
helga Documentation
Release stable

January 01, 2015

Contents

1 About 1

2 Requirements 3

3 Getting Started 5

4 Default Settings 7
4.1 Local Development . 8

5 Plugins 9
5.1 Overview . 9
5.2 Plugin Types . 10
5.3 Preprocessors . 11
5.4 Complex plugins . 11
5.5 Plugin Priorities . 11
5.6 Publishing plugins . 12
5.7 Webhooks . 12
5.8 Third Party Plugins . 13

6 Tests 15

7 Contributing 17

8 License 19

i

ii

CHAPTER 1

About

A python-based IRC bot using Twisted. Original inspiration came from olga. Why re-implement another bot? Because
olga is written in perl, and I wanted something a bit more sane to look at.

1

https://github.com/thepeopleseason/olga

helga Documentation, Release stable

2 Chapter 1. About

CHAPTER 2

Requirements

All requirements for helga are listed in requirements.txt. However, there is a single external requirement, and
that is MongoDB. You don’t need it, per se, but many of the included plugins use MongoDB for storing consistent
state between restarts.

3

helga Documentation, Release stable

4 Chapter 2. Requirements

CHAPTER 3

Getting Started

Start by creating a virtualenv where helga will reside:

$ virtualenv helga
$ cd helga
$ source bin/activate

Then grab the latest copy and install requirements:

$ git clone https://github.com/shaunduncan/helga src/helga
$ cd src/helga
$ python setup.py develop

Once you have performed the above steps, there will be a helga executable placed in the bin dir of your virtualenv.
Run helga by calling this:

$ helga

Note that this uses the default settings file, helga.settings to start. You can, and should, use your own custom
setttings. The behavior of a custom settings file is to preserve defaults in helga.settings and apply overrides. For this
reason, you do not need to apply all configuration settings known to helga. To use a custom settings file, either export
an environment variable HELGA_SETTINGS or use the --settings argument:

$ helga --settings=foo.bar

Note that this should be a string that is either an importable python module like foo.bar.baz or a filesystem path
like /foo/bar/baz.py.

5

helga Documentation, Release stable

6 Chapter 3. Getting Started

CHAPTER 4

Default Settings

As mentioned above, there is a default helga.settings module. This contains some basic helga settings, as
outlined below:

• SERVER: A dictionary containing server connection info. At minimum, keys ‘HOST’ and ‘PORT’ are required
and default to ‘localhost’ and ‘6667’ respectively. Optional keys include ‘SSL’ which if True, will connect to
‘HOST’ using SSL, and ‘USERNAME’ and ‘PASSWORD’ if the IRC server requires authentication.

• LOG_LEVEL: String for the default logging level (default: ‘DEBUG’)

• LOG_FILE: If set, a string indicating the log file for python logs

• PLUGIN_PRIORITY_LOW: The value for ‘low’ priority plugins (see “Plugin Priorities” below). Default 25.

• PLUGIN_PRIORITY_NORMAL: The value for ‘normal’ priority plugins (see “Plugin Priorities” below). De-
fault 50.

• PLUGIN_PRIORITY_HIGH: The value for ‘high’ priority plugins (see “Plugin Priorities” below). Default 75.

• COMMAND_ARGS_SHLEX: Control the behavior of argument parsing for command plugins By default this is
a naive str.split(‘ ‘), however a plugin may need this behavior to be a bit more robust. By setting this value
to True, shlex.split() will be used instead so that commands like helga foo bar "baz qux" will yield
an argument list like [’bar’, ‘baz qux’] instead of [’bar’, “‘baz’, ‘qux”’]. Shlex splits will be the default and
only supported behavior in a future version. This can also be used per plugin by passing shlex=True to an
@command decorator (described below in “Plugin Types”)

• CHANNEL_LOGGING: If True, enable conversation logging on all channels (default: False)

• CHANNEL_LOGGING_DIR: If using channel logs, the directory to which channel logs should logs should be
written. A new directory will be created for each channel in which the bot resides, so if this is set to ‘/foo/bar’
logs for channel ‘#baz’ will be created in ‘/foo/bar/#baz’. (default: ‘.logs’)

• CHANNEL_LOGGING_HIDE_CHANNELS: A list of channel names (either with or without a ‘#’ prefix) that
will be hidden in the channel log browser web ui. They will still be accessible via direct URL access, but they
will not immediately be shown on the full channel list.

