

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/hello-docker/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/hello-docker/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Docker Tutorial

An entry level docker 🐳 tutorial for anyone who wants to learn how to use docker effectively in their day-to-day dev work.

This docker tutorial attempts to drive you through the fundamentals and into some advanced topics like docker services and docker stacks and docker's swarm mode. Just in case, you can also grab the Docker Cheatsheet [https://github.com/bitlogic/hello-docker/tree/master/docker-cheatsheet.md]

This is a continuous work in progress; so feel free to propose changes and spread the word by submiting a PR or just just contact us at bitlogic [https://bitlogic.io]

So, let’s get started in the orientation section [https://github.com/bitlogic/hello-docker/tree/master/0-orientation]. :punch:

License

[image: Creative Commons Licence]

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This license allows you to:

	Share — copy and redistribute the material in any medium or format

	Adapt — remix, transform, and build upon the material

For any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms.

[image: Bitlogic] [image: Docker Small]

Docker Cheatsheet

Running Containers

docker --version # Check the version of docker client
docker run hello-world # If works it means that the platform is OK.
docker container ps -a #list all running and stopped containers
docker pull <image> # Pull image from docker hub
docker container run -it <image> #Run image in interactive way (connected to the tty)
docker container run -P -d <image> # -P to bind ports automatically
docker container run -P -d <image> # -d to run in background
docker container exec -it <container-name> # connect to a running container
docker logs <container-name> # See the logs of particular container
docker container stop <container-name | id > # Stop the container

Running Services

docker stack ls # List stacks or apps
docker stack deploy -c <composefile> <appname> # Run the specified Compose file
docker service ls # List running services associated with an app
docker service ps <service> # List tasks associated with an app
docker inspect <task or container> # Inspect task or container
docker container ls -q # List container IDs
docker stack rm <appname> # Tear down an application
docker service logs <service> # See the logs for all the service

Building Images

docker images # List all images on the host
docker images -a # Include intermediate layers
docker build -t <image-name> <Path-to-Dockerfile # Build an image from dockerfile
docker rmi # Remove image from the host
docker rmi -f # Force removal of image

Introduction

A brief explanation of containers

An image is a lightweight, stand-alone, executable package that includes everything needed to run a piece of software, including the code, a runtime, libraries, environment variables, and config files.

A container is a runtime instance of an image—what the image becomes in memory when actually executed. It runs completely isolated from the host environment by default, only accessing host files and ports if configured to do so.

Containers run apps natively on the host machine’s kernel. They have better performance characteristics than virtual machines that only get virtual access to host resources through a hypervisor. Containers can get native access, each one running in a discrete process, taking no more memory than any other executable.

Containers vs. virtual machines

Consider this diagram comparing virtual machines to containers:

Virtual Machine diagram
Virtual machine stack example

Virtual machines run guest operating systems—note the OS layer in each box. This is resource intensive, and the resulting disk image and application state is an entanglement of OS settings, system-installed dependencies, OS security patches, and other easy-to-lose, hard-to-replicate ephemera.

Container diagram
Container stack example

Containers can share a single kernel, and the only information that needs to be in a container image is the executable and its package dependencies, which never need to be installed on the host system. These processes run like native processes, and you can manage them individually by running commands like docker ps—just like you would run ps on Linux to see active processes. Finally, because they contain all their dependencies, there is no configuration entanglement; a containerized app “runs anywhere.”

Setup

To start with the tutorial you’ll need to have docker 17.06 or later installed in your machine.

Go ahead and install the latest stable version here [https://docs.docker.com/engine/installation/]

The steps provided here are going to asume that you install docker on your localhost but using play-with-docker [http://play-with-docker.com] is a valid and probably recommended alternative.

Just remember that if you need to access your services from outside, use the following URL pattern http://ip<instance_ip>-<port>.play-with-docker.com (i.e: http://ip11_3_135_3-80.play-with-docker.com/)

All right, first check if docker is installed.

docker --version
Docker version 17.06.1-ce, build 874a737

We are all set! That’s a wrap for the orientation so let’s move on to the next section [https://github.com/bitlogic/hello-docker/tree/master/1-running-containers]

 :warning: THIS SECTION IS STILL IN PROGRESS :warning:

Docker swarm

Docker’s swarm mode allows you to go all serious about large scale, highly available docker environments. It basically lets you handle a cluster of machines as a single docker daemon, with automatic failover, container scheduling, routing and tons of other goodies.

