

HawkREST

Hawk [https://github.com/hueniverse/hawk] HTTP Authorization for Django Rest Framework [http://django-rest-framework.org/].

[image: Latest PyPI release]
 [https://pypi.python.org/pypi/hawkrest][image: PyPI monthly download stats]
 [https://pypi.python.org/pypi/hawkrest][image: Travis master branch status]
 [https://travis-ci.org/kumar303/hawkrest][image: Documentation status]
 [https://hawkrest.readthedocs.io/en/latest/?badge=latest]Hawk lets two parties securely communicate with each other using
messages signed by a shared key.
It is based on HTTP MAC access authentication [http://tools.ietf.org/html/draft-hammer-oauth-v2-mac-token-05] (which
was based on parts of OAuth 1.0 [http://tools.ietf.org/html/rfc5849]).

HawkREST uses the mohawk [https://mohawk.readthedocs.io/] module to add Hawk
authorization to your REST API views.

This guide will help you set everything up but you should
also read through mohawk security considerations [https://mohawk.readthedocs.io/en/latest/security.html] to get familiar
with the security aspects of Hawk.

Installation

Requirements:

	Python 2.7+ or 3.4+

	Django [https://www.djangoproject.com/] 1.8 through 1.11

	Django Rest Framework [http://django-rest-framework.org/] 3.4 or 3.5

	mohawk [https://mohawk.readthedocs.io/]

(Older versions of these libraries may work, but support is not guaranteed.)

Using pip [http://www.pip-installer.org/], install the module like this:

pip install hawkrest

This will also install all necessary dependencies.
You’ll most likely put this in a requirements [http://www.pip-installer.org/en/latest/user_guide.html#requirements-files] file within your Django app.

The source code is available at https://github.com/kumar303/hawkrest

Topics

	Usage
	Django Configuration

	Protecting API views with Hawk

	Verification tool

	Developers
	Run the tests

	Set up an environment

	Build the docs

	Publish a release

Bugs

You can report issues at https://github.com/kumar303/hawkrest

Changelog

Important

If you’re upgrading from a version prior to 0.0.6, be sure to
use rest_framework.permissions.IsAuthenticated on your views
as documented

	1.0.1 (2018-10-06)
- Added support for being used via Django 1.11’s new MIDDLEWARE option.
- Fixed the hawkrequest management command when using newer Django/Python.
- Fixed inconsistency between the way the middleware and authentication

backend determined whether a request was a Hawk signed request.

	1.0.0 (2017-04-05)

	Added support for a HAWK_USER_LOOKUP setting.
See Usage.

	Added hooks to make subclassing HawkAuthentication easier.
See Usage.

	Dropped support for Django 1.6/1.7.

	Dropped support for django-rest-framework 3.2/3.3.

	Confirmed support for django-rest-framework 3.4/3.5.

	Added support for Django 1.10/1.11.

	Started using semantic versioning [http://semver.org/].

	0.0.10 (2016-06-01)

	Adds support for Django 1.9.

	0.0.9 (2016-01-07)

	Adds more specific AuthenticationFailed errors.

	0.0.8 (2015-10-01)

	Fixes issue #11 [https://github.com/kumar303/hawkrest/issues/11]
where exception info was leaked to the response, potentially revealing
sensitive information.

	0.0.7 (2015-09-30)

	Fixes issue #9 [https://github.com/kumar303/hawkrest/issues/9]
where using rest_framework.permissions.IsAuthenticated
on your Hawk protected view caused an unexpected traceback.

	0.0.6 (2015-09-08)

	IMPORTANT: If migrating to this version from an earlier version of
hawkrest, your Django Rest Framework API views must require an
authenticated user as documented. In other
words, older versions of hawkrest would reject any request that didn’t
have a Hawk authentication header but this version does not (see the bug fix
below).

	Fixed bug where other HTTP authorization schemes could not be supported at
the same time as Hawk. Thanks to
Mauro Doglio [https://github.com/maurodoglio] for the patch.

	Fixed incorrect statement in docs that Python 2.6 was supported. Only 2.7 or
greater is supported at this time.

	Sends WWW-Authenticate: Hawk header in 401 responses now.

	0.0.5 (2015-07-21)

	Added HAWK_CREDENTIALS_LOOKUP setting which is a callable.
Thanks to Felipe Otamendi [https://github.com/felipeota] for the patch.

	0.0.4 (2015-06-24)

	Fixed nonce callback support for
mohawk 0.3.0 [https://mohawk.readthedocs.io/en/latest/#changelog].
Thanks to Josh Wilson for the patches.

	0.0.3 (2015-01-05)

	Fixed traceback when cache setting is undefined.
Thanks to wolfgangmeyers for the patch.

	0.0.2 (2014-03-03)

	Added support for Python 3.3 and greater

	Added support for Python 2.6

	0.0.1 (2014-02-27)

	Initial release, extracted from https://github.com/mozilla/apk-signer

Indices and tables

	Index

	Module Index

	Search Page

Usage

Django Configuration

After installation,
you’ll need to configure your Django app with some
variables in your settings.py file.

Make sure the module is installed as an app:

INSTALLED_APPS = (
 ...
 'hawkrest',
)

Make sure the middleware is installed by adding it to your project’s
MIDDLEWARE or MIDDLEWARE_CLASSES (Django version < 1.11) setting:

MIDDLEWARE = (
 ...
 'hawkrest.middleware.HawkResponseMiddleware',
)

To protect all your REST views with Hawk, you can make hawkrest the
default:

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'hawkrest.HawkAuthentication',
),
 ...
}

Set up the allowed access credentials. Each dict key will be a Hawk ID for
a user who is
allowed to connect to your API. For example, an incoming request with an
ID named script-user would sign its request using the secret
this should be a long secret string to make a successful connection.
The credentials dict in your settings file would look like this:

HAWK_CREDENTIALS = {
 'script-user': {
 'id': 'script-user',
 'key': 'this should be a long secret string',
 'algorithm': 'sha256'
 },
}

You can add each Hawk credential to this dict.