• NICK: The default nick of the bot instance (default: ‘helga’)

• CHANNELS: A list of channels to automatically join. You can specify either a single channel name or a two-tuple
of channel name, and password (default: [’#bots’])

• AUTO_RECONNECT: Should the bot automatically reconnect on connection lost? (default: True)

• AUTO_RECONNECT_DELAY: Time, in seconds, between reconnect attempts (default: 5)

• RATE_LIMIT: Message rate limit for messages sent over IRC. Default is None implying no limit.

• OPERATORS: List of IRC nicks that should be considered operators/administrators.

7

helga Documentation, Release stable

• DATABASE: A dictionary containing connection info for MongoDB. The minimum settings that should exist
here are ‘HOST’, the MongoDB host, ‘PORT, the MongoDB port, and ‘DB’ which should be the MongoDB
database to use. These values default to ‘localhost’, 27017, and ‘helga’ respectively without any overrides. Both
‘USERNAME’ and ‘PASSWORD’ can be specified if MongoDB requires authentication.

• TIMEZONE: The default timezone for the bot instance (default: ‘US/Eastern’)

• ENABLED_PLUGINS: A list of plugin names that should be enabled automatically for any channel. Note that
this does not mean plugins that are loaded. By default, any plugin that has been installed will be loaded and
made available. This should be a list of the entry point names defined by each plugin. See below for information
about this.

• ENABLED_WEBHOOKS: A list of webhook names that should be enabled on process startup. If this value is
None, then all webhooks available are loaded via entry points. An empty liste will not load any webhooks.
Default is None.

• PLUGIN_FIRST_RESPONDER_ONLY: If True, only the first plugin that generates a response will be sent back
via IRC. If False, all plugin responses are sent. (default: True)

• COMMAND_PREFIX_BOTNICK: If set to True, command plugins can be run by asking directly, such as ‘helga
foo_command’. (default: True)

• COMMAND_PREFIX_CHAR: If non-empty, this char can be used to invoke a command without requiring the
bot’s nick. For example ‘helga foo’ could be run with ‘!foo’. (default: ‘!’)

• FACTS_REQUIRE_NICKNAME: Boolean, if True, would require the bot’s nick to show a stored fact. For
example, if True, ‘foo?’ could only be shown with ‘helga foo?’. (default: False)

• JIRA_URL: A URL format for showing JIRA links. This should contain a format parameter ‘{ticket}’. (default:
‘http://localhost/{ticket}’)

• JIRA_REST_API: If non-empty, this should be the URL for a JIRA REST API for the JIRA
plugin to use. Must like JIRA_URL, this should contain a format parameter ‘{ticket}’. Note
that this requires a minmum JIRA version to work, one that has the updated REST api. See
https://docs.atlassian.com/software/jira/docs/api/REST/latest/.

• JIRA_SHOW_FULL_DESCRIPTION: Boolean, if False, only the formatted JIRA_URL will be returned. If
True, a full ticket title will be shown. This requires JIRA_REST_API to be set. (default: False)

• JIRA_AUTH: A two-tuple of JIRA credentials, username and password. (default: (‘’, ‘’))

• REVIEWBOARD_URL: A URL format for showing ReviewBoard links. This should contain a format parameter
‘{review}’. (default: ‘http://localhost/{review}’)

• WIKI_URL: A URL format for showing user pages on a wiki, such as example.com/~user. This should contian
a format parameter ‘{user}’. (default: ‘http://localhost/{user}’)

• WEBHOOKS_PORT: The port the webhooks plugin should listen for http requests. (default: 8080)

• WEBHOOKS_CREDENTIALS: List of two-tuple username and passwords used for http basic authentication.
(default: none).

