

HC - General purpose collision detection with LÖVE [http://love2d.org]

HC is a Lua module to simplify one important aspect in computer games:
Collision detection.

It can detect collisions between arbitrary positioned and rotated shapes.
Built-in shapes are points, circles and polygons.
Any non-intersecting polygons are supported, even concave ones.
You can add other types of shapes if you need them.

The main interface is simple:

	Set up your scene,

	Check for collisions,

	React to collisions.

First steps

This is an example on how to use HC. One shape will stick to the mouse
position, while the other will stay in the same place:

HC = require 'HC'

-- array to hold collision messages
local text = {}

function love.load()
 -- add a rectangle to the scene
 rect = HC.rectangle(200,400,400,20)

 -- add a circle to the scene
 mouse = HC.circle(400,300,20)
 mouse:moveTo(love.mouse.getPosition())
end

function love.update(dt)
 -- move circle to mouse position
 mouse:moveTo(love.mouse.getPosition())

 -- rotate rectangle
 rect:rotate(dt)

 -- check for collisions
 for shape, delta in pairs(HC.collisions(mouse)) do
 text[#text+1] = string.format("Colliding. Separating vector = (%s,%s)",
 delta.x, delta.y)
 end

 while #text > 40 do
 table.remove(text, 1)
 end
end

function love.draw()
 -- print messages
 for i = 1,#text do
 love.graphics.setColor(255,255,255, 255 - (i-1) * 6)
 love.graphics.print(text[#text - (i-1)], 10, i * 15)
 end

 -- shapes can be drawn to the screen
 love.graphics.setColor(255,255,255)
 rect:draw('fill')
 mouse:draw('fill')
end

Get HC

You can download the latest packaged version as zip [https://github.com/vrld/HC/zipball/master]- or tar [https://github.com/vrld/HC/tarball/master]-archive directly
from github [https://github.com].

You can also have a look at the sourcecode online here [http://github.com/vrld/HC].

If you use the Git command line client, you can clone the repository by
running:

git clone git://github.com/vrld/HC.git

Once done, you can check for updates by running:

git pull

from inside the directory.

Read on

	Reference
	HC

	HC.shapes

	HC.polygon

	HC.spatialhash

	HC.vector

	HC.class

	Tutorial

	License

Indices and tables

	Index

	Module Index

	Search Page

Reference

HC is composed of several parts. Most of the time, you will only have to deal
with the main module and the Shapes sub-module, but the other modules are
at your disposal if you need them.

	HC
	Initialization

	Shapes

	Collision Detection

	HC.shapes
	Base Class

	Custom Shapes

	Built-in Shapes

	HC.polygon

	HC.spatialhash

	HC.vector

	HC.class

Main Module

HC = require 'HC'

The purpose of the main modules is to connect shapes with the spatial hash – a
data structure to quickly look up neighboring shapes – and to provide
utilities to tell which shapes intersect (collide) with each other.

Most of the time, HC will be run as a singleton; you can, however, also create
several instances, that each hold their own little worlds.

Initialization

	
HC.new([cell_size = 100])

	
	Arguments

	
	cell_size (number) – Resolution of the internal search structure (optional).

	Returns

	Collider instance.

Creates a new collider instance that holds a separate spatial hash.
Collider instances carry the same methods as the main module.
The only difference is that function calls must use the colon-syntax (see
below).

Useful if you want to maintain several collision layers or several separate
game worlds.

The cell_size somewhat governs the performance of HC.neighbors() and
HC.collisions(). How this parameter affects the performance depends on
how many shapes there are, how big these shapes are and (somewhat) how the
shapes are distributed.
A rule of thumb would be to set cell_size to be about four times the size
of the average object.
Or just leave it as is and worry about it only if you run into performance
problems that can be traced back to the spatial hash.

Example:

collider = HC.new(150) -- create separate world

-- method calls with colon syntax
ball = collider:circle(100,100,20)
rect = collider:rectangle(110,90,20,100)

for shape, delta in pairs(collider:collisions(ball)) do
 shape:move(delta.x, delta.y)
end

	
HC.resetHash([cell_size = 100])

	
	Arguments

	
	cell_size (number) – Resolution of the internal search structure (optional).

Reset the internal search structure, the spatial hash.
This clears all shapes that were registered beforehand, meaning that HC will
not be able to find any collisions with those shapes anymore.

