
HBMQTT Documentation
Release 0.6

Nicolas Jouanin

Nov 11, 2018

Contents

1 Features 3

2 Requirements 5

3 Installation 7

4 User guide 9
4.1 Quickstart . 9
4.2 Changelog . 11
4.3 References . 12
4.4 License . 27

Python Module Index 29

i

ii

HBMQTT Documentation, Release 0.6

HBMQTT is an open source MQTT client and broker implementation.

Built on top of asyncio, Python’s standard asynchronous I/O framework, HBMQTT provides a straightforward API
based on coroutines, making it easy to write highly concurrent applications.

Contents 1

http://www.mqtt.org

HBMQTT Documentation, Release 0.6

2 Contents

CHAPTER 1

Features

HBMQTT implements the full set of MQTT 3.1.1 protocol specifications and provides the following features:

• Support QoS 0, QoS 1 and QoS 2 messages flow

• Client auto-reconnection on network lost

• Authentication through password file (more methods can be added through a plugin system)

• Basic $SYS topics

• TCP and websocket support

• SSL support over TCP and websocket

• Plugin system

3

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

HBMQTT Documentation, Release 0.6

4 Chapter 1. Features

CHAPTER 2

Requirements

HBMQTT is built on Python asyncio library which was introduced in Python 3.4. Tests have shown that HBMQTT
run best with Python 3.4.3. Python 3.5.0 is also fully supported and recommended. Make sure you use one of these
version before installing HBMQTT.

5

HBMQTT Documentation, Release 0.6

6 Chapter 2. Requirements

CHAPTER 3

Installation

It is not recommended to install third-party library in Python system packages directory. The preferred way for
installing HBMQTT is to create a virtual environment and then install all the dependencies you need. Refer to PEP
405 to learn more.

Once you have a environment setup and ready, HBMQTT can be installed with the following command

(venv) $ pip install hbmqtt

pip will download and install HBMQTT and all its dependencies.

7

https://www.python.org/dev/peps/pep-0405/
https://www.python.org/dev/peps/pep-0405/

HBMQTT Documentation, Release 0.6

8 Chapter 3. Installation

CHAPTER 4

User guide

If you need HBMQTT for running a MQTT client or deploying a MQTT broker, the Quickstart describes how to use
console scripts provided by HBMQTT.

If you want to develop an application which needs to connect to a MQTT broker, the MQTTClient API documentation
explains how to use HBMQTT API for connecting, publishing and subscribing with a MQTT broker.

If you want to run you own MQTT broker, th Broker API reference reference documentation explains how to embed a
MQTT broker inside a Python application.

News and updates are listed in the Changelog.

4.1 Quickstart

A quick way for getting started with HBMQTT is to use console scripts provided for :

• publishing a message on some topic on an external MQTT broker.

• subscribing some topics and getting published messages.

• running a autonomous MQTT broker

These scripts are installed automatically when installing HBMQTT with the following command

(venv) $ pip install hbmqtt

4.1.1 Publishing messages

hbmqtt_pub is a command-line tool which can be used for publishing some messages on a topic. It requires a few
arguments like broker URL, topic name, QoS and data to send. Additional options allow more complex use case.

Publishing `some_data to as /test topic on is as simple as :

9

HBMQTT Documentation, Release 0.6

$ hbmqtt_pub --url mqtt://test.mosquitto.org -t /test -m some_data
[2015-11-06 22:21:55,108] :: INFO - hbmqtt_pub/5135-MacBook-Pro.local Connecting to
→˓broker
[2015-11-06 22:21:55,333] :: INFO - hbmqtt_pub/5135-MacBook-Pro.local Publishing to '/
→˓test'
[2015-11-06 22:21:55,336] :: INFO - hbmqtt_pub/5135-MacBook-Pro.local Disconnected
→˓from broker

This will use insecure TCP connection to connect to test.mosquitto.org. hbmqtt_pub also allows websockets and
secure connection:

$ hbmqtt_pub --url ws://test.mosquitto.org:8080 -t /test -m some_data
[2015-11-06 22:22:42,542] :: INFO - hbmqtt_pub/5157-MacBook-Pro.local Connecting to
→˓broker
[2015-11-06 22:22:42,924] :: INFO - hbmqtt_pub/5157-MacBook-Pro.local Publishing to '/
→˓test'
[2015-11-06 22:22:52,926] :: INFO - hbmqtt_pub/5157-MacBook-Pro.local Disconnected
→˓from broker

hbmqtt_pub can read from file or stdin and use data read as message payload:

$ some_command | hbmqtt_pub --url mqtt://localhost -t /test -l

See hbmqtt_pub reference documentation for details about available options and settings.

4.1.2 Subscribing a topic

hbmqtt_sub is a command-line tool which can be used to subscribe for some pattern(s) on a broker and get date
from messages published on topics matching these patterns by other MQTT clients.

Subscribing a /test/# topic pattern is done with :

$ hbmqtt_sub --url mqtt://localhost -t /test/#

This command will run forever and print on the standard output every messages received from the broker. The -n
option allows to set a maximum number of messages to receive before stopping.

See hbmqtt_sub reference documentation for details about available options and settings.

