

 Navigation

 	
 index

 	
 next |

 	Lily documentation

Table of contents

	Installation
	Prerequisites

	Docker environment

	Email integration

	Reference
	Manual installation

	Migrating in Lily

	Running and debugging Celery tasks

	Community
	Contributing

 Copyright 2016, Devhouse Spindle.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Lily documentation

Installation

Getting Lily up and running is straightforward using the included docker-compose setup.

Prerequisites

	you have docker [https://www.docker.com/] and docker-compose [https://docs.docker.com/compose/] installed

	you have git installed

	you have nodejs, npm and gulp installed

Docker environment

	Checkout the Lily project and install gulp dependencies.

cd ~/projects/
git clone git@github.com:HelloLily/hellolily.git
cd hellolily
npm install
gulp build

	Build the docker image. This takes a while the first time.

docker-compose build

Note

This command needs to run every time the Dockerfile, requirements or patches are adjusted. Good practice would be to run it every time the git repo is updated. If nothing changed, the command would complete almost instantly.

	Do a first time migration of the models.

docker-compose run web python manage.py migrate

	Create a search index for ElasticSearch.

docker-compose run web python manage.py index

	Populate the database with some testdata.

docker-compose run web python manage.py testdata

	Run the Django development server along with dependent containers.

docker-compose run --service-ports web

Open http://localhost:8003 in your browser to see Lily. You can login using user
superuser1@lily.com and admin as password. Congratulations, you just completed
the basic Lily installation!

Email integration

Lily uses Google email accounts(Gmail) and it’s Gmail API to send email messages
with. Customer emails are stored locally and indexed using ElasticSearch. This allows
Lily users to search and find their customer’s data very fast,
using extended search queries.

In order to enable email in Lily, you first need to enable the Gmail API and create
an OAuth 2.0 client ID for a web application. This sounds harder than it is; just proceed as following:

	Login to the Google APIs website [https://console.developers.google.com]

	From the Overview screen, fill in Gmail API in the Search bar and select it from the search results

	Click on the Enable button

	Now you need to create Credentials. Click on the Go to Credentials button

	Check if the following options are selected in the credentials form:
* Which API are you using? Gmail API
* Where will you be calling the API from? Web server
* What data will you be accessing? User data

	Click on the What credentials do i need? button

	Give the credentials a name, e.g. Lily

	In Authorized redirect URIs fill in your development url, e.g. http://localhost:8003/messaging/email/callback/

	The restriction options can be kept empty. Just click on the Create client ID button

	You can skip step 3. Just click on the Done button at the bottom of the form

	The current screen should be the Credentials overview; click on Lily

The credentials are needed for our Lily GMail setup. Let’s add them to the appropriate file.
Open the environment settings file with an editor:

vim /path/to/lily/.env

Add the following settings and fill Client ID and Client secret as GA_CLIENT_ID and GA_CLIENT_SECRET:

GA_CLIENT_ID=your_client_id
GA_CLIENT_SECRET=your_client_secret
GMAIL_CALLBACK_URL=http://localhost:8003/messaging/email/callback/

That’s it! Lily is now able to manage Gmail accounts. To test if Gmail integration works, go back
to your running Lily instance and visit http://localhost:8003/#/preferences/emailaccounts

	Select add an email account

You should now be redirected to the Google OAuth login screen. Allow Lily to access your Gmail account.
After that, fill in From name and Label and press the Save button. Your email account will now
get synced to Lily.

 Copyright 2016, Devhouse Spindle.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Lily documentation

Reference

Available reference documentation:

	Manual installation
	Prerequisites

	Django environment

	Migrating in Lily
	Caveats

	Running and debugging Celery tasks
	Running

	Debugging

 Copyright 2016, Devhouse Spindle.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Lily documentation

 	Reference

Manual installation

Installing Lily with docker is recommended for most installations, but
there may be cases where you find Docker not suitable. This installation describes how to install
Lily without Docker.

