
Gym-WiPE Documentation

bjoluc

Jun 14, 2019

Documentation

1 Introduction 1
1.1 Why Gym-WiPE? . 1
1.2 What’s included? . 1
1.3 Getting started . 1
1.4 Further steps . 2

2 API Reference 3
2.1 gymwipe.control package . 3
2.2 gymwipe.devices package . 4
2.3 gymwipe.envs package . 5
2.4 gymwipe.networking package . 10
2.5 gymwipe.plants package . 28
2.6 gymwipe.simtools module . 29
2.7 gymwipe.utility module . 32

3 Bibliography 35

4 Indices and tables 37

Bibliography 39

Python Module Index 41

Index 43

i

ii

CHAPTER 1

Introduction

Gym-WiPE (Gym Wireless Plant Environment) is an OpenAI Gym environment for the application of reinforcement
learning in the simulation of wireless networked feedback control loops. It is written in Python.

1.1 Why Gym-WiPE?

Networked control systems often put high requirements on the underlying networks. Off-the-shelf wireless network
solutions, however, may not fulfill their needs without further improvements. Reinforcement learning may help to find
appropriate policies for radio resource management in control systems for which optimal static resource management
algorithms can not easily be determined. This is where Gym-WiPE comes in: It provides simulation tools for the
creation of OpenAI Gym reinforcement learning environments that simulate wireless networked feedback control
loops.

1.2 What’s included?

Gym-WiPE features an all-Python wireless network simulator based on SimPy. The Open Dynamics Engine (ODE),
more specifically its Python wrapper Py3ODE is integrated for plant simulation. Two Gym environments have been
implemented for frequency band assignments yet: A simplistic network-only example and a (yet untested) environment
for frequency band assignments to a sensor and a controller of an inverted pendulum. The development of further
environments may concern frequency band assignments but is not limited to these as the entire simulation model is
accessible from within Python and may be used for arbitrary Gym wireless networked control environments. Control
algorithm implementations may profit from the python-control project.

1.3 Getting started

1.3.1 Environment Setup

Gym-WiPE uses pipenv. To install it, run

1

https://gym.openai.com/
https://gym.openai.com/
https://simpy.readthedocs.io/
https://www.ode.org/
https://github.com/filipeabperes/Py3ODE
https://python-control.readthedocs.io/
https://pipenv.readthedocs.io/en/latest/

Gym-WiPE Documentation

pip install pipenv

With pipenv installed, you may clone the repository like

git clone https://github.com/bjoluc/gymwipe.git
cd gymwipe

and invoke pipenv to set up a virtual environment and install the dependencies into it:

pipenv install

Optionally, the development dependencies may be installed via

pipenv install --dev

If ODE is used for plant Simulation, it has to be downloaded and built. After that, make ode will install Py3ODE
and pygame for plant visualizations.

1.3.2 Running the tests

The pytest testsuite can be executed via make test.

1.4 Further steps

This project lacks tutorials. For now, you can have a look at the API documentation at https://gymwipe.readthedocs.
io/en/latest/api/index.html. An example agent implementation for a Gym-WiPE environment is provided in the agents
directory.

2 Chapter 1. Introduction

https://sourceforge.net/projects/opende/files/ODE/
https://gymwipe.readthedocs.io/en/latest/api/index.html
https://gymwipe.readthedocs.io/en/latest/api/index.html

CHAPTER 2

API Reference

2.1 gymwipe.control package

2.1.1 Submodules

gymwipe.control.inverted_pendulum module

Controller implementations for an inverted pendulum (using the gymwipe.plants.sliding_pendulum mod-
ule)

class InvertedPendulumPidController(name, xPos, yPos, frequencyBand)
Bases: gymwipe.networking.devices.SimpleNetworkDevice

A PID inverted pendulum controller for the SlidingPendulum plant.

Note: After initialization, the sensorAddr and actuatorAddr attributes have to be set to the network
addresses of the sensor and the actuator.

sensorAddr = None
The sensor’s network address

Type bytes

actuatorAddr = None
The actuator’s network address

Type bytes

onReceive(packet)
This method is invoked whenever receiving is True and a packet has been received.

3

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Gym-WiPE Documentation

Note: After receiving has been set to False it might still be called within RECEIVE_TIMEOUT
seconds.

Parameters packet (Packet) – The packet that has been received

control()

2.1.2 Module contents

Implementations of Control Loop Components

2.2 gymwipe.devices package

2.2.1 Submodules

gymwipe.devices.core module

Core components for modelling physical devices

class Position(x, y, owner=None)
Bases: object

A simple class for representing 2-dimensional positions, stored as two float values.

