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Perform simple and accurate Hankel transformations using the method of Ogata 2005.

Hankel transforms and integrals are commonplace in any area in which Fourier Transforms are required over fields
that are radially symmetric (see Wikipedia for a thorough description). They involve integrating an arbitrary function
multiplied by a Bessel function of arbitrary order (of the first kind). Typical integration schemes often fall over because
of the highly oscillatory nature of the transform. Ogata’s quadrature method used in this package provides a fast and
accurate way of performing the integration based on locating the zeros of the Bessel function.

Contents 1

https://travis-ci.org/steven-murray/hankel
https://coveralls.io/github/steven-murray/hankel?branch=master
https://zenodo.org/badge/latestdoi/19090866
https://en.wikipedia.org/wiki/Hankel_transform
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CHAPTER 1

Features

• Accurate and fast solutions to many Hankel integrals

• Easy to use and re-use

• Arbitrary order transforms

• Built-in support for radially symmetric Fourier Transforms

• Thoroughly tested.

• Python 2 and 3 compatible.
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CHAPTER 2

Quicklinks

• Documentation: https://hankel.readthedocs.io

• Quickstart+Description: Getting Started
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https://hankel.readthedocs.io
https://hankel.readthedocs.io/en/latest/demos/getting_started.html
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CHAPTER 3

Installation

Either clone the repository at github.com/steven-murray/hankel and use python setup.py install, or simply
install using pip install hankel.

The only dependencies are numpy, scipy and mpmath.
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www.numpy.org
www.scipy.org
www.mpmath.org
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CHAPTER 4
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CHAPTER 5

Contents

5.1 Examples

To help get you started using hankel, we’ve compiled a few extended examples. Other simple examples can be
found in the API documentation for each object, or by looking at some of the tests.

5.1.1 Getting Started with Hankel

Usage and Description

Setup

This implementation is set up to allow efficient calculation of multiple functions 𝑓(𝑥). To do this, the format is class-
based, with the main object taking as arguments the order of the Bessel function, and the number and size of the
integration steps (see Limitations for discussion about how to choose these key parameters).

For any general integration or transform of a function, we perform the following setup:

[1]: import hankel
from hankel import HankelTransform # Import the basic class
print("Using hankel v{}".format(hankel.__version__))

Using hankel v0.3.7

[2]: ht = HankelTransform(
nu= 0, # The order of the bessel function
N = 120, # Number of steps in the integration
h = 0.03 # Proxy for "size" of steps in integration

)

Alternatively, each of the parameters has defaults, so you needn’t pass any. The order of the bessel function will be
defined by the problem at hand, while the other arguments typically require some exploration to set them optimally.

11
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Integration

A Hankel-type integral is the integral ∫︁ ∞

0

𝑓(𝑥)𝐽𝜈(𝑥)𝑑𝑥.

Having set up our transform with nu = 0, we may wish to perform this integral for 𝑓(𝑥) = 1. To do this, we do the
following:

[3]: # Create a function which is identically 1.
f = lambda x : 1
ht.integrate(f)

[3]: (1.0000000000003486, -9.838142836853752e-15)

The correct answer is 1, so we have done quite well. The second element of the returned result is an estimate of the
error (it is the last term in the summation). The error estimate can be omitted using the argument ret_err=False.

We may now wish to integrate a different function, say 𝑥/(𝑥2 + 1). We can do this directly with the same object,
without re-instantiating (avoiding unnecessary recalculation):

[4]: f = lambda x : x/(x**2 + 1)
ht.integrate(f)

[4]: (0.42098875721567186, -2.6150757700135774e-17)

The analytic answer here is 𝐾0(1) = 0.4210. The accuracy could be increased by creating ht with a higher number
of steps N, and lower stepsize h (see Limitations).

Transforms

The Hankel transform is defined as

𝐹𝜈(𝑘) =

∫︁ ∞

0

𝑓(𝑟)𝐽𝜈(𝑘𝑟)𝑟𝑑𝑟.

We see that the Hankel-type integral is the Hankel transform of 𝑓(𝑟)/𝑟 with 𝑘 = 1. To perform this more general
transform, we must supply the 𝑘 values. Again, let’s use our previous function, 𝑥/(𝑥2 + 1).

First we’ll import some libraries to help us visualise:

[5]: import numpy as np # Import numpy
import matplotlib.pyplot as plt
%matplotlib inline

Now do the transform,

[6]: k = np.logspace(-1,1,50) # Create a log-spaced array of k from 0.1 to 10.
Fk = ht.transform(f,k,ret_err=False) # Return the transform of f at k.

and finally plot it:

[8]: plt.plot(k,Fk)
plt.xscale('log')
plt.yscale('log')
plt.ylabel(r"$F_0(k)$", fontsize=15)
plt.xlabel(r"$k$", fontsize=15)
plt.show()

12 Chapter 5. Contents
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Fourier Transforms

One of the most common applications of the Hankel transform is to solve the radially symmetric n-dimensional Fourier
transform:

𝐹 (𝑘) =
(2𝜋)𝑛/2

𝑘𝑛/2−1

∫︁ ∞

0

𝑟𝑛/2−1𝑓(𝑟)𝐽𝑛/2−1(𝑘𝑟)𝑟𝑑𝑟.

We provide a specific class to do this transform, which takes into account the various normalisations and substitutions
required, and also provides the inverse transform. The procedure is similar to the basic HankelTransform, but we
provide the number of dimensions, rather than the Bessel order directly.

