

Welcome to Headlock’s documentation!

headlock is a python/C bridge with automatic binding generator and
focus on testing C code from python. For a more complete feature summary
refer to About.

	Current Version: 0.5.0

	PyPI: https://pypi.org/project/headlock

	Git Repository + Issuetracker: https://github.com/mrh1997/headlock

	Documentation: https://headlock.readthedocs.io

Contents:

	About

	Getting Started
	Requirements

	Installation

	Usage

	User Manual
	C/Python Proxy Objects

	The Testsetup

	Bridging Function Calls Between C And Python

	Reference

	Current Status Of Development
	Bugreports/Pullrequests

About

Headlock is designed as an adapter for testing C code
via tests written in python.
When being combined i.e. with pytest it provides a very powerful and
convenient way of writing (unit-/integration-) tests for C code.

This results in differents goals when being compared to other (excellent)
C/Python bridges like ctypes, cffi, swig, cython, …:

	All the extra steps usually required for C are done under the hood.
For the user adding a C file to a project is as simple as adding a
python file.
These steps done by headlock include:

	No need to create extra Makefiles/Buildscripts for unit testing a single
C module

	No need to run extra build steps before using the C code.

	No need to rewrite the C moduels interface definition (the header file)
in Python.

	Provide a simple, intuitive API for accessing C objects.
The philosophy of this API is to be as orthogonal as possible and
stick as near as possible to the corresponding C language operators/objects.
Thus the effort for learning it should be kept low.

	As being specially designed for unittesting, headlock includes
support for typical testing tasks:

	mock the underlying C modules in Python without any line of extra
wrapper code

	Vary not only the variables modifyable during runtime for testing
corner cases but also the preprocessor defines.

	Exceptions raised in python callbacks (or python mocks) are automaticially
forwarded to the calling python code by skipping the C-code-under-test via
setjmp() in case of an exception.

	[PLANNED] Run the C code in a separate address space to guarentee
real test isolation. This will not only prevent a crashing test from
crashing the whole test-runner, but especially avoids
that a misbehaving Module Under Test leaves the test process
in an undefined state. Otherwise in the worst case this could cause one of
the following tests to return different results than when being
run separately.

	[PLANNED] Test the same piece of C code compiled for 32bit and 64bit
from within a single testrun. This means it doesn’t matter what architecture
your python testcode is running on. As the C code is running in a separate
Process it can control both variants, 32bit and 64bit.

	Especially make it work with embedded systems, so that

	[PLANNED] C code can be executed on destination hardware.
This is primary useful for integration tests as it allows to
detect architecture specific problems (for non x86 hardware)
and timing issues.
Furthermore it allows to communicating with external components
instead of mocking them which might show problems that where
hidden by the mocks.

	development of (non-device-driver) embedded C code can be
done (via unittest) on a PC without the need to struggle
with embedded hardware.

	Integrates well with Testing tools (like unittest, pytest, …)

	[PLANNED] Being ToolChain agnostic via a plugin infrastructure.
This includes not only the compiler, but for example on embedded systems
also the infrastructure to load the firwmare into a device or communicate
with it.

Explicitly Non-Goals Are:

	High Performance (This does not mean that it is slow.
But if speed conflicts with one of the goals of this project,
there will be no compromises in favour of speed).

	Being self-contained
(At least LLVM and a C-compiler will always be required to be installed).

	Support for Python < 3.6

Getting Started

Requirements

The following prerequisites are required by headlock and
thus have to be installed before using it.
Currently it is only explicitly tested with the minimal version requirements.
Higher versions should work nevertheless.

	Windows or Linux are required

	CPython 3 [https://www.python.org/downloads/release]
Version 3.6 or higher is required

	LLVM [http://releases.llvm.org/download.html] (Version 7.0.0 or higher).

	GCC is required (in case of Windows
MinGW64 [http://mingw-w64.org/doku.php/download/mingw-builds] is needed).
Later other C compilers shall be supported!