Parameters

• x (Union[float, int]) – The distance to a fixed origin in x direction, measured in meters

• y (Union[float, int]) – The distance to a fixed origin in y direction, measured in meters

• owner (Optional[Any]) – The object owning (having) the position.

nChange = None
A notifier that is triggered when one or both of x and y is changed, providing the triggering position
object.

Type Notifier

x
The distance to a fixed origin in x direction, measured in meters

Note: When setting both x and y , please use the set() method to trigger nChange only once.

Type float

y
The distance to a fixed origin in y direction, measured in meters

Note: When setting both x and y , please use the set() method to trigger nChange only once.

4 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float

Gym-WiPE Documentation

Type float

set(x, y)
Sets the x and the y value triggering the nChange notifier only once.

distanceTo(p)
Returns the euclidean distance of this Position to p, measured in meters.

Parameters p (Position) – The Position object to calculate the distance to

Return type float

class Device(name, xPos, yPos)
Bases: object

Represents a physical device that has a name and a position.

Parameters

• name (str) – The device name

• xPos (float) – The device’s physical x position

• yPos (float) – The device’s physical y position

name = None
The device name (for debugging and plotting)

Type str

position
The device’s physical position

Type Position

2.2.2 Module contents

2.3 gymwipe.envs package

2.3.1 Submodules

gymwipe.envs.core module

class BaseEnv(frequencyBand, deviceCount)
Bases: gym.core.Env

A subclass of the OpenAI gym environment that models the Radio Resource Manager frequency band assign-
ment problem. It sets a frequency band and an action space (depending on the number of devices to be used for
frequency band assignment).

The action space is a dict space of two discrete spaces: The device number and the assignment duration.

Parameters

• band (frequency) – The physical frequency band to be used for the simulation

• deviceCount (int) – The number of devices to be included in the environment’s action
space

metadata = {'render.modes': ['human']}

MAX_ASSIGN_DURATION = 20

2.3. gymwipe.envs package 5

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Gym-WiPE Documentation

ASSIGNMENT_DURATION_FACTOR = 1000

seed(seed=None)
Sets the seed for this environment’s random number generator and returns it in a single-item list.

render(mode=’human’, close=False)
Renders the environment to stdout.

class Interpreter
Bases: abc.ABC

An Interpreter is an instance that observes the system’s behavior by sniffing the packets received by the
RRM’s physical layer and infers observations and rewards for a frequency band assignment learning agent.
Thus, RRM and learning agent can be used in any domain with only swapping the interpreter.

This class serves as an abstract base class for all Interpreter implementations.

When implementing an interpreter, the following three methods have to be overridden:

• onPacketReceived()

• getReward()

• getObservation()

The following methods provide default implementations that you might also want to override depending on your
use case:

• reset()

• onFrequencyBandAssignment()

• getDone()

• getInfo()

onPacketReceived(senderIndex, receiverIndex, payload)
Is invoked whenever the RRM receives a packet that is not addressed to it.

Parameters

• senderIndex (int) – The device index of the received packet’s sender (as in the gym
environment’s action space)

• receiverIndex (int) – The device index of the received packet’s receiver (as in the
gym environment’s action space)

• payload (Transmittable) – The received packet’s payload

onFrequencyBandAssignment(deviceIndex, duration)
Is invoked whenever the RRM assigns the frequency band.

Parameters

• deviceIndex (int) – The index (as in the gym environment’s action space) of the
device that the frequency band is assigned to.

• duration (int) – The duration of the assignment in multiples of
TIME_SLOT_LENGTH

getReward()
Returns a reward that depends on the last channel assignment.

Return type float

getObservation()
Returns an observation of the system’s state.

6 Chapter 2. API Reference

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Gym-WiPE Documentation

Return type Any

getDone()
Returns whether an episode has ended.

Note: Reinforcement learning problems do not have to be split into episodes. In this case, you do not
have to override the default implementation as it always returns False.

Return type bool

getInfo()
Returns a dict providing additional information on the environment’s state that may be useful for debug-
ging but is not allowed to be used by a learning agent.

Return type Dict[~KT, ~VT]

getFeedback()
You may want to call this at the end of a frequency band assignment to get feedback for your learning
agent. The return values are ordered like they need to be returned by the step() method of a gym
environment.

Return type Tuple[Any, float, bool, Dict[~KT, ~VT]]

Returns A 4-tuple with the results of getObservation(), getReward(), getDone(),
and getInfo()

reset()
This method is invoked when the environment is reset – override it with your initialization tasks if you feel
like it.

gymwipe.envs.counter_traffic module

A simple Gym environment using the Simple network devices for demonstration purposes

class CounterTrafficEnv
Bases: gymwipe.envs.core.BaseEnv

An environment for testing reinforcement learning with three devices:

• Two network devices that send a configurable amount of data to each other

• A simple RRM operating an interpreter for that use case

Optimally, a learning agent will fit the length of the assignment intervals to the amount of data sent by the
devices.