4.1.3 URL Scheme

HBMQTT command line tools use the --url to establish a network connection with the broker. The --url param-
eter value must conform to the MQTT URL scheme. The general accepted form is :

[mqtt|ws][s]://[username][:password]@host.domain[:port]

Here are some examples of URL:

mqtt://localhost
mqtt://localhost:1884
mqtt://user:password@localhost
ws://test.mosquitto.org
wss://user:password@localhost

10 Chapter 4. User guide

https://github.com/mqtt/mqtt.github.io/wiki/URI-Scheme

HBMQTT Documentation, Release 0.6

4.1.4 Running a broker

hbmqtt is a command-line tool for running a MQTT broker:

$ hbmqtt
[2015-11-06 22:45:16,470] :: INFO - Listener 'default' bind to 0.0.0.0:1883 (max_
→˓connections=-1)

See hbmqtt reference documentation for details about available options and settings.

4.2 Changelog

4.2.1 0.9.5

• fix more issues

• fix a few issues

4.2.2 0.9.2

• fix a few issues

4.2.3 0.9.1

• See commit log

4.2.4 0.9.0

• fix a serie of issues

• improve plugin performance

• support Python 3.6

• upgrade to websockets 3.3.0

4.2.5 0.8.0

• fix a serie of issues

4.2.6 0.7.3

• fix deliver message client method to raise TimeoutError (#40)

• fix topic filter matching in broker (#41)

Version 0.7.2 has been jumped due to troubles with pypi. . .

4.2. Changelog 11

https://github.com/beerfactory/hbmqtt/milestone/11?closed=1
https://github.com/beerfactory/hbmqtt/milestone/10?closed=1
https://github.com/beerfactory/hbmqtt/milestone/9?closed=1
https://github.com/beerfactory/hbmqtt/milestone/8?closed=1
https://github.com/beerfactory/hbmqtt/milestone/7?closed=1
https://github.com/beerfactory/hbmqtt/issues/40
https://github.com/beerfactory/hbmqtt/issues/41

HBMQTT Documentation, Release 0.6

4.2.7 0.7.1

• Fix duplicated $SYS topic name .

4.2.8 0.7.0

• Fix a serie of issues reported by Christoph Krey

4.2.9 0.6.3

• Fix issue #22.

4.2.10 0.6.2

• Fix issue #20 (mqtt subprotocol was missing).

• Upgrade to websockets 3.0.

4.2.11 0.6.1

• Fix issue #19

4.2.12 0.6

• Added compatibility with Python 3.5.

• Rewritten documentation.

• Add command-line tools hbmqtt, hbmqtt_pub and hbmqtt_sub.

4.3 References

Reference documentation for HBMQTT console scripts and programming API.

4.3.1 Console scripts

• hbmqtt_pub : MQTT client for publishing messages to a broker

• hbmqtt_sub : MQTT client for subscribing to a topics and retrieved published messages

• hbmqtt : Autonomous MQTT broker

4.3.2 Programming API

• MQTTClient API : MQTT client API reference

• Broker API reference : MQTT broker API reference

• Common API : Common API

TBD

12 Chapter 4. User guide

https://github.com/beerfactory/hbmqtt/issues/37
https://github.com/beerfactory/hbmqtt/issues?q=milestone%3A0.7+is%3Aclosed
https://github.com/ckrey
https://github.com/beerfactory/hbmqtt/issues/22
https://github.com/beerfactory/hbmqtt/issues/20
https://github.com/beerfactory/hbmqtt/issues/19

HBMQTT Documentation, Release 0.6

hbmqtt_pub

hbmqtt_pub is a MQTT client that publishes simple messages on a topic from the command line.

Usage

hbmqtt_pub usage :

hbmqtt_pub --version
hbmqtt_pub (-h | --help)
hbmqtt_pub --url BROKER_URL -t TOPIC (-f FILE | -l | -m MESSAGE | -n | -s) [-c CONFIG_
→˓FILE] [-i CLIENT_ID] [-d]

[-q | --qos QOS] [-d] [-k KEEP_ALIVE] [--clean-session]
[--ca-file CAFILE] [--ca-path CAPATH] [--ca-data CADATA]
[--will-topic WILL_TOPIC [--will-message WILL_MESSAGE] [--will-qos WILL_

→˓QOS] [--will-retain]]

Note that for simplicity, hbmqtt_pub uses mostly the same argument syntax as mosquitto_pub.

Options

--version HBMQTT version information

-h, --help Display hbmqtt_pub usage help

-c Set the YAML configuration file to read and pass to the client runtime.

-d Enable debugging informations.

--ca-file Define the path to a file containing PEM encoded CA certificates that are trusted.
Used to enable SSL communication.

--ca-path Define the path to a directory containing PEM encoded CA certificates that are
trusted. Used to enable SSL communication.

--ca-data Set the PEM encoded CA certificates that are trusted. Used to enable SSL com-
munication.

--clean-session If given, set the CONNECT clean session flag to True.

-f Send the contents of a file as the message. The file is read line by line, and
hbmqtt_pub will publish a message for each line read.

-i The id to use for this client. If not given, defaults to hbmqtt_pub/ appended
with the process id and the hostname of the client.

-l Send messages read from stdin. hbmqtt_pub will publish a message for each
line read. Blank lines won’t be sent.

-k Set the CONNECT keep alive timeout.

-m Send a single message from the command line.

-n Send a null (zero length) message.

-q, --qos Specify the quality of service to use for the message, from 0, 1 and 2. Defaults to
0.

-s Send a message read from stdin, sending the entire content as a single message.

-t The MQTT topic on which to publish the message.