This last section will walk you through creating a simple swarm cluster and the basic concepts. Do be noted that understanding docker swarm in its fullest is way beyond the scope of this guide. In any case, let’s cut to the chase, shall we.

Get some nodes

In order to have a docker swarm going, you’ll need a machine cluster, for which you’ll need machines. Quickest, coolest way is by using play-with-docker [http://play-with-docker.com/] to try it online. If you’d rather try it locally, you’ll need docker-machine [https://docs.docker.com/machine/] and Virtualbox [https://www.virtualbox.org/]. If you’re running Docker for mac or Docker for windows you probably already have it installed; Linux users should get docker-machine separately.

The main difference is how long it’ll take you to have the swarm ready. If you’re just trying it out, the online route is probably what you want. If you’d like your swarm to be persistent or try some extra stuff you’ll want to use the local approach (it may get resource intensive).

Pick your poison and choose one of the following:

Online sandbox

For the sake of simplicity, in this section we are going to use the play with docker environment.

Browse to play-with-docker [http://play-with-docker.com/] and create three nodes with the “+ ADD NEW INSTANCE” button.

Get swarmin’

Let’s get this swarm started. Grab a hold of the manager node host IP. In play-with-docker you’ll see it in node’s terminal prompt; if running locally with docker-machine it’s usually 192.168.99.100

docker swarm init --advertise-addr <manager node's ip>

This set the node’s docker daemon to swarm mode and output the swarm join command you’ll need for other nodes to join this swarm. Copy it to your clipboard; you’ll need it soon.

Verify the swarm status by doing.

docker info

You can see under Swarm the swarm state.

See the swarm nodes with:

docker node ls

Now let’s make both worker nodes join the swarm cluster: run the command you just copied into your clipboard inside each of the worker nodes (if running locally, docker-machine ssh into both workers and exit back to your terminal)

See now that your swarm is 3 nodes big:

docker node ls

You now have a 3-node working swarm cluster 😎

Final words

These are just the docker basics, you’ll learn a lot more by addressing real-life scenarios, so get hackin’

Hopefully this repo will encourage you to do some more research on your own [https://docs.docker.com] and make docker part of your development toolkit and prod pipelines.

Please feel free to update/fix anything that you see improvable in this repo, and if you liked it spread the word.

Thanks for reading 🙇

Docker Services

About services

In a distributed application, different pieces of the app are called “services.” For example, if you imagine a video sharing site, it probably includes a service for storing application data in a database, a service for video transcoding in the background after a user uploads something, a service for the front-end, and so on.

Services are really just “containers in production.” A service only runs one image, but it codifies the way that image runs—what ports it should use, how many replicas of the container should run so the service has the capacity it needs, and so on. Scaling a service changes the number of container instances running that piece of software, assigning more computing resources to the service in the process.

Luckily it’s very easy to define, run, and scale services with the Docker platform.

Swarm Init

To be able to deploy services we need to initialize the swarm cluster. For doing so, execute the following command:

docker swarm init

You can check that the cluster has been initialized with the following.

docker node ls

Since this is a single node cluster, the docker host is going to be the manager of the cluster. Next sections we are going to be setting up a more complex, multi-node, swarm deployment.

Creating and managing your first service

On this part we are going to be creating services from the command line. On real world, scenarios the more common way for defining services is via a docker-compose.yml file. We are going to to see that on next section.

So, to start just check if there is any service running.

docker service ls

Now, lets start having fun by creating our first service. We are going to be creating a service with the image that we created in previous section.

docker service create --name pinger --replicas=1 alpine ping docker.com

See some info about the service by doing

docker service inspect --pretty pinger

To check the status of the containers running you can execute the following:

docker service ps pinger

You can see in which node it’s running. Now let’s scale the service by getting more replicas of it (each replica is a container):

docker service scale pinger=5

docker service ls

;-) Cool! Now we have 5 replicas of the service!