COUNTER_INTERVAL = 0.001

COUNTER_BYTE_LENGTH = 2

COUNTER_BOUND = 65536

class SenderDevice(name, xPos, yPos, frequencyBand, packetMultiplicity)
Bases: gymwipe.networking.devices.SimpleNetworkDevice

A device sending packets with increasing COUNTER_BYTE_LENGTH-byte integers. Every
COUNTER_INTERVAL seconds, a packet with the current integer is sent packetMultiplicity times.

senderProcess()

2.3. gymwipe.envs package 7

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict

Gym-WiPE Documentation

class CounterTrafficInterpreter(env)
Bases: gymwipe.envs.core.Interpreter

reset()
This method is invoked when the environment is reset – override it with your initialization tasks if
you feel like it.

onPacketReceived(senderIndex, receiverIndex, payload)
Is invoked whenever the RRM receives a packet that is not addressed to it.

Parameters
• senderIndex (int) – The device index of the received packet’s sender (as in the

gym environment’s action space)
• receiverIndex (int) – The device index of the received packet’s receiver (as in the

gym environment’s action space)
• payload (Transmittable) – The received packet’s payload

onFrequencyBandAssignment(deviceIndex, duration)
Is invoked whenever the RRM assigns the frequency band.

Parameters
• deviceIndex (int) – The index (as in the gym environment’s action space) of the

device that the frequency band is assigned to.
• duration (int) – The duration of the assignment in multiples of
TIME_SLOT_LENGTH

getReward()
Reward depends on the change of the difference between the values received from both devices: If
the difference became smaller, it is the positive reward difference, limited by 10. Otherwise, it is the
negative reward difference, limited by -10. This is a result of trial and error and most likely far away
from being perfect.

getObservation()
Returns an observation of the system’s state.

getDone()
Returns whether an episode has ended.

Note: Reinforcement learning problems do not have to be split into episodes. In this case, you do
not have to override the default implementation as it always returns False.

getInfo()
Returns a dict providing additional information on the environment’s state that may be useful for
debugging but is not allowed to be used by a learning agent.

reset()
Resets the state of the environment and returns an initial observation.

step(action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

Parameters action (object) – an action provided by the agent

Returns agent’s observation of the current environment reward (float) : amount of reward re-
turned after previous action done (bool): whether the episode has ended, in which case further
step() calls will return undefined results info (dict): contains auxiliary diagnostic information
(helpful for debugging, and sometimes learning)

8 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

Gym-WiPE Documentation

Return type observation (object)

render(mode=’human’, close=False)
Renders the environment to stdout.

gymwipe.envs.inverted_pendulum module

A Gym environment for frequency band assignments to a sensor and a controller in the wireless networked control of
an inverted pendulum

class InvertedPendulumInterpreter(env)
Bases: gymwipe.envs.core.Interpreter

onPacketReceived(senderIndex, receiverIndex, payload)
No actions for received packets, as we read sensor angles directly from the plant object.

onFrequencyBandAssignment(deviceIndex, duration)
Is invoked whenever the RRM assigns the frequency band.

Parameters

• deviceIndex (int) – The index (as in the gym environment’s action space) of the
device that the frequency band is assigned to.

• duration (int) – The duration of the assignment in multiples of
TIME_SLOT_LENGTH

getReward()
Reward is |180− 𝛼| with 𝛼 being the pendulum angle.

getObservation()
Returns an observation of the system’s state.

getDone()
Returns whether an episode has ended.

Note: Reinforcement learning problems do not have to be split into episodes. In this case, you do not
have to override the default implementation as it always returns False.

getInfo()
Returns a dict providing additional information on the environment’s state that may be useful for debug-
ging but is not allowed to be used by a learning agent.

class InvertedPendulumEnv
Bases: gymwipe.envs.core.BaseEnv

An environment that allows an agent to assign a frequency band to a sliding pendulum’s AngleSensor and
an InvertedPendulumPidController

Note: This environment is yet untested!

reset()
Resets the state of the environment and returns an initial observation.

step(action)
Run one timestep of the environment’s dynamics. When end of episode is reached, you are responsible for
calling reset() to reset this environment’s state.

2.3. gymwipe.envs package 9

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Gym-WiPE Documentation

Accepts an action and returns a tuple (observation, reward, done, info).

Parameters action (object) – an action provided by the agent

Returns agent’s observation of the current environment reward (float) : amount of reward re-
turned after previous action done (bool): whether the episode has ended, in which case further
step() calls will return undefined results info (dict): contains auxiliary diagnostic information
(helpful for debugging, and sometimes learning)

Return type observation (object)

render(mode=’human’, close=False)
Renders the environment to stdout.