4.3. References 13

http://mosquitto.org/man/mosquitto_pub-1.html

HBMQTT Documentation, Release 0.6

--url Broker connection URL, conforming to MQTT URL scheme.

--will-topic The topic on which to send a Will, in the event that the client disconnects unex-
pectedly.

--will-message Specify a message that will be stored by the broker and sent out if this client dis-
connects unexpectedly. This must be used in conjunction with --will-topic.

--will-qos The QoS to use for the Will. Defaults to 0. This must be used in conjunction with
--will-topic.

--will-retain If given, if the client disconnects unexpectedly the message sent out will
be treated as a retained message. This must be used in conjunction with
--will-topic.

Configuration

If -c argument is given, hbmqtt_pub will read specific MQTT settings for the given configuration file. This file
must be a valid YAML file which may contains the following configuration elements :

• keep_alive : Keep-alive timeout sent to the broker. Defaults to 10 seconds.

• ping_delay : Auto-ping delay before keep-alive timeout. Defaults to 1. Setting to 0 will disable to 0 and
may lead to broker disconnection.

• default_qos : Default QoS for messages published. Defaults to 0.

• default_retain : Default retain value to messages published. Defaults to false.

• auto_reconnect : Enable or disable auto-reconnect if connectection with the broker is interrupted. Defaults
to false.

• reconnect_retries : Maximum reconnection retries. Defaults to 2.

• reconnect_max_interval : Maximum interval between 2 connection retry. Defaults to 10.

Examples

Examples below are adapted from mosquitto_pub documentation.

Publish temperature information to localhost with QoS 1:

hbmqtt_pub --url mqtt://localhost -t sensors/temperature -m 32 -q 1

Publish timestamp and temperature information to a remote host on a non-standard port and QoS 0:

hbmqtt_pub --url mqtt://192.168.1.1:1885 -t sensors/temperature -m "1266193804 32"

Publish light switch status. Message is set to retained because there may be a long period of time between light switch
events:

hbmqtt_pub --url mqtt://localhost -r -t switches/kitchen_lights/status -m "on"

Send the contents of a file in two ways:

hbmqtt_pub --url mqtt://localhost -t my/topic -f ./data

hbmqtt_pub --url mqtt://localhost -t my/topic -s < ./data

14 Chapter 4. User guide

https://github.com/mqtt/mqtt.github.io/wiki/URI-Scheme
http://yaml.org/
http://mosquitto.org/man/mosquitto_pub-1.html

HBMQTT Documentation, Release 0.6

hbmqtt_sub

hbmqtt_sub is a command line MQTT client that subscribes to some topics and output data received from messages
published.

Usage

hbmqtt_sub usage :

hbmqtt_sub --version
hbmqtt_sub (-h | --help)
hbmqtt_sub --url BROKER_URL -t TOPIC... [-n COUNT] [-c CONFIG_FILE] [-i CLIENT_ID] [-
→˓q | --qos QOS] [-d]

[-k KEEP_ALIVE] [--clean-session] [--ca-file CAFILE] [--ca-path CAPATH] [--
→˓ca-data CADATA]

[--will-topic WILL_TOPIC [--will-message WILL_MESSAGE] [--will-qos WILL_
→˓QOS] [--will-retain]]

Note that for simplicity, hbmqtt_sub uses mostly the same argument syntax as mosquitto_sub.

Options

--version HBMQTT version information

-h, --help Display hbmqtt_sub usage help

-c Set the YAML configuration file to read and pass to the client runtime.

-d Enable debugging informations.

--ca-file Define the path to a file containing PEM encoded CA certificates that are trusted.
Used to enable SSL communication.

--ca-path Define the path to a directory containing PEM encoded CA certificates that are
trusted. Used to enable SSL communication.

--ca-data Set the PEM encoded CA certificates that are trusted. Used to enable SSL com-
munication.

--clean-session If given, set the CONNECT clean session flag to True.

-i The id to use for this client. If not given, defaults to hbmqtt_sub/ appended
with the process id and the hostname of the client.

-k Set the CONNECT keep alive timeout.

-n Number of messages to read before ending. Read forever if not given.

-q, --qos Specify the quality of service to use for receiving messages. This QoS is sent in
the subscribe request.

-t Topic filters to subcribe.

--url Broker connection URL, conforming to MQTT URL scheme.

--will-topic The topic on which to send a Will, in the event that the client disconnects unex-
pectedly.

--will-message Specify a message that will be stored by the broker and sent out if this client dis-
connects unexpectedly. This must be used in conjunction with --will-topic.

4.3. References 15

http://mosquitto.org/man/mosquitto_sub-1.html
https://github.com/mqtt/mqtt.github.io/wiki/URI-Scheme

HBMQTT Documentation, Release 0.6

--will-qos The QoS to use for the Will. Defaults to 0. This must be used in conjunction with
--will-topic.

--will-retain If given, if the client disconnects unexpectedly the message sent out will
be treated as a retained message. This must be used in conjunction with
--will-topic.

Configuration

If -c argument is given, hbmqtt_sub will read specific MQTT settings for the given configuration file. This file
must be a valid YAML file which may contains the following configuration elements :

• keep_alive : Keep-alive timeout sent to the broker. Defaults to 10 seconds.

• ping_delay : Auto-ping delay before keep-alive timeout. Defaults to 1. Setting to 0 will disable to 0 and
may lead to broker disconnection.

• default_qos : Default QoS for messages published. Defaults to 0.

