

Welcome to helium’s documentation!

Contents:

	helium package
	Subpackages
	helium.adapter package
	Submodules

	helium.adapter.aiohttp module

	helium.adapter.requests module

	Submodules

	helium.client module

	helium.element module

	helium.exceptions module

	helium.label module

	helium.metadata module

	helium.organization module

	helium.relations module

	helium.resource module

	helium.sensor module

	helium.session module

	helium.timeseries module

	helium.user module

	helium.util module

Indices and tables

	Index

	Module Index

	Search Page

helium package

The public interface to the helium-python library.

	
helium.from_iso_date(str)

	Convert an ISO8601 to a datetime.

	Parameters:	str (string) – The ISO8601 formatted string to convert

	Returns:	A datetime object representing the given time

	
helium.to_iso_date(timestamp)

	Convert a UTC timestamp to an ISO8601 string.

datetime instances can be constructed in alternate timezones. This
function assumes that the given timestamp is in the UTC timezone.

	Parameters:	timestamp (datetime) – A datetime object in the UTC timezone.

	Returns:	An ISO8601 formatted string representing the timestamp.

	
helium.build_request_body(type, id, attributes=None, relationships=None)

	Build a request body object.

A body JSON object is used for any of the update or create
methods on Resource subclasses. In normal library use you
should not have to use this function directly.

	Parameters:	
	type (string) – The resource type for the attribute

	id (uuid) – The id of the object to update. This may be None

	Keyword Arguments:

	 	
	attributes (dict) – A JSON dictionary of the attributes to set

	relationships (dict) –

	Returns:	
	A valid attribute dictionary. Often used in the update or

	create Resource` methods.

	
helium.build_request_relationship(type, ids)

	Build a relationship list.

A relationship list is used to update relationships between two
resources. Setting sensors on a label, for example, uses this
function to construct the list of sensor ids to pass to the Helium
API.

	Parameters:	
	type (string) – The resource type for the ids in the relationship

	ids ([uuid] or uuid) – Just one or a list of resource uuids to use
in the relationship

	Returns:	A ready to use relationship JSON object.

	
helium.build_request_include(include, params)

	Augment request parameters with includes.

When one or all resources are requested an additional set of
resources can be requested as part of the request. This function
extends the given parameters for a request with a list of resource
types passed in as a list of Resource subclasses.

	Parameters:	
	include ([Resource class]) – A list of resource classes to include

	params (dict) – The (optional) dictionary of request parameters to extend

	Returns:	An updated or new dictionary of parameters extended with an
include query parameter.

	
exception helium.Error(response)

	Bases: exceptions.Exception

The base exception class.

	
message

	The actual message returned by the API.

	
exception helium.ServerError(response)

	Bases: helium.exceptions.Error

	
exception helium.ClientError(response)

	Bases: helium.exceptions.Error

	
exception helium.NotFoundError(response)

	Bases: helium.exceptions.Error

	
class helium.Base(json)

	Bases: object

A base class to deal with json based attributes.

The base class stores a given json object and dynamically promotes
requested object attributes from the cached jason data if they
exist.

Sub-classes can override methods to promote attribtues on
construction or lazily, when they’re requested

	
class helium.Resource(json, session, include=None, included=None)

	Bases: helium.resource.Base

The base class for all Helium resources.

The Helium API uses JSONAPI extensively. The Resource
object provides a number of useful JSONAPI abstractions.

A resource will at least have an id attribute, which is
promoted from the underlying json data on creation.

A resource can be requested to include relation resources in its
response using the include request parameter. The include
argument allows relationship lookups to validate whether the
relationship was originally requested. You normally don’t need to
specify this since the Resource retrieval methods like all and
find take care of this behavior.

	
classmethod all(session, include=None)

	Get all resources of the given resource class.

This should be called on sub-classes only.

The include argument allows relationship fetches to be
optimized by including the target resources in the request of
the containing resource. For example:

.. code-block:: python

org = Organization.singleton(session, include=[Sensor])
org.sensors(use_included=True)

Will fetch the sensors for the authorized organization as part
of retrieving the organization. The use_included forces
the use of included resources and avoids making a separate
request to get the sensors for the organization.

	Parameters:	session (Session) – The session to look up the resources in

	Keyword Arguments:

	 	incldue – A list of resource classes to include in the
request.

	Returns:	
	An iterator over all the resources of

	this type

	Return type:	iterable(Resource)

	
classmethod create(session, attributes=None, relationships=None)

	Create a resource of the resource.

This should only be called from sub-classes

	Parameters:	
	session (Session) – The session to create the resource in.

	attributes (dict) – Any attributes that are valid for the
given resource type.

	relationships (dict) – Any relationships that are valid for the
given resource type.

	Returns:	An instance of a resource.

	Return type:	Resource

	
delete()

	Delete the resource.

	Returns:	True if the delete is successful. Will throw an error if
other errors occur

	
classmethod find(session, resource_id, include=None)

	Retrieve a single resource.

This should only be called from sub-classes.

	Parameters:	
	session (Session) – The session to find the resource in

	resource_id – The id for the resource to look up

	Keyword Arguments:

	 	include – Resource classes to include

	Returns:	
	An instance of a resource, or throws a

	NotFoundError if the resource can not be found.

	Return type:	Resource

	
is_singleton()

	Whether this instance is a singleton.

	
classmethod singleton(session, include=None)

	Get the a singleton API resource.

Some Helium API resources are singletons. The authorized user
and organization for a given API key are examples of this.

authorized_user = User.singleton(session)

will retrieve the authorized user for the given
Session

	Keyword Arguments:

	 	include – Resource classes to include

	
update(attributes=None)

	Update this resource.

Not all aspects of a resource can be updated. If the server
rejects updates an error will be thrown.

	Keyword Arguments:

	 	attributes (dict) – Attributes that are to be updated

	Returns:	A new instance of this type of resource with the
updated attribute. On errors an exception is thrown.

	Return type:	Resource

	
classmethod where(session, include=None, metadata=None, filter=None)

	Get filtered resources of the given resource class.

This should be called on sub-classes only.

The include argument allows relationship fetches to be
optimized by including the target resources in the request of
the containing resource. For example:

.. code-block:: python

org = Organization.singleton(session, include=[Sensor])
org.sensors(use_included=True)

Will fetch the sensors for the authorized organization as part
of retrieving the organization. The use_included forces
the use of included resources and avoids making a separate
request to get the sensors for the organization.

The metadata argument enables filtering on resources that
support metadata filters. For example:

.. code-block:: python

sensors = Sensor.where(session, metadata={ ‘asset_id’: ‘23456’ })

Will fetch all sensors that match the given metadata attribute.

The filter argument enables filtering the resulting resources
based on a passed in function. For example:

.. code-block::python

sensors = Sensor.where(session, filter=lambda s: s.name.startswith(“a”))

Will fetch all sensors and apply the given filter to only
return sensors who’s name start with the given string.

	Parameters:	session (Session) – The session to look up the resources in

	Keyword Arguments:

	 	
	incldue (list) – The resource classes to include in the
request.

	metadata (dict or list) – The metadata filter to apply

	Returns:	
	An iterator over all found resources

	of this type

	Return type:	iterable(Resource)

	
class helium.ResourceMeta(json)

	Bases: helium.resource.Base

Meta information for a resource.

Every Resource object in the Helium API has an associated
meta object that represents system information for the given
resource.

Most of this information is specific to the given resource, but
all meta instances have at least a created and updated
attribute which are timestamps of when the resource was created
and last updated, respectively. These timestamps are in ISO8601
format. To convert them to datetime`s use the `from_iso_date
utility function.

	
class helium.RelationType

	Bases: object

Defines the way a relationship is fetched.

The Helium API does not require an include directive to also mean
a full URL relationship. This means that for some relationships
you use the URL where for others you use an include paramater
to get the related objects.