Say we wish to find the Fourier transform of 𝑓(𝑟) = 1/𝑟 in 3 dimensions:

[9]: # Import the Symmetric Fourier Transform class
from hankel import SymmetricFourierTransform

# Create our transform object, similar to HankelTransform,
# but with ndim specified instead of nu.
ft = SymmetricFourierTransform(ndim=3, N = 200, h = 0.03)

# Create our kernel function to be transformed.
f = lambda r : 1./r

# Perform the transform
Fk = ft.transform(f,k, ret_err=False)

[10]: plt.plot(k,Fk)
plt.xscale('log')
plt.yscale('log')
plt.ylabel(r"$\mathcal{F}(k)$")
plt.xlabel(r"$k$")
plt.show()

5.1. Examples 13
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To do the inverse transformation (which is different by a normalisation constant), merely supply inverse=True to
the .transform() method.

Limitations

Efficiency

An implementation-specific limitation is that the method is not perfectly efficient in all cases. Care has been taken
to make it efficient in the general sense. However, for specific orders and functions, simplifications may be made
which reduce the number of trigonometric functions evaluated. For instance, for a zeroth-order spherical transform,
the weights are analytically always identically 1.

Lower-Bound Convergence

Theoretically, since Bessel functions have asymptotic power-law slope of 𝑛/2 − 1 as 𝑟 → 0, the function 𝑓(𝑟) must
have an asymptotic slope > −𝑛/2 in this regime in order to converge. This restriction is method-independent.

In terms of limitations of the method, they are very dependent on the form of the function chosen. Notably, functions
which either have sharp features at low 𝑟, or tend towards a slope of ∼ −𝑛/2, will be poorly approximated in this
method, and will be highly dependent on the step-size parameter, as the information at low-x will be lost between 0
and the first step. As an example consider the simple function 𝑓(𝑥) = 1/

√
𝑥 with a 1/2 order bessel function. The

total integrand tends to 1 at 𝑥 = 0, rather than 0:

[11]: f = lambda x: 1/np.sqrt(x)
h = HankelTransform(0.5,120,0.03)
h.integrate(f)

[11]: (1.2336282257874065, -2.864861354876958e-16)

The true answer is
√︀
𝜋/2, which is a difference of about 1.6%. Modifying the step size and number of steps to gain

accuracy we find:

[12]: h = HankelTransform(0.5,700,0.001)
h.integrate(f)

14 Chapter 5. Contents
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[12]: (1.2523045155005623, -0.0012281146007915768)

This has much better than percent accuracy, but uses 5 times the amount of steps. The key here is the reduction of h to
“get inside” the low-x information.

Upper-Bound Convergence

Theoretically, since the Bessel functions decay as 𝑟−1/2 cos 𝑟 as 𝑓 → ∞, the asymptotic logarithmic slope of 𝑓(𝑟)
must be < (1− 𝑛)/2 in order to converge.

As the asymptotic slope approaches this value, higher and higher zeros of the Bessel function will be required to
capture the convergence. Often, it will be the case that if this is so, the amplitude of the function is low at low 𝑥, so
that the step-size h can be increased to facilitate this. Otherwise, the number of steps N can be increased.

For example, the 1/2-order integral supports functions that are increasing up to 𝑓(𝑥) = 𝑥0.5. Let’s use 𝑓(𝑥) = 𝑥0.4

as an example of a slowly converging function, and use our “hi-res” setup from the previous section. We note that the
analytic result is 0.8421449.

[20]: f = lambda x : x**0.4

[25]: %%timeit
HankelTransform(0.5,700,0.001).integrate(f)

735 µs ± 8.11 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

[26]: res = HankelTransform(0.5,700,0.001).integrate(f)
print("Relative Error is: ", res[0]/0.8421449 - 1)
print("Predicted Abs. Error is: ", res[1])

Relative Error is: -0.362600451237186
Predicted Abs. Error is: -1.05909546212511

Our result is way off. Note that in this case, the error estimate itself is a good indication that we haven’t reached
convergence. We could try increasing N:

[27]: h = HankelTransform(0.5,10000,0.001)
print("Relative Error is: ", h.integrate(f,ret_err=False)/0.8421449 -1)

Relative Error is: 7.133537831549575e-07

This is very accurate, but quite slow:

[28]: %%timeit
HankelTransform(0.5,10000,0.001).integrate(f)

9.12 ms ± 211 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Alternatively, we could try increasing h:

[18]: h = HankelTransform(0.5,700,0.03)
h.integrate(f,ret_err=False)/0.8421449 -1

[18]: 0.00045613842025526985

Not quite as accurate, but still far better than a percent for a tenth of the cost:

5.1. Examples 15
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[29]: %%timeit
HankelTransform(0.5,700,0.03).integrate(f)

718 µs ± 2.04 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

We explore how to determine 𝑁 and ℎ in more detail in another demo, and hankel provides the get_h function to
automatically determine these values (at some computational cost).

5.1.2 Testing Forward and Inverse Hankel Transform

This is a simple demo to show how to compute the forward and inverse Hankel transform, essentially returning to the
original function.

This is a common application, where often the transformed function is modified before perofrming the inverse trans-
form (eg. in the calculation of a Laplacian). However, it is not explicitly supported by hankel, since the transformed
function itself is merely encoded as a set of values, rather than a callable function. This demo shows the simplest route
to closing this gap, using splines. It also highlights some of the issues one may encounter along the way.

