

Welcome to HAProxy log analyzer’s documentation!

Contents:

	HAProxy log analyzer
	Tests and coverage

	Documentation

	Command-line interface

	Commands

	Filters

	Installation

	TODO

	Haproxy Modules
	Log

	Line

	Filters

	CHANGES
	3.0.1 (unreleased)

	3.0.0 (2019-06-10)

	2.1 (2017-07-06)

	2.0.2 (2016-11-17)

	2.0.1 (2016-10-29)

	2.0 (2016-07-06)

	2.0b0 (2016-04-18)

	2.0a0 (2016-03-29)

	1.3 (2016-03-29)

	1.2.1 (2016-02-23)

	1.2 (2015-12-07)

	1.1 (2015-04-19)

	1.0 (2015-03-24)

	0.0.3.post2 (2015-01-05)

	0.0.3.post (2015-01-04)

	0.0.3 (2014-07-09)

	0.0.2 (2014-07-09)

	0.0.1 (2014-07-09)

Indices and tables

	Index

	Module Index

	Search Page

HAProxy log analyzer

This Python package is a HAProxy [http://haproxy.1wt.eu/] log parser.
It analyzes HAProxy log files in multiple ways (see commands section below).

Note

Currently only the HTTP log format [http://cbonte.github.io/haproxy-dconv/configuration-1.4.html#8.2.3] is supported.

Tests and coverage

No project is trustworthy if does not have tests and a decent coverage!

[image: Tests]
 [https://travis-ci.org/gforcada/haproxy_log_analysis][image: Coverage]
 [https://coveralls.io/github/gforcada/haproxy_log_analysis][image: Downloads]
 [https://pypi.python.org/pypi/haproxy_log_analysis/][image: Latest Version]
 [https://pypi.python.org/pypi/haproxy_log_analysis/][image: Egg Status]
 [https://pypi.python.org/pypi/haproxy_log_analysis/][image: License]
 [https://pypi.python.org/pypi/haproxy_log_analysis/]

Documentation

See the documentation and API [http://haproxy-log-analyzer.readthedocs.org/en/latest/] at ReadTheDocs [http://readthedocs.org].

Command-line interface

The current --help looks like this:

usage: haproxy_log_analysis [-h] [-l LOG] [-s START] [-d DELTA] [-c COMMAND]
 [-f FILTER] [-n] [--list-commands]
 [--list-filters] [--json]

Analyze HAProxy log files and outputs statistics about it

optional arguments:
 -h, --help show this help message and exit
 -l LOG, --log LOG HAProxy log file to analyze
 -s START, --start START
 Process log entries starting at this time, in HAProxy
 date format (e.g. 11/Dec/2013 or
 11/Dec/2013:19:31:41). At least provide the
 day/month/year. Values not specified will use their
 base value (e.g. 00 for hour). Use in conjunction with
 -d to limit the number of entries to process.
 -d DELTA, --delta DELTA
 Limit the number of entries to process. Express the
 time delta as a number and a time unit, e.g.: 1s, 10m,
 3h or 4d (for 1 second, 10 minutes, 3 hours or 4
 days). Use in conjunction with -s to only analyze
 certain time delta. If no start time is given, the
 time on the first line will be used instead.
 -c COMMAND, --command COMMAND
 List of commands, comma separated, to run on the log
 file. See --list-commands to get a full list of them.
 -f FILTER, --filter FILTER
 List of filters to apply on the log file. Passed as
 comma separated and parameters within square brackets,
 e.g ip[192.168.1.1],ssl,path[/some/path]. See --list-
 filters to get a full list of them.
 -n, --negate-filter Make filters passed with -f work the other way around,
 i.e. ifthe ``ssl`` filter is passed instead of showing
 only ssl requests it will show non-ssl traffic. If the
 ``ip`` filter isused, then all but that ip passed to
 the filter will be used.
 --list-commands Lists all commands available.
 --list-filters Lists all filters available.
 --json Output results in json.