Example:

function new_stage()
 actors = {} -- clear the stage on our side
 HC.resetHash() -- as well as on HC's side
end

Shapes

See also the HC.shapes sub-module.

	
HC.rectangle(x, y, w, h)

	
	Arguments

	
	x,y (numbers) – Upper left corner of the rectangle.

	w,h (numbers) – Width and height of the rectangle.

	Returns

	The rectangle Shape() added to the scene.

Add a rectangle shape to the scene.

Note

Shape() transformations, e.g. Shape.moveTo() and
Shape.rotate() will be with respect to the center, not the upper left
corner of the rectangle!

Example:

rect = HC.rectangle(100, 120, 200, 40)
rect:rotate(23)

	
HC.polygon(x1, y1, ..., xn, yn)

	
	Arguments

	
	x1,y1,...,xn,yn (numbers) – The corners of the polygon. At least three
corners that do not lie on a straight line
are required.

	Returns

	The polygon Shape() added to the scene.

Add a polygon to the scene. Any non-self-intersection polygon will work.
The polygon will be closed; the first and the last point do not need to be the
same.

Note

If three consecutive points lie on a line, the middle point will be discarded.
This means you cannot construct polygon shapes that are lines.

Note

Shape() transformations, e.g. Shape.moveTo() and
Shape.rotate() will be with respect to the center of the polygon.

Example:

shape = HC.polygon(10,10, 40,50, 70,10, 40,30)
shape:move(42, 5)

	
HC.circle(cx, cy, radius)

	
	Arguments

	
	cx,cy (numbers) – Center of the circle.

	radius (number) – Radius of the circle.

	Returns

	The circle Shape() added to the scene.

Add a circle shape to the scene.

Example:

circle = HC.circle(400, 300, 100)

	
HC.point(x, y)

	
	Arguments

	
	x, y (numbers) – Position of the point.

	Returns

	The point Shape() added to the scene.

Add a point shape to the scene.

Point shapes are most useful for bullets and such, because detecting collisions
between a point and any other shape is a little faster than detecting collision
between two non-point shapes. In case of a collision, the separating vector
will not be valid.

Example:

bullets[#bullets+1] = HC.point(player.pos.x, player.pos.y)

	
HC.register(shape)

	
	Arguments

	
	shape (Shape) – The Shape() to add to the spatial hash.

Add a shape to the bookkeeping system.
HC.neighbors() and Hc.collisions() works only with registered
shapes.
You don’t need to (and should not) register any shapes created with the above
functions.

Overwrites Shape.move(), Shape.rotate(), and Shape.scale()
with versions that update the HC.spatialhash.

This function is mostly only useful if you provide a custom shape.
See Custom Shapes.

	
HC.remove(shape)

	
	Arguments

	
	shape (Shape) – The Shape() to remove from the spatial hash.

Remove a shape to the bookkeeping system.

Warning

This will also invalidate the functions Shape.move(),
Shape.rotate(), and Shape.scale().
Make sure you delete the shape from your own actor list(s).

Example:

for i = #bullets,1,-1 do
 if bullets[i]:collidesWith(player)
 player:takeDamage()

 HC.remove(bullets[i]) -- remove bullet from HC
 table.remove(bullets, i) -- remove bullet from own actor list
 end
end

Collision Detection

	
HC.collisions(shape)

	
	Arguments

	
	shape (Shape) – Query shape.

	Returns

	Table of colliding shapes and separating vectors.

Get shapes that are colliding with shape and the vector to separate the shapes.
The separating vector points in the direction that shape has to move to clear
the collission.
The length of the vector is the minimal amount that either shape has to move to
clear the collission.

The table is a set, meaning that the shapes are stored in keys of the table.
The values are the separating vector.
You can iterate over the shapes using pairs (see example).

Example:

local collisions = HC.collisions(shape)
for other, separating_vector in pairs(collisions) do
 shape:move(separating_vector.x/2, separating_vector.y/2)
 other:move(-separating_vector.x/2, -separating_vector.y/2)
end

	
HC.neighbors(shape)

	
	Arguments

	
	shape (Shape) – Query shape.

	Returns

	Table of neighboring shapes, where the keys of the table are the shapes.

Get other shapes in that are close to shape.
The table is a set, meaning that the shapes are stored in keys of the table.
You can iterate over the shapes using pairs (see example).