This application is also important, as it is able to self-consistently test the accuracy of the transformation for any
arbitrary function 𝑓(𝑟). The returned function should be very close to this function for an accurate transform. This
idea is explored further in the demo on choosing resolution parameters.

We use the function 𝑓(𝑟) = 1/(𝑟2 + 1) as an example function.

[1]: # Import libraries

import numpy as np
import hankel
from hankel import HankelTransform # Transforms

from scipy.interpolate import InterpolatedUnivariateSpline as spline # Spline

import matplotlib.pyplot as plt # Plotting
%matplotlib inline

print("Using hankel v{}".format(hankel.__version__))

Using hankel v0.3.7

[53]: # Define grid

r = np.linspace(0,1,100)[1:] # Define a physical grid
k = np.logspace(-3,2,100) # Define a spectral grid

[54]: # Compute Forward Hankel transform

f = lambda r : 1/(r**2 + 1) # Sample Function
h = HankelTransform(nu=0,N=1000,h=0.005) # Create the HankelTransform
→˓instance, order zero
hhat = h.transform(f,k,ret_err=False) # Return the transform of f at k.

[55]: # Compute Inverse Hankel transform

hhat_sp = spline(k, hhat) # Define a spline to
→˓approximate transform
f_new = h.transform(hhat_sp, r, False, inverse=True) # Compute the inverse transform

16 Chapter 5. Contents
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[56]: def mkplot(f_new):
fig,ax = plt.subplots(2,1,sharex=True,gridspec_kw={"hspace":0})

ax[0].semilogy(r,f(r), linewidth=2,label='original')
ax[0].semilogy(r,f_new,ls='--',linewidth=2,label='transformed')
ax[0].grid(True)
ax[0].legend(loc='best')

ax[1].plot(r,np.abs(f(r)/f_new-1))
ax[1].set_yscale('log')
ax[1].set_ylim(None,30)
ax[1].grid(True)
ax[1].set_ylabel("Rel. Diff.")
plt.show()

[57]: # Plot the original function and the transformed functions
mkplot(f_new)

The result here is reasonable, though not very accurate, especially at small 𝑟.

In practice, there are three aspects that affect the accuracy of the round-trip transformed function, other than the
features of the function itself:

1. the value of N, which controls the the upper limit of the integral (and must be high enough for convergence),

2. the value of h, which controls the resolution of the array used to do integration. Most importantly, controls the
position of the first sample of the integrand. In a function such as 1/𝑟, or something steeper, this must be small
to capture the large amount of information at low 𝑟.

3. the resolution/range of 𝑘, which is used to define the function which is inverse-transformed.

As a simple empirical exercise, we modify each of these three below to estimate their importance in this particular
transform (see the demo on choosing resolution parameters for a more thorough investigation):

Changing N

[58]: h = HankelTransform(nu=0,N=5000,h=0.005) # Create the HankelTransform
→˓instance, order zero
hhat = h.transform(f,k,ret_err=False) # Return the transform of f at k.

(continues on next page)
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(continued from previous page)

hhat_sp = spline(k, hhat) # Define a spline to
→˓approximate transform
f_new = h.transform(hhat_sp, r, False, inverse=True) # Compute the inverse transform

[60]: mkplot(f_new)

Increasing 𝑁 in this case does not seem to make the solution any better.

Changing h

[61]: h = HankelTransform(nu=0,N=5000,h=0.001) # Create the HankelTransform
→˓instance, order zero
hhat = h.transform(f,k,ret_err=False) # Return the transform of f at k.

hhat_sp = spline(k, hhat) # Define a spline to
→˓approximate transform
f_new = h.transform(hhat_sp, r, False, inverse=True) # Compute the inverse transform

[62]: mkplot(f_new)

18 Chapter 5. Contents
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Clearly changing ℎ makes much more of a difference, reducing the relative error by an order of magnitude. In this
case, we ensured that the product ℎ𝑁 remained the same (as the original example), so that the upper bound on the
summation remained approximately the same. This indicates that either 𝑓(𝑟) or 𝐹 (𝑘) has high-resolution information.

Changing k

[63]: k = np.logspace(-3,3,200) # Define a spectral grid

h = HankelTransform(nu=0,N=5000,h=0.001) # Create the HankelTransform
→˓instance, order zero
hhat = h.transform(f,k,ret_err=False) # Return the transform of f at k.

hhat_sp = spline(k, hhat) # Define a spline to
→˓approximate transform
f_new = h.transform(hhat_sp, r, False, inverse=True) # Compute the inverse transform

[64]: mkplot(f_new)

Having set 𝑘 to extend to smaller scales, as well as increasing its resolution, has not helped the accuracy of the
transformation, though it does seemed to have smoothed out small-scale wiggles in the transformation. Thus we

5.1. Examples 19
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can see that the predominant problem in this case was that the integration grid was not fine enough to capture the
small-scale information in the function (either 𝑓(𝑟) or 𝐹 (𝑘)).

Any procedure like this will have to explore the values of these three parameters in order to set them as efficiently and
accurately as possible.

5.1.3 Choosing Resolution Parameters

The only real choices to be made when using hankel are the choice of resolution parameters 𝑁 and ℎ. Roughly
speaking, ℎ controls the quadrature bin width, while 𝑁 controls the number of these bins, ideally simulating infinity.
Here we identify some rules of thumb for choosing these parameters so that desired precision can be attained.

