clean IMAGE automatically with sane defaults and allows for parameter
fine tunning.

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-bv, –background-value INTEGER RANGE

	Threshold value to consider a pixel
background. Ranges from 0 to 100. Defaults
to 25.

	-bs, –background-saturation INTEGER RANGE

	Threshold saturation to consider a pixel
background. Ranges from 0 to 100. Defaults
to 20.

	-c, –colors INTEGER RANGE Number of output colors. Ranges from 2 to

	
	Defaults to 8.

	-f, –sample-fraction INTEGER RANGE

	Percentage of pixels to sample. Ranges from
0 to 100. Defaults to 5.

	-w, --white-background

	Make background white.

	-s, –saturate / -ns, –no-saturate

	Saturate colors (default).

	-p, --palette TEXT

	Local file, URL, or JSON string representing
a palette of colors encoded as lists of RGB
components or hexadecimal strings preceded
by the hash character (#). Ex: ‘[“#fa4345”,
“[123, 9, 108]”, [1, 2, 3]]’. If a palette
is passed in, colors are ignored.

	-o, --output FILENAME

	File name to save the output. For images, if
the file extension is different than IMAGE,
a conversion is made. When not given,
standard output is used and images are
serialized using Base64; and to JSON
otherwise.

contrast

Usage: histonets contrast [OPTIONS] VALUE [IMAGE]

Adjust contrast of IMAGE.

	VALUE ranges from 0 to 200.

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-o, --output FILENAME

	File name to save the output. For images, if the file
extension is different than IMAGE, a conversion is
made. When not given, standard output is used and
images are serialized using Base64; and to JSON
otherwise.

denoise

Usage: histonets denoise [OPTIONS] VALUE [IMAGE]

Denoise IMAGE.

	VALUE ranges from 0 to 100.

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-o, --output FILENAME

	File name to save the output. For images, if the file
extension is different than IMAGE, a conversion is
made. When not given, standard output is used and
images are serialized using Base64; and to JSON
otherwise.

dilate

Usage: histonets dilate [OPTIONS] [IMAGE]

Thicken (dilate) IMAGE using dilation as the radius
for the kernel to use. The number of times the dilation process is applied
can be changed via the passes parameter (defautls to 1). If the image is
not lack and white, it will be binarized using a binarization-method, which
by default it’s Li’s algorithm (see the binarize command).
The black and white image can also be thickened (dilated) by adjusting
the dilation parameter before extracting the skeleton image.

Example:

histonets dilate -d 6 -p 1 -b otsu file://...

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-d, –dilation INTEGER RANGE Dilation radius to thicken the binarized

	image prior to perform skeletonization.
Ranges from 0 to 100. Defaults to 1.

	-p, –passes INTEGER RANGE Number of times the dilation is applied.

	Ranges from 0 to 100. Defaults to 1.

	-b, –binarization-method [sauvola|isodata|otsu|li]

	Thresholding method to obtain the binary
image. For reference, see http://scikit-imag
e.org/docs/dev/auto_examples/xx_applications
/plot_thresholding.html. Defaults to ‘li’.

	-i, --invert

	Invert the black and white colors of the
binary image prior to dilation.

	-o, --output FILENAME

	File name to save the output. For images, if
the file extension is different than IMAGE,
a conversion is made. When not given,
standard output is used and images are
serialized using Base64; and to JSON
otherwise.

download

Usage: histonets download [OPTIONS] [IMAGE]

Download IMAGE.

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-o, --output FILENAME

	File name to save the output. For images, if the file
extension is different than IMAGE, a conversion is
made. When not given, standard output is used and
images are serialized using Base64; and to JSON
otherwise.

enhance

Usage: histonets enhance [OPTIONS] [IMAGE]

Clean IMAGE automatically with sane defaults.

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-p, --palette TEXT

	Local file, URL, or JSON string representing a
palette of colors encoded as lists of RGB components
or hexadecimal strings preceded by the hash character
(#). Ex: ‘[“#fa4345”, “[123, 9, 108]”, [1, 2, 3]]’.