Installation

The easiest way to install headlock is from
PyPI [https://pypi.org/project/headlock/] via pip. To Install the
most up-to-date stable release (0.5.0) run:

pip install headlock

Alternatively one can install the latest development branch directly
from the github repository [https://github.com/mrh1997/headlock] via

pip install git+https://github.com/mrh1997/headlock.git

Attention

AVIRA and maybe also other virus scanners seems to delay loading DLLs
compiled a moment ago by multiple seconds
(see this link) [https://hero.handmade.network/forums/code-discussion/t/2948-loadlibrary_very_slow].
As this feature is essential for headlock, you must add you project directory
to the list of directories, that shall not be scanned by the realtime
scanner. Otherwise the first instantiation of a testsetup will require
10-30 seconds per run.

Usage

The following sample demonstrates the basic features of headlock. That
is automaticially compile and load a piece of C code (including mocking and
prepocessor macros via command line) and calling it from python.

The following demo C code has 3 implementations for
incrementing a given integer by the macro INCREMENT_OFFSET
(has to be set via compiler command line):

int increment(int number)
{

 return number + INCREMENT_OFFSET;
}

void increment_inplace(int * number)
{
 *number += INCREMENT_OFFSET;
 return;
}

struct add_operands_t {
 int op1, op2;
};
extern int adder(struct add_operands_t * ops);

int increment_via_extfunc(int number)
{
 // adder_from_other_module() is not part of this file!
 struct add_operands_t ops = { number, INCREMENT_OFFSET);
 return external_adder(&ops);
}

Lets assume this code is stored in test.c and shall be tested from python.
Then the following python file (in this case in the same directory)
will call the increment*() functions and
test if their result is correct:

from headlock.testsetup import TestSetup, CModule

@CModule('test.c', INCREMENT_OFFSET=1)
class TSSample(TestSetup):
 pass

ts = TSSample()

test increment():
assert ts.increment(10) == 11

test increment_inplace()
int_var = ts.int(10)
ts.increment_inplace(int_var.adr)
assert int_var == 11

test increment_via_extfunc()
ts.adder_mock = lambda ops: ops.op1 + ops.op2 # mock required func
assert ts.increment_via_extfunc(10) == 11

this call is recommended (although it will be done implicitly otherwise)
ts.__unload__()

User Manual

C/Python Proxy Objects

The basic building blocks in accessing C from python is a set of python
classes that are used as proxies for C Data object.
These python proxy objects allow to run the same actions on the
C Data objects but from python. Especially they allow to convert the
C Data Object to cross the language barrier by converting it to
a corresponding python object and vice versa on request.

These python proxy objects are required in headlock for getting access to:

	global C variables

	values returned by C function

	C Data Object allocated manually via C Type Objects

By far the most important feature of proxy objects is the .val
attribute. This attribute is readable and writable. It allows
the C Data Object represented by the proxy to be converted to/from a
corresponding python object. The type of this python object depends
on the type of the C Data Object (see C/Python Type Mapping).

Note

To avoid specifying .val on every read access, the proxy
object classes are implementing most python operators (where meaningful).
Thus one can write for example <proxy-obj> + 4 != <proxy-obj>
instead of <proxy-obj>.val + 4 != <proxy-obj>.val.
Note that this is all about convenience. Internally the exactly same
operations are run.

This is not the case when assigning. This means ts.<global-var> = 3
instead of ts.<global-var>.val = 3 is not possible!

C/Python Type Mapping

When C Data Objects shall cross the language barrier they have to
be converted to/from a matching python object. Such a convertion can either
done via the .val attribute or when creating an object by passing
a python object as first parameter into the constructors of C Type Objects.
This chapter specifies the python objects that
can be passed to/from python proxies in dependance of the
underlying C Data Objects.

Please note that depending on the underlying C type most proxies accept
multiple python types to be converted to C while they return always the
same python type. The detailed mapping between
C Data Objects and the python objects is listed in the following table.
Please note that the first python type (marked as “default”) is the type
returned when retrieving the .val attribute.

