

 Navigation

 	
 index

 	
 next |

 	Hal 1.0 documentation

Hal

Contents:

	Configuration

	Adapters
	Campfire

	Hipchat

	IRC

	Slack

	Shell

	Stores
	Memory

	Redis

	Handlers

Appendices

	Glossary

 Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hal 1.0 documentation

Configuration

Hal doesn’t have any command line options. Instead we utilize
environment variables exclusively, allowing you to use hal in more
flexible ways.

PORT=9000 # The port on which the HTTP server will listen.
 # Default: 9000
HAL_NAME=hal # The name to which Hal will respond.
 # Default: hal
HAL_ADAPTER=shell # The adapter name.
 # Default: shell
 # Options: shell, slack, irc
HAL_LOG_LEVEL=info # The level of logging desired.
 # Default: info
 # Options: info, debug, warn, error, critical

 Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hal 1.0 documentation

Adapters

Adapters are how hal integrates with your chat services.

	Campfire

	Hipchat

	IRC

	Slack

	Shell

 Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hal 1.0 documentation

 	Adapters

Campfire

Coming soon!

Usage

Configuration

 Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hal 1.0 documentation

 	Adapters

Hipchat

Setup

Hal uses Hipchat’s XMPP gateway and so requires a user account to
integrate with Hipchat. Be sure to create one before configuring the
adapter. You will need the XMPP credentials, which can be found at
https://my.hipchat.com/account/xmpp.

Usage

// blank import to register adapter
import _ "github.com/danryan/hal/adapter/hipchat"

Configuration

Set the following environment variables according to your needs.

HAL_ADAPTER

To use the Hipchat adapter, set HAL_ADAPTER to hipchat.

HAL_HIPCHAT_USER

The username is the first part of your XMPP JID before the @ sign.
E.g., if your JID is 134273_971874@chat.hipchat.com, then
HAL_HIPCHAT_USER should be 134273_971874.

	Default: none

	Required: false

	Example: HAL_HIPCHAT_USER=134273_971874

HAL_HIPCHAT_PASSWORD

The password is the same as the Hipchat user’s password.

	Default: none

	Required: true

	Example: HAL_HIPCHAT_PASSWORD=supersekretpassword

HAL_HIPCHAT_ROOMS

This is a comma-separated list of rooms to join. Note that Hipchat has
two ways of specifying rooms: a human-readable format (ex. general);
and an XMPP format (ex. 134273_general). Hal expects the former
human-readable format at this time due to a limitation of the
third-party Hipchat package presently used. The rooms are case sensitive
as well.

Hal will not fail if no rooms are specified, though hal will also not
join any rooms if this is left blank.

	Default: none

	Required: false

	Example: HAL_HIPCHAT_ROOMS="general,room with spaces,random"

HAL_HIPCHAT_RESOURCE

This is an optional setting. The default, bot, prevents the channel
history from being sent and thus prevents hal from parsing possibly
already handled messages. If changed from the default, bot, channel
history will be sent. It is recommended that the default be left unless
you need channel history.

	Default: bot

	Required: false

	Example: HAL_HIPCHAT_RESOURCE=something-other-than-bot

 Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hal 1.0 documentation

 	Adapters

IRC

A simple adapter for use with any IRC server.

Setup

You will need an IRC user and preferred server. If your server requires
a password, be sure to provide it using the environment variable below.

Usage

// blank import to register adapter
import _ "github.com/danryan/hal/adapter/irc"

Configuration

HAL_ADAPTER=irc # The adapter
 # Default: shell
HAL_IRC_USER=blah # IRC username
 # Default: none (required)
HAL_IRC_PASSWORD=sekret # IRC password if required
 # Default: none (optional)
HAL_IRC_NICK=hal # IRC nick
 # Default: HAL_IRC_USER (optional)
HAL_IRC_SERVER=irc.freenode.net # IRC server
 # Default: none (required)
HAL_IRC_PORT=6667 # IRC server port
 # Default: 6667
HAL_IRC_CHANNELS="#foo,#bar" # Comma-separate list of channels to join after connecting
 # Default: none (required)
HAL_IRC_USE_TLS=false # Use an encrypted connection

 Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hal 1.0 documentation

 	Adapters

Slack

Setup

By default, Hal uses Slack’s hubot integration. Currently Hal will
listen in on all public channels, or a custom list of channels if HAL_SLACK_CHANNELS is declared. Private groups
require the IRC gateway to work around a current limitation of the Slack
API. See Using IRC Gateway. The IRC gateway is the author’s
preferred method as your bot will automatically join all channels and
groups to which it belongs, and removing Hal from a room is as simple as a
/kick hal command. Some advanced features like attachment uploading
are not supported at this time.