For example:

https://api.helium.com/v1/label/<id>/sensor
https://api.helium.com/v1/label/<id>?include=sensor

The constants in this class define how the relationship functions
should be looked up.

	
DIRECT = 'direct'

	

	
INCLUDE = 'include'

	

	
helium.to_one(dest_class, type='direct', resource_classes=None, reverse=None, reverse_type='direct', writable=False)

	Create a one to one relation to a given target Resource.

	Parameters:	dest_class (Resource) – The target class for the relationship

	Keyword Arguments:

	 	
	type (RelationType) – The relationship approach to use.

	reverse (to_may or to_one) – An optional reverse relationship.

	reverse_type (RelationType) – The reverse relationship approach.

	resource_classes (Resource) – The kinds of Resources to expect
in the relationship

	Returns:	A builder function which, given a source class creates a
one-to-one relationship with the target

A one to one relationship means that you can get the associated
target object from the object on which the to_one was declared.

@to_one(Organization)
def User(Resource):
 pass

Declares that a User is associated with one Organization. The
decorator automatically adds a method to fetch the associated
organization:

org = user.organization()

	
helium.to_many(dest_class, type='direct', reverse=None, reverse_type='direct', resource_classes=None, writable=False)

	Create a one to many relation to a given target Resource.

	Parameters:	dest_class (Resource) – The target class for the relationship

	Keyword Arguments:

	 	
	type (RelationType) – The relationship approach to use.

	writable (bool) – Whether the relationship is mutable.

	reverse (to_may or to_one) – An optional reverse relationship.

	reverse_type (RelationType) – The reverse relationship approach.

	resource_classes (Resource) – The kinds of Resources to expect
in the relationship

	Returns:	A builder function which, given a source class creates a
one-to-many relationship with the previously supplied target.

A to-many relationship means that the there are many dest_class
resources associated with the given source class. The returned
method builder will automatically create methods for fetching the
associated objects. If the reverse function is supplied the
builder will create the correponding reverse relationship methods
on the target class.

@to_many(Sensor, writable=True)
class Label:
 pass

find a label, then fetch sensors
sensor = label.sensors()

Since the example above also declares that the relationship is
writable you can also add, remove and update all target
resources from the source object:

fetch a couple of sensors then add them to the label
label.add_sensors([sensor1, sensor2])

remove a sensor from the label
label.remove_sensors([sensor1])

remove all sensors from the label
label.update_sensors([])

	
class helium.Session(adapter=None, api_token=None, base_url=u'https://api.helium.com/v1')

	Bases: object

Manages a session with Helium Service.

A session with the Helium service. A session is mostly a front for
an underlying adapter that implements the details of requesting
and handling the responses. Using the adapters allows the use of
different syncrhonous and asynchronous approaches. The default
adapter is a synchronous requests based adapter.

	
api_token

	The API token for to use for this session.

	
datapoints(timeseries)

	

	
delete(url, callback, json=None)

	Delete a URL.

	Parameters:	
	url (string) – URL for the request

	callback (func) – The response callback function

	Keyword Arguments:

	 	json (dict) – JSON body for the request

	Returns:	
	The result of the callback handling the resopnse from the

	executed request

	
get(url, callback, params=None, json=None, headers=None)

	Get a URL.

	Parameters:	callback (func) – The response callback function

	Keyword Arguments:

	 	
	params (dict) – Parameters for the request

	json (dict) – JSON body for the request

	headers (dict) – Additional headers for the request

	Returns:	
	The result of the callback handling the resopnse from the

	executed request

	
live(url, resource_class, resource_args, params=None)

	Get a live endpoint.

	Parameters:	
	url (string) – URL for the request

	resource_class (class) – The class to use for entries coming
from the live endpoint.

	resource_args (dict) – Additional arguments to pass to the
resource_class constructor

	Keyword Arguments:

	 	params (dict) – Request parameters for the live url

	Returns:	
	An iterator over the live endpoint. Depending on the

	adapter the iterator will allow asynchronous
behavior. The default adapter will block while
iterating over the response of this method.

	
patch(url, callback, params=None, json=None, headers=None)

	Patch a URL.

	Parameters:	
	url (string) – URL for the request

	callback (func) – The response callback function

	headers (dict) – HTTP headers for the request

	Keyword Arguments:

	 	
	params (dict) – Parameters for the request

	json (dict) – JSON body for the request

	Returns:	
	The result of the callback handling the resopnse from the

	executed request

	
post(url, callback, params=None, json=None, headers=None, files=None)

	Post to a URL.

	Parameters:	
	url (string) – URL for the request

	callback (func) – The response callback function

	headers (dict) – HTTP headers for the request

	Keyword Arguments:

	 	
	params (dict) – Parameters for the request

	json (dict) – JSON body for the request

	Returns:	
	The result of the callback handling the resopnse from the

	executed request

	
put(url, callback, params=None, json=None, headers=None)

	Put to a URL.

	Parameters:	
	url (string) – URL for the request

	callback (func) – The response callback function

	Keyword Arguments:

	 	
	params (dict) – Parameters for the request

	json (dict) – JSON body for the request

	headers (dict) – HTTP headers for the request

	Returns:	
	The result of the callback handling the resopnse from the

	executed request

	
class helium.CB

	Bases: object

Convenience callback functions for sessions.

This class offers up convenience callback builders that make it
easy to use the callback session API to behave like a synchronous
API.

	
classmethod boolean(true_code, false_code=None)

	Callback to validate a response code.

The returned callback checks whether a given response has a
status_code that is considered good (true_code) and
raise an appropriate error if not.

The optional false_code allows for a non-successful status
code to return False instead of throwing an error. This is used,
for example in relationship mutation to indicate that the
relationship was not modified.

	Parameters:	true_code (int) – The http status code to consider as a success

	Keyword Arguments:

	 	false_code (int) – The http status code to consider a failure

	Returns:	
	A function that given a response returns True if the

	response’s status code matches the given code. Raises
a HeliumError if the response code does not
match.

	
classmethod json(status_code, process)

	Callback to validate and extract a JSON object.

The returned callback checks a given response for the given
status_code using :function:`response_boolean`. On success the
response JSON is parsed and returned.

	Parameters:	status_code (int) – The http status code to consider a success

	Returns:	
	A function that given a response returns the JSON object

	in the given response. Raises a HeliumError if
the response code does not match.

	
class helium.Organization(json, session, include=None, included=None)

	Bases: helium.resource.Resource

The top level owner of resources.

An organization represents container for all the sensors, elements
and labels that you own.

All User resources in an organization have access to all
resources in an organization.

	
elements(use_included=False, filter=None)

	Fetch the elements associated with this Organization.

	Returns:	The elements of Organization

	Return type:	iterable(Element)

	
labels(use_included=False, filter=None)

	Fetch the labels associated with this Organization.

	Returns:	The labels of Organization

	Return type:	iterable(Label)

	
metadata()

	Fetch the metadata for this Organization.

	Returns:	The Metadata for this Organization

	
sensors(use_included=False, filter=None)

	Fetch the sensors associated with this Organization.

	Returns:	The sensors of Organization

	Return type:	iterable(Sensor)

	
timeseries(**kwargs)

	Fetch the timeseries for this Organization.

	Returns:	The Timeseries for this Organization

	Keyword Arguments:

	 	**kwargs – The Timeseries object constructor arguments.

	
users(use_included=False, filter=None)

	Fetch the users associated with this Organization.

	Returns:	The users of Organization

	Return type:	iterable(User)

	
class helium.User(json, session, include=None, included=None)

	Bases: helium.resource.Resource

An authorized user of the Helium API.

A user represents a single developer using the Helium API. Each
user gets their own API key, which gives them access to all the
resources in the Organization that the user belongs to.

	
class helium.Timeseries(session, resource_class, resource_id, datapoint_class=<class 'helium.timeseries.DataPoint'>, datapoint_id=None, page_size=None, direction=u'prev', start=None, end=None, agg_size=None, agg_type=None, port=None)

	Bases: _abcoll.Iterable

A timeseries readings container.