Now lets check the logs from all the instances of the service.

docker service logs -f pinger

On this section we have created very simple services using the docker service command. On next section we are going to get more serious and use a docker-compose.yml file to create a stack [https://github.com/bitlogic/hello-docker/tree/master/4-docker-stacks].

Images

In this section we are going to be managing, defining and building our own images.

Pulling Images

Images are the templates docker uses to create containers from. If you’re familiar with Object Oriented Programming [https://en.wikipedia.org/wiki/Object-oriented_programming] you may (sort of) think of images as classes and containers as instances.

Check which images you have in your local repository by doing:

$ docker images

Let’s try and pull an image

$ docker pull python:2.7-slim

This last command pulled an image named python with “2.7-slim” tag from the public docker repository [https://hub.docker.com] to your local host. This is very similar to what you achieve with git pull from a public git repository.

Cool! So now we have an image we didn’t create a container from.

Building Your First Image

A docker image is made of one or more layers. Each layer is built on top of the previous one and they’re all immutable. This means you can’t modify an existing layer, instead you create a new one made of changes from the previous layer. This is very similar to how git‘s diff works.

To get a sample Dockerfile that we will use, clone this repo

$ git clone https://github.com/bitlogic/hello-docker/

In that project’s root dir, go to the ”./2-building-images” folder. There you will find a Dockerfile containing the following comands.

Use an official Python runtime as a parent image
FROM python:2.7-slim

Set the working directory to /app
WORKDIR /app

Copy the app code and dependencies file into the container at /app
ADD . /app

Install any needed packages specified in requirements.txt
RUN pip install -r requirements.txt

Make port 80 available to the world outside this container
EXPOSE 80

Define environment variable
ENV NAME World

Run app.py when the container launches
CMD ["python", "app.py"]

So go ahead and build it with the following command.

$ docker build -t hello-docker .

If you pay attention to the output of the build, you will see that each instruction (FROM, RUN, etc.) in the Dockerfile generates a single, immutable layer.

Aaaaaand that’s it! 🐳 You can check the new image with the following command.

$ docker images

Now lets run the app that we have just build.

$ docker container run --name hello -d -P hello-docker

Excellent!! Now we have hour hello-docker app working and runing in our host.
You can check the app working by conecting the browser to the localhost:[port]

Alternatively, you can check the app by using the curl command

$ curl http://localhost:[port]

<h3>Hello World!</h3>Hostname: 8fc990912a14
Visits: <i>cannot connect to Redis, counter disabled</i>

Understanding layers and leveraging the cache

Notice that if you run the docker build command again, it will take no time at all. This is because docker caches each layer and doesn’t re-build them if the build context and layer creation command didn’t change since the last build.

If you change the FROM python:2.7-slim line to FROM python so you try how it works with the latest python version and build it again

You’ll see that all layers get rebuilt! This is because you changed the base layer; since all layers are just diffs from the previous one, by changing the base layer you invalidate the cache for all layers after it.

In your everyday development workflow, you don’t want to reinstall all dependencies just because you changed a single source file, you would only want that if you changed code files.

:bulb: So be careful with how the Docker file is defined and always try to put the more stable things at the beginning since the build time will be faster.

Now You may publish this image by using the command docker push, but you’ll need an account in hub.docker.com [https://hub.docker.com]; you can do that later on your own.

There’s a lot more to say about images but now is time to learn how to create services [https://github.com/bitlogic/hello-docker/tree/master/3-running-services]

Docker Containers

Hello-World

The most fundamental part of Docker are containers. There’s a lot to say about them, but let’s just run one:

$ docker container run hello-world

Hello from Docker!
This message shows that your installation appears to be working correctly.

Easy, right? Let’s take a look at what has just happened behind the scenes...

	The Docker client contacted the Docker daemon.

	The Docker daemon pulled the “hello-world” image from the Docker Hub.

	The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.

	The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

Whoa!! So this means that the whole Docker Platform is correctly setup and working.

Now lets start exploring and check the container

$ docker container ps

🤔 not there... Let’s add the -a flag

$ docker container ps -a

😀 there you are! The -a option list not only the running containers but also the containers that have been finished. This might become handy if you want to examine them.