Note

The result depends on the size and position of shape as well as the
grid size of the spatial hash: HC.neighbors() returns the shapes that
are in the same cell(s) as shape.

Example:

local candidates = HC.neighbors(shape)
for other in pairs(candidates) do
 local collides, dx, dy = shape:collidesWith(other)
 if collides then
 other:move(dx, dy)
 end
end

	
HC.shapesAt(x, y)

	
	Arguments

	
	x,y (numbers) – Point to query.

	Returns

	Table of shapes at the point, where the keys of the table are the shapes.

Get shapes that contain the point (x,y).
The table is a set, meaning that the shapes are stored in keys of the table.
You can iterate over the shapes using pairs (see example).

Example:

local shapes = HC.shapesAt(love.mouse.getPosition)
for s in pairs(shapes) do
 game.selectUnit(s)
end

	
HC.hash()

	
	Returns

	SpatialHash().

Get a reference to the SpatialHash() instance.

HC.shapes

shapes = require 'HC.shapes'

Shape classes with collision detection methods.

This module defines methods to move, rotate and draw shapes created with the
main module.

As each shape is at it’s core a Lua table, you can attach values and add
functions to it. Be careful not to use keys that name a function or start with
an underscore, e.g. move or _rotation, since these are used internally.
Everything else is fine.

If you don’t want to use the full blown module, you can still use these classes
to test for colliding shapes.
This may be useful for scenes where the shapes don’t move very much and only
few collisions are of interest - for example graphical user interfaces.

Base Class

	
class Shape(type)

	
	Arguments

	
	type (any) – Arbitrary type identifier of the shape’s type.

Base class for all shapes. All shapes must conform to the interface defined below.

	
Shape:move(dx, dy)

	
	Arguments

	
	dx,dy (numbers) – Coordinates to move the shape by.

Move the shape by some distance.

Example:

circle:move(10, 15) -- move the circle 10 units right and 15 units down.

	
Shape:moveTo(x, y)

	
	Arguments

	
	x,y (numbers) – Coordinates to move the shape to.

Move the shape to some point. Most shapes will be centered on the point
(x,y).

Note

Equivalent to:

local cx,cy = shape:center()
shape:move(x-cx, y-cy)

Example:

local x,y = love.mouse.getPosition()
circle:moveTo(x, y) -- move the circle with the mouse

	
Shape:center()

	
	Returns

	x, y - The center of the shape.

Get the shape’s center.

Example:

local cx, cy = circle:center()
print("Circle at:", cx, cy)

	
Shape:rotate(angle[, cx, cy])

	
	Arguments

	
	angle (number) – Amount of rotation in radians.

	cx, cy (numbers) – Rotation center; defaults to the shape’s center if omitted (optional).

Rotate the shape by some angle. A rotation center can be specified. If no
center is given, rotate around the center of the shape.

Example:

rectangle:rotate(math.pi/4)

	
Shape:setRotation(angle[, cx, cy])

	
	Arguments

	
	angle (number) – Amount of rotation in radians.

	cx, cy (numbers) – Rotation center; defaults to the shape’s center if omitted (optional).

Set the rotation of a shape. A rotation center can be specified. If no center
is given, rotate around the center of the shape.

Note

Equivalent to:

shape:rotate(angle - shape:rotation(), cx,cy)

Example:

rectangle:setRotation(math.pi, 100,100)

	
Shape:rotation()

	
	Returns

	The shape’s rotation in radians.

Get the rotation of the shape in radians.

	
Shape:scale(s)

	
	Arguments

	
	s (number) – Scale factor; must be > 0.

Scale the shape relative to it’s center.

Note

There is no way to query the scale of a shape.

Example:

circle:scale(2) -- double the size

	
Shape:outcircle()

	
	Returns

	x, y, r - Parameters of the outcircle.

Get parameters of a circle that fully encloses the shape.

Example:

if player:hasShield() then
 love.graphics.circle('line', player:outcircle())
end

	
Shape:bbox()

	
	Returns

	x1, y1, x2, y2 - Corners of the counding box.

Get axis aligned bounding box.
x1, y1 defines the upper left corner, while x2, y2 define the lower
right corner.