For ease of reference, we state our problem explicitly. We’ll deal first with the simple Hankel integral, moving onto
a transformation, and Symmetric FT in later sections. For an input function 𝑓(𝑥), and transform of order 𝜈, we are
required to solve the Hankel integral ∫︁ ∞

0

𝑓(𝑥)𝐽𝜈(𝑥)𝑑𝑟. (5.1)

The O5 method approximates the integral as

𝑓(𝐾) = 𝜋

𝑁∑︁
𝑘=1

𝑤𝜈𝑘𝑓 (𝑦𝜈𝑘) 𝐽𝜈(𝑦𝜈𝑘)𝜓
′(ℎ𝑟𝜈𝑘), (5.2)

where

𝑦𝜈𝑘 = 𝜋𝜓(ℎ𝑟𝜈𝑘)/ℎ (5.3)
𝜓(𝑡) = 𝑡 tanh(𝜋 sinh(𝑡)/2) (5.4)

𝜓′(𝑡) =
𝜋𝑡 cosh(𝑡) + sinh(𝜋 sinh(𝑡))

1 + cosh(𝜋 sinh(𝑡))
(5.5)

𝑤𝜈𝑘 =
𝑌𝜈(𝜋𝑟𝜈𝑘)

𝐽𝜈+1(𝜋𝑟𝜈𝑘)
. (5.6)

Here 𝑌𝜈(𝑥) is a Bessel function of the second kind, and 𝑟𝜈𝑘 are the roots of 𝐽𝜈(𝜋𝑟).

Simple Hankel Integral

Choosing N given h

Choosing a good value of 𝑁 given ℎ is a reasonably simple task. The benefit of the O5 method is that the successive
nodes approach the roots of the Bessel function double-exponentially. This means that at some term 𝑘 in the series,
the Bessel function term in the sum approaches zero, and for reasonably low 𝑘.

This is because for large 𝑡, 𝜓(𝑡) ≈ 𝑡, so that 𝑦𝜈𝑘 ≈ 𝜋𝑟𝜈𝑘, which are the roots (𝑟 are the roots scaled by 𝜋). Thus we
can expect that a plot of the values of 𝐽𝜈(𝑦𝜈𝑘) should fall to zero, and they should do this approximately identically as
a function of ℎ𝑟𝜈𝑘.

[1]: from scipy.special import yv,jv
from scipy.integrate import simps
from mpmath import fp as mpm
import numpy as np

import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline

(continues on next page)
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(continued from previous page)

%load_ext autoreload
%autoreload 2

from hankel import HankelTransform, SymmetricFourierTransform
import hankel
print("Using hankel v{}".format(hankel.__version__))

Using hankel v0.3.7

[2]: mpl.rcParams['lines.linewidth'] = 2
mpl.rcParams['xtick.labelsize'] = 15
mpl.rcParams['ytick.labelsize'] = 15
mpl.rcParams['font.size'] = 17
mpl.rcParams['axes.titlesize'] = 14

We test our assertion by plotting these values for a range of 𝜈 and ℎ:

[3]: fig,ax = plt.subplots(1,2,figsize=(12,5), subplot_kw={"yscale":'log'})
for nu in np.arange(0,4,0.5):

ht= HankelTransform(nu=nu,N=1000, h = 0.01)
ax[0].plot(ht._h*np.arange(1,1001), np.abs(jv(ht._nu, ht.x)), label=str(nu))

for h in [0.005,0.01,0.05]:
ht= HankelTransform(nu=0,N=10/h, h = h)
ax[1].plot(ht._h*np.arange(1,10/h+1), np.abs(jv(ht._nu, ht.x)), label=str(h))

ax[0].legend(ncol=2, title=r"$\nu$")
ax[1].legend(title='h')
ax[0].set_ylabel(r"$J_\nu(y_{\nu k})$")
ax[0].set_xlabel(r"$hk$")
ax[1].set_xlabel(r"$hk$");

Interestingly, the fall-off is very similar across a range of both 𝜈 and ℎ. We can compute where approximately the
fall-off is completed:

[4]: for i,nu in enumerate( np.arange(0,4)):

(continues on next page)
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(continued from previous page)

for j,h in enumerate(np.logspace(-3,-1,6)):
ht= HankelTransform(nu=nu,N=int(3.2/h), h = h)
plt.scatter(nu,ht._h*ht._zeros[np.where(np.abs(jv(ht._nu, ht.x))<1e-

→˓13)[0][0]],color="C%s"%j,label="%.3f"%h if not i else None)

plt.xlabel(r"$\nu$")
plt.ylabel(r"$hr_{\nu k}$")
plt.xlim(-0.5,6)
plt.legend(title="h");

Clearly, we can cut the summation at ℎ𝑟𝜈𝑘 = 𝜋 without losing any precision. We do not want to sum further than this
for two reasons: firstly, it is inefficient to do so, and secondly, we could be adding unnecessary numerical noise.

Now, let’s assume that 𝑁 is reasonably large, so that the Bessel function is close to its asymptotic limit, in which

𝑟𝜈𝑘 = 𝑘 − 𝜋𝜈

2
− 𝜋

4
≈ 𝑘. (5.7)

Then we merely set ℎ𝑟𝜈𝑘 = ℎ𝑁 = 3.2, i.e. 𝑁 = 𝜋/ℎ.