• default_retain : Default retain value to messages published. Defaults to false.

• auto_reconnect : Enable or disable auto-reconnect if connectection with the broker is interrupted. Defaults
to false.

• reconnect_retries : Maximum reconnection retries. Defaults to 2.

• reconnect_max_interval : Maximum interval between 2 connection retry. Defaults to 10.

Examples

Examples below are adapted from mosquitto_sub documentation.

Subscribe with QoS 0 to all messages published under $SYS/:

hbmqtt_sub --url mqtt://localhost -t '$SYS/#' -q 0

Subscribe to 10 messages with QoS 2 from /#:

hbmqtt_sub --url mqtt://localhost -t /# -q 2 -n 10

hbmqtt

hbmqtt is a command-line script for running a MQTT 3.1.1 broker.

Usage

hbmqtt usage :

hbmqtt --version
hbmqtt (-h | --help)
hbmqtt [-c <config_file>] [-d]

16 Chapter 4. User guide

http://yaml.org/
http://mosquitto.org/man/mosquitto_sub-1.html

HBMQTT Documentation, Release 0.6

Options

--version HBMQTT version information

-h, --help Display hbmqtt_sub usage help

-c Set the YAML configuration file to read and pass to the client runtime.

Configuration

If -c argument is given, hbmqtt will read specific MQTT settings for the given configuration file. This file must be
a valid YAML file which may contains the following configuration elements :

• listeners : network bindings configuration list

• timeout-disconnect-delay : client disconnect timeout after keep-alive timeout

• auth : authentication configuration

Without the -c argument, the broker will run with the following default configuration:

listeners:
default:

type: tcp
bind: 0.0.0.0:1883

sys_interval: 20
auth:

allow-anonymous: true
plugins:

- auth_file
- auth_anonymous

Using this configuration, hbmqtt will start a broker :

• listening on TCP port 1883 on all network interfaces.

• Publishing $SYS``_ update messages every ``20 seconds.

• Allowing anonymous login, and password file bases authentication.

Configuration example

listeners:
default:

max-connections: 50000
type: tcp

my-tcp-1:
bind: 127.0.0.1:1883
my-tcp-2:
bind: 1.2.3.4:1883
max-connections: 1000

my-tcp-ssl-1:
bind: 127.0.0.1:8883
ssl: on
cafile: /some/cafile
capath: /some/folder
capath: certificate data

(continues on next page)

4.3. References 17

http://yaml.org/

HBMQTT Documentation, Release 0.6

(continued from previous page)

certfile: /some/certfile
keyfile: /some/key

my-ws-1:
bind: 0.0.0.0:8080
type: ws

timeout-disconnect-delay: 2
auth:

plugins: ['auth.anonymous']
allow-anonymous: true
password-file: /some/passwd_file

This configuration example shows use case of every parameter.

The listeners section define 3 bindings :

• my-tcp-1 : a unsecured TCP listener on port 1883 allowing 1000 clients connections simultaneously

• my-tcp-ssl-1 : a secured TCP listener on port 8883 allowing 50000 clients connections simultaneously

• my-ws-1 : a unsecured websocket listener on port 8080 allowing 50000 clients connections simultaneously

Authentication allows anonymous logins and password file based authentication. Password files are required to be text
files containing user name and password in the form of :

username:password

where password should be the encrypted password. Use the mkpasswd -m sha-512 command to build encoded
passphrase. Password file example:

Test user with 'test' password encrypted with sha-512
test:6l4zQEHEcowc1Pnv4
→˓$HHrh8xnsZoLItQ8BmpFHM4r6q5UqK3DnXp2GaTm5zp5buQ7NheY3Xt9f6godVKbEtA.
→˓hOC7IEDwnok3pbAOip.

MQTTClient API

The MQTTClient class implements the client part of MQTT protocol. It can be used to publish and/or subscribe
MQTT message on a broker accessible on the network through TCP or websocket protocol, both secured or unsecured.

Usage examples

Subscriber

The example below shows how to write a simple MQTT client which subscribes a topic and prints every messages
received from the broker :

import logging
import asyncio

from hbmqtt.client import MQTTClient, ClientException
from hbmqtt.mqtt.constants import QOS_1, QOS_2

@asyncio.coroutine
def uptime_coro():

(continues on next page)

18 Chapter 4. User guide

HBMQTT Documentation, Release 0.6

(continued from previous page)

C = MQTTClient()
yield from C.connect('mqtt://test.mosquitto.org/')
Subscribe to '$SYS/broker/uptime' with QOS=1
Subscribe to '$SYS/broker/load/#' with QOS=2
yield from C.subscribe([

('$SYS/broker/uptime', QOS_1),
('$SYS/broker/load/#', QOS_2),

])
try:

for i in range(1, 100):
message = yield from C.deliver_message()
packet = message.publish_packet
print("%d: %s => %s" % (i, packet.variable_header.topic_name, str(packet.

→˓payload.data)))
yield from C.unsubscribe(['$SYS/broker/uptime', '$SYS/broker/load/#'])
yield from C.disconnect()

except ClientException as ce:
logger.error("Client exception: %s" % ce)

if __name__ == '__main__':
asyncio.get_event_loop().run_until_complete(uptime_coro())

When executed, this script gets the default event loop and asks it to run the uptime_coro until it completes.
uptime_coro starts by initializing a MQTTClient instance. The coroutine then call connect() to connect
to the broker, here test.mosquitto.org. Once connected, the coroutine subscribes to some topics, and then wait
for 100 messages. Each message received is simply written to output. Finally, the coroutine unsubscribes from topics
and disconnects from the broker.