Example:

-- draw bounding box
local x1,y1, x2,y2 = shape:bbox()
love.graphics.rectangle('line', x1,y1, x2-x1,y2-y1)

	
Shape:draw(mode)

	
	Arguments

	
	mode (DrawMode) – How to draw the shape. Either ‘line’ or ‘fill’.

Draw the shape either filled or as outline. Mostly for debug-purposes.

Example:

circle:draw('fill')

	
Shape:support(dx, dy)

	
	Arguments

	
	dx, dy (numbers) – Search direction.

	Returns

	The furthest vertex in direction dx, dy.

Get furthest vertex of the shape with respect to the direction dx, dy.

Used in the collision detection algorithm, but may be useful for other things -
e.g. lighting - too.

Example:

-- get vertices that produce a shadow volume
local x1,y1 = circle:support(lx, ly)
local x2,y2 = circle:support(-lx, -ly)

	
Shape:collidesWith(other)

	
	Arguments

	
	other (Shape) – Test for collision with this shape.

	Returns

	collide, dx, dy - Collision indicator and separating vector.

Test if two shapes collide.

The separating vector dx, dy will only be defined if collide is true.
If defined, the separating vector will point in the direction of other,
i.e. dx, dy is the direction and magnitude to move other so that the
shapes do not collide anymore.

Example:

if circle:collidesWith(rectangle) then
 print("collision detected!")
end

	
Shape:contains(x, y)

	
	Arguments

	
	x, y (numbers) – Point to test.

	Returns

	true if x,y lies in the interior of the shape.

Test if the shape contains a given point.

Example:

if unit.shape:contains(love.mouse.getPosition) then
 unit:setHovered(true)
end

	
Shape:intersectionsWithRay(x, y, dx, dy)

	
	Arguments

	
	x, y (numbers) – Starting point of the ray.

	dx, dy (numbers) – Direction of the ray.

	Returns

	Table of ray parameters.

Test if the shape intersects the given ray.
The ray parameters of the intersections are returned as a table.
The position of the intersections can be computed as
(x,y) + ray_parameter * (dx, dy).

Example:

local ts = player:intersectionsWithRay(x,y, dx,dy)
for _, t in ipairs(t) do
 -- find point of intersection
 local vx,vy = vector.add(x, y, vector.mul(t, dx, dy))
 player:addMark(vx,vy)
end

	
Shape:intersectsRay(x, y, dx, dy)

	
	Arguments

	
	x, y (numbers) – Starting point of the ray.

	dx, dy (numbers) – Direction of the ray.

	Returns

	intersects, ray_parameter - intersection indicator and ray paremter.

Test if the shape intersects the given ray.
If the shape intersects the ray, the point of intersection can be computed by
(x,y) + ray_parameter * (dx, dy).

Example:

local intersecting, t = player:intersectsRay(x,y, dx,dy)
if intersecting then
 -- find point of intersection
 local vx,vy = vector.add(x, y, vector.mul(t, dx, dy))
 player:addMark(vx,vy)
end

Custom Shapes

Custom shapes must implement at least the following methods (as defined above)

	Shape:move()

	Shape:rotate()

	Shape:scale()

	Shape:bbox()

	Shape:collidesWith()

Built-in Shapes

	
class ConcavePolygonShape()

	

	
class ConvexPolygonShape()

	

	
class CircleShape()

	

	
class PointShape()

	

	
newPolygonShape(...)

	
	Arguments

	
	... (numbers) – Vertices of the Polygon().

	Returns

	ConcavePolygonShape() or ConvexPolygonShape().

	
newCircleShape(cx, cy, radius)

	
	Arguments

	
	cx,cy (numbers) – Center of the circle.

	radius (number) – Radius of the circle.

	Returns

	CircleShape().

	
newPointShape()

	
	Arguments

	
	x, y (numbers) – Position of the point.

	Returns

	PointShape().

HC.polygon

polygon = require 'HC.polygon'

Polygon class with some handy algorithms. Does not provide collision detection
- this functionality is provided by newPolygonShape() instead.

	
class Polygon(x1, y1, ..., xn, yn)

	
	Arguments

	
	x1,y1, ..., xn,yn (numbers) – The corners of the polygon. At least three corners are needed.

	Returns

	The polygon object.

Construct a polygon.

At least three points that are not collinear (i.e. not lying on a straight
line) are needed to construct the polygon. If there are collinear points, these
points will be removed. The shape of the polygon is not changed.