It may be a reasonable question to ask whether we could set 𝑁 significantly lower than this limit. The function 𝑓(𝑥)
may converge faster than the Bessel function itself, in which case the limit could be reduced. In this regard it is useful
to keep in mind that the sum extends to 𝑟 ∼ 𝜋𝑁 , if 𝑁 is reasonably large. If 𝑓(𝑥) falls to zero for 𝑥 ≪ 𝜋2/ℎ, then it
is probably reasonable to use a lower value of 𝑁 .

However, for simplicity, for the rest of our analysis, we consider 𝑁 to be set by this relation, and change ℎ to modify
𝑁 .

Choosing h

O5 give a rather involved proof of an upper limit on the residual error of their method as a function of ℎ. Unfortunately,
evaluating the upper limit is non-trivial, and we pursue a more tractable approach here, namely iteratively modifying
ℎ until convergence is reached.

As an example, let’s take a sharp Gaussian, 𝑓(𝑥) = 𝑒−(𝑥−80)2 with 𝜈 = 0:
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[5]: x = np.linspace(0,200.,1000000)
ff = lambda x : np.exp(-(x-80.)**2/1.)
plt.plot(x,ff(x) * jv(0,x))

res80 = simps(ff(x) * jv(0,x),x)
print("Integral is: ", res80)

Integral is: -0.09651170657186205

[6]: print("h\tN\txmax\t#nodes in peak\t Rel. Err.")
print("---------------------------------------------")

for h in np.logspace(-4,0,10):
N = int(np.pi/h)
ht = HankelTransform(nu=0, h=h, N=N)
G = ht.G(ff,h)
ans,cum = ht.integrate(f= ff,ret_cumsum=True,ret_err=False)
print(f"{h:.2e}\t{N}\t{np.pi*N:.2e}\t{np.sum(np.logical_and(ht.x>78,ht.x<82))}\t

→˓{ans/res80 - 1:.2e}")

h N xmax #nodes in peak Rel. Err.
------------------------------
1.00e-04 31415 9.87e+04 10 -1.01e-14
2.78e-04 11290 3.55e+04 6 2.10e-08
7.74e-04 4057 1.27e+04 4 -5.55e-03
2.15e-03 1458 4.58e+03 3 2.76e-01
5.99e-03 524 1.65e+03 1 1.00e+00
1.67e-02 188 5.91e+02 1 -1.25e+00
4.64e-02 67 2.10e+02 1 1.38e+00
1.29e-01 24 7.54e+01 0 -1.00e+00
3.59e-01 8 2.51e+01 0 -1.00e+00
1.00e+00 3 9.42e+00 0 -1.00e+00

In the above example we see that only for very large values of ℎ was the criteria of negative derivative not met.
However, the criteria of covering the interesting region with nodes was only met by the smallest 5 values of ℎ, each of
which yields a good value of the integral.

Doing the same example, but moving the Gaussian closer to zero yields a different answer:
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[7]: x = np.linspace(0,10,10000)
ff = lambda x : np.exp(-(x-2)**2)
plt.plot(x,ff(x) * jv(0,x))

res = simps(ff(x) * jv(0,x),x)
print("Integral is: ", res)

Integral is: 0.4168433779916697

[8]: print("h\tN\txmax\t#nodes in peak\t Rel. Err.")
print("---------------------------------------------")

for h in np.logspace(-4,0,10):
N = int(np.pi/h)
ht = HankelTransform(nu=0, h=h, N=N)
G = ht.G(ff,h)
ans,cum = ht.integrate(f= ff,ret_cumsum=True,ret_err=False)
print(f"{h:.2e}\t{N}\t{np.pi*N:.2e}\t{np.sum(np.logical_and(ht.x>78,ht.x<82))}\t

→˓{ans/res - 1:.2e}")

h N xmax #nodes in peak Rel. Err.
------------------------------
1.00e-04 31415 9.87e+04 10 -2.47e-11
2.78e-04 11290 3.55e+04 6 -2.47e-11
7.74e-04 4057 1.27e+04 4 -2.47e-11
2.15e-03 1458 4.58e+03 3 -2.47e-11
5.99e-03 524 1.65e+03 1 2.45e-08
1.67e-02 188 5.91e+02 1 -1.09e-03
4.64e-02 67 2.10e+02 1 7.81e-02
1.29e-01 24 7.54e+01 0 5.37e-01
3.59e-01 8 2.51e+01 0 5.97e-01
1.00e+00 3 9.42e+00 0 6.09e-01

Here we are able to achieve good precision with just ~500 terms.

These ideas are built into the get_h function in hankel. In particular, this function progressively iterates through
a series of values for ℎ, and stops when two consecutive results are within a certain tolerance of each other. On each
iteration, it uses 𝑁 = 𝜋/ℎ.

While this function is not entirely general – there are cases in which the algorithm will return prematurely – it should
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do well in cases where the integrand is reasonably smooth. In addition to the convergence of the result, it also checks
that the derivative of 𝐺 is decreasing. Furthermore, it truncates 𝑁 if possible such that 𝑓(𝑥𝑘) = 0 ∀𝑘 > 𝑁 .

An example:

[9]: best_h, result, best_N = hankel.get_h(
f =lambda x : np.exp(-(x-2)**2),
nu=0

)
print(f"best_h = {best_h}, best_N={best_N}")
print("Relative Error: ", result/res - 1)

best_h = 0.0125, best_N=22
Relative Error: -0.00011951202608917466

Here we can see that while a low value of ℎ was required, a corresponding high value of 𝑁 was not, as the function
itself converges quickly.