2.3.2 Module contents

2.4 gymwipe.networking package

2.4.1 Submodules

gymwipe.networking.attenuation_models module

A collection of AttenuationModel implementations. Currently contains:

FsplAttenuation(frequencyBandSpec, deviceA,
. . .)

A free-space path loss (FSPL) AttenuationModel
implementation

class FsplAttenuation(frequencyBandSpec, deviceA, deviceB)
Bases: gymwipe.networking.physical.PositionalAttenuationModel

A free-space path loss (FSPL) AttenuationModel implementation

gymwipe.networking.construction module

The construction module provides classes for building network stack representations. The concept of modules, com-
pound modules, and gates is borrowed from the OMNeT++ model structure, which is described in [VH08].

class Gate(name, owner=None)
Bases: object

Gates provide features for the transfer of arbitrary objects. They can be connected to each other and offer a
send() method that passes an object to all connected gates, as shown in the figure below, where connections
are depicted as arrows.

Gate1 Gate2 Gate3msg msg

send(msg)

Gates emulate the transmission of objects via connections by calling send() on their connected gates as
illustrated below.

Gate1 Gate2 Gate3

send(msg) send(msg) send(msg)

10 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Gym-WiPE Documentation

name
The Gate’s name

Type str

nReceives
A notifier that is triggered when send() is called, providing the value passed to send()

Type gymwipe.simtools.Notifier

nConnectsTo
A notifier that is triggered when connectTo() is called, providing the gate passed to connectTo()

Type Notifier

connectTo(gate)
Connects this Gate to the provided Gate. Thus, if send() is called on this Gate, it will also be called
on the provided Gate.

Parameters gate (Gate) – The Gate for the connection to be established to

send(object)
Triggers nReceives with the provided object and sends it to all connected gates.

class Port(name, owner=None)
Bases: object

A Port simplifies the setup of bidirectional connections by wrapping an input and an output Gate and offering
two connection methods: biConnectWith() and biConnectProxy().

Parameters

• name (str) – The Port’s name

• owner (Any) – The object that the Port belongs to (e.g. a Module)

name
The port’s name, as provided to the constructor

Type str

input
The port’s input Gate

output
The port’s output Gate

biConnectWith(port)
Shorthand for

self.output.connectTo(port.input)
port.output.connectTo(self.input)

Creates a bidirectional connection between this port an the passed port. If indicates input gates and
indicates output gates, the resulting connection between two ports can be visualized like this:

Parameters port (Port) – The Port to establish the bidirectional connection to

biConnectProxy(port)
Shorthand for

2.4. gymwipe.networking package 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Gym-WiPE Documentation

self.output.connectTo(port.output)
port.input.connectTo(self.input)

If indicates input gates and indicates output gates, the resulting connection between two ports can be
visualized like this:

Parameters port (Port) – The Port to establish the bidirectional proxy connection to

nReceives
The input Gate’s nReceives Notifier, which is triggered when an object is received by the input
Gate.

Type Notifier

class GateListener(gateName, validTypes=None, blocking=True, queued=False)
Bases: object

A factory for decorators that allow to call a module’s method (or process a SimPy generator method) whenever
a specified gate of a Module receives an object. The received object is provided to the decorated method as a
parameter.

Note: In order to make this work for a class’ methods, you have to decorate that class’ constructor with
@PortListener.setup.

Examples

A Module’s method using this decorator could look like this:

@GateListener("myPortIn")
def myPortInListener(self, obj):

This method is processed whenever self.gates["myPortIn"]
receives an object and all previously created instances
have been processed.
yield SimMan.timeout(1)

Parameters

• gateName (str) – The index of the module’s Gate to listen on

• validTypes (Union[type, Tuple[type], None]) – If this argument is provided, a
TypeError will be raised when an object received via the specified Gate is not of the
type / one of the types specified.

• blocking (bool) – Set this to False if you decorate a SimPy generator method and
want it to be processed for each received object, regardless of whether an instance of the
generator is still being processed or not. By default, only one instance of the decorated
generator method is run at a time (blocking is True).

• queued (bool) – If you decorate a SimPy generator method, blocking is True, and you
set queued to True, an object received while an instance of the generator is being pro-
cessed will be queued. Sequentially, a new generator instance will then be processed for
every queued object as soon as a previous generator instance has been processed. Using

12 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Gym-WiPE Documentation

queued, you can, for example, react to multiple objects that are received at the same simu-
lated time, while only having one instance of a subscribed generator method processed at a
time. Queued defaults to False.

static setup(function)
A decorator to be used for the constructors of Module subclasses that apply the GateListener deco-
rator.

class Module(name, owner=None)
Bases: object

Modules are used to model components that interact with each other, as for example network stack layers. A
module has a number of ports and gates that can be used to exchange data with it and connect it to other modules.
Modules provide the methods _addPort() and _addGate() that allow to add ports and gates, which can
be accessed via the ports and the gates dictionaries.