Prerequisites

	you have python 2.7 and virtualenv installed

	you have git installed

	you have nodejs, npm and gulp installed

	you have postgresql up and running

	you have elasticsearch up and running

	you have rabbitmq up and running

Django environment

	Make a virtualenv, checkout the Lily project and install gulp dependencies.

mkdir -p ~/projects/hellolily-env
cd ~/projects/hellolily-env
virtualenv2 .
. ./bin/activate
git clone git@github.com:HelloLily/hellolily.git
cd hellolily
npm install
gulp build

	Install all related Python packages.

pip install -r requirements.txt
pip install -r requirements-dev.txt

	Setup a postgresql database for Lily.

sudo su postgres
cd ~
createdb hellolily
createuser hellolily -s
echo "ALTER USER hellolily WITH ENCRYPTED PASSWORD 'c2cg63&(e';" | psql
echo "create extension unaccent;" | psql
exit

	Override settings using your own environment settings.

vim ~/projects/hellolily-env/hellolily/.env

DEBUG=1
MULTI_TENANT=1

DEFAULT_FROM_EMAIL=info@mydomain.org
SERVER_EMAIL=info@mydomain.org
EMAIL_USE_TLS=1
EMAIL_HOST=smtp.gmail.com
EMAIL_HOST_USER=info@mydomain.org
EMAIL_HOST_PASSWORD=
EMAIL_PORT=587

ADMINS=(('Yourname', 'your@email.com'),)

DATAPROVIDER_API_KEY=
Make SECRET_KEY unique for your own site!
SECRET_KEY=abcdefghijklmnopqrstuvwxyz0123456789abcdefghijklmn

DATABASE_URL=postgres://hellolily:c2cg63&(e@localhost/hellolily

AWS_ACCESS_KEY_ID=aws_key
AWS_SECRET_ACCESS_KEY=aws_secret_access_key
AWS_STORAGE_BUCKET_NAME=aws_bucket_name

REDISTOGO_URL=redis://localhost:6379/0
CELERY_SEND_TASK_ERROR_EMAILS=0

	Do a first time migration of the models.

./manage.py migrate

	Create a search index for ElasticSearch.

./manage.py index

	Populate the database with some testdata.

./manage.py testdata

	Run the Django development server.

./manage.py runserver 0:8000

Open http://localhost:8000 in your browser to see Lily. You can login using user
superuser1@lily.com and admin as password. Congratulations, you just completed
the basic Lily installation!

 Copyright 2016, Devhouse Spindle.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Lily documentation

 	Reference

Migrating in Lily

We use the built-in Django migrations for both our schema & data migrations.
For more detailed information you should take a look at the Django docs [https://docs.djangoproject.com/en/1.9/topics/migrations/].

Caveats

	Data migrations have two things you need to know about:

	
	The modified date

	Seperating schema and data changes

Modified date

It is important to disable the updating of modified fields on models during data migrations.
The modified date should always represent the date a user last modified it.

Unfortunately as of writing, there is no way to set this behaviour automatically, so you’ll have to do it yourself using update_modified = False.

Practical example:

-*- coding: utf-8 -*-
from __future__ import unicode_literals

from django.db import models, migrations

def data_migration_forward(apps, schema_editor):
 Account = apps.get_model('accounts', 'Account')

 for account in Account.objects.all():
 account.update_modified = False
 # Do some mutations on the account here
 account.save() # Because update_modified is False, this will not update the modified date of the account.

class Migration(migrations.Migration):
 dependencies = []

 operations = [
 migrations.RunPython(data_migration_forward),
]

Seperation of schema/data changes

You should never combine a schema and data migration in a single migration file.
This is because of consistency and error prevention.
In some cases it is possible to combine the two, but you still shouldn’t do it.

Thus, on PostgreSQL, for example, you should avoid combining schema changes and RunPython operations
in the same migration or you may hit errors like OperationalError: cannot ALTER TABLE "mytable"
because it has pending trigger events.

As can be read on the Django docs [https://docs.djangoproject.com/en/1.9/ref/migration-operations/#runpython] somewhat near the end of the block.

 Copyright 2016, Devhouse Spindle.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Lily documentation

 	Reference

Running and debugging Celery tasks

Celery is a distributed task queue in Python that’s being used to perform several
queued tasks from within Lily. These are mostly tasking like syncing email
and updating ElasticSearch indexes.