Commands

Commands are small purpose specific programs in themselves that report specific statistics about the log file being analyzed.
See the --help (or the section above) to know how to run them.

	counter

	Reports how many log lines could be parsed.

	counter_invalid

	Reports how many log lines could not be parsed.

	http_methods

	Reports a breakdown of how many requests have been made per HTTP method
(GET, POST…).

	ip_counter

	Reports a breakdown of how many requests have been made per IP.
Note that for this to work you need to configure HAProxy to capture the header that has the IP on it
(usually the X-Forwarded-For header).
Something like:
capture request header X-Forwarded-For len 20

	top_ips

	Reports the 10 IPs with most requests (and the amount of requests).

	status_codes_counter

	Reports a breakdown of how many requests per HTTP status code
(404, 500, 200, 301..) are on the log file.

	request_path_counter

	Reports a breakdown of how many requests per path (/rss, /, /another/path).

	top_request_paths

	Reports the 10 paths with most requests.

	slow_requests

	Reports a list of requests that downstream servers took more than 1 second to response.

	counter_slow_requests

	Reports the amount of requests that downstream servers took more than 1 second to response.

	average_response_time

	Reports the average time (in milliseconds) servers spend to answer requests.
.. note:: Aborted requests are not considered.

	average_waiting_time

	Reports the average time (in milliseconds) requests spend waiting on the various HAProxy queues.

	server_load

	Reports a breakdown of how many requests were processed by each downstream server.
Note that currently it does not take into account the backend the server is configured on.

	queue_peaks

	Reports a list of queue peaks.
A queue peak is defined by the biggest value on the backend queue on a series of log lines that are between log lines without being queued.

	connection_type

	Reports on how many requests were made on SSL and how many on plain HTTP.
This command only works if the default port for SSL (443) appears on the path.

	requests_per_minute

	Reports on how many requests were made per minute.
It works best when used with -s and -d command line arguments,
as the output can be huge.

	print

	Prints the raw lines.
This can be useful to trim down a file (with -s and -d for example) so that later runs are faster.

Filters

Filters, contrary to commands,
are a way to reduce the amount of log lines to be processed.

Note

The -n command line argument allows to reverse filters output.

This helps when looking for specific traces, like a certain IP, a path…

	ip

	Filters log lines by the given IP.

	ip_range

	Filters log lines by the given IP range
(all IPs that begin with the same prefix).

	path

	Filters log lines by the given string.

	ssl

	Filters log lines that are from SSL connections.
See :method::.HaproxyLogLine.is_https for its limitations.

	slow_requests

	Filters log lines that take at least the given time to get answered
(in milliseconds).

	time_frame

	This is an implicit filter that is used when --start, and optionally, --delta are used.
Do not use this filter on the command line, use --start and --delta instead.

	status_code

	Filters log lines that match the given HTTP status code (i.e. 404, 200…).

	status_code_family

	Filters log lines that match the given HTTP status code family
(i.e. 4 for all 4xx status codes, 5 for 5xx status codes…).

	http_method

	Filters log lines by the HTTP method used (GET, POST…).

	backend

	Filters log lines by the HAProxy backend the connection was handled with.

	frontend

	Filters log lines by the HAProxy frontend the connection arrived from.

	server

	Filters log lines by the downstream server that handled the connection.

	response_size

	Filters log lines by the response size (in bytes).
Specially useful when looking for big file downloads.

	wait_on_queues

	Filters log lines by the amount of time the request had to wait on HAProxy queues.
If a request waited less than the given amount of time is accepted.

Installation

After installation you will have a console script haproxy_log_analysis:

$ python setup.py install

TODO

	add more commands: (help appreciated)

	reports on servers connection time

	reports on termination state

	reports around connections (active, frontend, backend, server)

	your ideas here

	think of a way to show the commands output in a meaningful way

	be able to specify an output format. For any command that makes sense (slow
requests for example) output the given fields for each log line (i.e.
acceptance date, path, downstream server, load at that time…)

	your ideas

Haproxy Modules

Log

	
class haproxy.logfile.Log(logfile=None)

	
	
_is_pickle_valid()

	Logic to decide if the file should be processed or just needs to
be loaded from its pickle data.

	
_load()

	Load data from a pickle file.

	
_save()

	Save the attributes defined on _pickle_attributes in a pickle file.