Note: Modules may have both ports (for bidirectional connections) and individual gates (for unidirectional
connections). When a port is added by _addPort(), its two gates are also added to the gates dictionary.

name
The Module’s name

Type str

ports
The Module’s outer Ports

Type Dict[str, Port]

gates
The Module’s outer Gates

Type Dict[str, Gate]

_addPort(name)
Adds a new Port to the ports dictionary, indexed by the name passed. Since a Port holds two Gate
objects, a call of this method also adds two entries to the gates dictionary, namely “<name>In” and
“<name>Out”.

Parameters name (str) – The name for the Port to be indexed with

_addGate(name)
Adds a new Gate to the gates dictionary, indexed by the name passed.

Note: Plain Gate objects are only needed for unidirectional connections. Bidirectional connections can
profit from Port objects.

Parameters name (str) – The name for the Gate to be indexed with

class CompoundModule(name, owner=None)
Bases: gymwipe.networking.construction.Module

A CompoundModule is a Module that contains an arbitrary number of submodules (Module objects) which
can be connected with each other and their parent module’s gates and ports. Submodules are added using
_addSubmodule() and can be accessed via the submodules dictionary.

2.4. gymwipe.networking package 13

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Gym-WiPE Documentation

Note: When subclassing CompoundModule, do not directly implement functionalities in your subclass, but
wrap them in submodules to ensure modularity. Also, do not connect a CompoundModule’s submodules to
anything else than other submodules or the CompoundModule itself for the same reason.

submodules
The CompoundModule’s nested Module objects

Type Dict[str, Module]

_addSubmodule(name, module)
Adds a new Module to the submodules dictionary, indexed by the name passed.

Parameters

• name (str) – The name for the submodule to be indexed with

• module (Module) – The Module object to be added as a submodule

gymwipe.networking.devices module

Device implementations for network devices

class NetworkDevice(name, xPos, yPos, frequencyBand)
Bases: gymwipe.devices.core.Device

A subclass of Device that extends the constructor’s parameter list by a frequencyBand argument. The provided
FrequencyBand object will be stored in the frequencyBand attribute.

Parameters

• name (str) – The device name

• xPos (float) – The device’s physical x position

• yPos (float) – The device’s physical y position

• band (frequency) – The FrequencyBand instance that will be used for transmissions

frequencyBand = None
The FrequencyBand instance that is used for transmissions

Type FrequencyBand

class SimpleNetworkDevice(name, xPos, yPos, frequencyBand)
Bases: gymwipe.networking.devices.NetworkDevice

A NetworkDevice implementation running a network stack that consists of a SimplePHY and a SimpleMAC.
It offers a method for sending a packet using the MAC layer, as well as a callback method that will be invoked
when a packet is received. Also, receiving can be turned on or of by setting receiving either to True or to
False.

Parameters

• name (str) – The device name

• xPos (float) – The device’s physical x position

• yPos (float) – The device’s physical y position

• band (frequency) – The FrequencyBand instance that will be used for transmissions

macAddr = None
The address that is used by the MAC layer to identify this device

14 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Gym-WiPE Documentation

Type bytes

RECEIVE_TIMEOUT = 100
The timeout in seconds for the simulated blocking MAC layer receive call

Type int

receiving

Return type bool

send(data, destinationMacAddr)

onReceive(packet)
This method is invoked whenever receiving is True and a packet has been received.

Note: After receiving has been set to False it might still be called within RECEIVE_TIMEOUT
seconds.

Parameters packet (Packet) – The packet that has been received

class SimpleRrmDevice(name, xPos, yPos, frequencyBand, deviceIndexToMacDict, interpreter)
Bases: gymwipe.networking.devices.NetworkDevice

A Radio Resource Management NetworkDevice implementation. It runs a network stack consisting of
a SimplePHY and a SimpleRrmMAC. It offers a method for frequency band assignment and operates an
Interpreter instance that provides observations and rewards for a learning agent.

Parameters

• name (str) – The device name

• xPos (float) – The device’s physical x position

• yPos (float) – The device’s physical y position

• band (frequency) – The FrequencyBand instance that will be used for transmissions

• deviceIndexToMacDict (Dict[int, bytes]) – A dictionary mapping integer in-
dexes to device MAC addresses. This allows to pass the device index used by a learning
agent instead of a MAC address to assignFrequencyBand().

• interpreter (Interpreter) – The Interpreter instance to be used for observa-
tion and reward calculations

interpreter = None
The Interpreter instance that provides domain-specific feedback on the consequences of
assignFrequencyBand() calls

Type Interpreter

deviceIndexToMacDict = None
A dictionary mapping integer indexes to device MAC addresses. This allows to pass the device index used
by a learning agent instead of a MAC address to assignFrequencyBand().

macToDeviceIndexDict = None
The counterpart to deviceIndexToMacDict

macAddr
The RRM’s MAC address

Type bytes

2.4. gymwipe.networking package 15

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Gym-WiPE Documentation

Return type bytes

assignFrequencyBand(deviceIndex, duration)
Makes the RRM assign the frequency band to a certain device for a certain time.