	C Type

	Python Type of <proxy>.val attribute

	
	(un)signed char

	(un)signed int

	(un)signed short

	(un)signed long

	
	int (default)

	ByteLike of size 1 (translates to the
corresponding ASCII code)

	str of size 1 (translates to the corresponding
unicode point)

	_Bool

	
	bool (default)

	Pointer (*)

	
	int (default): corresponds to the address of
the C object

	Array proxy object: When passing an array proxy
to a pointer, the pointer is initialized with the
address of the C array (corresponds to casting a
array to a pointer in C).

	Iterable (i.e. list or tuple): same behaviour
as when assigning an iterable to an array
(see Array).
Please note that it is also possible to assign
an iterable to a pointer to void (void *).
In this case the elements of the array are
assigned byte by byte to the memory referred
by the pointer.

	Function Pointer(*)

	
	int (default): corresponds to the address of
the underlying function.

	callable: A python function that shall be
wrapped as C pointer

	Array ([])

	
	Iterable (list is default):
Maps the elements of the iterator
element by element to the proxies of the elements
of the array. Thus
p.val = [x, y] is identical to
p[0].val = x; p[1].val = y

	Structure (struct)

	
	Mapping (dict is default):
Every entry in the Mapping is mapped to the
member in the C struct with the same name.
Thus s.val = { a: x, b: y } is identical to
``s.a.val = x; s.b.val = y.
When assigning a python mapping to .val and the
python mapping does not contain all entries of
the C struct, the missing entries are set to the
null-value of the corresponding type.

	Iterable:
The elements if the iterater are mapped to the
members of the struct in their definition order.
I.e. lets assume the following definition:
struct { int a, b };. In this case
s.val = (x, y) is identical to
s.a.val = x; s.b.val = y.
When assigning a python iterable to .val and the
C struct contains more members then the iterable
provides, the remaining members are set to the
null-value of the corresponding type.

	…

	…

Note

Additionally to the python types listed in the table a
proxy object can be mapped to a C Data Object of the the same type.
This means that you can do <int-proxy>.val = <other-int-proxy>
which is an confinience feature that translates internally to
<int-proxy>.val = <other-int-proxy>.val.

Note

apart from .val there are object convertion attributes
for special cases. Currently the following attributes are implemented:

	.c_str (arrarys and pointers): convert a zero-terminated C string
to/from a bytes object

	.unicode_str (arrarys and pointers): convert a zero-terminated
wide-string to/from a python str object.
Depending on the type of the underlying object this
string has to be utf8 (pointer to 8-bit items),
utf16 (pointer to 16-bit elements)
or utf32 (pointer to 32-bit elements) encoded.

	.tuple (structures): enforce the python object to be set/retrieved
as a tuple object (using basicially the same mapping as when setting
.val to a tuple).

C Type Objects

Every C type is represented by a corresponding python class which is
bound to the execution environment of The TestSetup.
It can be used to allocate and initialize a new C Data Object
within this execution environment by calling it (i.e. ts.short()).
The return values are C/Python Proxy Objects that are referring to the
created C Data Object. When calling the C type class it is possible to pass
a value (i.e. ts.short(9)). This python object will be converted to the
corresponding C value according to C/Python Type Mapping, that in turn
is used to initalize the created C Data Object.

Please note that when creating a proxy object manaually via the approach
described above, headlock will handle full memory management. That means
the created C Data Object has the same live cycle as the python proxy
and will be released automaticially when the python object is released.

Note

This includes also memory buffers that are allocated implicitly when
passing a iterable to a pointer.

Apart of the instatiation of C Data Objects the following
attributes/operators are available in the python class to simulate C operators:

	Python Attribute/Operator

	C Operator

	Description

	<type-proxy>.ptr

	typedef <type> * ...