Running

celery worker -B --app=lily.celery --loglevel=info -Q celery,queue1,queue2,queue3 -n beat.%h -c 1

Debugging

Code that’s being executed by a Celery worker can be PDB’ed with RDB. Add the following
to your Celery code:

from celery.contrib import rdb
rdb.set_trace()

You should see a notification in the Celery console when a worker stumbles upon the rbd trace. At that point you can use
telnet to login to the remote PDB session like:

telnet localhost 6902
help

 Copyright 2016, Devhouse Spindle.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Lily documentation

Community

Lily is being developed at Devhouse Spindle. Several developers are committing to
the project:

	Allard Stijnman https://github.com/snoepkast

	Arjen Vellinga https://github.com/arjenfvellinga

	Bob Voorneveld https://github.com/bobvoorneveld

	Cornelis Poppema https://github.com/cpoppema

	Ednan Pasagic https://github.com/epasagic

	Ferdy Galema https://github.com/ferdynice

	Jeroen van Veen https://github.com/jvanveen

	Luuk Hartsema https://github.com/luukhartsema

	Marco Vellinga https://github.com/m-vellinga

	Redmer Loen https://github.com/spindleredmer

	Stefan Strijker https://github.com/00stefan00

	Tom Offringa https://github.com/TomOffringa

Contributing

As an open source project, anyone is welcome to contribute to Lily,
which can include taking part in discussions, filing bug reports, contributing
code or documentation or proposing improvements. Please read the following
sections carefully if you would like to contribute.

	Code of Conduct

	Lily Angular style guide

 Copyright 2016, Devhouse Spindle.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Lily documentation

 	Community

 This project adheres to the Open Code of Conduct [http://todogroup.org/blog/followup-open-code-of-conduct/].
By participating, you are expected to honor this code.

Code of Conduct

This code of conduct outlines our expectations for participants within the Lily community, as well as steps to reporting unacceptable behavior.
We are committed to providing a welcoming and inspiring community for all and expect our code of conduct to be honored. Anyone who violates this code of
conduct may be banned from the community.

Our open source community strives to:

	Be friendly and patient.

	Be welcoming: We strive to be a community that welcomes and supports people of all backgrounds and identities. This includes, but is not limited to members of any race, ethnicity, culture, national origin, colour, immigration status, social and economic class, educational level, sex, sexual orientation, gender identity and expression, age, size, family status, political belief, religion, and mental and physical ability.

	Be considerate: Your work will be used by other people, and you in turn will depend on the work of others. Any decision you take will affect users and colleagues, and you should take those consequences into account when making decisions. Remember that we’re a world-wide community, so you might not be communicating in someone else’s primary language.

	Be respectful: Not all of us will agree all the time, but disagreement is no excuse for poor behavior and poor manners. We might all experience some frustration now and then, but we cannot allow that frustration to turn into a personal attack. It’s important to remember that a community where people feel uncomfortable or threatened is not a productive one.

	Be careful in the words that we choose: we are a community of professionals, and we conduct ourselves professionally. Be kind to others. Do not insult or put down other participants. Harassment and other exclusionary behavior aren’t acceptable.

	Try to understand why we disagree: Disagreements, both social and technical, happen all the time. It is important that we resolve disagreements and differing views constructively. Remember that we’re different. The strength of our community comes from its diversity, people from a wide range of backgrounds. Different people have different perspectives on issues. Being unable to understand why someone holds a viewpoint doesn’t mean that they’re wrong. Don’t forget that it is human to err and blaming each other doesn’t get us anywhere. Instead, focus on helping to resolve issues and learning from mistakes.