Parameters

• deviceIndex (bytes) – The integer id that maps to the MAC address of the device to
assign the frequency band to (see deviceIndexToMacDict)

• duration (int) – The number of time units for the frequency band to be assigned to
the device

Return type Tuple[Any, float]

Returns The Signal object that was used to make the RRM MAC layer assign the frequency
band. When the frequency band assignment is over, the signal’s eProcessed event will
succeed.

gymwipe.networking.messages module

The messages module provides classes for network packet representations and inter-module communication.

The following classes are used for transmission simulation:

Transmittable(value[, byteSize]) The Transmittable class provides a byteSize
attribute allowing the simulated sending of
Transmittable objects via a frequency band.

FakeTransmittable(byteSize) A Transmittable implementation that sets its value
to None.

Packet(header, payload[, trailer]) The Packet class represents packets.
SimpleMacHeader(sourceMAC, destMAC, flag) A class for representing MAC packet headers
SimpleNetworkHeader(sourceMAC, destMAC) Since no network protocol is implemented in Gym-

WiPE, there is a need for some interim way to spec-
ify source and destination addresses in packets that are
passed to the SimpleMAC layer.

The following classes are used for inter-module communication:

Message(type[, args]) A class used for the exchange of arbitrary messages be-
tween components.

StackMessageTypes An enumeration of control message types to be used for
the exchange of Message objects between network stack
layers.

class Transmittable(value, byteSize=None)
Bases: object

The Transmittable class provides a byteSize attribute allowing the simulated sending of
Transmittable objects via a frequency band.

value
The object that has been passed to the constructor as value

Type Any

byteSize

16 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object

Gym-WiPE Documentation

The transmittable’s byteSize as it was passed to the constructor

Parameters

• value (Any) – The object of which the string representation will be used

• byteSize – The number of bytes that are simulated to be transmitted when the data rep-
resented by this Transmittable is sent via a frequency band. Defaults to the length of
the UTF-8 encoding of str(value).

bitSize
byteSize ×8

Return type int

transmissionTime(bitrate)
Returns the time in seconds needed to transmit the data represented by the Transmittable at the
specified bit rate.

Parameters bitrate (float) – The bitrate in bps

Return type float

class FakeTransmittable(byteSize)
Bases: gymwipe.networking.messages.Transmittable

A Transmittable implementation that sets its value to None. It can be helpful for test applications when
the data itself is irrelevant and only its size has to be considered.

Parameters byteSize (int) – The number of bytes that the FakeTransmittable represents

class Packet(header, payload, trailer=None)
Bases: gymwipe.networking.messages.Transmittable

The Packet class represents packets. A Packet consists of a header, a payload and an optional trailer. Packets
can be nested by providing them as payloads to the packet constructor.

header
The object representing the Packet’s header

Type Transmittable

payload
The object representing the Packet’s payload. Might be another Packet.

Type Transmittable

trailer
The object representing the Packet’s trailer (defaults to None)

Type Transmittable

__str__()
Return str(self).

class SimpleMacHeader(sourceMAC, destMAC, flag)
Bases: gymwipe.networking.messages.Transmittable

A class for representing MAC packet headers

sourceMAC
The 6-byte-long source MAC address

Type bytes

2.4. gymwipe.networking package 17

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes

Gym-WiPE Documentation

destMAC
The 6-byte-long destination MAC address

Type bytes

flag
A single byte flag (stored as an integer in range(256))

Type int

class SimpleNetworkHeader(sourceMAC, destMAC)
Bases: gymwipe.networking.messages.Transmittable

Since no network protocol is implemented in Gym-WiPE, there is a need for some interim way to spec-
ify source and destination addresses in packets that are passed to the SimpleMAC layer. Therefore, a
SimpleNetworkHeader holds a source and a destination MAC address. The destination address is used
by the SimpleMAC layer.

sourceMAC
The 6-byte-long source MAC address

Type bytes

destMAC
The 6-byte-long destination MAC address

Type bytes

class Message(type, args=None)
Bases: object

A class used for the exchange of arbitrary messages between components. A Message can be used to simulate
both asynchronous and synchronous function calls.

type
An enumeration object that defines the message type

Type Enum

args
A dictionary containing the message’s arguments

Type Dict[str, Any]

eProcessed
A SimPy event that is triggered when setProcessed() is called. This is useful for simulating syn-
chronous function calls and also allows for return values (an example is provided in setProcessed()).

Type Event

setProcessed(returnValue=None)
Makes the eProcessed event succeed.