This improves a lot the nth run as the log file does not need to be
processed every time.

	
static _sort_and_trim(data, reverse=False)

	Sorts a dictionary with at least two fields on each of them sorting
by the second element.

Warning

Right now is hardcoded to 10 elements, improve the command line
interface to allow to send parameters to each command or globally.

	
_sort_lines()

	Haproxy writes its logs after having gathered all information
related to each specific connection. A simple request can be
really quick but others can be really slow, thus even if one connection
is logged later, it could have been accepted before others that are
already processed and logged.

This method sorts all valid log lines by their acceptance date,
providing the real order in which connections where made to the server.

	
cmd_average_response_time()

	Returns the average response time of all, non aborted, requests.

	
cmd_average_waiting_time()

	Returns the average queue time of all, non aborted, requests.

	
cmd_connection_type()

	Generates statistics on how many requests are made via HTTP and how
many are made via SSL.

Note

This only works if the request path contains the default port for
SSL (443).

Warning

The ports are hardcoded, they should be configurable.

	
cmd_counter()

	Returns the number of valid lines.

	
cmd_counter_invalid()

	Returns the number of invalid lines.

	
cmd_counter_slow_requests()

	Counts all requests that took a certain amount of time to be
processed.

Warning

By now hardcoded to 1 second (1000 milliseconds), improve the
command line interface to allow to send parameters to each command
or globally.

	
cmd_http_methods()

	Reports a breakdown of how many requests have been made per HTTP
method (GET, POST…).

	
cmd_ip_counter()

	Reports a breakdown of how many requests have been made per IP.

	
cmd_print()

	Returns the raw lines to be printed.

	
cmd_queue_peaks()

	Generate a list of the requests peaks on the queue.

A queue peak is defined by the biggest value on the backend queue
on a series of log lines that are between log lines without being
queued.

Warning

Allow to configure up to which peak can be ignored. Currently
set to 1.

	
cmd_request_path_counter()

	Generate statistics about HTTP requests’ path.

	
cmd_requests_per_minute()

	Generates statistics on how many requests were made per minute.

Note

Try to combine it with time constrains (-s and -d) as this
command output can be huge otherwise.

	
cmd_server_load()

	Generate statistics regarding how many requests were processed by
each downstream server.

	
cmd_slow_requests()

	List all requests that took a certain amount of time to be
processed.

Warning

By now hardcoded to 1 second (1000 milliseconds), improve the
command line interface to allow to send parameters to each command
or globally.

	
cmd_status_codes_counter()

	Generate statistics about HTTP status codes. 404, 500 and so on.

	
cmd_top_ips()

	Returns the top most frequent IPs.

Note

See Log._sort_and_trim() for its current
limitations.

	
cmd_top_request_paths()

	Returns the top most frequent paths.

Note

See Log._sort_and_trim() for its current
limitations.

	
classmethod commands()

	Returns a list of all methods that start with cmd_.

	
filter(filter_func, reverse=False)

	Filter current log lines by a given filter function.

This allows to drill down data out of the log file by filtering the
relevant log lines to analyze.

For example, filter by a given IP so only log lines for that IP are
further processed with commands (top paths, http status counter…).

	Parameters

	
	filter_func (function) – [required] Filter method, see filters.py for all
available filters.

	reverse (boolean) – negate the filter (so accept all log lines that return
False).

	Returns

	a new instance of Log containing only log lines
that passed the filter function.

	Return type

	Log

	
parse_data(logfile)

	Parse data from data stream and replace object lines.

	Parameters

	logfile (str) – [required] Log file data stream.