	Creates a pointer type that
points to a <type> object

	<type-proxy>.array(<size>)

	typedef <type> ...[<size>]

	Creates an array type that
refers to a C array of <type> object

	<type-proxy>.alloc_array(<size>)

<type-proxy>.alloc_array(<list>)

	<type> ...[<size>]

	Creates an array object proxy that
refers to a C array of <type> object.
The created array object is either
initialized with null_val’s (if only
the arrays size is specified), or it
is initialized by the passed iterable.
In case an int is specified this is a
shortcut for
t = <type-proxy>.array(<size>);
o = t().
In case an iterable is specified this
is a shortcut for
t = <type-proxy>.array(len(<init>))
o = t(<list>).

	<type-proxy>.alloc_ptr(<size>)

<type-proxy>.alloc_ptr(<list>)

	<type> * ... = malloc(<size>)

	This is analoguous to .alloc_array.
The only difference is, that it does
not return the array object itself,
but a pointer to it. Furthermore it
works on void, in which case the
base element is one byte (thus
ts.void.alloc_ptr(3) will
return a ptr to a 3 byte buffer).

The returned pointer object manages
the arrays lifecycle, which means that
the array will be released
automaticially when the pointer
is released.

Usually this operator is used to
allocate a memorybuffer from within
python.

	<type proxy>.sizeof

	sizeof(<type>)

	returns the size of the Type
proxy in bytes

As described in chapter The Testsetup when creating a testsetup
all custom C type objects representing the C types from the MUT will be added
to the created testsetup class as attributes.

Furthermore the build in C types are always available in the testsetup. Where
required spaces are replaced by underscores:

	ts.char

	ts.signed_char

	ts.unsigned_char

	ts.short

	ts.signed_short

	ts.unsigned_short

	ts.int

	ts.signed_int

	ts.unsigned_int

	ts.long

	ts.signed_long

	ts.unsigned_long

	ts.void

The .ptr and .array operator allow to create new types on the fly. If you want
to create a C type “array of 10 pointers to int” you simply run
ts.int.ptr.array(10).

Proxy Operators

Apart of the .val attribute the following
attributes/operators are available in the python proxy to simulate C operators:

	Python Attribute/Operator

	C Operator

	Sample

	<proxy>.adr

	& <var>

	Returns a pointer proxy to the given
<var>

	<ptr-proxy>.ref

	* <ptr>

	Resolves the pointer <ptr> and returns
the proxy object referred by <ptr>

	<array/ptr-proxy>[<ndx>]

	<array/ptr>[<ndx>]

	Returns a Proxy that corresponds to
the <ndx>th array/pointer element

	<struct-proxy>.<membername>

<struct-proxy>["<membername>"]

	<struct>.<member>

	Returns a proxy to a member of a
struct/union. If <membername>
conflicts with a python buildin-name
the “[]” operator can be used instead
of the “.” operator.

	
	<proxy>.sizeof | sizeof(<var) | returns the size of the Object

	
| proxy in bytes

	
	<ctype-proxy>(<proxy>) | <ctype>(<cobj>) | casts a object to another type by

	
| creating a new one.

Direct Memory Access

A further way of accessing the underlying C data object of a proxy is doing
direct memory access instead of the C representation of the data. For example
when creating a C int on a 32bit architecture, 4 bytes of
memory will be reserved. These 4 bytes can be accessed bytewise via the .mem
attribute. The mem attribute returns a CMemory object, which can
be used to read and write any part of the underlying memory as
bytes object via the slice operator.
I.e. i.mem[:2] returns the first two bytes of the underlying memory.

As assignment of a ByteLike object to .mem or comparison of a
ByteLike object to .mem are very common actions, the following
simplifications are allowed for convenience:

	i.mem = b'test' instead of v = b'test'; i.mem[:len(v)] = v

	i.mem == b'test' instead of v = b'test'; i.mem[:len(v)] == v

The Testsetup

One core concept of headlock is the testsetup. A testsetup covers:

	module(s) under test (MUT): one or multiple C file(s).

	custom C macro definitions, that were applied when compiling the C code

	python mocks that emulates missing C modules on which the MUT is relying

	an interface to the MUT’s implementations (functions, global variables)
as C/Python Proxy Objects and its interface (typedefs,
struct/enum/union declarations) as C Type Objects. Of course also
macro defintions are available as far is they do not use too much
preprocessor magic.