Instances of this class represents a single timeseries query. A
timeseries will automatically page forward or backward through the
pages returned from the Helium API to return data points that fit
within the given arguments.

The timeseries instance is an Iterable which can be used
to lazily iterate over very large timeseries data sets. The
returned timeseries object will not actually start making any
requests to the Helium API until you start iterating over it.

For example, given:

@timeseries()
class Sensor(Resource):
 pass

You can request a timeseries using:

Fetch a sensor
timeseries = sensor.timeseries()

Get the first 10 readings
first10 = timeseries.take(10)

Note that each call to sensor.timeseries() will return a new
timeseries object which you can iterate over.

You can filter timeseries data by specifying port, start
or end dates. Note that start and end dates support a relaxed
form of ISO8601:

timeseries = sensor.timeseries(start='2016-09-01',
 end='2016-04-07T19:12:06Z')

You can aggregate numeric timeseries data by specifying
agg_type and agg_size. For example, to aggregate minimum,
maximum and average temperature readings in 6 hour buckets:

timeseries = sensor.timeseries(agg_type='min,max,avg',
 agg_size='6h',
 port='t')

The resulting data points will have an aggregate value that will
contain the requested aggregates as attributes:

first = list(islice(timeseries, 1))[0]
print(first.value.min)

	
create(port, value, timestamp=None)

	Post a new reading to a timeseries.

A reading is comprised of a port, a value and a timestamp.

A port is like a tag for the given reading and gives an
indication of the meaning of the value.

The value of the reading can be any valid json value.

The timestamp is considered the time the reading was taken, as
opposed to the created time of the data-point which
represents when the data-point was stored in the Helium
API. If the timestamp is not given the server will construct a
timestemp upon receiving the new reading.

	Parameters:	
	port (string) – The port to use for the new data-point

	value – The value for the new data-point

	Keyword Arguments:

	 	timestamp (datetime) – An optional datetime object

	
live()

	Get a live stream of timeseries readings.

This returns an Iterable over a live stream of readings. Note
that the result will need to be closed since the system can
not tell when you’ll be done with it.

You can either call close on the endpoint when you’re or
use the context management facilities of the endpoint.

Fetch a sensor
timeseries = sensor.timeseries()

ensure live endpoint closed
with timeseries.live() as live:
 # Wait for 10 readings
 first10 = list(islice(live, 10))

Returns:

	
take(n)

	Return the next n datapoints.

	Parameters:	n (int) – The number of datapoints to retrieve

	Returns:	A list of at most n datapoints.

	
class helium.DataPoint(json, session, **kwargs)

	Bases: helium.resource.Resource

Data points for timeseries.

	
sensor_id

	The id of the sensor of this data point.

	Returns:	The id of the sensor that generated this datapoint. Will
throw an AttributeError if no sensor id was found in the
underlyign data.

	
helium.timeseries()

	Create a timeseries builder.

	Returns:	A builder function which, given a class creates a timeseries
relationship for that class.

	
helium.AggregateValue

	alias of agg

	
class helium.DeviceConfiguration(json, session, include=None, included=None)

	Bases: helium.resource.Resource

Association between a device and a configuration.

A device configuration is the association between a device and a
Configuration.

	
configuration(use_included=False)

	Fetch the configuration associated with this DeviceConfiguration.

	Returns:	The Configuration of this DeviceConfiguration

	Return type:	Configuration

	
classmethod create(session, device=None, configuration=None, **kwargs)

	Create a device configuration.

Create a device configuration with the given device and
configuration.

	Parameters:	session (Session) – The session to use for the request

	Keyword Arguments:

	 	
	device (Device) – The device to configure, such as an
Element or a Sensor

	configuration (Configuration) – The configuration to apply
to the device.

	Returns:	The created device configuration. Throws an exception if
any failure occurs.

	
device(use_included=False)

	Fetch the device associated with this DeviceConfiguration.

	Returns:	The Device of this DeviceConfiguration

	Return type:	Device

	
is_loaded()

	Check is a device configuration is loaded.

	Returns:	True if the device configuration was loaded by Helium,
False if the device configuraiton is still pending.``

	
class helium.Configuration(json, session, include=None, included=None)

	Bases: helium.resource.Resource

Configuration holder.

Helium devices are configurable. This resource holds those
attributes. Configuration are not mutable for performance
auditability purposes. In order to update a configuration you will
need to create a new one and associate the new one with the device
you’re configuration.

In order to apply a configuration to a device, use a
DeviceConfiguration.

For example to configure a sensor that takes a min and max
value

config = Configuration(client, attributes={
 'min': 0,
 'max': 100
})
device_config = DeviceConfiguration.create(client,
 device=sensor,
 configuration=config)

Once the device configuration is created it is in a pending
state until the system loads it for delivery to the given
device. At any given time a device can have at most one pending
and one loaded configuration.

Note that a created configuration can be applied to multiple
devices by creating multiple device configurations.

	
device_configurations(use_included=False, filter=None)

	Fetch the device_configurations associated with this Configuration.

	Returns:	The device_configurations of Configuration

	Return type:	iterable(DeviceConfiguration)

	
class helium.Device(json, session, include=None, included=None)

	Bases: helium.resource.Resource

Common behavior for devices.

Devices are physical resources that share common behavior such as
DeviceConfiguration

	
device_configuration(pending=False, use_included=False)

	Get a specific device configuration.

A device can have at most one loaded and one pending device
configuration. This returns that device_configuration based on
a given flag.

	Keyword Arguments:

	 	
	pending (bool) – Fetch the pending configuration or return
the loaded one.

	use_included (bool) – Use included resources in this device
configuration.

	Returns:	The requested loaded or pending configuration or None if
no device configuration is found.

	
device_configurations(use_included=False, filter=None)

	Fetch the device_configurations associated with this Device.

	Returns:	The device_configurations of Device

	Return type:	iterable(DeviceConfiguration)

	
class helium.Sensor(json, session, include=None, included=None)

	Bases: helium.device.Device

	
element(use_included=False)

	Fetch the element associated with this Sensor.

	Returns:	The Element of this Sensor

	Return type:	Element

	
labels(use_included=False, filter=None)

	Fetch the labels associated with this Sensor.

	Returns:	The labels of Sensor

	Return type:	iterable(Label)

	
metadata()

	Fetch the metadata for this Sensor.

	Returns:	The Metadata for this Sensor

	
timeseries(**kwargs)

	Fetch the timeseries for this Sensor.

	Returns:	The Timeseries for this Sensor

	Keyword Arguments:

	 	**kwargs – The Timeseries object constructor arguments.

	
class helium.Metadata(json, session, target_resource_path)

	Bases: helium.resource.Resource

Arbitrary JSON store for resources.

When a Resource declares a Metadata relationship:

The corresponding resource has a metadata method to fetch a
metadata object. This metadata object is an arbitrary store for
JSON data that can be updated or replaced.

Updating the metadata means adding or changing existing attributes
in the JSON object.

Replacing the metadata replaces the entire JSON object with the
given value.

	
replace(attributes)

	Replace the metadata.

Replaces this metadata with the given attributes, removing all
other attribute known to the Helium API for this metadata.

	Keyword Arguments:

	 	attributes (dict) – A dictionary that can be represented as
JSON.

	Returns:	The replaced metadata

	
update(attributes)

	Update metadata.

Updates this metadata with the given attributes. Updating
means that the given attributes are updated or added to the
existing metadata instance.

	Keyword Arguments:

	 	attributes (dict) – A dictionary that can be represented as
JSON.

	Returns:	The updated metadata

	
helium.metadata()

	Create a metadata method builder.