Note

The syntax depends on used class system. The shown syntax works when using
the bundled hump.class [http://vrld.github.com/hump/#hump.class] or
slither [https://bitbucket.org/bartbes/slither].

Example:

Polygon = require 'HC.polygon'
poly = Polygon(10,10, 40,50, 70,10, 40,30)

	
Polygon:unpack()

	
	Returns

	x1,y1, ..., xn,yn - The vertices of the polygon.

Get the polygon’s vertices. Useful for drawing with love.graphics.polygon().

Example:

love.graphics.draw('line', poly:unpack())

	
Polygon:clone()

	
	Returns

	A copy of the polygon.

Get a copy of the polygon.

Note

Since Lua uses references when simply assigning an existing polygon to a
variable, unexpected things can happen when operating on the variable. Consider
this code:

p1 = Polygon(10,10, 40,50, 70,10, 40,30)
p2 = p1 -- p2 is a reference
p3 = p1:clone() -- p3 is a clone
p2:rotate(math.pi) -- p1 will be rotated, too!
p3:rotate(-math.pi) -- only p3 will be rotated

Example:

copy = poly:clone()
copy:move(10,20)

	
Polygon:bbox()

	
	Returns

	x1, y1, x2, y2 - Corners of the counding box.

Get axis aligned bounding box.
x1, y1 defines the upper left corner, while x2, y2 define the lower
right corner.

Example:

x1,y1,x2,y2 = poly:bbox()
-- draw bounding box
love.graphics.rectangle('line', x1,y2, x2-x1, y2-y1)

	
Polygon:isConvex()

	
	Returns

	true if the polygon is convex, false otherwise.

Test if a polygon is convex, i.e. a line line between any two points inside the
polygon will lie in the interior of the polygon.

Example:

-- split into convex sub polygons
if not poly:isConvex() then
 list = poly:splitConvex()
else
 list = {poly:clone()}
end

	
Polygon:move(x, y)

	
	Arguments

	
	x, y (numbers) – Coordinates of the direction to move.

Move a polygon in a direction..

Example:

poly:move(10,-5) -- move 10 units right and 5 units up

	
Polygon:rotate(angle[, cx, cy])

	
	Arguments

	
	angle (number) – The angle to rotate in radians.

	cx, cy (numbers) – The rotation center (optional).

Rotate the polygon. You can define a rotation center. If it is omitted, the
polygon will be rotated around it’s centroid.

Example:

p1:rotate(math.pi/2) -- rotate p1 by 90° around it's center
p2:rotate(math.pi/4, 100,100) -- rotate p2 by 45° around the point 100,100

	
Polygon:triangulate()

	
	Returns

	table of Polygons: Triangles that the polygon is composed of.

Split the polygon into triangles.

Example:

triangles = poly:triangulate()
for i,triangle in ipairs(triangles) do
 triangles.move(math.random(5,10), math.random(5,10))
end

	
Polygon:splitConvex()

	
	Returns

	table of Polygons: Convex polygons that form the original polygon.

Split the polygon into convex sub polygons.

Example:

convex = concave_polygon:splitConvex()
function love.draw()
 for i,poly in ipairs(convex) do
 love.graphics.polygon('fill', poly:unpack())
 end
end

	
Polygon:mergedWith(other)

	
	Arguments

	
	other (Polygon) – The polygon to merge with.

	Returns

	The merged polygon, or nil if the two polygons don’t share an edge.

Create a merged polygon of two polygons if, and only if the two polygons
share one complete edge. If the polygons share more than one edge, the result
may be erroneous.

This function does not change either polygon, but rather creates a new one.

Example:

merged = p1:mergedWith(p2)

	
Polygon:contains(x, y)

	
	Arguments

	
	x, y (numbers) – Point to test.

	Returns

	true if x,y lies in the interior of the polygon.

Test if the polygon contains a given point.

Example:

if button:contains(love.mouse.getPosition()) then
 button:setHovered(true)
end

	
Polygon:intersectionsWithRay(x, y, dx, dy)

	
	Arguments

	
	x, y (numbers) – Starting point of the ray.

	dx, dy (numbers) – Direction of the ray.

	Returns

	Table of ray parameters.

Test if the polygon intersects the given ray.
The ray parameters of the intersections are returned as a table.
The position of the intersections can be computed as
(x,y) + ray_parameter * (dx, dy).