Line

	
class haproxy.line.Line(line)

	For a precise and more detailed description of every field see:
http://cbonte.github.io/haproxy-dconv/configuration-1.4.html#8.2.3

	
accept_date = None

	datetime object with the exact date when the connection to HAProxy was
made.

	
backend_name = None

	HAProxy backend that the connection was sent to.

	
bytes_read = None

	Total number of bytes send back to the client.

	
client_ip = None

	IP of the upstream server that made the connection to HAProxy.

	
client_port = None

	Port used by the upstream server that made the connection to HAProxy.

	
connections_active = None

	Total number of concurrent connections on the process when the
session was logged (actconn in HAProxy documentation).

	
connections_backend = None

	Total number of concurrent connections handled by the backend when
the session was logged (beconn in HAProxy documentation).

	
connections_frontend = None

	Total number of concurrent connections on the frontend when the
session was logged (feconn in HAProxy documentation).

	
connections_server = None

	Total number of concurrent connections still active on the server
when the session was logged (srv_conn in HAProxy documentation).

	
frontend_name = None

	HAProxy frontend that received the connection.

	
get_ip()

	Returns the IP provided on the log line, or the client_ip if absent/empty.

	
http_request_method = None

	HTTP method (GET, POST…) used on this request.

	
http_request_path = None

	Requested HTTP path.

	
http_request_protocol = None

	HTTP version used on this request.

	
is_https()

	Returns True if the log line is a SSL connection. False otherwise.

	
queue_backend = None

	Total number of requests which were processed before this one in
the backend’s global queue (backend_queue in HAProxy documentation).

	
queue_server = None

	Total number of requests which were processed before this one in
the server queue (srv_queue in HAProxy documentation).

	
server_name = None

	Downstream server that HAProxy send the connection to.

	
status_code = None

	HTTP status code returned to the client.

	
time_connect_server = None

	Time in milliseconds to connect to the final server
(Tc in HAProxy documentation).

	
time_wait_queues = None

	Time in milliseconds that the request spend on HAProxy queues
(Tw in HAProxy documentation).

	
time_wait_request = None

	Time in milliseconds waiting the client to send the full HTTP request
(Tq in HAProxy documentation).

	
time_wait_response = None

	Time in milliseconds waiting the downstream server to send the full
HTTP response (Tr in HAProxy documentation).

	
total_time = None

	Total time in milliseconds between accepting the HTTP request and
sending back the HTTP response (Tt in HAProxy documentation).

Filters

	
haproxy.filters.filter_backend(backend_name)

	Filter Line objects by the HAProxy backend name
they were processed with.

	Parameters

	backend_name (string) – Name of the HAProxy backend section to investigate.

	Returns

	a function that filters by the given backend name.

	Return type

	function

	
haproxy.filters.filter_frontend(frontend_name)

	Filter Line objects by the HAProxy frontend name
the connection arrived from.

	Parameters

	frontend_name (string) – Name of the HAProxy frontend section to investigate.

	Returns

	a function that filters by the given frontend name.

	Return type

	function

	
haproxy.filters.filter_http_method(http_method)

	Filter Line objects by their HTTP method used (i.e.
GET, POST…).

	Parameters

	http_method (string) – HTTP method (POST, GET…).

	Returns

	a function that filters by the given HTTP method.

	Return type

	function

	
haproxy.filters.filter_ip(ip)

	Filter Line objects by IP.

	Parameters

	ip (string) – IP that you want to filter to.

	Returns

	a function that filters by the provided IP.

	Return type

	function

	
haproxy.filters.filter_ip_range(ip_range)

	Filter Line objects by IP range.

Both 192.168.1.203 and 192.168.1.10 are valid if the provided ip
range is 192.168.1 whereas 192.168.2.103 is not valid (note the
.2.).

	Parameters

	ip_range (string) – IP range that you want to filter to.

	Returns

	a function that filters by the provided IP range.

	Return type

	function

	
haproxy.filters.filter_path(path)

	Filter Line objects by their request path.

	Parameters

	path (string) – part of a path that needs to be on the request path.

	Returns

	a function that filters by the provided path.

	Return type

	function

	
haproxy.filters.filter_response_size(size)

	Filter Line objects by the response size (in bytes).

Specially useful when looking for big file downloads.

	Parameters

	size (string) – Minimum amount of bytes a response body weighted.

	Returns

	a function that filters by the response size.

	Return type

	function

	
haproxy.filters.filter_server(server_name)

	Filter Line objects by the downstream server that
handled the connection.

	Parameters

	server_name (string) – Name of the server HAProxy send the connection to.

	Returns

	a function that filters by the given server name.

	Return type

	function

	
haproxy.filters.filter_slow_requests(slowness)

	Filter Line objects by their response time.