4.1 Local Development

The included Vagrantfile will let you spin up a VM to run both MongoDB and an IRC server for local development.
Once you’ve followed the previous instructions for installing helga, simply vagrant up. This will forward host
ports 6667 (irc) and 27017 (mongo) to the guest. At this point, simply runing helga from the command line will
connect to this VM.

8 Chapter 4. Default Settings

http://localhost
https://docs.atlassian.com/software/jira/docs/api/REST/latest/
http://localhost
http://localhost

CHAPTER 5

Plugins

5.1 Overview

Helga supports plugins outside of the core source code. Plugins have a minimal API, but there are some basic rules
that should be followed. All core plugin implementations can be found in helga.plugins.core. The basic
requirement for plugins is that they have a process attribute that is a callable and determines if the plugin should
handle a message, and a run method that actually performs the legwork of what the plugin should do. By convention,
the process method should accept four arguments:

• client: an instance of helga.comm.Client

• channel: the channel on which the message was received

• nick: the current nick of the message sender

• message: the message string itself

The run is a bit different as it is up to the plugin implementation itself to decide what arguments are necessary to
generate a response. This method should be called by process and should return one of:

• None or empty string, if no response is to be sent over IRC

• Non-empty string for a single line response

• List of strings for multiline responses

Really, as long as you follow the above conventions, you can write plugins however you wish. However, you should try
to keep plugins simple and use the included decorators command, match, and preprocessor (explained later).
However, if you prefer writing a plugin as a class, you can subclass the included Plugin base class, provided you
have followed the above rules. Here is a simple example:

import time
from helga.plugins.core import Plugin

class MyPlugin(Plugin):
def run(self, channel, nick, message):

return u’Current timestamp: {0}’.format(time.time())

def process(self, channel, nick, message):
if message.startswith(’!time’):

return self.run(channel, nick, message)

NOTE the previous example is not the preferred way. You should use the included decorators instead (shown below).

9

helga Documentation, Release stable

5.1.1 A Tale of Unicode

Plugins should try to deal with unicode as much as possible. This is important as all arguments a plugin receives will be
unicode strings and not byte strings. This process happens automatically as all strings received over IRC are decoded
as UTF-8 an converted to unicode. If a plugin returns a string response that is unicode, it will be encoded as UTF-8
prior to being sent over IRC. To help deal with this, there are two helpful methods in helga.util.encodings to
convert to/from unicode: to_unicode and from_unicode.

5.2 Plugin Types

For the most part, there are two main types of plugins: commands and matches. Commands are plugins that re-
quire a user to specifically ask for helga to perform some action. For example, helga haiku or helga google
something to search. Matches are on the other hand are intended to be autoresponders that give some extra
meaning or context to what a user has said. For example, if helga matches for a string “foo”:

<sduncan> i’m talking about foo in this message <helga> sduncan is talking about foo

For the sake of simplicity, there are two convenient decorators for authoring these types of plugins (which is usually
the case). For example:

from helga.plugins import command, match

@command(’foo’, aliases=[’foobar’], help="The foo command")
def foo(client, channel, nick, message, cmd, args):

This is run on "helga foo" or "helga foobar"
return u"Running the foo command"

@match(r’bar’)
def bar(client, channel, nick, message, matches):

This will run whenever a user mentions the word ’bar’
return u"{0} said bar!".format(nick)

You may notice in the above example that each decorated function accepts different arguments. For commands, there
are two additional arguments cmd and args. The former is the parsed command that was used to run the method
(which could be “foo” in the above case, or the alias “foobar”). The latter is a list of whitespace delimited strings that
follow the parsed commend. For example helga foo a b c would mean the args param would be [’a’, ’b’,
’c’].

For the match plugin, the single additional argument is matches which is for the most part, the result of
re.findall. However, the @match decorator accepts a callable in place of a regex string. This callable should
accept one argument: the message being processed. It should return a value that can be evaluated for truthiness and
will be passed to the decorated function as the matches parameter.