Parameters returnValue (Optional[Any]) – If specified, will be used as the value of the
eProcessed event.

Examples

If returnValue is specified, SimPy processes can use Signals for simulating synchronous function calls
with return values like this:

18 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any

Gym-WiPE Documentation

signal = Signal(myType, {"key", value})
gate.output.send(signal)
value = yield signal.eProcessed
value now contains the returnValue that setProcessed() was called with

class StackMessageTypes
Bases: enum.Enum

An enumeration of control message types to be used for the exchange of Message objects between network stack
layers.

RECEIVE = 0

SEND = 1

ASSIGN = 2

gymwipe.networking.physical module

Physical-layer-related components

calculateEbToN0Ratio(signalPower, noisePower, bitRate, returnDb=False)
Computes 𝐸𝑏/𝑁0 = 𝑆

𝑁0𝑅
(the “ratio of signal energy per bit to noise power density per Hertz” [Sta05]) given

the signal power 𝑆𝑑𝐵𝑚, the noise power 𝑁0𝑑𝐵𝑚
, and the bit rate 𝑅, according to p. 95 of [Sta05].

Parameters

• signalPower (float) – The signal power 𝑆 in dBm

• noisePower (float) – The noise power 𝑁0 in dBm

• bitRate (float) – The bit rate 𝑅 in bps

• returnDb (bool) – If set to True, the ratio will be returned in dB.

Return type float

approxQFunction(x)
Approximates the gaussian Q-Function for 𝑥 ≥ 0 by using the following formula, derived from [KL07]:

𝑄(𝑥) ≈ (1−𝑒−1.4𝑥)𝑒−
𝑥2

2

1.135
√
2𝜋𝑥

Parameters x (float) – The 𝑥 value to approximate 𝑄(𝑥) for

Return type float

temperatureToNoisePowerDensity(temperature)
Calculates the noise power density 𝑁0 in W/Hz for a given temperature 𝑇 in degrees Celsius according to
[Sta05] by using the following formula:

𝑁0 = 𝑘(𝑇 + 273.15) with 𝑘 being Boltzmann’s constant

Parameters temperature (float) – The temperature 𝑇 in degrees Celsius

Return type float

wattsToDbm(watts)
Converts a watt value to a dBm value.

Parameters watts (float) – The watt value to be converted

milliwattsToDbm(milliwatts)
Converts a milliwatt value to a dBm value.

2.4. gymwipe.networking package 19

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Gym-WiPE Documentation

Parameters watts – The milliwatt value to be converted

dbmToMilliwatts(milliwatts)
Converts a dBm value to a milliwatt value.

Parameters watts – The dBm value to be converted

class Mcs(frequencyBandSpec, codeRate)
Bases: abc.ABC

The Mcs class represents a Modulation and Coding Scheme. As the MCS (beside frequency band character-
istics) determines the relation between Signal-to-Noise Ratio (SNR) and the resulting Bit Error Rate (BER), it
offers a getBitErrorRateBySnr() method that is used by receiving PHY layer instances. Mcs objects
also provide a bitRate and a dataRate attribute, which specify the physical bit rate and the effective data
rate of transmissions with the corresponding Mcs.

Currently, only BPSK modulation is implemented (see BpskMcs for details). Subclass Mcs if you need some-
thing more advanced.

frequencyBandSpec = None
The frequency band specification that determines the bandwidth for which the MCS is operated

codeRate = None
The relative amount of transmitted bits that are not used for forward error correction

Type Fraction

calculateBitErrorRate(signalPower, noisePower, bitRate)
Computes the bit error rate for the passed parameters if this modulation and coding scheme is used.

Parameters

• signalPower (float) – The signal power 𝑆 in dBm

• noisePower (float) – The noise power 𝑁0 in dBm

• bitRate (float) – The bit rate 𝑅 in bps

Returns: The estimated resulting bit error rate (a float in [0,1])

Return type float

bitRate
The physical bit rate in bps that results from the use of this MCS

Type float

Return type float

dataRate
The effective data rate in bps that results from the use of this MCS (considers coding overhead)

Type float

Return type float

maxCorrectableBer()
Returns the maximum bit error rate that can be handled when using the MCS. It depends on the codeRate
and is calculated via the Varshamov-Gilbert bound.

Return type float

class BpskMcs(frequencyBandSpec, codeRate=Fraction(3, 4))
Bases: gymwipe.networking.physical.Mcs

A Binary Phase-Shift-Keying MCS

20 Chapter 2. API Reference

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Gym-WiPE Documentation

bitRate
The physical bit rate in bps that results from the use of this MCS

Type float

Return type float

dataRate
The effective data rate in bps that results from the use of this MCS (considers coding overhead)

Type float

Return type float

calculateBitErrorRate(signalPower, noisePower)
Computes the bit error rate for the passed parameters if this modulation and coding scheme is used.