	Parameters

	slowness (string) – minimum time, in milliseconds, a server needs to answer
a request. If the server takes more time than that the log line is
accepted.

	Returns

	a function that filters by the server response time.

	Return type

	function

	
haproxy.filters.filter_ssl(ignore=True)

	Filter Line objects that from SSL connections.

	Parameters

	ignore (bool) – parameter to be ignored just to conform to the rule that all
filters need a parameter

	Returns

	a function that filters SSL log lines.

	Return type

	function

	
haproxy.filters.filter_status_code(http_status)

	Filter Line objects by their HTTP status code.

	Parameters

	http_status (string) – HTTP status code (200, 404, 502…) to filter lines
with.

	Returns

	a function that filters by HTTP status code.

	Return type

	function

	
haproxy.filters.filter_status_code_family(family_number)

	Filter Line objects by their family of HTTP status
code, i.e. 2xx, 3xx, 4xx

	Parameters

	family_number (string) – First digit of the HTTP status code family, i.e. 2
to get all the 2xx status codes, 4 for the client errors and so on.

	Returns

	a function that filters by HTTP status code family.

	Return type

	function

	
haproxy.filters.filter_time_frame(start, delta)

	Filter Line objects by their connection time.

	Parameters

	
	start (string) – a time expression (see -s argument on –help for its format)
to filter log lines that are before this time.

	delta (string) – a relative time expression (see -s argument on –help for
its format) to limit the amount of time log lines will be considered.

	Returns

	a function that filters by the time a request is made.

	Return type

	function

	
haproxy.filters.filter_wait_on_queues(max_waiting)

	Filter Line objects by their queueing time in
HAProxy.

	Parameters

	max_waiting (string) – maximum time, in milliseconds, a request is waiting on
HAProxy prior to be delivered to a backend server. If HAProxy takes less
than that time the log line is counted.

	Returns

	a function that filters by HAProxy queueing time.

	Return type

	function

CHANGES

3.0.1 (unreleased)

	Test against Python 3.8 as well.
[gforcada]

	Add –json output command line option.
[valleedelisle]

3.0.0 (2019-06-10)

	Fix spelling.
[EdwardBetts]

	Make ip_counter use client_ip per default.
[vixns]

	Overhaul testing environment. Test on python 3.7 as well. Use black to format.
[gforcada]

2.1 (2017-07-06)

	Enforce QA checks (flake8) on code.
All code has been updated to follow it.
[gforcada]

	Support Python 3.6.
[gforcada]

	Support different syslog timestamps (at least NixOS).
[gforcada]

2.0.2 (2016-11-17)

	Improve performance for cmd_print.
[kevinjqiu]

2.0.1 (2016-10-29)

	Allow hostnames to have a dot in it.
[gforcada]

2.0 (2016-07-06)

	Handle unparseable HTTP requests.
[gforcada]

	Only test on python 2.7 and 3.5
[gforcada]

2.0b0 (2016-04-18)

	Check the divisor before doing a division to not get ZeroDivisionError exceptions.
[gforcada]

2.0a0 (2016-03-29)

	Major refactoring:

Rename modules and classes:

	haproxy_logline -> line

	haproxy_logfile -> logfile

	HaproxyLogLine -> Line

	HaproxyLogFile -> Log

Parse the log file on Log() creation (i.e. in its __init__)

[gforcada]

1.3 (2016-03-29)

	New filter: filter_wait_on_queues.
Get all requests that waited at maximum X amount of milliseconds on HAProxy queues.
[gforcada]

	Code/docs cleanups and add code analysis.
[gforcada]

	Avoid using eval.
[gforcada]

1.2.1 (2016-02-23)

	Support -1 as a status_code
[Christopher Baines]

1.2 (2015-12-07)

	Allow a hostname on the syslog part (not only IPs)
[danny crasto]

1.1 (2015-04-19)

	Make syslog optional.
Fixes issue https://github.com/gforcada/haproxy_log_analysis/issues/10.
[gforcada]

1.0 (2015-03-24)

	Fix issue #9.
log line on the syslog part was too strict,
it was expecting the hostname to be a string and was
failing if it was an IP.
[gforcada]

