
hippiepug Documentation
Release 0.5.0

Bogdan Kulynych

Oct 22, 2019

Contents

1 Getting started 3

2 Usage guide 5
2.1 Overview . 5
2.2 Using object stores . 5
2.3 Building the data structures . 6
2.4 Querying the data structures . 7
2.5 Producing and verifying proofs . 7
2.6 Serialization . 8

3 API 11
3.1 Chain . 11
3.2 Tree . 13
3.3 Store . 14
3.4 Basic containers . 15
3.5 Serialization . 16

4 Contributing 19
4.1 Dev setup . 19

5 License 21
5.1 Notice . 21

6 Acknowledgements 23

7 Indices and tables 25

Python Module Index 27

Index 29

i

ii

hippiepug Documentation, Release 0.5.0

Sublinear-lookup blockchains and efficient key-value Merkle trees

This library provides implementations of two cryptographic data structures:

• Blockchains with log(n) sublinear traversal, implemented as high-integrity deterministic skip-lists (skipchains).
In this kind of blockchain verifying that block b extends block a does not require to download and process all
blocks between a and b, but only a logarithmic amount of them.

• Verifiable dictionary, implemented as a key-value Merkle tree that guarantees unique resolution. A proof of
inclusion of a key-value pair in such a tree also proves that there does not exist another value for a given key
somewhere else in the tree.

Both are meant to be used with a content-addressable storage. Each data structure supports logarithmic queries, and
logarithmic proofs of inclusion:

Retrievals per lookup Inclusion proof size Append
Skipchain O(log(n)) O(log(n)) O(1)
Key-value Merkle tree O(log(n)) O(log(n)) Immutable

with n being the size of the dictionary, or the number of blocks in the case of a chain.

The theoretical details are in the paper.

Contents 1

https://arxiv.org/abs/1707.06279

hippiepug Documentation, Release 0.5.0

2 Contents

CHAPTER 1

Getting started

You can install the library from PyPI:

pip install hippiepug

Then, the easiest way to run the tests is:

python setup.py test

Be sure to check out the usage guide.

3

https://hippiepug.readthedocs.org/usage.html

hippiepug Documentation, Release 0.5.0

4 Chapter 1. Getting started

CHAPTER 2

Usage guide

2.1 Overview

Skipchain. hippiepug.chain implements a blockchain that only requires logarithmic-size proofs of inclusion.
Each block of such blockchain has not one but many hash-pointers to previous blocks.

Key-value Merkle tree. hippiepug.tree implements a verifiable dictionary as a key-value Merkle tree that
guarantees unique resolution. For each lookup key, one can produce a proof of inclusion of the key in the tree.
Moreover, unique resolution ensures that a proof of inclusion also proves that no other value with the same lookup key
exists somewhere else in the tree.

Object store. hippiepug.store implements a content-addressable key-value store in which keys are crypto-
graphic hashes of values. Using such storage with hippiepug data structures is convenient, because a creator of a
chain or a tree only needs to provide a querier with a hash of a chain head or a tree root. That is, there is no need
to explicitly produce and transmit inclusion proofs. Queriers will be able to verify inclusion on the fly, provided the
storage is available. See section “Producing and verifying proofs” for more.

2.2 Using object stores

hippiepug includes an instantation of an in-memory content-addressable storage that uses SHA256 for hashes:
hippiepug.store.Sha256DictStore. By default, the hashes are truncated to 8 bytes.

from hippiepug.store import Sha256DictStore

store = Sha256DictStore()
obj = b'dummy'
obj_hash = store.hash_object(obj) # 'b5a2c96250612366'

store.add(obj) == obj_hash # True

The store verifies hashes internally on each lookup.