Command plugins currently have multiple ways of parsing argument strings. The old way that will be deprecated in
a future version is naive whitespace splitting. For example, the command helga foo bar "baz qux" would
produce args [’bar’, ’"baz’, ’qux"’]. This may not be ideal for some plugins. To get around this, you
can optionally pass shlex=True to your command decorator like @command(’foo’, shlex=True). With
this enabled, the command helga foo bar "baz qux" would produce args [’bar’, ’baz qux’]. This
behavior will become the default in a future version. You can also enable this behavior globally by setting COM-
MAND_ARGS_SHLEX to True in your settings file.

10 Chapter 5. Plugins

helga Documentation, Release stable

5.3 Preprocessors

Plugins can also be message preprocessors. These are callables that may perform some modification on an incoming
message prior to that message being delivered to any plugins. Preprocessors should accept arguments (in order) for
client, channel, nick, and message and should return a three-tuple consisting of (in order) channel, nick,
and message. To declare a function as a preprocessor, a convenient decorator can be used:

from helga.plugins import preprocessor

@preprocessor
def blank_message(client, channel, nick, message):

return channel, nick, u’’

5.4 Complex plugins

Some plugins do both matching and act as a command. For this reason, plugin decorators are chainable. However,
remember that different plugin types expect decorated functions to accept different arguments. It is best to accept
*args for these:

from helga.plugins import command, match, preprocessor

@preprocessor
@match(r’bar’)
@command(’foo’)
def complex(client, channel, nick, message, *args):

len(args) == 0 for preprocessors
len(args) == 1 for matches
len(args) == 2 for commands

5.5 Plugin Priorities

You can control the priority in which a plugin is run. Note though, that preprocessors will always run first.
A priority value should be an integer value. There are no limits or bounds for this value, but know that a
higher value will mean a higher priority. If you are writing Plugin subclass style plugins, you will need
to set a priority attribute of your object. This is done automatically if you call super(MyClass,
self).__init__(priority=some_value) in your class’s __init__.

However, if you are using the preferred decorator style for writing plugins, you can supply a priority keyword
argument to the decorator:

from helga import command, match, preprocessor

@preprocessor(priority=10)
def foo_preprocess(*args):

pass

@command(’foo’, priority=20)
def foo_command(*args):

pass

@match(r’foo’, priority=30)
def foo_match(*args):

pass

5.3. Preprocessors 11

helga Documentation, Release stable

For convenience, there are constants that can be used for setting priorities:

• PRIORITY_LOW = 25

• PRIORITY_NORMAL = 50

• PRIORITY_HIGH = 75

Also, each decorator/plugin type has its own default value for priority:

• Preprocessors have default priority of PRIORITY_NORMAL

• Commands have default priority of PRIORITY_NORMAL

• Matches have default priority of PRIORITY_LOW

The above priority values are defaults and can be tuned if necessary via settings overrides (see default settings above).

5.6 Publishing plugins

Helga uses setuptools entry points for plugin loading. Once you’ve written a plugin you wish to use, you will need
to make sure your python package’s setup.py contains an entry_point under the group name helga_plugins. For
example:

entry_points = {
’helga_plugins’: [

’plugin_name = mylib.mymodule:MyPluginClass’,
],

},

Note that if you are using decorated function for a plugin, you will want to specify the method name for your entry
point, i.e. mylib.mymodule:myfn.

5.7 Webhooks

As of helga version 1.3, there is an included plugin for exposing an HTTP server to support webhooks. This might
be useful if you need to have a public facing HTTP service that you would like to use to perform some sort of
announcement on a particular channel. This is also very extensible and should allow you to create new webhooks in a
very similar way plugins are created. This plugin is enabled by default and requires two settings: WEBHOOKS_PORT
and WEBHOOKS_CREDENTIALS. The former is of course the port on which to run this service. The latter should
be a list of tuples in the form of (username, password). These are used to perform HTTP basic authentication on any
webhook that requires it.