	Returns:	A builder function that, given a class, creates a metadata
relationship for that class.

	
class helium.Element(json, session, include=None, included=None)

	Bases: helium.device.Device

	
labels(use_included=False, filter=None)

	Fetch the labels associated with this Element.

	Returns:	The labels of Element

	Return type:	iterable(Label)

	
metadata()

	Fetch the metadata for this Element.

	Returns:	The Metadata for this Element

	
sensors(use_included=False, filter=None)

	Fetch the sensors associated with this Element.

	Returns:	The sensors of Element

	Return type:	iterable(Sensor)

	
timeseries(**kwargs)

	Fetch the timeseries for this Element.

	Returns:	The Timeseries for this Element

	Keyword Arguments:

	 	**kwargs – The Timeseries object constructor arguments.

	
class helium.Label(json, session, include=None, included=None)

	Bases: helium.resource.Resource

	
add_elements(resources)

	Add elements to this Label.

	Parameters:	resources – A list of Element to add

	Returns:	True if the relationship was mutated, False otherwise

	
add_sensors(resources)

	Add sensors to this Label.

	Parameters:	resources – A list of Sensor to add

	Returns:	True if the relationship was mutated, False otherwise

	
classmethod create(session, attributes=None, sensors=None, elements=None, **kwargs)

	

	
elements(use_included=False, filter=None)

	Fetch the elements associated with this Label.

	Returns:	The elements of Label

	Return type:	iterable(Element)

	
metadata()

	Fetch the metadata for this Label.

	Returns:	The Metadata for this Label

	
remove_elements(resources)

	Remove elements from this Label.

	Parameters:	resources – A list of Element to remove

	Returns:	True if the relationship was mutated, False otherwise

	
remove_sensors(resources)

	Remove sensors from this Label.

	Parameters:	resources – A list of Sensor to remove

	Returns:	True if the relationship was mutated, False otherwise

	
sensors(use_included=False, filter=None)

	Fetch the sensors associated with this Label.

	Returns:	The sensors of Label

	Return type:	iterable(Sensor)

	
timeseries(**kwargs)

	Fetch the timeseries for this Label.

	Returns:	The Timeseries for this Label

	Keyword Arguments:

	 	**kwargs – The Timeseries object constructor arguments.

	
update_elements(resources)

	Set the elements for this Label.

To remove all elements pass in an empty list.

	Parameters:	resources – A list of Element to set

	Returns:	True if successful

	
update_sensors(resources)

	Set the sensors for this Label.

To remove all sensors pass in an empty list.

	Parameters:	resources – A list of Sensor to set

	Returns:	True if successful

	
class helium.Client(adapter=None, api_token=None, base_url=u'https://api.helium.com/v1')

	Bases: helium.session.Session

Construct a client to the Helium API.

The Client offers up methods to retrieve the “roots” of Helium
resources such as sensors and label.

Once resources are retrieved they are attached to the client that
constructed them and handle further requests independently.

	
authorized_organization()

	Get the authorized organization.

	Returns:	The organization for the authorized API key

	Return type:	Organization

	
authorized_user()

	Get the authorized user.

	Returns:	The user for the authorized API key

	Return type:	User

	
label(label_id)

	Find a single label.

	Parameters:	label_id (str) – The UUID of the label to look up

	Returns:	A label resource

	Return type:	Label

	
labels()

	Iterate over all labels.

	Returns:	An iterable over labels for the authorized API key

	Return type:	iterable(Label)

	
sensor(sensor_id)

	Find a single sensor.

	Parameters:	sensor_id (str) – The UUID of the sensor to look up

	Returns:	A sensor resource

	Return type:	Sensor

	
sensors()

	Iterate over all sensors.

	Returns:	An iterator over sensor for the authorized API key

	Return type:	iterable(Sensor)

Subpackages

	helium.adapter package
	Submodules

	helium.adapter.aiohttp module

	helium.adapter.requests module

Submodules

helium.client module

The Helium Client.

	
class helium.client.Client(adapter=None, api_token=None, base_url=u'https://api.helium.com/v1')

	Bases: helium.session.Session

Construct a client to the Helium API.

The Client offers up methods to retrieve the “roots” of Helium
resources such as sensors and label.

Once resources are retrieved they are attached to the client that
constructed them and handle further requests independently.

	
authorized_organization()

	Get the authorized organization.

	Returns:	The organization for the authorized API key

	Return type:	Organization

	
authorized_user()

	Get the authorized user.

	Returns:	The user for the authorized API key

	Return type:	User

	
label(label_id)

	Find a single label.

	Parameters:	label_id (str) – The UUID of the label to look up

	Returns:	A label resource

	Return type:	Label

	
labels()

	Iterate over all labels.

	Returns:	An iterable over labels for the authorized API key

	Return type:	iterable(Label)

	
sensor(sensor_id)

	Find a single sensor.

	Parameters:	sensor_id (str) – The UUID of the sensor to look up

	Returns:	A sensor resource

	Return type:	Sensor

	
sensors()

	Iterate over all sensors.

	Returns:	An iterator over sensor for the authorized API key

	Return type:	iterable(Sensor)

helium.element module

The element resource.

	
class helium.element.Element(json, session, include=None, included=None)

	Bases: helium.device.Device

	
labels(use_included=False, filter=None)

	Fetch the labels associated with this Element.

	Returns:	The labels of Element

	Return type:	iterable(Label)

	
metadata()

	Fetch the metadata for this Element.

	Returns:	The Metadata for this Element

	
sensors(use_included=False, filter=None)

	Fetch the sensors associated with this Element.

	Returns:	The sensors of Element

	Return type:	iterable(Sensor)

	
timeseries(**kwargs)

	Fetch the timeseries for this Element.

	Returns:	The Timeseries for this Element

	Keyword Arguments:

	 	**kwargs – The Timeseries object constructor arguments.

helium.exceptions module

Exceptions for the Helium API library.

	
exception helium.exceptions.ClientError(response)

	Bases: helium.exceptions.Error

	
exception helium.exceptions.Error(response)

	Bases: exceptions.Exception

The base exception class.

	
message

	The actual message returned by the API.

	
exception helium.exceptions.NotFoundError(response)

	Bases: helium.exceptions.Error

	
exception helium.exceptions.ServerError(response)

	Bases: helium.exceptions.Error

	
helium.exceptions.error_for(response)

	Return the appropriate initialized exception class for a response.

helium.label module

The label resource.

	
class helium.label.Label(json, session, include=None, included=None)

	Bases: helium.resource.Resource

	
add_elements(resources)

	Add elements to this Label.

	Parameters:	resources – A list of Element to add

	Returns:	True if the relationship was mutated, False otherwise

	
add_sensors(resources)

	Add sensors to this Label.

	Parameters:	resources – A list of Sensor to add

	Returns:	True if the relationship was mutated, False otherwise

	
classmethod create(session, attributes=None, sensors=None, elements=None, **kwargs)

	

	
elements(use_included=False, filter=None)

	Fetch the elements associated with this Label.

	Returns:	The elements of Label

	Return type:	iterable(Element)

	
metadata()

	Fetch the metadata for this Label.

	Returns:	The Metadata for this Label

	
remove_elements(resources)

	Remove elements from this Label.

	Parameters:	resources – A list of Element to remove

	Returns:	True if the relationship was mutated, False otherwise

	
remove_sensors(resources)

	Remove sensors from this Label.

	Parameters:	resources – A list of Sensor to remove

	Returns:	True if the relationship was mutated, False otherwise

	
sensors(use_included=False, filter=None)

	Fetch the sensors associated with this Label.

	Returns:	The sensors of Label

	Return type:	iterable(Sensor)

	
timeseries(**kwargs)

	Fetch the timeseries for this Label.

	Returns:	The Timeseries for this Label

	Keyword Arguments:

	 	**kwargs – The Timeseries object constructor arguments.

	
update_elements(resources)

	Set the elements for this Label.