	
Polygon:intersectsRay(x, y, dx, dy)

	
	Arguments

	
	x, y (numbers) – Starting point of the ray.

	dx, dy (numbers) – Direction of the ray.

	Returns

	intersects, ray_parameter - intersection indicator and ray paremter.

Test if the polygon intersects a ray.
If the shape intersects the ray, the point of intersection can be computed by
(x,y) + ray_parameter * (dx, dy).

Example:

if poly:intersectsRay(400,300, dx,dy) then
 love.graphics.setLine(2) -- highlight polygon
end

HC.spatialhash

spatialhash = require 'HC.spatialhash'

A spatial hash implementation that supports scenes of arbitrary size. The hash
is sparse, which means that cells will only be created when needed.

	
class Spatialhash([cellsize = 100])

	
	Arguments

	
	cellsize (number) – Width and height of a cell (optional).

Create a new spatial hash with a given cell size.

Choosing a good cell size depends on your application. To get a decent speedup,
the average cell should not contain too many objects, nor should a single
object occupy too many cells. A good rule of thumb is to choose the cell size
so that the average object will occupy only one cell.

Note

The syntax depends on used class system. The shown syntax works when using
the bundled hump.class [http://vrld.github.com/hump/#hump.class] or
slither [https://bitbucket.org/bartbes/slither].

Example:

Spatialhash = require 'hardoncollider.spatialhash'
hash = Spatialhash(150)

	
Spatialhash:cellCoords(x, y)

	
	Arguments

	
	x, y (numbers) – The position to query.

	Returns

	Coordinates of the cell which would contain x,y.

Get coordinates of a given value, i.e. the cell index in which a given point
would be placed.

Example:

local mx,my = love.mouse.getPosition()
cx, cy = hash:cellCoords(mx, my)

	
Spatialhash:cell(i, k)

	
	Arguments

	
	i, k (numbers) – The cell index.

	Returns

	Set of objects contained in the cell.

Get the cell with given coordinates.

A cell is a table which’s keys and value are the objects stored in the cell,
i.e.:

cell = {
 [obj1] = obj1,
 [obj2] = obj2,
 ...
}

You can iterate over the objects in a cell using pairs():

for object in pairs(cell) do stuff(object) end

Example:

local mx,my = love.mouse.getPosition()
cx, cy = hash:cellCoords(mx, my)
cell = hash:cell(cx, cy)

	
Spatialhash:cellAt(x, y)

	
	Arguments

	
	x, y (numbers) – The position to query.

	Returns

	Set of objects contained in the cell.

Get the cell that contains point x,y.

Same as hash:cell(hash:cellCoords(x,y))

Example:

local mx,my = love.mouse.getPosition()
cell = hash:cellAt(mx, my)

	
Spatialhash:shapes()

	
	Returns

	Set of all shapes in the hash.

Get all shapes that are recorded in the hash.

	
Spatialhash:inSameCells(x1, y1, x2, y2)

	
	Arguments

	
	x1,y1 (numbers) – Upper left corner of the query bounding box.

	x2,y2 (numbers) – Lower right corner of the query bounding box.

	Returns

	Set of all shapes in the same cell as the bbox.

Get the shapes that are in the same cell as the defined bounding box.

	
Spatialhash:register(obj, x1, y1, x2, y2)

	
	Arguments

	
	obj (mixed) – Object to place in the hash. It can be of any type except nil.

	x1,y1 (numbers) – Upper left corner of the bounding box.

	x2,y2 (numbers) – Lower right corner of the bounding box.

Insert an object into the hash using a given bounding box.

Example:

hash:register(shape, shape:bbox())

	
Spatialhash:remove(obj[, x1, y1[, x2, y2]])

	
	Arguments

	
	obj (mixed) – The object to delete

	x1,y1 (numbers) – Upper left corner of the bounding box (optional).

	x2,y2 (numbers) – Lower right corner of the bounding box (optional).

Remove an object from the hash using a bounding box.

If no bounding box is given, search the whole hash to delete the object.

Example:

hash:remove(shape, shape:bbox())
hash:remove(object_with_unknown_position)

	
Spatialhash:update(obj, x1, y1, x2, y2, x3, y3, x4, y4)

	
	Arguments

	
	obj (mixed) – The object to be updated.

	x1,y1 (numbers) – Upper left corner of the bounding box before the object was moved.

	x2,y2 (numbers) – Lower right corner of the bounding box before the object was moved.

	x3,y3 (numbers) – Upper left corner of the bounding box after the object was moved.

	x4,y4 (numbers) – Lower right corner of the bounding box after the object was moved.