If you need an alternative method for looking up credentials you can set up a
lookup function under the HAWK_CREDENTIALS_LOOKUP setting. This function
receives a Hawk ID as a parameter and returns a dict containing the
credentials. For example, if you have a HawkUser model with a key
attribute then you can write a function hawk_credentials_lookup as follows:

def hawk_credentials_lookup(id):
 user = HawkUser.objects.get(some_id=id)
 return {
 'id': id,
 'key': user.key,
 'algorithm': 'sha256'
 }

and then you would configure it in your settings:

HAWK_CREDENTIALS_LOOKUP = 'yourapi.auth.hawk_credentials_lookup'

Alternately, you can subclass HawkAuthentication and override the hawk_credentials_lookup() method. For example:

from hawkrest import HawkAuthentication

class YourHawk(HawkAuthentication):
 def hawk_credentials_lookup(self, id):
 user = HawkUser.objects.get(some_id=id)
 return {
 'id': id,
 'key': user.key,
 'algorithm': 'sha256'
 }

and then specify your new class instead in the authentication backend list:

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'yourapi.auth.YourHawk',
),
 ...
}

By default, a generic HawkAuthenticatedUser instance is returned when valid Hawk credentials are found. If you need another user model, you can set up a lookup function under the HAWK_USER_LOOKUP setting. This function receives the request and the matched credentials dict as parameters and returns a (user, auth) tuple as per custom authentication [http://www.django-rest-framework.org/api-guide/authentication/#custom-authentication]. For example, with a HawkUser model whose user_id is included in the credentials dict, you can write a function hawk_user_lookup as follows:

def hawk_user_lookup(request, credentials):
 return HawkUser.objects.get(some_id=credentials['id'])

and then you would configure it in your settings:

HAWK_USER_LOOKUP = 'yourapi.auth.hawk_user_lookup'

Alternately, you can subclass HawkAuthentication and override the hawk_user_lookup() method. For example:

from hawkrest import HawkAuthentication

class YourHawk(HawkAuthentication):
 def hawk_user_lookup(self, request, credentials):
 return HawkUser.objects.get(some_id=credentials['id'])

and then specify your new class instead in the authentication backend list:

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'yourapi.auth.YourHawk',
),
 ...
}

This setting is the number of seconds until a Hawk message
expires:

HAWK_MESSAGE_EXPIRATION = 60

To prevent replay attacks [https://mohawk.readthedocs.io/en/latest/usage.html#using-a-nonce-to-prevent-replay-attacks], Hawkrest uses the Django cache framework
for nonce lookups. You should configure Django with something
like memcache [https://docs.djangoproject.com/en/dev/topics/cache/#memcached] in production. By default, Django uses in-memory
caching and by default nonce checking will be activated. If you need to
disable it for some reason, set this:

USE_CACHE_FOR_HAWK_NONCE = False # only disable this if you need to

Protecting API views with Hawk

To protect all API views with Hawk by default, put this in your settings:

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'hawkrest.HawkAuthentication',
),
 'DEFAULT_PERMISSION_CLASSES': (
 'rest_framework.permissions.IsAuthenticated',
),
}

To protect a specific view directly, define it like this:

from rest_framework.permissions import IsAuthenticated
from rest_framework.views import APIView

from hawkrest import HawkAuthentication

class ExampleView(APIView):
 authentication_classes = (HawkAuthentication,)
 permission_classes = (IsAuthenticated,)

Verification tool

Hawkrest ships with a management command you can use to verify your
own Hawk API or any other Hawk authorized resource.

Run this from a Django app with Hawkrest installed for more info:

./manage.py hawkrequest --help

If you had secured your Django app using the credentials dict with
key script-user you could test it out like this:

./manage.py hawkrequest --url http://127.0.0.1:8000/your/view \
 --creds script-user -X POST -d foo=bar

Developers

Grab the source from Github: https://github.com/kumar303/hawkrest

Run the tests

You can run the full test suite with the tox [https://tox.readthedocs.io/] command:

tox

To just run Python 2.7 unit tests type:

tox -e py27-django1.8-drf3.2

To just run doctests type:

tox -e docs

Set up an environment

Using a virtualenv [https://pypi.python.org/pypi/virtualenv] you can set yourself up for development like this:

pip install -r requirements/dev.txt
python setup.py develop

Note that this won’t install any libraries that are tested at different
versions. You need tox for that.

Build the docs

In your development virtualenv, you can build the docs like this:

make -C docs/ html doctest
open docs/_build/html/index.html

Publish a release

To publish a new release on PyPI [https://pypi.python.org/pypi], make sure the changelog is up to date
and make sure you bumped the module version in setup.py. Tag master
as that version. For example, something like:

git tag 0.0.5
git push --tags

Run this from the repository root to publish on PyPI [https://pypi.python.org/pypi] as both a source
distribution and wheel:

rm -rf dist/*
python setup.py sdist bdist_wheel
twine upload dist/*

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 HawkREST

 		
 Usage

 		
 Django Configuration

 		
 Protecting API views with Hawk

 		
 Verification tool

 		
 Developers

 		
 Run the tests

 		
 Set up an environment

 		
 Build the docs

 		
 Publish a release

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