	-o, --output FILENAME

	File name to save the output. For images, if the file
extension is different than IMAGE, a conversion is
made. When not given, standard output is used and
images are serialized using Base64; and to JSON
otherwise.

equalize

Usage: histonets equalize [OPTIONS] VALUE [IMAGE]

Histogram equalization on IMAGE.

	VALUE ranges from 0 to 100.

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-o, --output FILENAME

	File name to save the output. For images, if the file
extension is different than IMAGE, a conversion is
made. When not given, standard output is used and
images are serialized using Base64; and to JSON
otherwise.

graph

Usage: histonets graph [OPTIONS] REGIONS [IMAGE]

Build a undirected graph using the center points of REGIONS as nodes
and the paths in the binary grid expressed in IMAGE as edges.

Example:

histonets graph '[[[50,50],[120,50]],[[120, 82],[50,82]]]' -sm vw file://

	
	REGIONS is a path to a local (file://) or remote (http://, https://) JSON

	file representing a list of bounding boxes expressed as two
[x, y] coordinates points in pixels with regards to IMAGE,
one for the top-left corner and a second for the bottom-left one.
For example, ‘[[[50, 50], [120, 50]], [[120, 82], [50, 82]]]’ is
a list that contains two regions.

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-pm, –pathfinding-method [floyd-warshall|astar]

	Specify the pathfinding algorithm to create
edges between the matched templates.
Available algorithms are ‘floyd-warshall’
for Floyd-Warshall all shortest paths
algorithm, and ‘astar’ for grid pathfinding
A*. Defaults to ‘floyd-warshall’.

	-sm, –simplification-method [rdp|vw]

	Specify the line simplification algorithm to
reduce the number of pixels in each path.
Available algorithms are ‘rdp’ for the
Ramer–Douglas–Peucker’s algorithm, and ‘vw’
for Visvalingam–Whyatt’s algorithm. Defaults
to ‘vw’.

	-st, –simplification-tolerance INTEGER RANGE

	Exponent of the inverse simplification
method tolerance, e.g., 3 involves a
tolerance of 10^(-3)). Ranges from 0 to 10.
Defaults to 0.

	-f, –format [edgelist|gexf|gml|graphml|nodelink]

	Format to save the graph in. All formats are
derived from NetworkX’s “Reading and Writing
graphs”: http://networkx.readthedocs.io/en/s
table/reference/readwrite.html. Defaults to
‘graphml’

	-o, --output FILENAME

	File name to save the output. For images, if
the file extension is different than IMAGE,
a conversion is made. When not given,
standard output is used and images are
serialized using Base64; and to JSON
otherwise.

histogram

Usage: histonets histogram [OPTIONS] [IMAGE]

	Extract the histogram of IMAGE in a JSON string representing a

	dictionary with colors as keys and the count (pixels) of those colors as
values. Colors can be given as a list of its RGB components (default), or
in hexadecimal format preceded by the hash character (#).

Example:

histonets histogram -c hex file://...

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-m, –mode [rgb|hex] Color code to represent the colors in the histogram.

	The option ‘rgb’ returns colors as lists of the R, G,
and B components that range from 0 to 255. If set to
‘hex’, an hexadecimal representation will be used.
Defaults to ‘rgb’.

	-o, --output FILENAME

	File name to save the output. For images, if the file
extension is different than IMAGE, a conversion is
made. When not given, standard output is used and
images are serialized using Base64; and to JSON
otherwise.

match

Usage: histonets match [OPTIONS] TEMPLATES… [IMAGE]

Look for TEMPLATES in IMAGE and return the bounding boxes of
the matches. Options may be provided after each TEMPLATE.

Example:

histonets match http://foo.bar/tmpl1 -th 50 http://foo.bar/tmpl2 -th 95

	TEMPLATE is a path to a local (file://) or remote (http://, https://)
image file of the template to look for.

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-th, –threshold INTEGER RANGE Threshold to match TEMPLATE to IMAGE. Ranges

	from 0 to 100. Defaults to 80.

	-f, –flip [horizontal|h|vertical|v|both|b|all|a]

	Whether also match TEMPLATE flipped
horizontally. vertically, or both. Defaults
to not flipping.

	-e, --exclude-regions TEXT

	JSON list of polygons expressed as [x, y]
points to specify regions to cut out when
matching. For example,
[[[50,50],[120,50],[120,82],[50,82]]] is a
list that contains one single polygon.