Publisher

The example below uses the MQTTClient class to implement a publisher. This test publish 3 messages asyn-
chronously to the broker on a test topic. For the purposes of the test, each message is published with a different
Quality Of Service. This example also shows to method for publishing message asynchronously.

import logging
import asyncio

from hbmqtt.client import MQTTClient
from hbmqtt.mqtt.constants import QOS_1, QOS_2

@asyncio.coroutine
def test_coro():

C = MQTTClient()
yield from C.connect('mqtt://test.mosquitto.org/')
tasks = [

asyncio.ensure_future(C.publish('a/b', b'TEST MESSAGE WITH QOS_0')),
asyncio.ensure_future(C.publish('a/b', b'TEST MESSAGE WITH QOS_1', qos=QOS_

→˓1)),
asyncio.ensure_future(C.publish('a/b', b'TEST MESSAGE WITH QOS_2', qos=QOS_

→˓2)),
]
yield from asyncio.wait(tasks)
logger.info("messages published")
yield from C.disconnect()

(continues on next page)

4.3. References 19

HBMQTT Documentation, Release 0.6

(continued from previous page)

@asyncio.coroutine
def test_coro2():

try:
C = MQTTClient()
ret = yield from C.connect('mqtt://test.mosquitto.org:1883/')
message = yield from C.publish('a/b', b'TEST MESSAGE WITH QOS_0', qos=QOS_0)
message = yield from C.publish('a/b', b'TEST MESSAGE WITH QOS_1', qos=QOS_1)
message = yield from C.publish('a/b', b'TEST MESSAGE WITH QOS_2', qos=QOS_2)
#print(message)
logger.info("messages published")
yield from C.disconnect()

except ConnectException as ce:
logger.error("Connection failed: %s" % ce)
asyncio.get_event_loop().stop()

if __name__ == '__main__':
formatter = "[%(asctime)s] %(name)s {%(filename)s:%(lineno)d} %(levelname)s -

→˓%(message)s"
logging.basicConfig(level=logging.DEBUG, format=formatter)
asyncio.get_event_loop().run_until_complete(test_coro())
asyncio.get_event_loop().run_until_complete(test_coro2())

As usual, the script runs the publish code through the async loop. test_coro() and test_coro() are ran in
sequence. Both do the same job. test_coro() publish 3 messages in sequence. test_coro2() publishes the
same message asynchronously. The difference appears the looking at the sequence of MQTT messages sent.

test_coro() achieves:

hbmqtt/YDYY;NNRpYQSy3?o -out-> PublishPacket(ts=2015-11-11 21:54:48.843901,
→˓fixed=MQTTFixedHeader(length=28, flags=0x0), variable=PublishVariableHeader(topic=a/
→˓b, packet_id=None), payload=PublishPayload(data="b'TEST MESSAGE WITH QOS_0'"))
hbmqtt/YDYY;NNRpYQSy3?o -out-> PublishPacket(ts=2015-11-11 21:54:48.844152,
→˓fixed=MQTTFixedHeader(length=30, flags=0x2), variable=PublishVariableHeader(topic=a/
→˓b, packet_id=1), payload=PublishPayload(data="b'TEST MESSAGE WITH QOS_1'"))
hbmqtt/YDYY;NNRpYQSy3?o <-in-- PubackPacket(ts=2015-11-11 21:54:48.979665,
→˓fixed=MQTTFixedHeader(length=2, flags=0x0), variable=PacketIdVariableHeader(packet_
→˓id=1), payload=None)
hbmqtt/YDYY;NNRpYQSy3?o -out-> PublishPacket(ts=2015-11-11 21:54:48.980886,
→˓fixed=MQTTFixedHeader(length=30, flags=0x4), variable=PublishVariableHeader(topic=a/
→˓b, packet_id=2), payload=PublishPayload(data="b'TEST MESSAGE WITH QOS_2'"))
hbmqtt/YDYY;NNRpYQSy3?o <-in-- PubrecPacket(ts=2015-11-11 21:54:49.029691,
→˓fixed=MQTTFixedHeader(length=2, flags=0x0), variable=PacketIdVariableHeader(packet_
→˓id=2), payload=None)
hbmqtt/YDYY;NNRpYQSy3?o -out-> PubrelPacket(ts=2015-11-11 21:54:49.030823,
→˓fixed=MQTTFixedHeader(length=2, flags=0x2), variable=PacketIdVariableHeader(packet_
→˓id=2), payload=None)
hbmqtt/YDYY;NNRpYQSy3?o <-in-- PubcompPacket(ts=2015-11-11 21:54:49.092514,
→˓fixed=MQTTFixedHeader(length=2, flags=0x0), variable=PacketIdVariableHeader(packet_
→˓id=2), payload=None)fixed=MQTTFixedHeader(length=2, flags=0x0),
→˓variable=PacketIdVariableHeader(packet_id=2), payload=None)

while test_coro2() runs:

hbmqtt/LYRf52W[56SOjW04 -out-> PublishPacket(ts=2015-11-11 21:54:48.466123,
→˓fixed=MQTTFixedHeader(length=28, flags=0x0), variable=PublishVariableHeader(topic=a/
→˓b, packet_id=None), payload=PublishPayload(data="b'TEST MESSAGE WITH QOS_0'"))(continues on next page)