5

hippiepug Documentation, Release 0.5.0

obj_hash in store # True
store.get(obj_hash) == obj # True

If you want to use external storage, you can provide a dict-like facade to it and pass as a backend parameter:

class CustomBackend(object):

def get(self, k):
return 'stub'

def __setitem__(self, k, v):
pass

store = Sha256DictStore(backend=CustomBackend())

To change the hash function, subclass hippiepug.store.BaseDictStore, and implement the hash_object
method.

You can also define a completely different store by implementing abstract base hippiepug.store.BaseStore.

2.3 Building the data structures

2.3.1 Chain

To append a new block to a chain, first obtain an existing chain, or initialize a new empty hippiepug.chain.
Chain object:

from hippiepug.chain import Chain

chain = Chain(store)
chain.head # None

Then, add chain blocks ony by one.

from hippiepug.chain import BlockBuilder

block_builder = BlockBuilder(chain)
block_builder.payload = b'This is the first block!'
block_builder.commit()

chain.head # '154bdee593d8c9b2'

You can continue adding blocks using the same builder instance.

block_builder.payload # None
block_builder.payload = b'This is the second block!'
block_builder.commit()

chain.head # '48e399de59796ab1'

The builder automatically fills all the skipchain special block attributes, like hashes of previous blocks.

6 Chapter 2. Usage guide

hippiepug Documentation, Release 0.5.0

2.3.2 Tree

Unlike chains, hippiepug trees can not be extended. To build a new tree, initialize the tree builder on a store, and
set the key-value pairs to be committed.

from hippiepug.tree import TreeBuilder

tree_builder = TreeBuilder(store)
tree_builder['foo'] = b'bar'
tree_builder['baz'] = b'wow'

Once all key-value pairs are added, commit them to store and obtain a view of the committed tree:

tree = tree_builder.commit()
tree.root # '150cc8da6d6cfa17'

2.4 Querying the data structures

2.4.1 Chain

To get a queryable view of a chain, you need to specify the storage where its blocks reside, and the head of the chain
(hash of the latest block). You can then retrieve blocks by their indices, or iterate.

chain = Chain(store, head='48e399de59796ab1')
first_block = chain[0]
first_block.payload # b'This is the first block!'

for block in chain:
print(block.index) # will print 1, and then 0

You can also get the latest view of a current chain while building a block in block_builder.chain.

2.4.2 Tree

Similarly, to get a view of a tree, you need to specify the storage, and the root of the tree (hash of the root node). You
can then retrieve stored values by corresponding lookup keys.

from hippepug.tree import Tree

tree = Tree(store, root='150cc8da6d6cfa17')
tree['foo'] # b'bar'
'baz' in tree # True

2.5 Producing and verifying proofs

When the creator of a data structure and the querier use the same storage (e.g., external database), no additional work
regarding inclusion proofs needs to be done, since queries produce inclusion proofs on the fly. This scenario, however,
is not always possible. In such case, hippiepug allows to produce and verify proofs explicitly.

2.4. Querying the data structures 7

hippiepug Documentation, Release 0.5.0

2.5.1 Chain

You can get the proof of block inclusion from a chain view:

block, proof = chain.get_block_by_index(0, return_proof=True)

A proof is a subset of blocks between head block and the requested block.

To verify the proof, the querier needs to locally reproduce a store, populating it with the blocks in the proof,
and then query the chain in the reproduced store normally. A convenience utility hippiepug.chain.
verify_chain_inclusion_proof() does all of this internally, and only returns the verification result:

from hippiepug.chain import verify_chain_inclusion_proof

verification_store = Sha256DictStore()
verify_chain_inclusion_proof(verification_store,

chain.head, block, proof) # True.

2.5.2 Tree

You can get the proof of value and lookup key inclusion from a tree view:

value, proof = tree.get_value_by_lookup_key('foo', return_proof=True)

For trees, a proof is the list of nodes on the path from root to the leaf containing the lookup key.