Webhook plugins work by declaring routes. This will not only feel similar to helga’s decorator style plugins, but it
will also feel very similar to anyone who has used something like Flask. There are two primary decorators you will
need to get started: route, which declares a function as a route endpoint, and authenticated, which ensures that
the route function cannot be called without proper HTTP basic authentication. Both of these can be imported from
helga.plugins.webhooks. For example:

from helga.plugins.webhooks import authenticated, route

@route(r’/foo/(?P<id>[0-9]+)’)
@authenticated
def foo(request, irc_client, id):

This will require auth
pass

12 Chapter 5. Plugins

helga Documentation, Release stable

@route(’/bar’, methods=[’POST’])
def bar(request, irc_client):

This will not require auth, and will only accept POST
pass

NOTE: For authenticated routes, you MUST specify @authenticated as the first decorator. This may be changed
in the future.

The route decorator accepts two arguments: 1) a path regular expression and 2) an optional list of HTTP methods to
accept. If you do not specify a list of HTTP methods, only GET requests will be served. All regex paths must be
named groups and they will be passed as keyword arguments.

Webhooks should return a string response, which will be returned to the requesting client as the content body of the
response. You can arbitrarily set response headers using the passed request argument. For example:

def foo(request, irc_client):
request.setResponseHeader(404)
return ’404 Not Found’

For convenience, if you would like to simplify settings resopnse status codes with an optional message, simply raise
helga.plugins.webhooks.HttpError:

from helga.plugins.webhooks import HttpError

def foo(request, irc_client):
raise HttpError(404)

To register a new webhook plugin, you must declare an entry_point much in the same way normal plugins are done.
However, the entry_point group name is helga_webhooks. For example:

entry_points = {
’helga_webhooks’: [

’name = mylib.mymodule:myhook’,
],

},

The webhook plugin itself has some commands for IRC interaction: start/stop to control the running HTTP listener,
and routes, which will show all the route paths and the HTTP methods they accept.

5.8 Third Party Plugins

Here are some plugins that have been written that you can use:

Plugin Description Link
ex-
cuses

Generate a response from
http://developerexcuses.com

https://github.com/alfredodeza/helga-excuses

haskell Evaluate Haskell expressions. https://github.com/carymrobbins/helga-haskell
isup Check downforeveryoneorjustme.com https://github.com/shaunduncan/helga-isup
karma Dish out karma points to other people https://github.com/coddingtonbear/helga-

karma
norris Generate Chuck Norris facts for users https://github.com/alfredodeza/helga-norris
up-
dates

List and record IRC channel updates. https://github.com/cobbdb/helga-contrib-
updates

zen The Zen of Python https://github.com/shaunduncan/helga-zen

Written a plugin? Send a pull request to be listed in the above table!

5.8. Third Party Plugins 13

http://developerexcuses.com
https://github.com/alfredodeza/helga-excuses
https://github.com/carymrobbins/helga-haskell
https://github.com/shaunduncan/helga-isup
https://github.com/coddingtonbear/helga-karma
https://github.com/coddingtonbear/helga-karma
https://github.com/alfredodeza/helga-norris
https://github.com/cobbdb/helga-contrib-updates
https://github.com/cobbdb/helga-contrib-updates
https://github.com/shaunduncan/helga-zen

helga Documentation, Release stable

14 Chapter 5. Plugins

CHAPTER 6

Tests

All tests are written to be run via tox. To run the test suite, inside your virtualenv:

$ cd src/helga
$ tox

15

helga Documentation, Release stable

16 Chapter 6. Tests

CHAPTER 7

Contributing

Contributions are welcomed, as well as any bug reports! Please note that any pull request will be denied if tests run
via tox do not pass

17

helga Documentation, Release stable

18 Chapter 7. Contributing

CHAPTER 8

License

Copyright (c) 2013 Shaun Duncan

Dual licensed under the MIT and GPL licenses.

19

https://github.com/shaunduncan/helga/blob/master/LICENSE-MIT
https://github.com/shaunduncan/helga/blob/master/LICENSE-GPL

	About
	Requirements
	Getting Started
	Default Settings
	Local Development

	Plugins
	Overview
	Plugin Types
	Preprocessors
	Complex plugins
	Plugin Priorities
	Publishing plugins
	Webhooks
	Third Party Plugins

	Tests
	Contributing
	License