20 Chapter 4. User guide

HBMQTT Documentation, Release 0.6

(continued from previous page)

hbmqtt/LYRf52W[56SOjW04 -out-> PublishPacket(ts=2015-11-11 21:54:48.466432,
→˓fixed=MQTTFixedHeader(length=30, flags=0x2), variable=PublishVariableHeader(topic=a/
→˓b, packet_id=1), payload=PublishPayload(data="b'TEST MESSAGE WITH QOS_1'"))
hbmqtt/LYRf52W[56SOjW04 -out-> PublishPacket(ts=2015-11-11 21:54:48.466695,
→˓fixed=MQTTFixedHeader(length=30, flags=0x4), variable=PublishVariableHeader(topic=a/
→˓b, packet_id=2), payload=PublishPayload(data="b'TEST MESSAGE WITH QOS_2'"))
hbmqtt/LYRf52W[56SOjW04 <-in-- PubackPacket(ts=2015-11-11 21:54:48.613062,
→˓fixed=MQTTFixedHeader(length=2, flags=0x0), variable=PacketIdVariableHeader(packet_
→˓id=1), payload=None)
hbmqtt/LYRf52W[56SOjW04 <-in-- PubrecPacket(ts=2015-11-11 21:54:48.661073,
→˓fixed=MQTTFixedHeader(length=2, flags=0x0), variable=PacketIdVariableHeader(packet_
→˓id=2), payload=None)
hbmqtt/LYRf52W[56SOjW04 -out-> PubrelPacket(ts=2015-11-11 21:54:48.661925,
→˓fixed=MQTTFixedHeader(length=2, flags=0x2), variable=PacketIdVariableHeader(packet_
→˓id=2), payload=None)
hbmqtt/LYRf52W[56SOjW04 <-in-- PubcompPacket(ts=2015-11-11 21:54:48.713107,
→˓fixed=MQTTFixedHeader(length=2, flags=0x0), variable=PacketIdVariableHeader(packet_
→˓id=2), payload=None)

Both coroutines have the same results except that test_coro2() manages messages flow in parallel which may be
more efficient.

Reference

MQTTClient API

class hbmqtt.client.MQTTClient(client_id=None, config=None, loop=None)
MQTT client implementation.

MQTTClient instances provides API for connecting to a broker and send/receive messages using the MQTT
protocol.

Parameters

• client_id – MQTT client ID to use when connecting to the broker. If none, it will
generated randomly by hbmqtt.utils.gen_client_id()

• config – Client configuration

• loop – asynio loop to use

Returns class instance

connect(uri=None, cleansession=None, cafile=None, capath=None, cadata=None)
Connect to a remote broker.

At first, a network connection is established with the server using the given protocol (mqtt, mqtts, ws
or wss). Once the socket is connected, a CONNECT message is sent with the requested informations.

This method is a coroutine.

Parameters

• uri – Broker URI connection, conforming to MQTT URI scheme. Uses uri config
attribute by default.

• cleansession – MQTT CONNECT clean session flag

• cafile – server certificate authority file (optional, used for secured connection)

4.3. References 21

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718028
https://github.com/mqtt/mqtt.github.io/wiki/URI-Scheme

HBMQTT Documentation, Release 0.6

• capath – server certificate authority path (optional, used for secured connection)

• cadata – server certificate authority data (optional, used for secured connection)

Returns CONNACK return code

Raise hbmqtt.client.ConnectException if connection fails

disconnect()
Disconnect from the connected broker.

This method sends a DISCONNECT message and closes the network socket.

This method is a coroutine.

reconnect(cleansession=None)
Reconnect a previously connected broker.

Reconnection tries to establish a network connection and send a CONNECT message. Retries interval
and attempts can be controled with the reconnect_max_interval and reconnect_retries
configuration parameters.

This method is a coroutine.

Parameters cleansession – clean session flag used in MQTT CONNECT messages sent
for reconnections.

Returns

CONNACK return code

Raise hbmqtt.client.ConnectException if re-connection fails after max retries.

ping()
Ping the broker.

Send a MQTT PINGREQ message for response.

This method is a coroutine.

publish(topic, message, qos=None, retain=None)
Publish a message to the broker.

Send a MQTT PUBLISH message and wait for acknowledgment depending on Quality Of Service

This method is a coroutine.

Parameters

• topic – topic name to which message data is published

• message – payload message (as bytes) to send.

• qos – requested publish quality of service : QOS_0, QOS_1 or QOS_2. Defaults to
default_qos config parameter or QOS_0.

• retain – retain flag. Defaults to default_retain config parameter or False.

subscribe(topics)
Subscribe to some topics.

Send a MQTT SUBSCRIBE message and wait for broker acknowledgment.

This method is a coroutine.

Parameters topics – array of topics pattern to subscribe with associated QoS.

Returns SUBACK message return code.

22 Chapter 4. User guide

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718033
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718090
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718028
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718033
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718081
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718037
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718063
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718068

HBMQTT Documentation, Release 0.6

Example of topics argument expected structure:

[
('$SYS/broker/uptime', QOS_1),
('$SYS/broker/load/#', QOS_2),

]

unsubscribe(topics)
Unsubscribe from some topics.

Send a MQTT UNSUBSCRIBE message and wait for broker UNSUBACK message.

This method is a coroutine.

Parameters topics – array of topics to unsubscribe from.