The mechanism of verifying an explicit proof is the same as with chains: locally reproduce a store populating it with
all the nodes in the proof, and then query normally the tree in the reproduced store. Similarly, a utility hippiepug.
tree.verify_tree_inclusion_proof() does this internally and returns the verification result:

from hippiepug.tree import verify_tree_inclusion_proof

verification_store = Sha256DictStore()
verify_tree_inclusion_proof(verification_store, tree.root,

lookup_key='foo', value=b'bar',
proof=proof) # True.

2.6 Serialization

hippiepug includes default binary serialization using msgpack library.

from hippiepug.pack import decode, encode

block = chain[0]
decode(encode(block)) == block # True

If you want to define custom serializers, be sure to check the documentation of hippiepug.pack. You need to be
careful with custom encoders to not jeopardize security of the data structure.

Once you have defined a custom encoder and decoder, you can set them to global defaults like this:

from hippiepug.pack import EncodingParams

my_params = EncodingParams()

(continues on next page)

8 Chapter 2. Usage guide

hippiepug Documentation, Release 0.5.0

(continued from previous page)

my_params.encoder = lambda obj: b'encoded!'
my_params.decoder = lambda encoded: b'decoded!'

EncodingParams.set_global_default(my_params)

Alternatively, you can also limit their usage to a specific context:

with my_params.as_default():
encode(b'stub') # b'encoded!'

2.6. Serialization 9

hippiepug Documentation, Release 0.5.0

10 Chapter 2. Usage guide

CHAPTER 3

API

3.1 Chain

Tools for building and interpreting skipchains.

class hippiepug.chain.BlockBuilder(chain)
Customizable builder of skipchain blocks.

You can override the pre-commit hook (BlockBuilder.pre_commit()) to modify the payload before the
block is committed to a chain. This is needed, say, if you want to sign the payload before commiting.

Parameters chain – Chain to which the block should belong.

Set the payload before committing:

>>> from .store import Sha256DictStore
>>> store = Sha256DictStore()
>>> chain = Chain(store)
>>> builder = BlockBuilder(chain)
>>> builder.payload = b'Hello, world!'
>>> block = builder.commit()
>>> block == chain.head_block
True

chain
The associated chain.

commit()
Commit the block to the associated chain.

Returns The block that was committed.

fingers
Anticipated skip-list fingers (back-pointers to previous blocks).

index
Anticipated index of the block being built.

11

hippiepug Documentation, Release 0.5.0

payload
Anticipated block payload.

pre_commit()
Pre-commit hook.

This can be overriden. For example, you can add a signature that includes index and fingers into your
payload before the block is committed.

static skipchain_indices(index)
Finger indices for a given index.

Parameters index (int>=0) – Block index

class hippiepug.chain.Chain(object_store, head=None, cache=None)
Skipchain (hash chain with skip-list pointers).

To add a new block to a chain, use BlockBuilder.

Warning: All read accesses are cached. The cache is assumed to be trusted, so blocks retrieved from cache
are not checked for integrity, unlike when they are retrieved from the object store.

See also:

• hippiepug.tree.Tree

class ChainIterator(current_index, chain)
Chain iterator.

Note: Iterates in the reverse order: latest block first.

__getitem__(index)
Get block by index.

get_block_by_index(index, return_proof=False)
Get block by index.

Optionally returns inclusion proof, that is a list of intermediate blocks, sufficient to verify the inclusion of
the retrieved block.

Parameters

• index (int>=0) – Block index

• return_proof (bool) – Whether to return inclusion proof

Returns Found block or None, or (block, proof) tuple if return_proof is True.

Raises If the index is out of bounds, raises IndexError.

head_block
The latest block in the chain.

hippiepug.chain.verify_chain_inclusion_proof(store, head, block, proof)
Verify inclusion proof for a block on a chain.

Parameters

• store – Object store, may be empty

• head – Chain head

12 Chapter 3. API

hippiepug Documentation, Release 0.5.0

• block – Block

• proof (list of decoded blocks) – Inclusion proof

Returns bool

3.2 Tree

Tools for building and interpreting key-value Merkle trees.

class hippiepug.tree.Tree(object_store, root, cache=None)
View of a Merkle tree.

