
HelCLI Documentation
Release 0.1.0

Alex Edwards

November 11, 2016

Contents

1 Getting Started 1
1.1 Project Layout . 1
1.2 Wrapping up . 2

2 Additional Arguments 3

i

ii

CHAPTER 1

Getting Started

This guide will walk you through setting up an example CLI project using HelCLI.

1.1 Project Layout

project-src/
project/

__init__.py
commands/

__init__.py
example-command.py

setup.py

1.1.1 project/__init__.py

This is where most of core CLI code will go, we need to instantiate the Class and run it inside of a function. When we
go to reference this with an entry point in setup.py we’ll need to remember the name we use. We will call it with the
main function as an example. Our entry point will then be project:main.

from helcli import HelCLI

def main():
cli = HelCLI(sub_commands='commands', description='A simple CLI')
cli.run()

Great! Now when project.main() is called it will execute our CLI. Take note that sub_commands is set to ‘commands’
this is the directory relative to our package (project) where our sub-commands for this CLI will go.

1.1.2 project/commands/__init__.py

Python requires this file to know that the commands directory is a submodule that we can import from. It’s fine to
leave this file blank, it just needs to exist.

1.1.3 project/commands/example-command.py

HelCLI will be looking for commands inside of the ‘commands’ directory which we set above. It will go through
every file in this directory when the run method is called on the HelCLI object and execute setup. This is where

1

HelCLI Documentation, Release 0.1.0

you should setup any command line arguments you expect for this command. Inside of the main method is what
should happen if someone is actually calling this command. The arguments you requested above will be passed to
main as a dictionary you can reference.

For this example let’s have example-command take one argument, name, and have the command print out ‘Hello
name!’. Note that it uses the argparse module to set this up.

def setup(parser, subparsers):
parser_example_command = subparsers.add_parser(

'example-command',
help='Prints "Hello <name>!"')

parser_example_command.add_argument(
'name',
help='The name to say hello to.')

def main(parser_d):
name = parser_d['name'] # retrieved from parser name argument
print 'Hello {}!'.format(name)

1.1.4 setup.py

Lastly is our setup file. This syntax isn’t specific to HelCLI, but is included for completeness.

from setuptools import setup, find_packages

setup(name='project',
version=0.0.1,
author='You',
author_email='you@mail.com',
packages=find_packages(),
install_requires=['helcli'],
entry_points={'console_scripts': [

'project = project:main',
]})

1.2 Wrapping up

Now you may pip install -e ./project-src and run the project command to have a fully functional
CLI.

2 Chapter 1. Getting Started

https://docs.python.org/dev/library/argparse.html

CHAPTER 2

Additional Arguments

You will likely need to pass additional variables to your commands in order for them to run properly. An example
would be a config object with all of your config options. This is accomplished by passing additional arguments to the
HelCLI object when instantiated.

In practice it looks like this:

from helcli import HelCLI

var_one = "test1"
var_two = "test2"
cli = HelCLI(sub_commands='command_dir',

description='A simple CLI',
var_one, var_two)

cli.run()

Then when it comes time to use this variable in the main function of all our commands these are available as an
additional variable.

def main(parser_d, additional_args):
unpack additional_args
var_one, var_two = additional_args
print(var_one) # prints "test1"
print(var_two) # prints "test2"

Note: If you pass additional arguments to the HelCLI object you will need to have the additional_args variable
passed in the main() function in all of your commands, or else you will get errors.

HelCLI is an opinionated way to create and organize your command line programs, and aims to help bootstrap the
process and provide a foundation that works for most use cases.

In the most simplest form, HelCLI requires three lines of code to have a functional command line program.

from helcli import HelCLI

cli = HelCLI(sub_commands='command_dir', description='A simple CLI')
cli.run()

To see some examples of HelCLI in use see the example project, or Getting Started.

3

https://github.com/sunshinekitty/helcli-example

	Getting Started
	Project Layout
	Wrapping up

	Additional Arguments