Example of topics argument expected structure:

['$SYS/broker/uptime', '$SYS/broker/load/#']

deliver_message(timeout=None)
Deliver next received message.

Deliver next message received from the broker. If no message is available, this methods waits until next
message arrives or timeout occurs.

This method is a coroutine.

Parameters timeout – maximum number of seconds to wait before returning. If timeout is
not specified or None, there is no limit to the wait time until next message arrives.

Returns instance of hbmqtt.session.ApplicationMessage containing received mes-
sage information flow.

Raises asyncio.TimeoutError if timeout occurs before a message is delivered

MQTTClient configuration

The MQTTClient __init__ method accepts a config parameter which allow to setup some behaviour and
defaults settings. This argument must be a Python dict object which may contain the following entries:

• keep_alive: keep alive (in seconds) to send when connecting to the broker (defaults to 10 seconds).
MQTTClient will auto-ping the broker if not message is sent within the keep-alive interval. This avoids
disconnection from the broker.

• ping_delay: auto-ping delay before keep-alive times out (defaults to 1 seconds).

• default_qos: Default QoS (0) used by publish() if qos argument is not given.

• default_retain: Default retain (False) used by publish() if qos argument is not given.,

• auto_reconnect: enable or disable auto-reconnect feature (defaults to True).

• reconnect_max_interval: maximum interval (in seconds) to wait before two connection retries (defaults
to 10).

• reconnect_retries: maximum number of connect retries (defaults to 2).

Default QoS and default retain can also be overriden by adding a topics with may contain QoS and retain values
for specific topics. See the following example:

4.3. References 23

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718072
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718077

HBMQTT Documentation, Release 0.6

config = {
'keep_alive': 10,
'ping_delay': 1,
'default_qos': 0,
'default_retain': False,
'auto_reconnect': True,
'reconnect_max_interval': 5,
'reconnect_retries': 10,
'topics': {

'/test': { 'qos': 1 },
'/some_topic': { 'qos': 2, 'retain': True }

}
}

With this setting any message published will set with QOS_0 and retain flag unset except for :

• messages sent to /test topic : they will be sent with QOS_1

• messages sent to /some_topic topic : they will be sent with QOS_2 and retain flag set

In any case, the qos and retain argument values passed to method publish() will override these settings.

Broker API reference

The Broker class provides a complete MQTT 3.1.1 broker implementation. This class allows Python developers to
embed a MQTT broker in their own applications.

Usage example

The following example shows how to start a broker using the default configuration:

import logging
import asyncio
import os
from hbmqtt.broker import Broker

@asyncio.coroutine
def broker_coro():

broker = Broker()
yield from broker.start()

if __name__ == '__main__':
formatter = "[%(asctime)s] :: %(levelname)s :: %(name)s :: %(message)s"
logging.basicConfig(level=logging.INFO, format=formatter)
asyncio.get_event_loop().run_until_complete(broker_coro())
asyncio.get_event_loop().run_forever()

When executed, this script gets the default event loop and asks it to run the broker_coro until it completes.
broker_coro creates Broker instance and then start() the broker for serving. Once completed, the loop
is ran forever, making this script never stop . . .

24 Chapter 4. User guide

HBMQTT Documentation, Release 0.6

Reference

Broker API

class hbmqtt.broker.Broker(config=None, loop=None, plugin_namespace=None)
MQTT 3.1.1 compliant broker implementation

Parameters

• config – Example Yaml config

• loop – asyncio loop to use. Defaults to asyncio.get_event_loop() if none is given

• plugin_namespace – Plugin namespace to use when loading plugin entry_points. De-
faults to hbmqtt.broker.plugins

start()
Start the broker to serve with the given configuration

Start method opens network sockets and will start listening for incoming connections.

This method is a coroutine.

shutdown()
Stop broker instance.

Closes all connected session, stop listening on network socket and free resources.

Broker configuration

The Broker __init__ method accepts a config parameter which allow to setup some behaviour and defaults
settings. This argument must be a Python dict object. For convinience, it is presented below as a YAML file1.

listeners:
default:

max-connections: 50000
type: tcp

my-tcp-1:
bind: 127.0.0.1:1883

my-tcp-2:
bind: 1.2.3.4:1884
max-connections: 1000

my-tcp-ssl-1:
bind: 127.0.0.1:8885
ssl: on
cafile: /some/cafile
capath: /some/folder
capath: certificate data
certfile: /some/certfile
keyfile: /some/key

my-ws-1:
bind: 0.0.0.0:8080
type: ws

timeout-disconnect-delay: 2
auth:

plugins: ['auth.anonymous'] #List of plugins to activate for authentication among
→˓all registered plugins

(continues on next page)

1 See PyYAML for loading YAML files as Python dict.

4.3. References 25

http://pyyaml.org/wiki/PyYAMLDocumentation

HBMQTT Documentation, Release 0.6

(continued from previous page)

allow-anonymous: true / false
password-file: /some/passwd_file

The listeners section allows to define network listeners which must be started by the Broker. Several listeners
can be setup. default subsection defines common attributes for all listeners. Each listener can have the following
settings:

• bind: IP address and port binding.

• max-connections: Set maximum number of active connection for the listener. 0 means no limit.

• type: transport protocol type; can be tcp for classic TCP listener or ws for MQTT over websocket.

• ssl enables (on) or disable secured connection over the transport protocol.

• cafile, cadata, certfile and keyfile : mandatory parameters for SSL secured connections.