	-o, --output FILENAME

	File name to save the output. For images, if
the file extension is different than IMAGE,
a conversion is made. When not given,
standard output is used and images are
serialized using Base64; and to JSON
otherwise.

palette

Usage: histonets palette [OPTIONS] [HISTOGRAM]

Extract a palette of colors from HISTOGRAM.

	HISTOGRAM path to local file, URL, or JSON string representing a
dictionary with colors as keys and the count (pixels) of those colors as
values. Colors can be given as a list of its RGB components, or
in hexadecimal format preceded by the hash character (#).

Example:

histonets palette '{"#fa4345": 3829, "[123, 9, 108]": 982}'

	HISTOGRAM path to a local (file://) or remote (http://, https://) JSON file representing histogram.
A JSON string can also be piped as input

Options:

	-c, –colors INTEGER RANGE Number of output colors. Ranges from 2 to

	
	Defaults to 8.

	-m, –method [auto|kmeans|median|linear|max|octree]

	Method for computing the palette. ‘auto’
runs an optimized K-Means algorithm by
sampling the histogram and detecting the
background color first; ‘kmeans’ performs a
clusterization of the existing colors using
the K-Means algorithm; ‘median’ refers to
the median cut algorithm; ‘max’ runs a
maximum coverage process (also aliased as
‘linear’); and ‘octree’ executes a fast
octree quantization algorithm. Defaults to
‘auto’.

	-f, –sample-fraction INTEGER RANGE

	Percentage of pixels to sample. Ranges from
0 to 100. Defaults to 5.

	-bv, –background-value INTEGER RANGE

	Threshold value to consider a pixel
background. Ranges from 0 to 100. Defaults
to 25.

	-bs, –background-saturation INTEGER RANGE

	Threshold saturation to consider a pixel
background. Ranges from 0 to 100. Defaults
to 20.

	-o, --output FILENAME

	File name to save the output. For images, if
the file extension is different than IMAGE,
a conversion is made. When not given,
standard output is used and images are
serialized using Base64; and to JSON
otherwise.

pipeline

Usage: histonets pipeline [OPTIONS] ACTIONS [IMAGE]

Allow chaining a series of actions to be applied to IMAGE.
Output will depend on the last action applied.

	ACTIONS is a JSON list of dictionaries containing each an ‘action’ key
specifying the action to apply, a ‘arguments’ key which is a
list of arguments, and a ‘options’ key with a dictionary to set the
options for the corresponding action.

Example:

histonets pipeline '[{"action": "contrast", "options": {"value": 50}}]'

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-o, --output FILENAME

	File name to save the output. For images, if the file
extension is different than IMAGE, a conversion is
made. When not given, standard output is used and
images are serialized using Base64; and to JSON
otherwise.

posterize

Usage: histonets posterize [OPTIONS] [COLORS] [IMAGE]

Posterize IMAGE by reducing its number of colors.

	COLORS, the number of colors of the output image, ranges from 0 to 64.

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-m, –method [kmeans|median|linear|max|octree]

	Method for computing the palette. ‘kmeans’
performs a clusterization of the existing
colors using the K-Means algorithm; ‘median’
refers to the median cut algorithm; ‘max’
runs a maximum coverage process (also
aliased as ‘linear’); and ‘octree’ executes
a fast octree quantization algorithm.
Defaults to ‘kmeans’.

	-p, --palette TEXT

	Local file, URL, or JSON string representing
a palette of colors encoded as lists of RGB
components or hexadecimal strings preceded
by the hash character (#). Ex: ‘[“#fa4345”,
“[123, 9, 108]”, [1, 2, 3]]’. If a palette
is passed in, colors are ignored.

	-o, --output FILENAME

	File name to save the output. For images, if
the file extension is different than IMAGE,
a conversion is made. When not given,
standard output is used and images are
serialized using Base64; and to JSON
otherwise.

ridges

Usage: histonets ridges [OPTIONS] [IMAGE]

Remove ridges from IMAGE, turning them into black.

Example:

histonets ridges --width 6 file://...

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-w, –width INTEGER RANGE Width in pixels of the ridges to detect.