Use TreeBuilder to build a Merkle tree first.

Parameters

• object_store – Object store

• root – The hash of the root node

• cache (dict) – Cache

Warning: All read accesses are cached. The cache is assumed to be trusted, so blocks retrieved from cache
are not checked for integrity, unlike when they are retrieved from the object store.

See also:

• hippiepug.chain.Chain

__contains__(lookup_key)
Check if lookup key is in the tree.

__getitem__(lookup_key)
Retrieve value by its lookup key.

Returns Corresponding value

Raises KeyError when the lookup key was not found.

get_value_by_lookup_key(lookup_key, return_proof=False)
Retrieve value by its lookup key.

Parameters

• lookup_key – Lookup key

• return_proof – Whether to return inclusion proof

Returns Only the value when return_proof is False, and a (value, proof) tuple when
return_proof is True. A value is None when the lookup key was not found.

root_node
The root node.

class hippiepug.tree.TreeBuilder(object_store)
Builder for a key-value Merkle tree.

Parameters object_store – Object store

You can add items using a dict-like interface:

3.2. Tree 13

hippiepug Documentation, Release 0.5.0

>>> from .store import Sha256DictStore
>>> store = Sha256DictStore()
>>> builder = TreeBuilder(store)
>>> builder['foo'] = b'bar'
>>> builder['baz'] = b'zez'
>>> tree = builder.commit()
>>> 'foo' in tree
True

__setitem__(lookup_key, value)
Add item for committing to the tree.

commit()
Commit items to the tree.

hippiepug.tree.verify_tree_inclusion_proof(store, root, lookup_key, value, proof)
Verify inclusion proof for a tree.

Parameters

• store – Object store, may be empty

• head – Tree root

• lookup_key – Lookup key

• value – Value associated with the lookup key

• proof (tuple containing list of decoded path nodes) – Inclusion
proof

Returns bool

3.3 Store

class hippiepug.store.BaseDictStore(backend=None)
Store with dict-like backend.

Parameters backend (dict-like) – Backend

__contains__(obj_hash)
Check if obj with a given hash is in the store.

add(serialized_obj)
Add an object to the store.

If an object with this hash already exists, silently does nothing.

get(obj_hash, check_integrity=True)
Get an object with a given hash from the store.

If the object does not exist, returns None.

Parameters

• obj_hash – ASCII hash of the object

• check_integrity – Whether to check the hash of the retrieved object against the
given hash.

class hippiepug.store.BaseStore
Abstract base class for a content-addresable store.

14 Chapter 3. API

hippiepug Documentation, Release 0.5.0

__contains__(obj_hash)
Check whether the store contains an object with a give hash.

Parameters obj_hash – ASCII hash

add(serialized_obj)
Put the object in the store.

Parameters serialized_obj – Object, serialized to bytes

Returns Hash of the object.

get(obj_hash, check_integrity=True)
Return the object by its ASCII hash value.

Parameters

• obj_hash – ASCII hash

• check_integrity – Whether to check the hash upon retrieval

classmethod hash_object(serialized_obj)
Return the ASCII hash of the object.

Parameters obj – Object, serialized to bytes

exception hippiepug.store.IntegrityValidationError

class hippiepug.store.Sha256DictStore(backend=None)
Dict-based store using truncated SHA256 hex-encoded hashes.

>>> store = Sha256DictStore()
>>> obj = b'dummy'
>>> obj_hash = store.hash_object(obj)
>>> store.add(obj) == obj_hash
True
>>> obj_hash in store
True
>>> b'nonexistent' not in store
True
>>> store.get(obj_hash) == obj
True

hash_object(serialized_obj)
Return a SHA256 hex-encoded hash of a serialized object.