The auth section setup authentication behaviour:

• plugins: defines the list of activated plugins. Note the plugins must be defined in the hbmqtt.broker.
plugins entry point.

• allow-anonymous : used by the internal hbmqtt.plugins.authentication.
AnonymousAuthPlugin plugin. This parameter enables (on) or disable anonymous connection, ie.
connection without username.

• password-file : used by the internal hbmqtt.plugins.authentication.FileAuthPlugin
plugin. This parameter gives to path of the password file to load for authenticating users.

Common API

This document describes HBMQTT common API both used by MQTTClient API and Broker API reference.

Reference

ApplicationMessage

class hbmqtt.session.ApplicationMessage(packet_id, topic, qos, data, retain)
ApplicationMessage and subclasses are used to store published message information flow. These objects can
contain different information depending on the way they were created (incoming or outgoing) and the quality of
service used between peers.

build_publish_packet(dup=False)

Build hbmqtt.mqtt.publish.PublishPacket from attributes

Parameters dup – force dup flag

Returns hbmqtt.mqtt.publish.PublishPacket built from ApplicationMessage in-
stance attributes

data
Publish message payload data

packet_id
Publish message packet identifier

26 Chapter 4. User guide

https://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718025

HBMQTT Documentation, Release 0.6

puback_packet
hbmqtt.mqtt.puback.PubackPacket instance corresponding to the PUBACK packet in the mes-
sages flow. None if QoS != QOS_1 or if the PUBACK packet has not already been received or sent.

pubcomp_packet
hbmqtt.mqtt.puback.PubrelPacket instance corresponding to the PUBCOMP packet in the
messages flow. None if QoS != QOS_2 or if the PUBCOMP packet has not already been received or
sent.

publish_packet
hbmqtt.mqtt.publish.PublishPacket instance corresponding to the PUBLISH packet in the
messages flow. None if the PUBLISH packet has not already been received or sent.

pubrec_packet
hbmqtt.mqtt.puback.PubrecPacket instance corresponding to the PUBREC packet in the mes-
sages flow. None if QoS != QOS_2 or if the PUBREC packet has not already been received or sent.

pubrel_packet
hbmqtt.mqtt.puback.PubrelPacket instance corresponding to the PUBREL packet in the mes-
sages flow. None if QoS != QOS_2 or if the PUBREL packet has not already been received or sent.

qos
Publish message Quality of Service

retain
Publish message retain flag

topic
Publish message topic

class hbmqtt.session.IncomingApplicationMessage(packet_id, topic, qos, data, retain)
Bases: hbmqtt.session.ApplicationMessage

Incoming ApplicationMessage.

class hbmqtt.session.OutgoingApplicationMessage(packet_id, topic, qos, data, retain)
Bases: hbmqtt.session.ApplicationMessage

Outgoing ApplicationMessage.

4.4 License

The MIT License (MIT)

Copyright (c) 2015 Nicolas JOUANIN

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

(continues on next page)

4.4. License 27

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718043
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718058
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718037
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718048
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718053

HBMQTT Documentation, Release 0.6

(continued from previous page)

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

28 Chapter 4. User guide

Python Module Index

h
hbmqtt.broker, 25
hbmqtt.client, 21
hbmqtt.session, 26

29

HBMQTT Documentation, Release 0.6

30 Python Module Index

Index

A
ApplicationMessage (class in hbmqtt.session), 26

B
Broker (class in hbmqtt.broker), 25
build_publish_packet() (hb-

mqtt.session.ApplicationMessage method),
26

C
connect() (hbmqtt.client.MQTTClient method), 21

D
data (hbmqtt.session.ApplicationMessage attribute), 26
deliver_message() (hbmqtt.client.MQTTClient method),

23
disconnect() (hbmqtt.client.MQTTClient method), 22

H
hbmqtt.broker (module), 25
hbmqtt.client (module), 21
hbmqtt.session (module), 26

I
IncomingApplicationMessage (class in hbmqtt.session),

27

M
MQTTClient (class in hbmqtt.client), 21

O
OutgoingApplicationMessage (class in hbmqtt.session),

27

P
packet_id (hbmqtt.session.ApplicationMessage attribute),

26
ping() (hbmqtt.client.MQTTClient method), 22

puback_packet (hbmqtt.session.ApplicationMessage at-
tribute), 26

pubcomp_packet (hbmqtt.session.ApplicationMessage
attribute), 27

publish() (hbmqtt.client.MQTTClient method), 22
publish_packet (hbmqtt.session.ApplicationMessage at-

tribute), 27
pubrec_packet (hbmqtt.session.ApplicationMessage at-

tribute), 27
pubrel_packet (hbmqtt.session.ApplicationMessage at-

tribute), 27

Q
qos (hbmqtt.session.ApplicationMessage attribute), 27

R
reconnect() (hbmqtt.client.MQTTClient method), 22
retain (hbmqtt.session.ApplicationMessage attribute), 27

S
shutdown() (hbmqtt.broker.Broker method), 25
start() (hbmqtt.broker.Broker method), 25
subscribe() (hbmqtt.client.MQTTClient method), 22

T
topic (hbmqtt.session.ApplicationMessage attribute), 27

U
unsubscribe() (hbmqtt.client.MQTTClient method), 23

31

	Features
	Requirements
	Installation
	User guide
	Quickstart
	Changelog
	References
	License

	Python Module Index