To remove all elements pass in an empty list.

	Parameters:	resources – A list of Element to set

	Returns:	True if successful

	
update_sensors(resources)

	Set the sensors for this Label.

To remove all sensors pass in an empty list.

	Parameters:	resources – A list of Sensor to set

	Returns:	True if successful

helium.metadata module

The metadata resource.

	
class helium.metadata.Metadata(json, session, target_resource_path)

	Bases: helium.resource.Resource

Arbitrary JSON store for resources.

When a Resource declares a Metadata relationship:

The corresponding resource has a metadata method to fetch a
metadata object. This metadata object is an arbitrary store for
JSON data that can be updated or replaced.

Updating the metadata means adding or changing existing attributes
in the JSON object.

Replacing the metadata replaces the entire JSON object with the
given value.

	
replace(attributes)

	Replace the metadata.

Replaces this metadata with the given attributes, removing all
other attribute known to the Helium API for this metadata.

	Keyword Arguments:

	 	attributes (dict) – A dictionary that can be represented as
JSON.

	Returns:	The replaced metadata

	
update(attributes)

	Update metadata.

Updates this metadata with the given attributes. Updating
means that the given attributes are updated or added to the
existing metadata instance.

	Keyword Arguments:

	 	attributes (dict) – A dictionary that can be represented as
JSON.

	Returns:	The updated metadata

	
helium.metadata.metadata()

	Create a metadata method builder.

	Returns:	A builder function that, given a class, creates a metadata
relationship for that class.

helium.organization module

The organization resource.

	
class helium.organization.Organization(json, session, include=None, included=None)

	Bases: helium.resource.Resource

The top level owner of resources.

An organization represents container for all the sensors, elements
and labels that you own.

All User resources in an organization have access to all
resources in an organization.

	
elements(use_included=False, filter=None)

	Fetch the elements associated with this Organization.

	Returns:	The elements of Organization

	Return type:	iterable(Element)

	
labels(use_included=False, filter=None)

	Fetch the labels associated with this Organization.

	Returns:	The labels of Organization

	Return type:	iterable(Label)

	
metadata()

	Fetch the metadata for this Organization.

	Returns:	The Metadata for this Organization

	
sensors(use_included=False, filter=None)

	Fetch the sensors associated with this Organization.

	Returns:	The sensors of Organization

	Return type:	iterable(Sensor)

	
timeseries(**kwargs)

	Fetch the timeseries for this Organization.

	Returns:	The Timeseries for this Organization

	Keyword Arguments:

	 	**kwargs – The Timeseries object constructor arguments.

	
users(use_included=False, filter=None)

	Fetch the users associated with this Organization.

	Returns:	The users of Organization

	Return type:	iterable(User)

helium.relations module

Manage relationships between resources.

	
class helium.relations.RelationType

	Bases: object

Defines the way a relationship is fetched.

The Helium API does not require an include directive to also mean
a full URL relationship. This means that for some relationships
you use the URL where for others you use an include paramater
to get the related objects.

For example:

https://api.helium.com/v1/label/<id>/sensor
https://api.helium.com/v1/label/<id>?include=sensor

The constants in this class define how the relationship functions
should be looked up.

	
DIRECT = 'direct'

	

	
INCLUDE = 'include'

	

	
helium.relations.to_many(dest_class, type='direct', reverse=None, reverse_type='direct', resource_classes=None, writable=False)

	Create a one to many relation to a given target Resource.

	Parameters:	dest_class (Resource) – The target class for the relationship

	Keyword Arguments:

	 	
	type (RelationType) – The relationship approach to use.

	writable (bool) – Whether the relationship is mutable.

	reverse (to_may or to_one) – An optional reverse relationship.

	reverse_type (RelationType) – The reverse relationship approach.

	resource_classes (Resource) – The kinds of Resources to expect
in the relationship

	Returns:	A builder function which, given a source class creates a
one-to-many relationship with the previously supplied target.

A to-many relationship means that the there are many dest_class
resources associated with the given source class. The returned
method builder will automatically create methods for fetching the
associated objects. If the reverse function is supplied the
builder will create the correponding reverse relationship methods
on the target class.

@to_many(Sensor, writable=True)
class Label:
 pass

find a label, then fetch sensors
sensor = label.sensors()

Since the example above also declares that the relationship is
writable you can also add, remove and update all target
resources from the source object:

fetch a couple of sensors then add them to the label
label.add_sensors([sensor1, sensor2])

remove a sensor from the label
label.remove_sensors([sensor1])

remove all sensors from the label
label.update_sensors([])

	
helium.relations.to_one(dest_class, type='direct', resource_classes=None, reverse=None, reverse_type='direct', writable=False)

	Create a one to one relation to a given target Resource.

	Parameters:	dest_class (Resource) – The target class for the relationship

	Keyword Arguments:

	 	
	type (RelationType) – The relationship approach to use.

	reverse (to_may or to_one) – An optional reverse relationship.

	reverse_type (RelationType) – The reverse relationship approach.

	resource_classes (Resource) – The kinds of Resources to expect
in the relationship

	Returns:	A builder function which, given a source class creates a
one-to-one relationship with the target

A one to one relationship means that you can get the associated
target object from the object on which the to_one was declared.

@to_one(Organization)
def User(Resource):
 pass

Declares that a User is associated with one Organization. The
decorator automatically adds a method to fetch the associated
organization:

org = user.organization()

helium.resource module

Base Resource behavior.

	
class helium.resource.Base(json)

	Bases: object

A base class to deal with json based attributes.

The base class stores a given json object and dynamically promotes
requested object attributes from the cached jason data if they
exist.

Sub-classes can override methods to promote attribtues on
construction or lazily, when they’re requested

	
class helium.resource.Resource(json, session, include=None, included=None)

	Bases: helium.resource.Base

The base class for all Helium resources.

The Helium API uses JSONAPI extensively. The Resource
object provides a number of useful JSONAPI abstractions.

A resource will at least have an id attribute, which is
promoted from the underlying json data on creation.

A resource can be requested to include relation resources in its
response using the include request parameter. The include
argument allows relationship lookups to validate whether the
relationship was originally requested. You normally don’t need to
specify this since the Resource retrieval methods like all and
find take care of this behavior.

	
classmethod all(session, include=None)

	Get all resources of the given resource class.

This should be called on sub-classes only.

The include argument allows relationship fetches to be
optimized by including the target resources in the request of
the containing resource. For example:

.. code-block:: python

org = Organization.singleton(session, include=[Sensor])
org.sensors(use_included=True)

Will fetch the sensors for the authorized organization as part
of retrieving the organization. The use_included forces
the use of included resources and avoids making a separate
request to get the sensors for the organization.

	Parameters:	session (Session) – The session to look up the resources in

	Keyword Arguments:

	 	incldue – A list of resource classes to include in the
request.

	Returns:	
	An iterator over all the resources of

	this type

	Return type:	iterable(Resource)

	
classmethod create(session, attributes=None, relationships=None)

	Create a resource of the resource.

This should only be called from sub-classes

	Parameters:	
	session (Session) – The session to create the resource in.

	attributes (dict) – Any attributes that are valid for the
given resource type.

	relationships (dict) – Any relationships that are valid for the
given resource type.

	Returns:	An instance of a resource.

	Return type:	Resource

	
delete()

	Delete the resource.

	Returns:	True if the delete is successful. Will throw an error if
other errors occur

	
classmethod find(session, resource_id, include=None)

	Retrieve a single resource.

This should only be called from sub-classes.

	Parameters:	
	session (Session) – The session to find the resource in

	resource_id – The id for the resource to look up

	Keyword Arguments:

	 	include – Resource classes to include

	Returns:	
	An instance of a resource, or throws a

	NotFoundError if the resource can not be found.

	Return type:	Resource

	
is_singleton()

	Whether this instance is a singleton.

	
classmethod singleton(session, include=None)

	Get the a singleton API resource.