Running a Container

Now let’s get serious. Let’s run a full-fledged Ubuntu container:

First we are going to pull a specific Ubuntu docker image from the registry.

$ docker pull ubuntu:14.04

🤔 it looks like it downloaded something, but not sure what...

$ docker images

As you can see, now we have the ubuntu:14.04 image in our host and we can create our container.

$ docker container run -it ubuntu:14.04

Cool, we’re inside the container! -it specifies you want to go into the interactive mode (TBH, i is interactive and t is for docker to allocate a pseudo TTY interface for the interaction)

Can you guess What will happen if you delete the any important file inside the container? (e.g. :warning: delete the “ls” binary...)

After toying around just exit.

:bulb: Remember: What happen in a container, stays in a container.

So the way containers work is that there is one single main process that gets assigned pid 1, which runs as the containers starts, and as soon as that process exits, the container is stopped, even if there were other processes running inside of it.

You may also have noticed that the first time you ran docker run ubuntu:14.04 it took a while, but the second time it was immediate. What really happened is that docker tried to run a container based on the ubuntu:14.04 image, and since it didn’t have it locally, it pulled it from the public repository.

Running, detaching and attaching to containers

Let’s run a mongo database! And with a cute name.

$ docker run --name db mongo

🤔 but I don’t want to be attached to the output... Just CTRL+c to quit and let’s remove that container.

$ docker rm db

Now let’s run a new mongo container, but in the background with the -d flag (d as in detach).

$ docker run --name db -d mongo

Now let’s check out the mongo database. First you need to sort-of-ssh into the container. You don’t actually use ssh, instead you can execute a command with the interactive mode, like so:

$ docker exec -it db mongo

Now you’re running the mongo command in the db container. Toy around and then CTRL+c to quit.

If you now do docker ps you’ll notice the db container is still running. It didn’t stop because the main process, the mongo database process (with pid 1), is still running. The process you killed by quitting was just the mongo shell.

Exposing containers

Now let’s run a web app in another container.

$ docker container run --name webapp -d -P seqvence/static-site

The -P command is basically making docker to automatically bind the internal port that the container is exposing to some available port in your host.

So, lets check if the app is running and which ports is exposing.

$ docker container ps

As you can see under PORTS, it seems the app is listening in port 80, but... 😮 Of course! That’s just the container’s internal port!

By passing the -P parameter to the docker run command, docker has automatically binded an external port to expose the service.

Check the outcome of the command and try to connect via browser to \localhost:{->binded port}

Congratulations! You now have a web app runing inside a container and being exposed externally so users can enjoy it. 😎 🐳

Docker Logs

One of the benefits from docker is that they provide some standard interface for operating applications inside containers. So lets check how to see the logs of an app running inside a cointainer.

To be able to see the logs, the app inside the container should be sending the logs to STDOUT and STDERR

So, first lets start a container in background.

$ docker logs webapp

Cleaning up containers

OK, we know how to start multiple containers so now its time to stop them.

First, check which containers are running with

$ docker container ps

Now to stop a container you can do any of the following.

$ docker container stop {container id | container name}

Great! This command has stopped the containers from running but we still have the containers files in the host. If you want a complete cleanup and remove everything, you should go further and execute the following:

$ docker container prune

The prune command will delete all containers so if you check with docker container ps -a you will see that there are no more containers on your host.

Bonus :trollface: :trollface: :trollface:

If you need to look like a hollywood hacker with Docker you can just run the following command:

$ docker container run -it jturpin/hollywood hollywood

:grimacing:

So, That’s a wrap for the basics. :bowtie: Let’s move on to the next section [https://github.com/bitlogic/hello-docker/tree/master/2-building-images]. :punch:

Docker Stacks

A stack is a group of interrelated services that share dependencies, and can be orchestrated and scaled together. A single stack is capable of defining and coordinating the functionality of an entire application (though very complex applications may want to use multiple stacks).

Our first Single Service Stack

The way to define stacks is via a docker-compose.yml file. This file defines how Docker Stack should behave in production.