	Ranges from 1 to 100. Defaults to 6.

	-th, –threshold INTEGER RANGE Threshold to binarize detected ridges.

	Ranges from 0 to 255. Defaults to 128.

	-d, –dilation INTEGER RANGE Dilation radius to thicken the mask of

	detected ridges. Ranges from 0 to 100.
Defaults to 1.

	-m, --mask

	Returns a black and white mask instead.

	-o, --output FILENAME

	File name to save the output. For images, if
the file extension is different than IMAGE,
a conversion is made. When not given,
standard output is used and images are
serialized using Base64; and to JSON
otherwise.

select

Usage: histonets select [OPTIONS] COLORS… [IMAGE]

Select COLORS in IMAGE, turning the rest into black.

Example:

histonets select "[225, 47, 90]" "#8ad70e" -t 80 file://...

	
	COLOR is a JSON string representing a color as a list of

	its RGB components or a hexadecimal string starting
with #.

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-t, –tolerance INTEGER RANGE Tolerance to match COLOR in IMAGE. Ranges

	from 0 to 100. Defaults to 0 (exact COLOR).

	-m, --mask

	Returns a black and white mask instead.

	-o, --output FILENAME

	File name to save the output. For images, if
the file extension is different than IMAGE, a
conversion is made. When not given, standard
output is used and images are serialized
using Base64; and to JSON otherwise.

skeletonize

Usage: histonets skeletonize [OPTIONS] [IMAGE]

Extract the morphological skeleton of IMAGE. If the image is not black
and white, it will be binarized using a binarization-method, which by
default it’s Li’s algorithm (see the binarize command).
The black and white image can also be thickened (dilated) by adjusting
the dilation parameter before extracting the skeleton image.

Example:

histonets skeletonize -m thin -d 0 -b otsu file://...

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-m, –method [3d|combined|medial|regular|thin]

	Method to extract the topological skeleton
of IMAGE. For reference, see http://scikit-i
mage.org/docs/dev/auto_examples/xx_applicati
ons/plot_thresholding.html. Defaults to a
‘combined’ approach of ‘3d’, ‘medial’, and
‘regular’.

	-d, –dilation INTEGER RANGE Dilation radius to thicken the binarized

	image prior to perform skeletonization.
Ranges from 0 to 100. Defaults to 6.

	-b, –binarization-method [sauvola|isodata|otsu|li]

	Thresholding method to obtain the binary
image. For reference, see http://scikit-imag
e.org/docs/dev/auto_examples/xx_applications
/plot_thresholding.html. Defaults to ‘li’.

	-i, --invert

	Invert the black and white colors of the
binary image prior to skeletonization.

	-o, --output FILENAME

	File name to save the output. For images, if
the file extension is different than IMAGE,
a conversion is made. When not given,
standard output is used and images are
serialized using Base64; and to JSON
otherwise.

smooth

Usage: histonets smooth [OPTIONS] VALUE [IMAGE]

Smooth IMAGE using bilateral filter.

	VALUE ranges from 0 to 100.

	IMAGE path to a local (file://) or remote (http://, https://) image file.
A Base64 string can also be piped as input image.

Options:

	-o, --output FILENAME

	File name to save the output. For images, if the file
extension is different than IMAGE, a conversion is
made. When not given, standard output is used and
images are serialized using Base64; and to JSON
otherwise.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install Histonets Computer Vision, run this command in your terminal:

$ pip install histonets

This is the preferred method to install Histonets Computer Vision, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Histonets Computer Vision can be downloaded from the Github repo [https://github.com/versae/histonets].

You can either clone the public repository:

$ git clone git://github.com/versae/histonets

Or download the tarball [https://github.com/versae/histonets/tarball/master]:

$ curl -OL https://github.com/versae/histonets/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Histonets Computer Vision in a project:

import histonets

histonets_cv

	histonets_cv package
	Submodules

	histonets_cv.api module

	histonets_cv.cli module

	histonets_cv.utils module

	Module contents

histonets_cv package

Submodules

histonets_cv.api module

	
histonets_cv.api.histogram_image(image, method='rgb')

	Calculate the color histogram of image (colors and their counts)

	
histonets_cv.api.histogram_palette(histogram, n_colors=8, method='auto', sample_fraction=5, background_value=25, background_saturation=20)