Definitions

Harassment includes, but is not limited to:

	Offensive comments related to gender, gender identity and expression, sexual orientation, disability, mental illness, neuro(a)typicality, physical appearance, body size, race, age, regional discrimination, political or religious affiliation

	Unwelcome comments regarding a person’s lifestyle choices and practices, including those related to food, health, parenting, drugs, and employment

	Deliberate misgendering. This includes deadnaming or persistently using a pronoun that does not correctly reflect a person’s gender identity. You must address people by the name they give you when not addressing them by their username or handle

	Physical contact and simulated physical contact (eg, textual descriptions like “hug” or “backrub”) without consent or after a request to stop

	Threats of violence, both physical and psychological

	Incitement of violence towards any individual, including encouraging a person to commit suicide or to engage in self-harm

	Deliberate intimidation

	Stalking or following

	Harassing photography or recording, including logging online activity for harassment purposes

	Sustained disruption of discussion

	Unwelcome sexual attention, including gratuitous or off-topic sexual images or behaviour

	Pattern of inappropriate social contact, such as requesting/assuming inappropriate levels of intimacy with others

	Continued one-on-one communication after requests to cease

	Deliberate “outing” of any aspect of a person’s identity without their consent except as necessary to protect others from intentional abuse

	Publication of non-harassing private communication

Our open source community prioritizes marginalized people’s safety over privileged people’s comfort. We will not act on complaints regarding:

	‘Reverse’ -isms, including ‘reverse racism,’ ‘reverse sexism,’ and ‘cisphobia’

	Reasonable communication of boundaries, such as “leave me alone,” “go away,” or “I’m not discussing this with you”

	Refusal to explain or debate social justice concepts

	Communicating in a ‘tone’ you don’t find congenial

	Criticizing racist, sexist, cissexist, or otherwise oppressive behavior or assumptions

Diversity Statement

We encourage everyone to participate and are committed to building a community for all. Although we will fail at times, we seek to treat everyone
both as fairly and equally as possible. Whenever a participant has made a mistake, we expect them to take responsibility for it.
If someone has been harmed or offended, it is our responsibility to listen carefully and respectfully, and do our best to right the wrong.

Although this list cannot be exhaustive, we explicitly honor diversity in age, gender, gender identity or expression, culture, ethnicity,
language, national origin, political beliefs, profession, race, religion, sexual orientation, socioeconomic status, and technical ability.
We will not tolerate discrimination based on any of the protected characteristics above, including participants with disabilities.

Reporting Issues

If you experience or witness unacceptable behavior—or have any other concerns—please report it by contacting us via hello@wearespindle.com.
All reports will be handled with discretion. In your report please include:

	Your contact information.

	Names (real, nicknames, or pseudonyms) of any individuals involved. If there are additional witnesses, please

include them as well. Your account of what occurred, and if you believe the incident is ongoing. If there is a publicly
available record (e.g. a mailing list archive or a public IRC logger), please include a link.
- Any additional information that may be helpful.

After filing a report, a representative will contact you personally, review the incident, follow up with any additional
questions, and make a decision as to how to respond. If the person who is harassing you is part of the response team,
they will recuse themselves from handling your incident. If the complaint originates from a member of the response team,
it will be handled by a different member of the response team. We will respect confidentiality requests for the purpose
of protecting victims of abuse.

Attribution & Acknowledgements

We all stand on the shoulders of giants across many open source communities. We’d like to thank the communities and
projects that established code of conducts and diversity statements as our inspiration:

	Django [https://www.djangoproject.com/conduct/reporting/]

	Python [https://www.python.org/community/diversity/]

	Ubuntu [http://www.ubuntu.com/about/about-ubuntu/conduct]

	Contributor Covenant [http://contributor-covenant.org/]

	Geek Feminism [http://geekfeminism.org/about/code-of-conduct/]

	Citizen Code of Conduct [http://citizencodeofconduct.org/]

 Copyright 2016, Devhouse Spindle.

 Navigation

 	
 index

 	
 previous |

 	Lily documentation

 	Community

Lily Angular style guide

The Angular part of Lily was built with the John Papa Angular style guide [https://github.com/johnpapa/angular-styleguide] serving as the basis and the Airbnb JavaScript style guide [https://github.com/airbnb/javascript] for the JavaScript part. This Lily Angular (& JavaScript) style guide will give you an overview of how we use various Angular components and the coding style in Lily. Not all examples might be representative of the actual code and some code might be missing to highlight the important bits. Any improvements are welcome of course.

Note: This isn’t meant as a full Angular tutorial/guide, so I assume you have at least know the basics of Angular.