We can also repeat our previous experiment where a sharp Gaussian sits at high 𝑥:

[10]: best_h, result, best_N = hankel.get_h(
f =lambda x : np.exp(-(x-80.)**2),
nu =0

)

print(f"best_h = {best_h}, best_N={best_N}")
print("Relative Error: ", result/res80 - 1)

best_h = 0.00078125, best_N=168
Relative Error: 0.002185348402481635

Here both a lower ℎ and higher 𝑁 are required, but again, 𝑁 does not need to be as large as 𝜋/ℎ.

We can modify the required tolerance:

[11]: best_h, result, best_N = hankel.get_h(
f =lambda x : np.exp(-(x-2)**2),
nu=0,
atol=1e-10,
rtol=1e-15

)
print(f"best_h = {best_h}, best_N={best_N}")
print("Relative Error: ", result/res - 1)

best_h = 0.003125, best_N=44
Relative Error: -2.470723625691562e-11

Remember that the tolerances submitted to the get_h function apply to the similarity between successive iterations.
The relative error displayed here may be dominated by numerical error on the simpson’s integration.

Finally we try a different kind of function, namely one that converges slowly:

[12]: best_h, result, best_N = hankel.get_h(
f =lambda x : x**0.4,
nu=0.5,
atol=1e-5,
rtol=1e-5

)
print(f"best_h = {best_h}, best_N={best_N} (max is {int(np.pi/best_h)})")
print("Relative Error: ", result/0.8421449 - 1)
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best_h = 0.00625, best_N=502 (max is 502)
Relative Error: 2.317849153432583e-05

In this case, the required 𝑁 is the maximum required, as we need to integrate quite far in order to converge.

Symmetric Fourier Transform

In the context of the symmetric Fourier Transform, much of the work is exactly the same – the relationship between 𝑁
and ℎ necessarily remains. The only differences are that we now use the SymmetricFourierTransform class
instead of the HankelTransform (and pass ndim rather than nu), and that we are now interested in the transform,
rather than the integral, so we have a particular set of scales, 𝐾, in mind.

For a given 𝐾, the minimum and maximum values of 𝑥 that we evaluate 𝑓(𝑥) for are 𝑥min ≈ 𝜋2ℎ𝑟2𝜈1/2𝐾 and
𝑥max ≈ 𝜋𝑁/𝐾. We suggest find a value ℎ that works for both the minimum and maximum 𝐾 desired. All scales in
between should work in this case.

We have already written this functionality into the get_h function. However, here nu is interpreted directly as n, and
we need to pass a value for 𝐾.

[13]: hankel.get_h(
f = lambda x : np.exp(-x**2), nu=2,
K= np.array([0.01, 100]),
cls=SymmetricFourierTransform

)

[13]: (0.05, array([8.25274593e-88, 1.38996118e-09]), 62)

5.2 License

Copyright (c) 2017Steven Murray

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

5.3 Changelog

5.3.1 v0.3.8 [08 Jan 2019]

Enhancements

• Swapped to pytest from nose for all testing
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• Removed warnings of overflow for cosh and sinh functions

• Improved documentation in many areas.

• Swapped out default 3.2/h for pi/h, which sounds way cooler :-)

Bugfixes

• Fixed an error in tests such that the wrong analytic function was being tested.

• Removed a check for deltaG in get_h, which sometimes fails spectacularly.

5.3.2 v0.3.7 [11 Dec 2018]

Bugfixes

• Fixed issue in Py3 in which dim=2 would not run the fast function (thanks @MuellerSeb)

5.3.3 v0.3.6 [6 Aug 2018]

Enhancements

• Added support for transforms with nu=-0.5 (thanks @MuellerSeb)

5.3.4 v0.3.5 [8 Dec 2017]

Bugfixes

• Fixed Python 3 support from v0.3.4

5.3.5 v0.3.4 [28 July 2017]

Features

• Added get_h function to aide in determining optimal h value for a given transformation.

Enhancements

• Added _get_series method to quickly retrieve the summed series for the integration.

• Two updated notebook examples.

Bugfixes

• Moved setting of N to avoid error.

5.3.6 v0.3.3 [28 July 2017]

Features

• Some additional tools to determine accuracy – quick calculation of last term in sum, and evaluated range.

Enhancements

• Default setting of N=3.2/h, which is the maximum possible N that should be chosen, as above this, the series
truncates due to the double-exponential convergence to the roots of the Bessel function.

Bugfixes
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• Fixed error in cumulative sum when k is not scalar.

5.3.7 v0.3.2 [12 July 2017]

Enhancements

• Documentation! See it at https://hankel.readthedocs.io

• Two new jupyter notebook demos (find them in the docs) by @francispoulin

Bugfixes

• Fixed relative import in Python 3 (tests now passing), thanks to @louity

• Fixed docstring of SymmetricFourierTransform to have correct Fourier convention equation

• Fixed bug in choosing alternative conventions in which the fourier-dual variable was unchanged.

5.3.8 v0.3.1 [5 Jan 2017]

Bugfixes

• Fixed normalisation for inverse transform in SymmetricFourierTransform.

Features

• Ability to set Fourier conventions arbitrarily in SymmetricFourierTransform.

5.3.9 v0.3.0 [4 Jan 2017]

Features

• New class SymmetricFourierTransform which makes it incredibly easy to do arbitrary n-dimensional fourier
transforms when the function is radially symmetric (includes inverse transform).

• Addition of integrate method to base class to perform Hankel-type integrals, which were previously handled by
the transform method. This latter method is now used for actual Hankel transforms.