	Return a palette of at most n_colors unique colors extracted
after sampling histogram by sample_fraction.

histonets_cv.cli module

histonets_cv.utils module

	
class histonets_cv.utils.Choice(choices)

	Bases: click.types.Choice

Fix to click.Choice to be able to use integer choices

	
get_metavar(param)

	Returns the metavar default for this param if it provides one.

	
class histonets_cv.utils.Image(content=None, image=None)

	Bases: object

Proxy class to handle image input in the commands

	
format

	

	
classmethod get_images(values)

	Helper to process local, remote, and base64 piped images as input,
and return Image objects

	
image

	

	
class histonets_cv.utils.JSONNumpyEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	Bases: json.encoder.JSONEncoder

Enable serialization of basic Numpy arrays

	
default(obj)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	
class histonets_cv.utils.JSONStream(mode='r')

	Bases: histonets_cv.utils.Stream

JSON Stream Click option type to handle and decode JSON input and files
coming (compressed or not) from the Internet (http:// and https://) or
locally (file://, absolute, or relative paths).

	
convert(param=None, ctx=None, value=None)

	Converts the value. This is not invoked for values that are
None (the missing value).

	
class histonets_cv.utils.Stream(mode='r')

	Bases: click.types.ParamType

Click option type for http/https/file inputs

Based on https://github.com/moshe/click-stream

	
SUPPORTED_SCHEMES = ('http', 'https', 'file')

	

	
convert(param=None, ctx=None, value=None)

	Converts the value. This is not invoked for values that are
None (the missing value).

	
name = 'stream'

	

	
histonets_cv.utils.argfirst2D(arr, item)

	Return the index of the first element of the 2D array arr matching the
row item, or None if not found.

	
histonets_cv.utils.astar(grid, start, end)

	Run A* algorithm from start to end to find a path in grid. It uses
squared Euclidean distance as the distance method and the cost estimate
heuristic, and it uses the Von Neumann method to assess the 8-neighbors.
Returns a predecessors dictionary from which a path can be built.

	
histonets_cv.utils.convert(image)

	Convert a scikit-image binary image matrix to OpenCV

	
histonets_cv.utils.edges_to_graph(edges, fmt=None)

	Build a graph based on a list of edges and serialize it to format. Each
edge is a dictionary with at least keys defined for source_key and
target_key, expressing the source and the target of the edge, respectively.
The graph is built and serialized using NetworkX, therefore only a subset
of its formats are available: ‘edgelist’, ‘gexf’, ‘gml’, ‘graphml’,
‘nodelink’.
See http://networkx.readthedocs.io/en/stable/reference/readwrite.html
for more information.

	
histonets_cv.utils.get_color_histogram(*args, **kwargs)

	Calculate the color histogram of image (colors and their counts)

	
histonets_cv.utils.get_images(ctx, param, value)

	Callback to retrieve images by either their local path or URL

	
histonets_cv.utils.get_inner_paths(grid, regions)

	Create 1 pixel width paths connecting the loose ends surrounding the
regions to their center. Each region is defined by its top-left
and bottom-right corners points expressed in [x, y] coordinates. Grid must
be a black and white image

	
histonets_cv.utils.get_mask_polygons(polygons, height, width)

	Turn a list of polygons into a mask image of height by width.
Each polygon is expressed as a list of [x, y] points.

	
histonets_cv.utils.get_palette(*args, **kwargs)

	Calculate a palette of n_colors from RGB values from an array of colors.
Parameters background_value and background_saturation are ignored for
methods other than ‘auto’.
When method=’auto’, the first palette entry is always the background
color; the rest are determined from foreground pixels by running K-Means
clustering.
Returns the palette.

	
histonets_cv.utils.get_quantize_method(method)

	Transform a string (‘median’, ‘octree’, ‘linear’, ‘max’) to the
corresponding PIL quantize method constant

	
histonets_cv.utils.get_shortest_paths(grid, look_for)