Update an objects position given the old bounding box and the new bounding box.

Example:

hash:update(shape, -100,-30, 0,60, -100,-70, 0,20)

	
Spatialhash:draw(draw_mode[, show_empty = true[, print_key = false]])

	
	Arguments

	
	draw_mode (string) – Either ‘fill’ or ‘line’. See the LÖVE wiki.

	show_empty (boolean) – Wether to draw empty cells (optional).

	print_key (boolean) – Wether to print cell coordinates (optional).

Draw hash cells on the screen, mostly for debug purposes

Example:

love.graphics.setColor(160,140,100,100)
hash:draw('line', true, true)
hash:draw('fill', false)

HC.vector

vector = require 'HC.vector'

See hump.vector_light.

HC.class

class = require 'HC.class'

See hump.class.

Tutorial

To be rewritten.

License

Copyright (c) 2011-2015 Matthias Richter

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

Except as contained in this notice, the name(s) of the above copyright holders
shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Index

 C
 | H
 | N
 | P
 | S

C

 	
 	CircleShape() (class)

 	
 	ConcavePolygonShape() (class)

 	ConvexPolygonShape() (class)

H

 	
 	HC.circle() (HC method)

 	HC.collisions() (HC method)

 	HC.hash() (HC method)

 	HC.neighbors() (HC method)

 	HC.new() (HC method)

 	HC.point() (HC method)

 	
 	HC.polygon() (HC method)

 	HC.rectangle() (HC method)

 	HC.register() (HC method)

 	HC.remove() (HC method)

 	HC.resetHash() (HC method)

 	HC.shapesAt() (HC method)

N

 	
 	newCircleShape() (built-in function)

 	
 	newPointShape() (built-in function)

 	newPolygonShape() (built-in function)

P

 	
 	PointShape() (class)

 	Polygon() (class)

 	Polygon:bbox() (built-in function)

 	Polygon:clone() (built-in function)

 	Polygon:contains() (built-in function)

 	Polygon:intersectionsWithRay() (built-in function)

 	Polygon:intersectsRay() (built-in function)

 	
 	Polygon:isConvex() (built-in function)

 	Polygon:mergedWith() (built-in function)

 	Polygon:move() (built-in function)

 	Polygon:rotate() (built-in function)

 	Polygon:splitConvex() (built-in function)

 	Polygon:triangulate() (built-in function)

 	Polygon:unpack() (built-in function)

S

 	
 	Shape() (class)

 	Shape:bbox() (built-in function)

 	Shape:center() (built-in function)

 	Shape:collidesWith() (built-in function)

 	Shape:contains() (built-in function)

 	Shape:draw() (built-in function)

 	Shape:intersectionsWithRay() (built-in function)

 	Shape:intersectsRay() (built-in function)

 	Shape:move() (built-in function)

 	Shape:moveTo() (built-in function)

 	Shape:outcircle() (built-in function)

 	Shape:rotate() (built-in function)

 	Shape:rotation() (built-in function)

 	
 	Shape:scale() (built-in function)

 	Shape:setRotation() (built-in function)

 	Shape:support() (built-in function)

 	Spatialhash() (class)

 	Spatialhash:cell() (built-in function)

 	Spatialhash:cellAt() (built-in function)

 	Spatialhash:cellCoords() (built-in function)

 	Spatialhash:draw() (built-in function)

 	Spatialhash:inSameCells() (built-in function)

 	Spatialhash:register() (built-in function)

 	Spatialhash:remove() (built-in function)

 	Spatialhash:shapes() (built-in function)

 	Spatialhash:update() (built-in function)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 HC - General purpose collision detection with LÖVE

 		
 Reference

 		
 HC

 		
 Initialization

 		
 Shapes

 		
 Collision Detection

 		
 HC.shapes

 		
 Base Class

 		
 Custom Shapes

 		
 Built-in Shapes

 		
 HC.polygon

 		
 HC.spatialhash

 		
 HC.vector

 		
 HC.class

 		
 Tutorial

 		
 License

_static/up-pressed.png

_static/up.png

_static/plus.png