3.4 Basic containers

Basic building blocks.

class hippiepug.struct.ChainBlock(payload, index=0, fingers=NOTHING)
Skipchain block.

Parameters

• payload – Block payload

• index – Block index

• fingers – Back-pointers to previous blocks

3.4. Basic containers 15

hippiepug Documentation, Release 0.5.0

class hippiepug.struct.TreeLeaf(lookup_key=None, payload_hash=None)
Merkle tree leaf.

Parameters

• lookup_key – Lookup key

• payload_hash – Hash of the payload

class hippiepug.struct.TreeNode(pivot_prefix, left_hash=None, right_hash=None)
Merkle tree intermediate node.

Parameters

• pivot_prefix – Pivot key for the subtree

• left_hash – Hash of the left child

• right_hash – Hash of the right child

3.5 Serialization

Serializers for chain blocks and tree nodes.

Warning: You need to take extra care when defining custom serializations. Be sure that your serialization includes
all the fields in the original structure. E.g., for chain blocks:

• self.index

• self.fingers

• Your payload

Unless this is done, the integrity of the data structures is screwed, since it’s the serialized versions of nodes and
blocks that are hashed.

class hippiepug.pack.EncodingParams(encoder=NOTHING, decoder=NOTHING)
Thread-local container for default encoder and decoder funcs.

Parameters

• encoder – Default encoder

• decoder – Default decoder

This is how you can override the defaults using this class:

>>> my_params = EncodingParams()
>>> my_params.encoder = lambda obj: b'encoded!'
>>> my_params.decoder = lambda encoded: b'decoded!'
>>> EncodingParams.set_global_default(my_params)
>>> encode(b'dummy') == b'encoded!'
True
>>> decode(b'encoded!') == b'decoded!'
True
>>> EncodingParams.reset_defaults()

hippiepug.pack.decode(serialized, decoder=None)
Deserialize object.

Parameters

16 Chapter 3. API

hippiepug Documentation, Release 0.5.0

• serialized – Encoded structure

• encoder – Custom de-serializer

hippiepug.pack.encode(obj, encoder=None)
Serialize object.

Parameters

• obj – Chain block, tree node, or bytes

• encoder – Custom serializer

hippiepug.pack.msgpack_decoder(serialized_obj)
Deserialize structure from msgpack-encoded tuple.

Default decoder.

hippiepug.pack.msgpack_encoder(obj)
Represent structure as tuple and serialize using msgpack.

Default encoder.

3.5. Serialization 17

hippiepug Documentation, Release 0.5.0

18 Chapter 3. API

CHAPTER 4

Contributing

4.1 Dev setup

To install the development dependencies, clone the package from Github, and run within the folder:

pip install -e ".[dev]"

You can then run the tests from the root folder:

pytest

You can also run the tests against multiple pythons:

tox

Note that this invocation is expected to fail in the coverage upload stage (it needs access token to upload coverage
report)

To build the documentation, run make html from the docs folder:

cd docs
make html

Then you can run a static HTML server from docs/build/html.

cd build/html
python -m http.server

19

hippiepug Documentation, Release 0.5.0

20 Chapter 4. Contributing

CHAPTER 5

License

The MIT License (MIT) Copyright (c) 2018 Bogdan Kulynych (EPFL SPRING Lab)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

5.1 Notice

Some of the code was adapted from G.Danezis’s hippiehug library: https://github.com/gdanezis/rousseau-chain

The license of hippiehug is reproduced below:

Copyright (c) 2015, George Danezis for Escape Goat Productions All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

21

https://github.com/gdanezis/rousseau-chain

hippiepug Documentation, Release 0.5.0

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

22 Chapter 5. License

CHAPTER 6

Acknowledgements

• The library is a reimplementation of G. Danezis’s hippiehug (hence the name).

• This work is funded by the NEXTLEAP project within the European Union’s Horizon 2020 Framework Pro-
gramme for Research and Innovation (H2020-ICT-2015, ICT-10-2015) under grant agreement 688722.