Some Helium API resources are singletons. The authorized user
and organization for a given API key are examples of this.

authorized_user = User.singleton(session)

will retrieve the authorized user for the given
Session

	Keyword Arguments:

	 	include – Resource classes to include

	
update(attributes=None)

	Update this resource.

Not all aspects of a resource can be updated. If the server
rejects updates an error will be thrown.

	Keyword Arguments:

	 	attributes (dict) – Attributes that are to be updated

	Returns:	A new instance of this type of resource with the
updated attribute. On errors an exception is thrown.

	Return type:	Resource

	
classmethod where(session, include=None, metadata=None, filter=None)

	Get filtered resources of the given resource class.

This should be called on sub-classes only.

The include argument allows relationship fetches to be
optimized by including the target resources in the request of
the containing resource. For example:

.. code-block:: python

org = Organization.singleton(session, include=[Sensor])
org.sensors(use_included=True)

Will fetch the sensors for the authorized organization as part
of retrieving the organization. The use_included forces
the use of included resources and avoids making a separate
request to get the sensors for the organization.

The metadata argument enables filtering on resources that
support metadata filters. For example:

.. code-block:: python

sensors = Sensor.where(session, metadata={ ‘asset_id’: ‘23456’ })

Will fetch all sensors that match the given metadata attribute.

The filter argument enables filtering the resulting resources
based on a passed in function. For example:

.. code-block::python

sensors = Sensor.where(session, filter=lambda s: s.name.startswith(“a”))

Will fetch all sensors and apply the given filter to only
return sensors who’s name start with the given string.

	Parameters:	session (Session) – The session to look up the resources in

	Keyword Arguments:

	 	
	incldue (list) – The resource classes to include in the
request.

	metadata (dict or list) – The metadata filter to apply

	Returns:	
	An iterator over all found resources

	of this type

	Return type:	iterable(Resource)

	
class helium.resource.ResourceMeta(json)

	Bases: helium.resource.Base

Meta information for a resource.

Every Resource object in the Helium API has an associated
meta object that represents system information for the given
resource.

Most of this information is specific to the given resource, but
all meta instances have at least a created and updated
attribute which are timestamps of when the resource was created
and last updated, respectively. These timestamps are in ISO8601
format. To convert them to datetime`s use the `from_iso_date
utility function.

helium.sensor module

The sensor resource.

	
class helium.sensor.Sensor(json, session, include=None, included=None)

	Bases: helium.device.Device

	
element(use_included=False)

	Fetch the element associated with this Sensor.

	Returns:	The Element of this Sensor

	Return type:	Element

	
labels(use_included=False, filter=None)

	Fetch the labels associated with this Sensor.

	Returns:	The labels of Sensor

	Return type:	iterable(Label)

	
metadata()

	Fetch the metadata for this Sensor.

	Returns:	The Metadata for this Sensor

	
timeseries(**kwargs)

	Fetch the timeseries for this Sensor.

	Returns:	The Timeseries for this Sensor

	Keyword Arguments:

	 	**kwargs – The Timeseries object constructor arguments.

helium.session module

The root entry point for a client to the Helium API.

	
class helium.session.CB

	Bases: object

Convenience callback functions for sessions.

This class offers up convenience callback builders that make it
easy to use the callback session API to behave like a synchronous
API.

	
classmethod boolean(true_code, false_code=None)

	Callback to validate a response code.

The returned callback checks whether a given response has a
status_code that is considered good (true_code) and
raise an appropriate error if not.

The optional false_code allows for a non-successful status
code to return False instead of throwing an error. This is used,
for example in relationship mutation to indicate that the
relationship was not modified.

	Parameters:	true_code (int) – The http status code to consider as a success

	Keyword Arguments:

	 	false_code (int) – The http status code to consider a failure

	Returns:	
	A function that given a response returns True if the

	response’s status code matches the given code. Raises
a HeliumError if the response code does not
match.

	
classmethod json(status_code, process)

	Callback to validate and extract a JSON object.

The returned callback checks a given response for the given
status_code using :function:`response_boolean`. On success the
response JSON is parsed and returned.

	Parameters:	status_code (int) – The http status code to consider a success

	Returns:	
	A function that given a response returns the JSON object

	in the given response. Raises a HeliumError if
the response code does not match.

	
class helium.session.Response

	Bases: helium.session.Response

	
json()

	

	
class helium.session.Session(adapter=None, api_token=None, base_url=u'https://api.helium.com/v1')

	Bases: object

Manages a session with Helium Service.

A session with the Helium service. A session is mostly a front for
an underlying adapter that implements the details of requesting
and handling the responses. Using the adapters allows the use of
different syncrhonous and asynchronous approaches. The default
adapter is a synchronous requests based adapter.

	
api_token

	The API token for to use for this session.

	
datapoints(timeseries)

	

	
delete(url, callback, json=None)

	Delete a URL.

	Parameters:	
	url (string) – URL for the request

	callback (func) – The response callback function

	Keyword Arguments:

	 	json (dict) – JSON body for the request

	Returns:	
	The result of the callback handling the resopnse from the

	executed request

	
get(url, callback, params=None, json=None, headers=None)

	Get a URL.

	Parameters:	callback (func) – The response callback function

	Keyword Arguments:

	 	
	params (dict) – Parameters for the request

	json (dict) – JSON body for the request

	headers (dict) – Additional headers for the request

	Returns:	
	The result of the callback handling the resopnse from the

	executed request

	
live(url, resource_class, resource_args, params=None)

	Get a live endpoint.

	Parameters:	
	url (string) – URL for the request

	resource_class (class) – The class to use for entries coming
from the live endpoint.

	resource_args (dict) – Additional arguments to pass to the
resource_class constructor

	Keyword Arguments:

	 	params (dict) – Request parameters for the live url

	Returns:	
	An iterator over the live endpoint. Depending on the

	adapter the iterator will allow asynchronous
behavior. The default adapter will block while
iterating over the response of this method.

	
patch(url, callback, params=None, json=None, headers=None)

	Patch a URL.

	Parameters:	
	url (string) – URL for the request

	callback (func) – The response callback function

	headers (dict) – HTTP headers for the request

	Keyword Arguments:

	 	
	params (dict) – Parameters for the request

	json (dict) – JSON body for the request

	Returns:	
	The result of the callback handling the resopnse from the

	executed request

	
post(url, callback, params=None, json=None, headers=None, files=None)

	Post to a URL.

	Parameters:	
	url (string) – URL for the request

	callback (func) – The response callback function

	headers (dict) – HTTP headers for the request

	Keyword Arguments:

	 	
	params (dict) – Parameters for the request

	json (dict) – JSON body for the request

	Returns:	
	The result of the callback handling the resopnse from the

	executed request

	
put(url, callback, params=None, json=None, headers=None)

	Put to a URL.

	Parameters:	
	url (string) – URL for the request

	callback (func) – The response callback function

	Keyword Arguments:

	 	
	params (dict) – Parameters for the request

	json (dict) – JSON body for the request

	headers (dict) – HTTP headers for the request

	Returns:	
	The result of the callback handling the resopnse from the

	executed request

helium.timeseries module

Helium Timeseries functionality.

	
helium.timeseries.AggregateValue

	alias of agg

	
class helium.timeseries.DataPoint(json, session, **kwargs)

	Bases: helium.resource.Resource

Data points for timeseries.

	
sensor_id

	The id of the sensor of this data point.

	Returns:	The id of the sensor that generated this datapoint. Will
throw an AttributeError if no sensor id was found in the
underlyign data.

	
class helium.timeseries.Timeseries(session, resource_class, resource_id, datapoint_class=<class 'helium.timeseries.DataPoint'>, datapoint_id=None, page_size=None, direction=u'prev', start=None, end=None, agg_size=None, agg_type=None, port=None)

	Bases: _abcoll.Iterable

A timeseries readings container.