Start by adding the Hubot integration for your team (if you haven’t done
so).

Usage

// blank import to register adapter
import _ "github.com/danryan/hal/adapter/slack"

Configuration

HAL_ADAPTER=slack # The adapter
HAL_SLACK_TOKEN=blah # Your integration token
 # Default: none (required)
HAL_SLACK_TEAM=acmeinc # Your Slack subdomain (<team>.slack.com)
 # Default: none (required)
HAL_SLACK_BOTNAME=HAL # The username Hal will send replies as
 # Default: HAL_NAME
HAL_SLACK_ICON_EMOJI=":poop:" # The emoji shortcut used as the response icon
 # Default: none
HAL_SLACK_CHANNELS="" # not yet implemented
HAL_SLACK_CHANNEL_MODE="" #
HAL_SLACK_LINK_NAMES="" # not yet implemented

HAL_SLACK_CHANNEL_MODE

Specify how to treat the list of channels in HAL_SLACK_CHANNELS`. Disabled if HAL_SLACK_CHANNELS is empty.

	Options: whitelist, blacklist

	Default: whitelist

	Required: false

	Example: HAL_SLACK_CHANNEL_MODE=whitelist

	

Using IRC Gateway

The default integration only works with public chats. If you want hal to
listen in on private chats, you must utilize the IRC gateway. You’ll
need a real user for hal, so be mindful of the username you choose for
it and make sure you configure your bot to use that name so it can login
to the IRC gateway. When enabled, hal will only use the IRC gateway to
listen for messages. Hal can be configured to either respond using the
API or the IRC gateway.

	Enable the IRC gateway in the admin settings
interface [https://revily.slack.com/admin/settings]
	Choose “Enable IRC gateway (SSL only)”. You don’t want your
private messages sent unencrypted.

	Register [https://my.slack.com/signup] a new user

	Sign in as this new user

	Capture your new IRC credentials [https://my.slack.com/account/gateways]

	Set the following environment variables

HAL_SLACK_IRC_ENABLED # Enable the Slack IRC listener
 # Default: 0
 # Options: 0, 1 ; 0 is disabled, 1 is enabled
HAL_SLACK_IRC_PASSWORD # The IRC gateway password
 # Default: none (required)
HAL_SLACK_RESPONSE_METHOD # The method by which hal will respond to a message.
 # The irc option requires that the IRC gateway be configured
 # Default: http
 # Options: http, irc

For more information, please see the following link: * Connecting to
Slack over IRC and
XMPP [https://slack.zendesk.com/hc/en-us/articles/201727913-Connecting-to-Slack-over-IRC-and-XMPP]

 Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hal 1.0 documentation

 	Adapters

Shell

Hal comes with a default shell adapter, useful for testing your response
handlers locally.

Setup

No setup is required.

Usage

// blank import to register adapter
import _ "github.com/danryan/hal/adapter/shell"

Configuration

The shell adapter has no special configuration variables.

 Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hal 1.0 documentation

Stores

	Memory

	Redis

 Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hal 1.0 documentation

 	Stores

Memory

Setup

No setup necessary. Data pushed to the in-memory server will not persist
between restarts.

Configuration

No additional configuration is required.

Usage

// blank import to register adapter
import _ "github.com/danryan/hal/store/memory"

 Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Hal 1.0 documentation

 	Stores

Redis

Setup

The Redis store requires an available Redis server. Authentication and
custom databases are not supported at this time. Please open an
issue [https://github.com/danryan/hal/issues] if you need this support!

Configuration

HAL_STORE

Set to redis

	Default: memory

	Example:

HAL_STORE=redis

HAL_REDIS_URL

The Redis server URL

	Default: localhost:6367

	Example:

HAL_REDIS_URL=redis.example.com:6379

HAL_REDIS_NAMESPACE

Set a namespace to prepend to all keys

	Default: hal

	Example

HAL_REDIS_NAMESPACE=foo
sets all keys to "foo:<key>"

Usage

// blank import to register adapter
import _ "github.com/danryan/hal/store/redis"

 Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Hal 1.0 documentation

Handlers

 Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Hal 1.0 documentation

Index

 A
 | E
 | H
 | M
 | R
 | S
 | U

A

 	

 	Adapter

E

 	

 	Envelope

H

 	

 	Hal

 	

 	Handler

M

 	

 	Message

R

 	

 	Response

 	Robot

 	

 	Router

S

 	

 	Store

U

 	

 	User

 Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

search.html

 Navigation

 		
 index

 		Hal 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

_static/up.png

glossary.html

 Navigation

 		
 index

 		Hal 1.0 documentation »

Glossary

		Adapter

		chat adapter

		Envelope

		An envelope contains metadata about the message and response, used for additional processing by both handlers and adapters.