	Traverse the grid, where 0’s represent holes and 1’s paths, and return
the paths to get from sources to targets, expressed in look_for in the form
of ((start1, end1), (start2, end2)), where each ‘start’ and ‘end’
are coordinates of the grid in the form [x, y] pairs. It uses the
Floyd-Warshall algorithm to find first all shortest paths and then returns
only those in look_for

	
histonets_cv.utils.get_shortest_paths_astar(grid, look_for)

	Traverse the grid, where 0’s represent holes and 1’s paths, and return
the paths to get from sources to targets, expressed in look_for in the form
of ((start1, end1), (start2, end2)), where each ‘start’ and ‘end’
are coordinates of the grid in the form [x, y] pairs. It uses the A*
algorithm and it only computes the paths in the look_for.

	
histonets_cv.utils.grid_to_adjacency_matrix(grid, neighborhood=8)

	Convert a boolean grid where 0’s express holes and 1’s connected pixel
into a sparse adjacency matrix representing the grid-graph.
Neighborhood for each pixel is calculated from its 4 or 8 more immediate
surrounding neighbors (defaults to 8).

	
histonets_cv.utils.image_as_array(f)

	Decorator to handle image as Image and as numpy array

	
histonets_cv.utils.io_handler(input=None, *args, **kwargs)

	Decorator to handle the ‘input’ argument and the ‘output’ option.
If input is other than ‘image’, it is considered to be a JSON file or
URL. Defaults to ‘image’.

	
histonets_cv.utils.kmeans(X, n_clusters, **kwargs)

	Classify vectors in X using K-Means algorithm with n_clusters.
Arguments in kwargs are passed to scikit-learn MiniBatchKMeans.
Returns a tuple of cluster centers and predicted labels.

	
histonets_cv.utils.local_decode(value)

	Decode bytes into a string by using the system preferred encoding.
Defaults to utf8 otherwise.

	
histonets_cv.utils.local_encode(value)

	Encode a string to bytes by using the system preferred encoding.
Defaults to utf8 otherwise.

	
histonets_cv.utils.match_template_mask(*args, **kwargs)

	Match template against image applying mask to template using method.
Method can be either of (None, ‘laplacian’, ‘sobel’, ‘scharr’, ‘prewitt’,
‘roberts’, ‘canny’).
Returns locations to look for max values.

	
histonets_cv.utils.output_as_mask(f)

	Decorator to add a return_mask option when image and mask are being
returned

	
histonets_cv.utils.pair_options_to_argument(argument, options, args=None, args_slice=None)

	Enforces pairing of options to an argument. Only commands with one
argument with nargs=-1 are supported. Not paired options do still work.

Options is a dictionary with the option name as key and the default value
as value. A slice to specify where in the arguments the argument and the
options are found can be used. By default it will ignore first and last.

Example:

@click.command()
@click.argument('arg', nargs=-1, required=True)
@click.option('-o', '--option', multiple=True)
@pair_options_to_argument('arg', {'option': 0})
def command(arg, option):
 pass

	
histonets_cv.utils.parse_colors(ctx, param, value)

	Callback to parse color values from a JSON list or hexadecimal string
to a RGB tuple.

	
histonets_cv.utils.parse_histogram(histogram)

	Parse a dictionary or JSON string representing a histogram of colors
by parsing the keys that codify colors into lists of RGB components
and the values to integer numbers

	
histonets_cv.utils.parse_jsons(ctx, param, value)

	Callback to load a list JSON strings as objects

	
histonets_cv.utils.parse_palette(ctx, param, value)

	Callback to turn a JSON representing a palette of colors in hexadecimal
or by its RGB components, into a list of all RGB components

	
histonets_cv.utils.parse_pipeline_json(ctx, param, value)

	Parse the actions JSON used mainly in the pipeline command

	
histonets_cv.utils.sample_histogram(histogram, sample_fraction=0.05)

	Sample a sample_fraction of colors from histogram

	
histonets_cv.utils.serialize_json(obj)

	Serializes object, containing Numpy basic arrays and types, to JSON

	
histonets_cv.utils.unique(array, axis=None)

	Like np.unique but preserving order of first apparition

Module contents

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/sul-cidr/histonets-cv/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Histonets Computer Vision could always use more documentation, whether as part of the
official Histonets Computer Vision docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/sul-cidr/histonets-cv/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up histonets-cv for local development.