Instances of this class represents a single timeseries query. A
timeseries will automatically page forward or backward through the
pages returned from the Helium API to return data points that fit
within the given arguments.

The timeseries instance is an Iterable which can be used
to lazily iterate over very large timeseries data sets. The
returned timeseries object will not actually start making any
requests to the Helium API until you start iterating over it.

For example, given:

@timeseries()
class Sensor(Resource):
 pass

You can request a timeseries using:

Fetch a sensor
timeseries = sensor.timeseries()

Get the first 10 readings
first10 = timeseries.take(10)

Note that each call to sensor.timeseries() will return a new
timeseries object which you can iterate over.

You can filter timeseries data by specifying port, start
or end dates. Note that start and end dates support a relaxed
form of ISO8601:

timeseries = sensor.timeseries(start='2016-09-01',
 end='2016-04-07T19:12:06Z')

You can aggregate numeric timeseries data by specifying
agg_type and agg_size. For example, to aggregate minimum,
maximum and average temperature readings in 6 hour buckets:

timeseries = sensor.timeseries(agg_type='min,max,avg',
 agg_size='6h',
 port='t')

The resulting data points will have an aggregate value that will
contain the requested aggregates as attributes:

first = list(islice(timeseries, 1))[0]
print(first.value.min)

	
create(port, value, timestamp=None)

	Post a new reading to a timeseries.

A reading is comprised of a port, a value and a timestamp.

A port is like a tag for the given reading and gives an
indication of the meaning of the value.

The value of the reading can be any valid json value.

The timestamp is considered the time the reading was taken, as
opposed to the created time of the data-point which
represents when the data-point was stored in the Helium
API. If the timestamp is not given the server will construct a
timestemp upon receiving the new reading.

	Parameters:	
	port (string) – The port to use for the new data-point

	value – The value for the new data-point

	Keyword Arguments:

	 	timestamp (datetime) – An optional datetime object

	
live()

	Get a live stream of timeseries readings.

This returns an Iterable over a live stream of readings. Note
that the result will need to be closed since the system can
not tell when you’ll be done with it.

You can either call close on the endpoint when you’re or
use the context management facilities of the endpoint.

Fetch a sensor
timeseries = sensor.timeseries()

ensure live endpoint closed
with timeseries.live() as live:
 # Wait for 10 readings
 first10 = list(islice(live, 10))

Returns:

	
take(n)

	Return the next n datapoints.

	Parameters:	n (int) – The number of datapoints to retrieve

	Returns:	A list of at most n datapoints.

	
helium.timeseries.timeseries()

	Create a timeseries builder.

	Returns:	A builder function which, given a class creates a timeseries
relationship for that class.

helium.user module

The user resource.

	
class helium.user.User(json, session, include=None, included=None)

	Bases: helium.resource.Resource

An authorized user of the Helium API.

A user represents a single developer using the Helium API. Each
user gets their own API key, which gives them access to all the
resources in the Organization that the user belongs to.

helium.util module

Utility functions.

	
helium.util.build_request_body(type, id, attributes=None, relationships=None)

	Build a request body object.

A body JSON object is used for any of the update or create
methods on Resource subclasses. In normal library use you
should not have to use this function directly.

	Parameters:	
	type (string) – The resource type for the attribute

	id (uuid) – The id of the object to update. This may be None

	Keyword Arguments:

	 	
	attributes (dict) – A JSON dictionary of the attributes to set

	relationships (dict) –

	Returns:	
	A valid attribute dictionary. Often used in the update or

	create Resource` methods.

	
helium.util.build_request_include(include, params)

	Augment request parameters with includes.

When one or all resources are requested an additional set of
resources can be requested as part of the request. This function
extends the given parameters for a request with a list of resource
types passed in as a list of Resource subclasses.

	Parameters:	
	include ([Resource class]) – A list of resource classes to include

	params (dict) – The (optional) dictionary of request parameters to extend

	Returns:	An updated or new dictionary of parameters extended with an
include query parameter.

	
helium.util.build_request_relationship(type, ids)

	Build a relationship list.

A relationship list is used to update relationships between two
resources. Setting sensors on a label, for example, uses this
function to construct the list of sensor ids to pass to the Helium
API.

	Parameters:	
	type (string) – The resource type for the ids in the relationship

	ids ([uuid] or uuid) – Just one or a list of resource uuids to use
in the relationship

	Returns:	A ready to use relationship JSON object.

	
helium.util.from_iso_date(str)

	Convert an ISO8601 to a datetime.

	Parameters:	str (string) – The ISO8601 formatted string to convert

	Returns:	A datetime object representing the given time

	
helium.util.to_iso_date(timestamp)

	Convert a UTC timestamp to an ISO8601 string.

datetime instances can be constructed in alternate timezones. This
function assumes that the given timestamp is in the UTC timezone.

	Parameters:	timestamp (datetime) – A datetime object in the UTC timezone.

	Returns:	An ISO8601 formatted string representing the timestamp.

helium.adapter package

A module for adapting Helium Sessions.

Submodules

helium.adapter.aiohttp module

helium.adapter.requests module

An adapter for the standard blocking requests library.

	
class helium.adapter.requests.Adapter

	Bases: requests.sessions.Session

A synchronous adapter based on the requests library.

	
api_token

	The API token to use.

	
datapoints(timeseries)

	

	
delete(url, callback, json=None)

	

	
get(url, callback, params=None, json=None, headers=None)

	

	
live(session, url, resource_class, resource_args, params=None)

	

	
patch(url, callback, params=None, json=None, headers=None)

	

	
post(url, callback, params=None, json=None, headers=None, files=None)

	

	
put(url, callback, params=None, json=None, headers=None)

	

	
take(iter, n)

	

	
class helium.adapter.requests.DatapointIterator(timeseries)

	Bases: _abcoll.Iterator

Iterator over a timeseries endpoint.

	
next()

	Python 2 iterator compatibility.

	
class helium.adapter.requests.LiveIterator(response, session, resource_class, resource_args)

	Bases: _abcoll.Iterable

Iterable over a live endpoint.

	
close()

	Close the live session.

	
take(n)

	Return the next n datapoints.

	Parameters:	n (int) – The number of datapoints to retrieve

	Returns:	A list of at most n datapoints.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 helium	

 	
 	
 helium.adapter	

 	
 	
 helium.adapter.requests	

 	
 	
 helium.client	

 	
 	
 helium.element	

 	
 	
 helium.exceptions	

 	
 	
 helium.label	

 	
 	
 helium.metadata	

 	
 	
 helium.organization	

 	
 	
 helium.relations	

 	
 	
 helium.resource	

 	
 	
 helium.sensor	

 	
 	
 helium.session	

 	
 	
 helium.timeseries	

 	
 	
 helium.user	

 	
 	
 helium.util	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	Adapter (class in helium.adapter.requests)

 	add_elements() (helium.Label method)

 	(helium.label.Label method)

 	add_sensors() (helium.Label method)

 	(helium.label.Label method)

 	AggregateValue (in module helium)

 	(in module helium.timeseries)

 	all() (helium.Resource class method)

 	(helium.resource.Resource class method)

 	
 	api_token (helium.adapter.requests.Adapter attribute)

 	(helium.Session attribute)

 	(helium.session.Session attribute)

 	authorized_organization() (helium.Client method)

 	(helium.client.Client method)

 	authorized_user() (helium.Client method)

 	(helium.client.Client method)

B

 	
 	Base (class in helium)

 	(class in helium.resource)

 	boolean() (helium.CB class method)

 	(helium.session.CB class method)

 	build_request_body() (in module helium)

 	(in module helium.util)

 	
 	build_request_include() (in module helium)

 	(in module helium.util)

 	build_request_relationship() (in module helium)

 	(in module helium.util)

C

 	
 	CB (class in helium)