	[PLANNED] an environment (after instantiation) where the modules
under test are executed.
This is usually a separate process to avoid that buggy C code is
interfering with the python code or the other C modules.
But an environment might even be another machine or embedded processor.

One may define any number of testsetups per python file.
Even of the same C file but i.e. with different preprocessor settings or
different mocks. Furthermore one may instantiate every testsetup multiple times
(even in parallel for example to simulate a network [PLANNED]).

In headlock a testsetup is represented by a python class which is derived
(direct or indirect) from headlock.testsetup.TestSetup.
It is even possible to use headlock.testsetup.TestSetup directly
as playground (where no C code is required, but only to to interact with
the testsetups environment/address space):

from headlock.testsetup import TestSetup

ts = TestSetup()
ptr = ts.char.ptr(b'HELLO WELT\0') # create buffer with HELLO WORLD
print(ptr.c_str) # print content of this buffer

The decorator headlock.testsetup.CModule() adds one or multiple
Modules Under Tests (C-files) to a testsetup.
Headlock implements this by deriving the decorated class into a class of the
same name. This new class contains all functions,
globals variables, types, defines of the C modules:

	All typedef (as well as the buildin C-types) are added as
C Type Objects. These python classes can be used to retrieve information
about the type.
As soon as the C-code is loaded these proxies can also be used to
instantiate C objects of the corresponding type.

	struct/union/enum custom types are handled the same way as typedefs.
But as they are in a different namespace (like in C).
This is why they are not directly attributes
of the testsetup object but have to be accessed via .enum.<name>,
.struct.<name> or .union.<name>).

	Preprocessor defines are translated to python variables / functions when
possible. If the C code cannot be translated to python code (i.e. due to
preprocessor magic) the testsetup will nevertheless be
created. But when accessing the corresponding macro a ValueError will
be thrown.

	Global variables and functions are available as C/Python Proxy Objects
as soon as the C-code is loaded.

After class creation one has access to every preprocessor define.
Via the C Type Objects of typedefs, global variables and functions
one can even do introspection of C modules without instantiating the
testsetup class!

When instantiating a testsetup object the first time it will
automaticially compile and link all C modules referred in CModules.
For further instantiations the built binary will be reused (until
the python script is restarted):

from headlock.testsetup import TestSetup, CModule

@CModule('module1.c', '../module2.c', MACRO1=1, MACRO2=None)
class TSSample(TestSetup):
 pass

ts = TSSample()
print(ts.mod1_var.c_str()) # content of module1's global var mod1_var
ts.__unload__() # this call is not needed but recommended

In the above sample module1.c and ../module2.c are compiled with
the command line parameter “-DMACRO1=1” and “-DMACRO2”. Please note that
all C-file paths are relative to the directory of the python file of the
testsetup. In this example the pyton file resides in a subdirectory of the
corresponding C module (due to the directory prefix ..).

When the testsetup object is not needed any more it is recommended to run
headlock.testsetup.TestSetup.__unload__().
Although the __del__() method will call the __unload__() method implicitly,
this is not a guaranteed approch [https://docs.python.org/3.3/reference/datamodel.html#object.__del__].

Testsetup derived classes that want to run initialization
routines that are relying on C code/mocks should not run this code
in the __init__() method but use the __startup__() method for this
purpose. This ensures that

	the testsetup is comletely initialized when the first C routine is called.

	running the initialization routines can be separated/delayed on demand

As __startup__() can be used to add custom initialization code,
__shutdown__() should be used to run custom deinitialization code. It will
be called implicitly by __unload__() if there was a call to
__startup__() and the __shutdown__() method was not called
already before.

For convenience it is possible to use the testsetup as contextmanager (which
returns the testsetup object itself). This contextmanger ensures that
__startup__() is called at the beginning of the context
(if not called already) and __unload__() at the end:

with TSSample() as ts:
 # ts __startup__ was called and __unload__ will be called

Note

By convention testsetup classnames always start with the
letters TS.
Furthermore headlock uses the name ts everywhere a instantiated
testsetup is referred. This is also the case for the self parameter
of methods of the testsetup!
This is also the case for this documentation.