0.0.3.post2 (2015-01-05)

	Finally really fixed issue #7.
namespace_packages was not meant to be on setup.py at all.
Silly copy&paste mistake.
[gforcada]

0.0.3.post (2015-01-04)

	Fix release on PyPI.
Solves GitHub issue #7.
https://github.com/gforcada/haproxy_log_analysis/issues/7
[gforcada]

0.0.3 (2014-07-09)

	Fix release on PyPI (again).
[gforcada]

0.0.2 (2014-07-09)

	Fix release on PyPI.
[gforcada]

0.0.1 (2014-07-09)

	Pickle :class::.HaproxyLogFile data for faster performance.
[gforcada]

	Add a way to negate the filters, so that instead of being able to filter by
IP, it can output all but that IP information.
[gforcada]

	Add lots of filters: ip, path, ssl, backend, frontend, server, status_code
and so on. See --list-filters for a complete list of them.
[gforcada]

	Add :method::.HaproxyLogFile.parse_data method to get data from data stream.
It allows you use it as a library.
[bogdangi]

	Add --list-filters argument on the command line interface.
[gforcada]

	Add --filter argument on the command line interface, inspired by
Bogdan’s early design.
[bogdangi] [gforcada]

	Create a new module :module::haproxy.filters that holds all available filters.
[gforcada]

	Improve :method::.HaproxyLogFile.cmd_queue_peaks output to not only show
peaks but also when requests started to queue and when they finsihed and
the amount of requests that had been queued.
[gforcada]

	Show help when no argument is given.
[gforcada]

	Polish documentation and docstrings here and there.
[gforcada]

	Add a --list-commands argument on the command line interface.
[gforcada]

	Generate an API doc for HaproxyLogLine and HaproxyLogFile.
[bogdangi]

	Create a console_script haproxy_log_analysis for ease of use.
[bogdangi]

	Add Sphinx documentation system, still empty.
[gforcada]

	Keep valid log lines sorted so that the exact order of connections is kept.
[gforcada]

	Add quite a few commands, see README.rst [http://github.com/gforcada/haproxy_log_analysis] for a complete list of them.
[gforcada]

	Run commands passed as arguments (with -c flag).
[gforcada]

	Add a requirements.txt file to keep track of dependencies and pin them.
[gforcada]

	Add travis [https://travis-ci.org/] and coveralls [https://coveralls.io/] support. See its badges on README.rst [http://github.com/gforcada/haproxy_log_analysis].
[gforcada]

	Add argument parsing and custom validation logic for all arguments.
[gforcada]

	Add regular expressions for haproxy log lines (HTTP format) and to
parse HTTP requests path.
Added tests to ensure they work as expected.
[gforcada]

	Create distribution.
[gforcada]

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 haproxy	

 	
 	
 haproxy.filters	

 	
 	
 haproxy.line	

 	
 	
 haproxy.logfile	

Index

 _
 | A
 | B
 | C
 | F
 | G
 | H
 | I
 | L
 | P
 | Q
 | S
 | T

_

 	
 	_is_pickle_valid() (haproxy.logfile.Log method)

 	_load() (haproxy.logfile.Log method)

 	
 	_save() (haproxy.logfile.Log method)

 	_sort_and_trim() (haproxy.logfile.Log static method)

 	_sort_lines() (haproxy.logfile.Log method)

A

 	
 	accept_date (haproxy.line.Line attribute)

B

 	
 	backend_name (haproxy.line.Line attribute)

 	
 	bytes_read (haproxy.line.Line attribute)

C

 	
 	client_ip (haproxy.line.Line attribute)

 	client_port (haproxy.line.Line attribute)

 	cmd_average_response_time() (haproxy.logfile.Log method)

 	cmd_average_waiting_time() (haproxy.logfile.Log method)

 	cmd_connection_type() (haproxy.logfile.Log method)

 	cmd_counter() (haproxy.logfile.Log method)

 	cmd_counter_invalid() (haproxy.logfile.Log method)

 	cmd_counter_slow_requests() (haproxy.logfile.Log method)

 	cmd_http_methods() (haproxy.logfile.Log method)