		Hal

		Hal is a chat bot framework written in the Go programming language.

		Handler

		A handler is the part of hal that evaluates incoming messages

		Message

		A message is an incoming request that is processed by handlers

		Response

		A response is the return object that is processed by the adapter

		Robot

		robot

		Router

		A router is an HTTP server used for handling requests (Messages) that did not come through the chat adapter.

		Store

		data storage

		User

		A chat user

 © Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

stores/custom.html

 Navigation

 		
 index

 		Hal 1.0 documentation »

Adding a Custom Store

Providing support for a new backend is fairly uncomplicated. Taking
advantage of Go’s interface type, we simply need a new struct type that
implements the hal.Store interface (plus a handful of helper functions,
but we’ll get to that). Let’s take a look at the default memory adapter
to see how one works.

Start by declaring a new package and importing hal (and other packages
you may need).

package memory

import (
 "fmt"
 "github.com/danryan/hal"
)

Next, we need to define a hook that will tell hal about the store and
how to create a new one. hal.RegisterStore take two arguments: a
string to use as a identifying name, and a constructor function that
initializes and returns the store. This should go into the init()
function so that it is called when the file is parsed. Doing so allows
us to import _ the package for the side effect of registering our
store.

func init() {
 hal.RegisterStore("memory", New)
}

We now need to define a store struct. Easy enough:

type store struct {
 hal.BasicStore
 data map[string][]byte
}

Notice that we embed hal.BasicStore in our struct. This gives us a
number of extra things, namely the ability to interact with the robot.
The data field is a basic map of strings to byte-slices. We’ll use
this to store and retrieve data. It wouldn’t pass a Jepsen
simulation [https://github.com/aphyr/jepsen] but it’s at least Web
Scale.

Time to define our constructor function. If you recall, this gets passed
to hal.RegisterStore so hal knows how to initialize our store. The
expected function signature is func(*hal.Robot) (hal.Store, error).

func New(robot *hal.Robot) (hal.Store, error) {
 // make a new store object and initialize the data field
 s := &store{
 data: map[string][]byte{},
 }

 // set the store's robot to the robot we passed as an argument.
 s.SetRobot(robot)

 // return the store object
 // if this were a more complex adapter, we would need to check for and return errors if applicable.
 return s, nil
}

So far so good! At this point we’ve handled all of the setup functions
necessary for hal to register and initialize a new store, but we still
need our struct to conform to the hal.Store interface in order for
our program to compile. So let’s do that now!

Open() is called immediately after the adapter is initialized and
immediately before the robot.Run() function returns. This function
would generally be used to initialize a connection to an underlying
database (the [[Redis Store]], for example). We don’t use it for our
little memory store, but it is required, otherwise our store won’t
work as hal.Store.

func (s *store) Open() error {
 return nil
}

Close() is called immediately before the adapter is shut down and
immediately after the robot.Stop() function begins. This function is
useful for closing connections to a database (much like the [[Redis
Store]] does). We have nothing to close so our function will be very
boring. Just like Open, it is required in order to implement the
hal.Store interface.

func (s *store) Close() error {
 return nil
}

Get is our way to retrieve a value from a store by a key (a
key-value store, if you will). It should take a string key and
return a byte-slice and/or an error if necessary.

func (s *store) Get(key string) ([]byte, error) {
 val, ok := s.data[key]
 if !ok {
 return nil, fmt.Errorf("key %s was not found", key)
 }
 return val, nil
}

Set pushes stores a value to a given key. It take a string key, a
byte-slice data, and may return an error if necessary.

func (s *store) Set(key string, data []byte) error {
 s.data[key] = data
 return nil
}

Delete removes the value referenced by a given key. It expects a
string key, and may return an error if necessary.

func (s *store) Delete(key string) error {
 if _, ok := s.data[key]; !ok {
 return fmt.Errorf("key %s was not found", key)
 }
 delete(s.data, key)
 return nil
}

And we’re done! Now go contribute a store for your favorite key-value backend :)

 © Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

adapters/custom.html

 Navigation

 		
 index

 		Hal 1.0 documentation »

Adding a Custom Adapter

Coming soon!

 © Copyright 2014, Dan Ryan.
 Created using Sphinx 1.3.5.