Bridging Function Calls Between C And Python

One of the main goals of headlock is to provide seamless integration of calling
C functions from python and vice versa. Therefore calling C functions from
python is as simple as calling python functions. The same is true if the
C code calls a function that is not part of the testsetup (the C modules of
your testsetup relies on a C modules which is not included into the testsetup).

Calling C Functions From Python

Headlock will add C/Python Proxy Objects for all C functions implemented
in the MUT of the testsetup. Anyone of these proxy object is a callable
that accepts proxy objects as parameters and forwards them to to the
underlying C function. As it knows all parameter types and the
return type (see chapter C Type Objects) it ensures that all
passed parameters that are not proxy objects are casted automaticially
to a corresponding temporary proxy object that lives for the time of the
function call. If casting is not possible or a proxy of
wrong type is passed a TypeError/ValueError is raised.
This implies that the rules for casting are identical the the convertion
rules for the .val attribute (see chapter C/Python Proxy Objects)

For example when calling a function that gets an pointer to a list of integers
one can simply write:

ts.c_func([1, 2, 3])

This will cast the list [1, 2, 3] to an int array proxy object by passing
it to the C type object of the first parameter. The C type object will
create a proxy object including allocating and initializing the
corresponding C int array. (A Pointer to) this C int array will be passed
to the C function. After the function returned the created proxy object will
be released and thus the C int array will also be released.
This works also, if c_func requires a more complex data structure
(i.e. an array of array of structs).

The above example is very convenient but can be only used for input parameters.
To return data from the C function via output parameters (pointers) an already
existing proxy object has to be passed. Otherwise the returned value will
be destroyed immediately after the C function returned.
The following code demonstrates how to return an integer via parameter:

int_obj = ts.int() # create integer that will hold the returned value
ts.c_func(int_obj.ptr) # pass pointer to this int to c_func
assert int_obj == 123 # process the returned value

The object returned on calling a function proxy object is always a proxy
object. The only expection are functions of return type void, in which
case None is returned.

Function Pointers

Function pointers can wrap either C function or python callables. As for data
pointers there is a C data object and a python proxy object for every
function pointer. Thus a function pointer allows both directions of bridging:

	Pointer to C functions

Apart from running func_ptr = ts.func.ptr to get a pointer proxy to
a C function``func`` one can instantiate the function pointer type object
by passing the address of a C function to it.
Usually the latter is not done explicitly but implicitly
when receiving a function pointer object from the C code
(i.e. func_ptr = ts.get_pointer_to_func(), where get_pointer_to_func
is a C function that returns a function pointer).

The returned proxy is a callable, that can be called from python
like any function object. Of course it can be also passed to any C function
or C global variable that requires a function pointer
(as the .val attribute corresponds to the address which is passed to the
function/variable then)

	Pointer to Python functions

Get a function pointer that refers to a python functions and is callable
from c is as
simple as passing the python callable to a function pointer type object.
This will create a C wrapper, that can be passed around to C
functions/variables. When the wrapper is called from C it will bridge the
call to the python callable.

Please note that all parameters passed to the C wrapper
are encapsulated into python proxies by the bridge. This means
when the python callable which is backing the proxy object is called,
all its parameters are python proxy objects. The return value of the
python callable will be also cast automaticially to a
python proxy object if it returns a standard python object
instead of a matching proxy.

Attention

In contrary functiom pointer proxies of C functions
this case requires more careful resource management. The reason is,
that the proxy object for python functions creates (and manages)
the wrapper object that bridges between C and python.
Thus you have to ensure the proxy object is not released
(aka keep at least one reference to it) as long as a C function
could call the wrapper.

Mocking C Function

When creating a testsetup with C modules that refers to other C modules
which are not part of the testsetup headlock will automaticially
creating function stubs. These stubs are very useful as they ensure that
the testsetup compiles (although C function implementations are missing).
In fact a stub will be generated for any non-static function declaration
where no corresponding function implementation is found.