 	(class in helium.session)

 	Client (class in helium)

 	(class in helium.client)

 	ClientError, [1]

 	close() (helium.adapter.requests.LiveIterator method)

 	Configuration (class in helium)

 	
 	configuration() (helium.DeviceConfiguration method)

 	create() (helium.DeviceConfiguration class method)

 	(helium.Label class method)

 	(helium.Resource class method)

 	(helium.Timeseries method)

 	(helium.label.Label class method)

 	(helium.resource.Resource class method)

 	(helium.timeseries.Timeseries method)

D

 	
 	DataPoint (class in helium)

 	(class in helium.timeseries)

 	DatapointIterator (class in helium.adapter.requests)

 	datapoints() (helium.adapter.requests.Adapter method)

 	(helium.Session method)

 	(helium.session.Session method)

 	delete() (helium.adapter.requests.Adapter method)

 	(helium.Resource method)

 	(helium.Session method)

 	(helium.resource.Resource method)

 	(helium.session.Session method)

 	
 	Device (class in helium)

 	device() (helium.DeviceConfiguration method)

 	device_configuration() (helium.Device method)

 	device_configurations() (helium.Configuration method)

 	(helium.Device method)

 	DeviceConfiguration (class in helium)

 	DIRECT (helium.relations.RelationType attribute)

 	(helium.RelationType attribute)

E

 	
 	Element (class in helium)

 	(class in helium.element)

 	element() (helium.Sensor method)

 	(helium.sensor.Sensor method)

 	elements() (helium.Label method)

 	(helium.Organization method)

 	(helium.label.Label method)

 	(helium.organization.Organization method)

 	
 	Error, [1]

 	error_for() (in module helium.exceptions)

F

 	
 	find() (helium.Resource class method)

 	(helium.resource.Resource class method)

 	
 	from_iso_date() (in module helium)

 	(in module helium.util)

G

 	
 	get() (helium.adapter.requests.Adapter method)

 	(helium.Session method)

 	(helium.session.Session method)

H

 	
 	helium (module)

 	helium.adapter (module)

 	helium.adapter.requests (module)

 	helium.client (module)

 	helium.element (module)

 	helium.exceptions (module)

 	helium.label (module)

 	helium.metadata (module)

 	
 	helium.organization (module)

 	helium.relations (module)

 	helium.resource (module)

 	helium.sensor (module)

 	helium.session (module)

 	helium.timeseries (module)

 	helium.user (module)

 	helium.util (module)

I

 	
 	INCLUDE (helium.relations.RelationType attribute)

 	(helium.RelationType attribute)

 	
 	is_loaded() (helium.DeviceConfiguration method)

 	is_singleton() (helium.Resource method)

 	(helium.resource.Resource method)

J

 	
 	json() (helium.CB class method)

 	(helium.session.CB class method)

 	(helium.session.Response method)

L

 	
 	Label (class in helium)

 	(class in helium.label)

 	label() (helium.Client method)

 	(helium.client.Client method)

 	labels() (helium.Client method)

 	(helium.Element method)

 	(helium.Organization method)

 	(helium.Sensor method)

 	(helium.client.Client method)

 	(helium.element.Element method)

 	(helium.organization.Organization method)

 	(helium.sensor.Sensor method)

 	
 	live() (helium.adapter.requests.Adapter method)

 	(helium.Session method)

 	(helium.Timeseries method)

 	(helium.session.Session method)

 	(helium.timeseries.Timeseries method)

 	LiveIterator (class in helium.adapter.requests)

M

 	
 	message (helium.Error attribute)

 	(helium.exceptions.Error attribute)

 	Metadata (class in helium)

 	(class in helium.metadata)

 	metadata() (helium.Element method)

 	(helium.Label method)

 	(helium.Organization method)

 	(helium.Sensor method)

 	(helium.element.Element method)

 	(helium.label.Label method)

 	(helium.organization.Organization method)

 	(helium.sensor.Sensor method)

 	(in module helium)

 	(in module helium.metadata)

N

 	
 	next() (helium.adapter.requests.DatapointIterator method)

 	
 	NotFoundError, [1]

O

 	
 	Organization (class in helium)

 	(class in helium.organization)

P

 	
 	patch() (helium.adapter.requests.Adapter method)

 	(helium.Session method)

 	(helium.session.Session method)

 	post() (helium.adapter.requests.Adapter method)

 	(helium.Session method)

 	(helium.session.Session method)

 	
 	put() (helium.adapter.requests.Adapter method)

 	(helium.Session method)

 	(helium.session.Session method)

R

 	
 	RelationType (class in helium)

 	(class in helium.relations)

 	remove_elements() (helium.Label method)

 	(helium.label.Label method)

 	remove_sensors() (helium.Label method)

 	(helium.label.Label method)

 	
 	replace() (helium.Metadata method)

 	(helium.metadata.Metadata method)

 	Resource (class in helium)

 	(class in helium.resource)

 	ResourceMeta (class in helium)

 	(class in helium.resource)

 	Response (class in helium.session)

S

 	
 	Sensor (class in helium)

 	(class in helium.sensor)

 	sensor() (helium.Client method)

 	(helium.client.Client method)

 	sensor_id (helium.DataPoint attribute)

 	(helium.timeseries.DataPoint attribute)

 	sensors() (helium.Client method)

 	(helium.Element method)

 	(helium.Label method)

 	(helium.Organization method)

 	(helium.client.Client method)

 	(helium.element.Element method)

 	(helium.label.Label method)

 	(helium.organization.Organization method)

 	
 	ServerError, [1]

 	Session (class in helium)

 	(class in helium.session)

 	singleton() (helium.Resource class method)

 	(helium.resource.Resource class method)

T

 	
 	take() (helium.adapter.requests.Adapter method)

 	(helium.Timeseries method)

 	(helium.adapter.requests.LiveIterator method)

 	(helium.timeseries.Timeseries method)

 	Timeseries (class in helium)

 	(class in helium.timeseries)

 	timeseries() (helium.Element method)

 	(helium.Label method)

 	(helium.Organization method)

 	(helium.Sensor method)

 	(helium.element.Element method)

 	(helium.label.Label method)

 	(helium.organization.Organization method)

 	(helium.sensor.Sensor method)

 	(in module helium)

 	(in module helium.timeseries)

 	
 	to_iso_date() (in module helium)

 	(in module helium.util)

 	to_many() (in module helium)

 	(in module helium.relations)

 	to_one() (in module helium)

 	(in module helium.relations)

U

 	
 	update() (helium.Metadata method)

 	(helium.Resource method)

 	(helium.metadata.Metadata method)

 	(helium.resource.Resource method)

 	update_elements() (helium.Label method)

 	(helium.label.Label method)

 	
 	update_sensors() (helium.Label method)

 	(helium.label.Label method)

 	User (class in helium)

 	(class in helium.user)

 	users() (helium.Organization method)

 	(helium.organization.Organization method)

W

 	
 	where() (helium.Resource class method)

 	(helium.resource.Resource class method)

helium

	helium package
	Subpackages
	helium.adapter package
	Submodules

	helium.adapter.aiohttp module

	helium.adapter.requests module

	Submodules

	helium.client module

	helium.element module

	helium.exceptions module

	helium.label module

	helium.metadata module

	helium.organization module

	helium.relations module

	helium.resource module

	helium.sensor module

	helium.session module

	helium.timeseries module

	helium.user module

	helium.util module

 nav.xhtml

 Table of Contents

 		Welcome to helium's documentation!

 		helium package

 		Subpackages

 		helium.adapter package

 		Submodules

 		helium.client module

 		helium.element module

 		helium.exceptions module

 		helium.label module

 		helium.metadata module

 		helium.organization module

 		helium.relations module

 		helium.resource module

 		helium.sensor module

 		helium.session module

 		helium.timeseries module

 		helium.user module

 		helium.util module

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