• Documentation!

Enhancements

• Addition of many tests against known integrals.

• Continuous integration

• Restructuring of package for further flexibility in the future.

• Quicker zero-finding of 1/2-order bessel functions.

• This changelog.

• Some notebooks in the devel/ directory which show how various integrals/transforms behave under different
choices of integration steps.
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5.3.10 v0.2.2 [29 April 2016]

Enhancements

• Compatibility with Python 3 (thanks to @diazona)

• Can now use with array-value functions (thanks to @diazona)

5.3.11 v0.2.1 [18 Feb 2016]

Bugfixes

• Fixed pip install by changing readme –> README

Enhancements

• updated docs to show dependence on mpmath

5.3.12 v0.2.0 [10 Sep 2014]

Features

• Non-integer orders supported through mpmath.

5.3.13 v0.1.0

• First working version. Only integer orders (and 1/2) supported.

5.4 Authors

Steven Murray: @steven-murray

5.4.1 Contributors

• Francis Poulin @francispoulin

• Sebastian Mueller @MuellerSeb

5.5 hankel API Summary

General quadrature method for Hankel transformations.

Based on the algorithm provided in H. Ogata, A Numerical Integration Formula Based on the Bessel Functions,
Publications of the Research Institute for Mathematical Sciences, vol. 41, no. 4, pp. 949-970, 2005.

5.4. Authors 29

https://github.com/steven-murray
https://github.com/francispoulin
https://github.com/MuellerSeb


hankel Documentation, Release 0.3.8

5.5.1 Classes

HankelTransform([nu, N, h]) The basis of the Hankel Transformation algorithm by
Ogata 2005.

SymmetricFourierTransform([ndim, a, b, N,
h])

Determine the Fourier Transform of a radially symmet-
ric function in arbitrary dimensions.

5.5.2 Functions

get_h(f, nu[, K, cls, hstart, hdecrement, . . . ]) Determine the largest value of h which gives a con-
verged solution.

class hankel.HankelTransform(nu=0, N=None, h=0.05)
The basis of the Hankel Transformation algorithm by Ogata 2005.

This algorithm is used to solve the equation
∫︀∞
0
𝑓(𝑥)𝐽𝜈(𝑥)𝑑𝑥 where 𝐽𝜈(𝑥) is a Bessel function of the first kind

of order 𝜈, and 𝑓(𝑥) is an arbitrary (slowly-decaying) function.

The algorithm is presented in H. Ogata, A Numerical Integration Formula Based on the Bessel Functions,
Publications of the Research Institute for Mathematical Sciences, vol. 41, no. 4, pp. 949-970, 2005.

This class provides a method for directly performing this integration, and also for doing a Hankel Transform.

Parameters

nu [scalar, optional] The order of the bessel function (of the first kind) J_nu(x)

N [int, optional, default = pi/h] The number of nodes in the calculation. Generally this must
increase for a smaller value of the step-size h. Default value is based on where the series
will truncate according to the double-exponential convergence to the roots of the Bessel
function.

h [float, optional] The step-size of the integration.

classmethod G(f, h, k=None, *args, **kwargs)
The absolute value of the non-oscillatory of the summed series’ last term, up to a scaling constant.

This can be used to get the sign of the slope of G with h.

Parameters

f [callable] The function to integrate/transform

h [float] The resolution parameter of the hankel integration

k [float or array-like, optional] The scale at which to evaluate the transform. If None, assume
an integral.

Returns

The value of G.

classmethod deltaG(f, h, *args, **kwargs)
The slope (up to a constant) of the last term of the series with h

integrate(f, ret_err=True, ret_cumsum=False)
Do the Hankel-type integral of the function f.

This is not the Hankel transform, but rather the simplified integral,
∫︀∞
0
𝑓(𝑥)𝐽𝜈(𝑥)𝑑𝑥 , equivalent to the

transform of 𝑓(𝑟)/𝑟 at k=1.
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Parameters

f [callable] A function of one variable, representing 𝑓(𝑥)

ret_err [boolean, optional, default = True] Whether to return the estimated error

ret_cumsum [boolean, optional, default = False] Whether to return the cumulative sum

transform(f, k=1, ret_err=True, ret_cumsum=False, inverse=False)
Do the Hankel-transform of the function f.

Parameters

f [callable] A function of one variable, representing 𝑓(𝑥)

ret_err [boolean, optional, default = True] Whether to return the estimated error

ret_cumsum [boolean, optional, default = False] Whether to return the cumulative sum

Returns

ret [array-like] The Hankel-transform of f(x) at the provided k. If k is scalar, then this will
be scalar.

err [array-like] The estimated error of the approximate integral, at every k. It is merely the
last term in the sum. Only returned if ret_err=True.

cumsum [array-like] The total cumulative sum, for which the last term is itself the trans-
form. One can use this to check whether the integral is converging. Only returned if
ret_cumsum=True

Notes

The Hankel transform is defined as

𝐹 (𝑘) =

∫︁ ∞

0

𝑟𝑓(𝑟)𝐽𝜈(𝑘𝑟)𝑑𝑟.

The inverse transform is identical (swapping k and r of course).

xrange(k=1)
Tuple giving (min,max) x value evaluated by f(x).

Parameters

k [array-like, optional] Scales for the transformation. Leave as 1 for an integral.