Basics

Let’s start with the basics; the coding style. You can check our ESLint rules in the .eslintrc file and the scss-lint rules in the .scss-lint.yml file. Both located in the root of the Lily app. Here’s a small excerpt of some general coding style rules.

Naming conventions

Our naming conventions differ slightly from the one used in the John Papa guide.

	Element
	Style
	Example

	Controllers
	Functionality + ‘Controller’
	ListWidgetController

	Directives
	camelCase
	listWidget

	Filters
	camelCase
	customSanitize

	Services
	PascalCase
	HLResource

	Factories
	PascalCase
	Account

Comments

Comments start with a capital letter and end with a period. Inline comments (comments on the same line as the code) are written in lowercase and without period.

Directives

Directives are used a lot in Lily. Most things we use more than a few times will get converted to a directives. Even a simple thing like displaying a date is a directive, because we want to be consistent throughout the whole application. Let’s take a random directive and break it down.

angular.module('app.directives').directive('editableSelect', editableSelect);

function editableSelect() {
 return {
 restrict: 'E',
 scope: {
 viewModel: '=',
 field: '@',
 type: '@',
 choiceField: '@',
 selectOptions: '=?', // contains any custom settings for the select
 },
 templateUrl: 'base/directives/editable_select.html',
 controller: EditableSelectController,
 controllerAs: 'es',
 transclude: true,
 bindToController: true,
 };
}

EditableSelectController.$inject = ['$scope', '$filter', 'HLResource'];
function EditableSelectController($scope, $filter, HLResource) {
 var es = this;

 es.getChoices = getChoices;
 es.updateViewModel = updateViewModel;

 activate();

 ...

 <other code>

Let’s start at the top.

angular.module('app.directives').directive('editableSelect', editableSelect);

We set up the module and say what name the directive has and what function we call to invoke the directive. The directive can then be used like this (as seen on the deals/controllers/detail.html page)

<editable-select field="next_step" view-model="vm" type="Deal">
 {{ vm.deal.next_step.name }}
</editable-select>

Once the directive is called it invokes the function editableSelect(). Let’s take the contents of that function and break it down (see comments).

return {
 // This directive can only be used as an HTML element (so by invoking <editable-select></editable-select>).
 restrict: 'E',
 // This directive has an isolated scope and accepts the following parameters:
 scope: {
 // Two way binded param. Changes to this param get reflected in the parent too.
 viewModel: '=',
 // One way binded param, so just pass the value so it can be used in this directive. Changes aren't reflected in the parent.
 field: '@',
 type: '@',
 choiceField: '@',
 // Two way binded optional param.
 selectOptions: '=?',
 },
 templateUrl: 'base/directives/editable_select.html', // The template to be used.
 controller: EditableSelectController, // The controller which contains any logic for this directive.
 controllerAs: 'es', // What variable is used to call the current directive. Is usually 'vm', but sometimes you want a clearer name.
 transclude: true, // Any content put between the directive's HTML tags will be put in the right spot in the template (covered later).
 bindToController: true,
};

The directive then knows what controller to use and calls that controller (EditableSelectController in this case).

// Inject any dependencies for this controller (such as utility functions).
EditableSelectController.$inject = ['$scope', '$filter', 'HLResource'];
function EditableSelectController($scope, $filter, HLResource) {
 // Set the controller's scope to an easier to use variable. Using `this` could given conflicts.
 var es = this;

 // Bind functions to the scope.
 es.getChoices = getChoices;
 es.updateViewModel = updateViewModel;

 // Not required, but used as an 'init' function for the controller.
 activate();

 ...

 <other code>

The rest of this directive’s code isn’t relevant and won’t be covered.

There’s one more thing we need to create a directive: the template. The template for the above controller isn’t very complicated and contains everything a normal template contains.

<span editable-select="es.selectModel" onshow="es.getChoices()" e-ng-options="item.id as item[es.optionDisplay] for item in es.choices"
 onbeforesave="es.updateViewModel($data)" buttons="no">
 <ng-transclude></ng-transclude>

This template might be confusing, but you can pretty much ignore all the attributes in the span tag. They are there to call a third party library (Angular x-editable), but you can see how the controller’s variables and function get used to set up the template.
The ng-transclude you see is what I referred to in the intro to this directive. The {{ vm.deal.next_step.name }} is what will be put in the place of the ng-transclude. This transclusion allows you to have generic templates (like we do with the widget directive).