	Fork the histonets-cv repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/histonets-cv.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv histonets
$ cd histonets/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 histonets tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5. Check
https://travis-ci.org/sul-cidr/histonets-cv/pull_requests
and make sure that the tests pass for the supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_histonets

History

0.1.0 (2016-11-17)

	First release on PyPI.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 histonets_cv	

 	
 	
 histonets_cv.api	

 	
 	
 histonets_cv.cli	

 	
 	
 histonets_cv.utils	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | S
 | U

A

 	
 	argfirst2D() (in module histonets_cv.utils)

 	
 	astar() (in module histonets_cv.utils)

C

 	
 	Choice (class in histonets_cv.utils)

 	convert() (histonets_cv.utils.JSONStream method)

 	(histonets_cv.utils.Stream method)

 	(in module histonets_cv.utils)

D

 	
 	default() (histonets_cv.utils.JSONNumpyEncoder method)

E

 	
 	edges_to_graph() (in module histonets_cv.utils)

F

 	
 	format (histonets_cv.utils.Image attribute)

G

 	
 	get_color_histogram() (in module histonets_cv.utils)

 	get_images() (histonets_cv.utils.Image class method)

 	(in module histonets_cv.utils)

 	get_inner_paths() (in module histonets_cv.utils)

 	get_mask_polygons() (in module histonets_cv.utils)

 	
 	get_metavar() (histonets_cv.utils.Choice method)

 	get_palette() (in module histonets_cv.utils)

 	get_quantize_method() (in module histonets_cv.utils)

 	get_shortest_paths() (in module histonets_cv.utils)

 	get_shortest_paths_astar() (in module histonets_cv.utils)

 	grid_to_adjacency_matrix() (in module histonets_cv.utils)

H

 	
 	histogram_image() (in module histonets_cv.api)

 	histogram_palette() (in module histonets_cv.api)

 	histonets_cv (module)

 	
 	histonets_cv.api (module)

 	histonets_cv.cli (module)

 	histonets_cv.utils (module)

I

 	
 	Image (class in histonets_cv.utils)

 	image (histonets_cv.utils.Image attribute)

 	
 	image_as_array() (in module histonets_cv.utils)

 	io_handler() (in module histonets_cv.utils)

J

 	
 	JSONNumpyEncoder (class in histonets_cv.utils)

 	
 	JSONStream (class in histonets_cv.utils)

K

 	
 	kmeans() (in module histonets_cv.utils)

L

 	
 	local_decode() (in module histonets_cv.utils)

 	
 	local_encode() (in module histonets_cv.utils)

M

 	
 	match_template_mask() (in module histonets_cv.utils)

N

 	
 	name (histonets_cv.utils.Stream attribute)

O

 	
 	output_as_mask() (in module histonets_cv.utils)

P

 	
 	pair_options_to_argument() (in module histonets_cv.utils)

 	parse_colors() (in module histonets_cv.utils)

 	parse_histogram() (in module histonets_cv.utils)

 	
 	parse_jsons() (in module histonets_cv.utils)

 	parse_palette() (in module histonets_cv.utils)

 	parse_pipeline_json() (in module histonets_cv.utils)

S

 	
 	sample_histogram() (in module histonets_cv.utils)

 	serialize_json() (in module histonets_cv.utils)

 	
 	Stream (class in histonets_cv.utils)

 	SUPPORTED_SCHEMES (histonets_cv.utils.Stream attribute)

U

 	
 	unique() (in module histonets_cv.utils)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Histonets Computer Vision’s documentation!

 		
 Histonets Computer Vision

 		
 Features

 		
 Commands

 		
 binarize

 		
 blobs

 		
 brightness

 		
 clean

 		
 contrast

 		
 denoise

 		
 dilate

 		
 download

 		
 enhance

 		
 equalize

 		
 graph

 		
 histogram

 		
 match

 		
 palette

 		
 pipeline

 		
 posterize

 		
 ridges

 		
 select

 		
 skeletonize

 		
 smooth

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 histonets_cv

 		
 histonets_cv package

 		
 Submodules

 		
 histonets_cv.api module

 		
 histonets_cv.cli module

 		
 histonets_cv.utils module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 History

 		
 0.1.0 (2016-11-17)

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