 	cmd_ip_counter() (haproxy.logfile.Log method)

 	cmd_print() (haproxy.logfile.Log method)

 	cmd_queue_peaks() (haproxy.logfile.Log method)

 	
 	cmd_request_path_counter() (haproxy.logfile.Log method)

 	cmd_requests_per_minute() (haproxy.logfile.Log method)

 	cmd_server_load() (haproxy.logfile.Log method)

 	cmd_slow_requests() (haproxy.logfile.Log method)

 	cmd_status_codes_counter() (haproxy.logfile.Log method)

 	cmd_top_ips() (haproxy.logfile.Log method)

 	cmd_top_request_paths() (haproxy.logfile.Log method)

 	commands() (haproxy.logfile.Log class method)

 	connections_active (haproxy.line.Line attribute)

 	connections_backend (haproxy.line.Line attribute)

 	connections_frontend (haproxy.line.Line attribute)

 	connections_server (haproxy.line.Line attribute)

F

 	
 	filter() (haproxy.logfile.Log method)

 	filter_backend() (in module haproxy.filters)

 	filter_frontend() (in module haproxy.filters)

 	filter_http_method() (in module haproxy.filters)

 	filter_ip() (in module haproxy.filters)

 	filter_ip_range() (in module haproxy.filters)

 	filter_path() (in module haproxy.filters)

 	filter_response_size() (in module haproxy.filters)

 	
 	filter_server() (in module haproxy.filters)

 	filter_slow_requests() (in module haproxy.filters)

 	filter_ssl() (in module haproxy.filters)

 	filter_status_code() (in module haproxy.filters)

 	filter_status_code_family() (in module haproxy.filters)

 	filter_time_frame() (in module haproxy.filters)

 	filter_wait_on_queues() (in module haproxy.filters)

 	frontend_name (haproxy.line.Line attribute)

G

 	
 	get_ip() (haproxy.line.Line method)

H

 	
 	haproxy.filters (module)

 	haproxy.line (module)

 	haproxy.logfile (module)

 	
 	http_request_method (haproxy.line.Line attribute)

 	http_request_path (haproxy.line.Line attribute)

 	http_request_protocol (haproxy.line.Line attribute)

I

 	
 	is_https() (haproxy.line.Line method)

L

 	
 	Line (class in haproxy.line)

 	
 	Log (class in haproxy.logfile)

P

 	
 	parse_data() (haproxy.logfile.Log method)

Q

 	
 	queue_backend (haproxy.line.Line attribute)

 	
 	queue_server (haproxy.line.Line attribute)

S

 	
 	server_name (haproxy.line.Line attribute)

 	
 	status_code (haproxy.line.Line attribute)

T

 	
 	time_connect_server (haproxy.line.Line attribute)

 	time_wait_queues (haproxy.line.Line attribute)

 	
 	time_wait_request (haproxy.line.Line attribute)

 	time_wait_response (haproxy.line.Line attribute)

 	total_time (haproxy.line.Line attribute)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to HAProxy log analyzer’s documentation!

 		
 HAProxy log analyzer

 		
 Tests and coverage

 		
 Documentation

 		
 Command-line interface

 		
 Commands

 		
 Filters

 		
 Installation

 		
 TODO

 		
 Haproxy Modules

 		
 Log

 		
 Line

 		
 Filters

 		
 CHANGES

 		
 3.0.1 (unreleased)

 		
 3.0.0 (2019-06-10)

 		
 2.1 (2017-07-06)

 		
 2.0.2 (2016-11-17)

 		
 2.0.1 (2016-10-29)

 		
 2.0 (2016-07-06)

 		
 2.0b0 (2016-04-18)

 		
 2.0a0 (2016-03-29)

 		
 1.3 (2016-03-29)

 		
 1.2.1 (2016-02-23)

 		
 1.2 (2015-12-07)

 		
 1.1 (2015-04-19)

 		
 1.0 (2015-03-24)

 		
 0.0.3.post2 (2015-01-05)

 		
 0.0.3.post (2015-01-04)

 		
 0.0.3 (2014-07-09)

 		
 0.0.2 (2014-07-09)

 		
 0.0.1 (2014-07-09)

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