• The hippie pug logo kindly donated by M. Naiem.

23

https://github.com/gdanezis/rousseau-chain
https://nextleap.eu
http://mariam.space

hippiepug Documentation, Release 0.5.0

24 Chapter 6. Acknowledgements

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

25

hippiepug Documentation, Release 0.5.0

26 Chapter 7. Indices and tables

Python Module Index

h
hippiepug.chain, 11
hippiepug.pack, 16
hippiepug.store, 14
hippiepug.struct, 15
hippiepug.tree, 13

27

hippiepug Documentation, Release 0.5.0

28 Python Module Index

Index

Symbols
__contains__() (hippiepug.store.BaseDictStore

method), 14
__contains__() (hippiepug.store.BaseStore

method), 14
__contains__() (hippiepug.tree.Tree method), 13
__getitem__() (hippiepug.chain.Chain method), 12
__getitem__() (hippiepug.tree.Tree method), 13
__setitem__() (hippiepug.tree.TreeBuilder method),

14

A
add() (hippiepug.store.BaseDictStore method), 14
add() (hippiepug.store.BaseStore method), 15

B
BaseDictStore (class in hippiepug.store), 14
BaseStore (class in hippiepug.store), 14
BlockBuilder (class in hippiepug.chain), 11

C
Chain (class in hippiepug.chain), 12
chain (hippiepug.chain.BlockBuilder attribute), 11
Chain.ChainIterator (class in hippiepug.chain),

12
ChainBlock (class in hippiepug.struct), 15
commit() (hippiepug.chain.BlockBuilder method), 11
commit() (hippiepug.tree.TreeBuilder method), 14

D
decode() (in module hippiepug.pack), 16

E
encode() (in module hippiepug.pack), 17
EncodingParams (class in hippiepug.pack), 16

F
fingers (hippiepug.chain.BlockBuilder attribute), 11

G
get() (hippiepug.store.BaseDictStore method), 14
get() (hippiepug.store.BaseStore method), 15
get_block_by_index() (hippiepug.chain.Chain

method), 12
get_value_by_lookup_key() (hip-

piepug.tree.Tree method), 13

H
hash_object() (hippiepug.store.BaseStore class

method), 15
hash_object() (hippiepug.store.Sha256DictStore

method), 15
head_block (hippiepug.chain.Chain attribute), 12
hippiepug.chain (module), 11
hippiepug.pack (module), 16
hippiepug.store (module), 14
hippiepug.struct (module), 15
hippiepug.tree (module), 13

I
index (hippiepug.chain.BlockBuilder attribute), 11
IntegrityValidationError, 15

M
msgpack_decoder() (in module hippiepug.pack), 17
msgpack_encoder() (in module hippiepug.pack), 17

P
payload (hippiepug.chain.BlockBuilder attribute), 11
pre_commit() (hippiepug.chain.BlockBuilder

method), 12

R
root_node (hippiepug.tree.Tree attribute), 13

S
Sha256DictStore (class in hippiepug.store), 15

29

hippiepug Documentation, Release 0.5.0

skipchain_indices() (hip-
piepug.chain.BlockBuilder static method),
12

T
Tree (class in hippiepug.tree), 13
TreeBuilder (class in hippiepug.tree), 13
TreeLeaf (class in hippiepug.struct), 15
TreeNode (class in hippiepug.struct), 16

V
verify_chain_inclusion_proof() (in module

hippiepug.chain), 12
verify_tree_inclusion_proof() (in module

hippiepug.tree), 14

30 Index

	Getting started
	Usage guide
	Overview
	Using object stores
	Building the data structures
	Querying the data structures
	Producing and verifying proofs
	Serialization

	API
	Chain
	Tree
	Store
	Basic containers
	Serialization

	Contributing
	Dev setup

	License
	Notice

	Acknowledgements
	Indices and tables
	Python Module Index
	Index