See also:

See meth:xrange_approx for an approximate version of this method

which

classmethod xrange_approx(h, nu, k=1)
Tuple giving approximate (min,max) x value evaluated by f(x/k).

Operates under the assumption that N = 3.2/h.

Parameters

h [float] The resolution parameter of the Hankel integration

nu [float] Order of the integration/transform

k [array-like, optional] Scales for the transformation. Leave as 1 for an integral.
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See also:

xrange the actual x-range under a given choice of parameters.

class hankel.SymmetricFourierTransform(ndim=2, a=1, b=1, N=200, h=0.05)
Determine the Fourier Transform of a radially symmetric function in arbitrary dimensions.

Parameters

ndim [int] Number of dimensions the transform is in.

a, b [float, default 1] This pair of values defines the Fourier convention used (see Notes below
for details)

N [int, optional] The number of nodes in the calculation. Generally this must increase for a
smaller value of the step-size h.

h [float, optional] The step-size of the integration.

Notes

We allow for arbitrary Fourier convention, according to the scheme in http://mathworld.wolfram.com/
FourierTransform.html. That is, we define the forward and inverse n-dimensional transforms respectively as

𝐹 (𝑘) =

√︃
|𝑏|

(2𝜋)1−𝑎

𝑛 ∫︁
𝑓(𝑟)𝑒𝑖𝑏k·r𝑑𝑛r

and

𝑓(𝑟) =

√︃
|𝑏|

(2𝜋)1+𝑎

𝑛 ∫︁
𝐹 (𝑘)𝑒−𝑖𝑏k·r𝑑𝑛k.

By default, we set both a and b to 1, so that the forward transform has a normalisation of unity.

In this general sense, the forward and inverse Hankel transforms are respectively

𝐹 (𝑘) =

√︃
|𝑏|

(2𝜋)1−𝑎

𝑛

(2𝜋)𝑛/2

(𝑏𝑘)𝑛/2−1

∫︁ ∞

0

𝑟𝑛/2−1𝑓(𝑟)𝐽𝑛/2−1(𝑏𝑘𝑟)𝑟𝑑𝑟

and

𝑓(𝑟) =

√︃
|𝑏|

(2𝜋)1+𝑎

𝑛

(2𝜋)𝑛/2

(𝑏𝑟)𝑛/2−1

∫︁ ∞

0

𝑘𝑛/2−1𝑓(𝑘)𝐽𝑛/2−1(𝑏𝑘𝑟)𝑘𝑑𝑘.

classmethod G(f, h, k=None, ndim=2)
The absolute value of the non-oscillatory part of the summed series’ last term, up to a scaling constant.

This can be used to get the sign of the slope of G with h.

Parameters

f [callable] The function to integrate/transform

h [float] The resolution parameter of the hankel integration

k [float or array-like, optional] The scale at which to evaluate the transform. If None, assume
an integral.

ndim [float] The number of dimensions of the transform
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Returns

The value of G.

transform(f, k, *args, **kwargs)
Do the n-symmetric Fourier transform of the function f.

Parameters and returns are precisely the same as HankelTransform.transform().

Notes

The n-symmetric fourier transform is defined in terms of the Hankel transform as

𝐹 (𝑘) =
(2𝜋)𝑛/2

𝑘𝑛/2−1

∫︁ ∞

0

𝑟𝑛/2−1𝑓(𝑟)𝐽𝑛/2−1(𝑘𝑟)𝑟𝑑𝑟.

The inverse transform has an inverse normalisation.

classmethod xrange_approx(h, ndim, k=1)
Tuple giving approximate (min,max) x value evaluated by f(x/k).

Operates under the assumption that N = pi/h.

Parameters

h [float] The resolution parameter of the Hankel integration

ndim [float] Number of dimensions of the transform.

k [array-like, optional] Scales for the transformation. Leave as 1 for an integral.

See also:

xrange the actual x-range under a given choice of parameters.

hankel.get_h(f, nu, K=None, cls=<class ’hankel.hankel.HankelTransform’>, hstart=0.05, hdecrement=2,
atol=0.001, rtol=0.001, maxiter=15, inverse=False)

Determine the largest value of h which gives a converged solution.

Parameters

f [callable] The function to be integrated/transformed.

nu [float] Either the order of the transformation, or the number of dimensions (if cls is a
SymmetricFourierTransform)

K [float or array-like, optional] The scale(s) of the transformation. If None, assumes an inte-
gration over f(x)J_nu(x) is desired. It is recommended to use a down-sampled K for this
routine for efficiency. Often a min/max is enough.

cls [HankelTransform subclass, optional] Either HankelTransform or a subclass, spec-
ifying the type of transformation to do on f.

hstart [float, optional] The starting value of h.

hdecrement [float, optional] How much to divide h by on each iteration.

atol, rtol [float, optional] The tolerance parameters, passed to np.isclose, defining the stopping
condition.

maxiter [int, optional] Maximum number of iterations to perform.

inverse [bool, optional] Whether to treat as an inverse transformation.
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Returns

h [float] The h value at which the solution converges.

res [scalar or tuple] The value of the integral/transformation using the returned h – if a transfor-
mation, returns results at K.

N [int] The number of nodes necessary in the final calculation. While each iteration uses
N=pi/h, the returned N checks whether nodes are numerically zero above some threshold.

Notes

This function is not completely general. The function f is assumed to be reasonably smooth and non-oscillatory.

The idea is to use successively smaller values of h, with N=pi/h on each iteration, until the result betweenitera-
tions becomes stable.
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