Note: Yes, another editableSelect directive gets called here, but this is the editableSelect provided by the Angular x-editable library.

Services

We use services to provide generic code to the app. Below is the HLResource service, which provides some useful functions related to resources.

// Make the service available and provide the name of the function which contains the logic.
angular.module('app.services').service('HLResource', HLResource);

// Inject any dependencies.
HLResource.$inject = ['$injector'];
function HLResource($injector) {
 this.patch = function(model, args) {
 // Function code.
 };

 ...

 <other code>
}

This function provides a generic way to PATCH a resource. It also provides generic error and success message once the request is done. An example of it’s usage can be found below.

// Inject the HLResource service.
DealDetailController.$inject = ['Deal', 'HLResource'];
function DealDetailController(Deal, HLResource) {
 // DealDetailController code.

 function updateModel() {
 // updateModel code.

 return HLResource.patch('Deal', args);
 }
}

Resources/Factories

To retrieve data from the backend and to share data across the app we use factories. Below is an excerpt of the Deal factory.

angular.module('app.deals.services').factory('Deal', Deal);

Deal.$inject = ['$resource', 'HLUtils', 'HLForms', 'User'];
function Deal($resource, HLUtils, HLForms, User) {
 // 'private' variable to show it's only supposed to be used in this scope.
 // Factory can be used by calling `Deal.<function>`.
 var _deal = $resource(
 '/api/deals/:id/',
 null,
 {
 // Overwrite the built-in patch function Angular provides so we can overwrite the transformRequest
 // and do stuff like cleaning our data.
 patch: {
 method: 'PATCH',
 params: {
 id: '@id',
 },
 transformRequest: function () {
 // transformRequest code.
 },
 },
 // Allows us to search deals through ElasticSearch.
 query: {
 url: '/search/search/',
 method: 'GET',
 params: {
 // Set url GET parameters.
 type: 'deals_deal',
 },
 },
 // This could be its own resource, but since it's so tightly connected to deals we just
 // provide it in the Deal service.
 getNextSteps: {
 url: 'api/deals/next-steps/',
 },
 }
);

 return _deal;

Angular tips & tricks

This section provides a couple of tips & tricks which can save a lot of Googling and wondering why your code isn’t working.

Passing resources to directive

Make sure you either resolve promises before passing them to a directive or resolve them in the directive’s controller. An example of this is the listWidget directive. Here it’s not always sure if we’re passing a list or passing a promise. So we do the following check and resolve the promise if needed and then execute our code.

if (vm.collapsableItems) {
 // Certain list widgets have collapsable cells, so set the default state to collapsed.
 if (!vm.list.hasOwnProperty('$promise')) {
 // Array was passed, so just pass the list.
 _setCollapsed(vm.list);
 } else {
 vm.list.$promise.then(function(response) {
 // List hasn't fully loaded, so wait and pass the response.
 _setCollapsed(response);
 });
 }
}

Building un-minified files

By default the gulp build and gulp watch commands will provide you with minified files. This is nice for production, but when developing it can lead to a lot of frustration because of unclear errors. You can use the following commands to make sure you build un-minified files.

NODE_ENV=dev gulp build

NODE_ENV=dev gulp watch

Linting

Make sure your editor has ESLint and preferably scss-lint set up so you can instantly see any violations. A pre-commit hook which runs the linters is nice to have as well in case you miss a violation during development.

ng-inspector

[ng-inspector](http://ng-inspector.org/): Tired of doing console.log() everywhere just to see what you models contain? Use ng-inspector and you get a real-time overview of all variables currently available. If needed you can click one to console.log() it.

 Copyright 2016, Devhouse Spindle.

 Navigation

 	
 index

 	Lily documentation

Index

 Copyright 2016, Devhouse Spindle.

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		Lily documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Devhouse Spindle.

_static/up.png

_static/down-pressed.png