This works out already perfectly as long as no C or python function
is calling the stubbed C functions. This is required in tests that
are testing parts of the Module Under Test for which the
stubbed functions are not relevant).

If the Module Under Tests requires one of the stubbed functions it is as
simple as adding a python function with the same name but the postfix “_mock”
to the testsetup class. Every call to the corresponding C function
is bridged to this python function. As done when calling Python
Function Pointers all parameters are wrapped into the corresponding
proxy objects when calling a mock function. The same rule applies to the
return value of the mock function, before being passed back to the C function.

Note

Please note that for every mocked C function there are two
function objects in the testsetup. One with the exactly same name as the
C function and one with the postfix _mock. The first one can be used
to call the latter one from python ensuring that the same automatic
proxy encapsulation rules apply as when calling the function from C.

I.e. given the function signature int func(int). When calling
ts.func(1) will forward the to ts.func_mock(ts.int(1)). If this
one returns 2 the result will be encapsulated into
ts.int(2) before being returned by ts.func.
This guarantees that when testing the mock functions from python they
are working the same way as when being called from C.

What is making headlocks mocking really powerful is the fact, that
there is no special magic bit it is totally conform to pythons
semantic for methods. This means:

	you can derive the Testsetup class and add/overwrite mocked methods.
The derived testsetup is usable like an independant testsetup
(different mock functionality although same C module):

@CModule('test.c')
class TSTest(TestSetup):
 def test_func_mock(ts, param1, param2):
 return param1 + param2

class TSTest2(TSTest):
 def test_func_mock(ts, *params):
 return 99

	you can mixin Mock-classes, that implements mocked functions for a
specific underlying C module this is not included in the testsetup but
required by the MUT. This mixing could be reused for all
testsetups relying on the underlying C module.

class UnderlyingModuleMock(TestSetup):
 def test_func_mock(ts, param1, param2):
 return param1 + param2

@CModule('test.c')
class TSTest(UnderlyingModuleMock, TestSetup):
 pass

	you can even add/replace mock functions after testsetup instantiation.
I.e. one can utilitize the powerful unittest.mock Module:

from unittes.mock import Mock

@CModule('test.c')
class TSTest(UnderlyingModuleMock, TestSetup):
 pass

ts = TSTest()
ts.test_func_mock = Mock(return_value=99)
ts.c_func_that_calls_test_func()
ts.test_func_mock.assert_called_once_with(3, 4)

Reference

TBD

Current Status Of Development

[image: Documentation Generation Status][image: _images/headlock.svg]
 [https://travis-ci.com/mrh1997/headlock]
Attention

The currently implementation of headlock is an alpha version.
Although it is already in production use at http://www.baltech.de
it must be noted that the the API is not stable yet!

The current status of the project
(preliminary limitations/not yet implemented features)
is shown in the following list:

	Does not work on macOS

	Works only with GCC/Mingw64

	Requires LLVM

	Does not support specifying packing of structures in C sources
(#pragma pack).
As workaround it is possible to specify packing on a per-C-file basis in
the Testsetup.

	No Support yet for:
* enum
* union
* float/double
* calling/mocking inline functions

	Does not support running testsetups on
external process / other machine / embdedded system

Bugreports/Pullrequests

Bugreports/Pullrequests can be provided via the page of
GitHub Page of the project [https://github.com/mrh1997/headlock]

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Headlock’s documentation!

 		
 About

 		
 Getting Started

 		
 Requirements

 		
 Installation

 		
 Usage

 		
 User Manual

 		
 C/Python Proxy Objects

 		
 C/Python Type Mapping

 		
 C Type Objects

 		
 Proxy Operators

 		
 Direct Memory Access

 		
 The Testsetup

 		
 Bridging Function Calls Between C And Python

 		
 Calling C Functions From Python

 		
 Function Pointers

 		
 Mocking C Function

 		
 Reference

 		
 Current Status Of Development

 		
 Bugreports/Pullrequests

_static/up-pressed.png

_static/up.png