In the root of the project, you will find a docker-compose.yml file describing our first service.

version: "3.3"
services:
 # We only have one service so far that we will name "web"
 web:
 # Image name should be the same that we created on previous section.
 image: hello-docker
 # On this part we define the strategy for scheduling containers.
 deploy:
 replicas: 3
 resources:
 limits:
 cpus: "0.1"
 memory: 50M
 restart_policy:
 condition: on-failure
 ports:
 - "80:80"
 networks:
 - webnet
networks:
 webnet:

So, this hello-service.yml file tells Docker to do the following:

	Use the image we created in previous section hello-docker

	Run 3 instances of that image as a service called web, limiting each one to use, at most, 10% of the CPU (across all cores), and 50MB of RAM.

	Immediately restart containers if one fails.

	Map port 80 on the host to web’s port 80.

	Instruct web’s containers to share port 80 via a load-balanced network called webnet. (Internally, the containers themselves will publish to web’s port 80 at an ephemeral port.)

	Define the webnet network with the default settings (which is a load-balanced overlay network).

Now let’s run it. Go to the ./4-docker-stacks folder of the project and execute the following command:

$ docker stack deploy -c hello-service.yml hello-service

Our single service stack is running 3 container instances of our deployed image on one host.

You can run curl http://localhost several times in a row, or go to that URL in your browser and hit refresh a few times. Either way, you’ll see the container ID change, demonstrating the load-balancing; with each request, one of the 5 replicas is chosen, in a round-robin fashion, to respond.

Magic ✨🐳

Now lets delete the service

$ docker service rm hello-service

Multi-Service Stacks

Now lets gets real and deploy a multi service (container) stack.

We are going to add to the hello-docker service a visualizer and redis to persist the data. We should now be able to count the visitors of our service. ;-)

In this same folder you will find the `hello-stack.yml’ file with the following content.

version: "3"
services:
 web:
 image: hello-docker
 deploy:
 replicas: 3
 restart_policy:
 condition: on-failure
 resources:
 limits:
 cpus: "0.1"
 memory: 50M
 ports:
 - "80:80"
 networks:
 - webnet
 visualizer:
 image: dockersamples/visualizer:stable
 ports:
 - "8080:8080"
 volumes:
 - "/var/run/docker.sock:/var/run/docker.sock"
 deploy:
 placement:
 constraints: [node.role == manager]
 networks:
 - webnet
 redis:
 image: redis
 ports:
 - "6379:6379"
 volumes:
 - ./data:/data
 deploy:
 placement:
 constraints: [node.role == manager]
 networks:
 - webnet
networks:
 webnet:

As you can see, we are adding 2 services redis and visualizer toghether with their policies and constraints.

Let’s start the stack and see what happen:

$ docker stack deploy -c hello-stack.yml hello

Magic ✨🐳
Magic ✨🐳
Magic ✨🐳

$ docker service ls

You should see something like the following:

ID NAME MODE REPLICAS IMAGE PORTS
i08fo6eilog8 hello_redis replicated 1/1 redis:latest *:6379->6379/tcp
nch7igvp6l16 hello_visualizer replicated 1/1 dockersamples/visualizer:stable *:8080->8080/tcp
px5kj7d22t8x hello_web replicated 5/5 hello-docker:latest *:80->80/tcp

You can visually see the services deployed by connecting to the visualizer service browsing to [localhost:8080]

So now we have a stack with 3 services! A web service with 3 instances running and being load balanced automatically by docker, a redis service to persist the visitors to the site and the visualizer to see how are the service deployed.

Lets have a little more fun and scale the web service with the following command:

$ docker service scale hello_web=5

Now stop a few containers and see what happen

$ docker stop [container id | name]

Let’s kill one of the worker nodes and see how docker re-schedules its containers: in play-with-docker just hit the delete button in any of the worker nodes. If running locally just docker-machine rm worker2

Now docker service ps pinger repeatedly to see how some of the pop up in the other nodes automatically. How cool is that?

You now have a resilient, distributed application running in a docker swarm cluster ✨

Docker swarms run tasks that spawn containers. Tasks have state and their own IDs:

docker service ps <service>

 _static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/comment-close.png

_images/horizontal_small.png

_static/comment-bright.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