Parameters

• signalPower (float) – The signal power 𝑆 in dBm

• noisePower (float) – The noise power 𝑁0 in dBm

• bitRate – The bit rate 𝑅 in bps

Returns: The estimated resulting bit error rate (a float in [0,1])

Return type float

class Transmission(sender, power, packet, mcsHeader, mcsPayload, startTime)
Bases: object

A Transmission models the process of a device sending a specific packet via a communication frequency
band.

Note: The proper way to instantiate Transmission objects is via FrequencyBand.transmit().

sender = None
The device that initiated the transmission

Type Device

power = None
The tramsmission power in dBm

Type float

mcsHeader = None
The modulation and coding scheme used for the transmitted packet’s header

Type Mcs

mcsPayload = None
The modulation and coding scheme used for the transmitted packet’s payload

Type Mcs

packet = None
The packet sent in the transmission

Type Packet

startTime = None
The simulated time at which the transmission started

2.4. gymwipe.networking package 21

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float

Gym-WiPE Documentation

Type float

headerDuration = None
The time in seconds taken by the transmission of the packet’s header

Type float

payloadDuration = None
The time in seconds taken by the transmission of the packet’s payload

Type float

duration = None
The time in seconds taken by the transmission

Type float

stopTime = None
The moment in simulated time right after the transmission has completed

Type float

headerBits = None
Transmitted bits for the packet’s header (including coding overhead)

payloadBits = None
Transmitted bits for the packet’s payload (including coding overhead)

eHeaderCompletes = None
A SimPy event that succeeds at the moment in simulated time right after the packet’s header has been
transmitted. The transmission object is provided as the value to the succeed() call.

Type Event

eCompletes = None
A SimPy event that succeeds at stopTime, providing the transmission object as the value.

Type Event

completed
Returns True if the transmission has completed (i.e. the current simulation time >= stopTime)

class FrequencyBandSpec(frequency=2400000000.0, bandwidth=22000000.0)
Bases: object

A frequency band specification stores a FrequencyBand’s frequency and its bandwidth.

Parameters

• frequency (float) – The frequency band’s frequency in Hz. Defaults to 2.4 GHz.

• bandwidth (float) – The frequency band’s bandwidth in Hz. Defaults to 22 MHz (as
in IEEE 802.11)

class AttenuationModel(frequencyBandSpec, deviceA, deviceB)
Bases: object

An AttenuationModel calculates the attenuation (measured in db) of any signal sent from one network de-
vice to another. It runs a SimPy process and subscribes to the positionChanged events of the NetworkDevice
instances it belongs to. When the attenuation value changes, the attenuationChanged event succeeds.

Parameters

• frequencyBandSpec (FrequencyBandSpec) – The frequency band specification of
the corresponding FrequencyBand

22 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event.succeed
https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event
https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object

Gym-WiPE Documentation

• deviceA (Device) – Network device a

• deviceB (Device) – Network device b

Raises ValueError – If deviceA is deviceB

attenuation = None
The attenuation of any signal sent from NetworkDevice deviceA to NetworkDevice deviceB (or
vice versa) at the currently simulated time, measured in db.

Type float

nAttenuationChanges = None
A notifier that is triggered when the attenuation value changes, providing the new attenuation value.

Type gymwipe.simtools.Notifier

class PositionalAttenuationModel(frequencyBandSpec, deviceA, deviceB)
Bases: gymwipe.networking.physical.AttenuationModel, abc.ABC

An AttenuationModel subclass that executes _positionChanged() whenever one of its two devices
changes its position and the distance between the devices does not exceed STANDBY_THRESHOLD.

STANDBY_THRESHOLD = 3000
The minimum distance in metres, that allows the AttenuationModel not to react on position changes
of its devices

Type float

class JoinedAttenuationModel(frequencyBandSpec, deviceA, deviceB, models)
Bases: gymwipe.networking.physical.AttenuationModel

An AttenuationModel that adds the attenuation values of two or more given AttenuationModel
instances. If the position of one of both devices is changed, it will gather the update notifications of its
AttenuationModel instances, sum them up and trigger the nAttenuationChanges notifier only once
after the updates (this is implemented using callback priorities). When an AttenuationModel instance
changes its attenuation without reacting to a position update, the nAttenuationChanges notifier of the
JoinedAttenuationModel will be triggered as a direct consequence.

Parameters

• frequencyBandSpec (FrequencyBandSpec) – The frequency band specification of
the corresponding FrequencyBand

• deviceA (Device) – Network device a

• deviceB (Device) – Network device b

• models (List[Type[~AttenuationModel]]) – A non-empty list of the
AttenuationModel subclasses to create a JoinedAttenuationModel instance of

class AttenuationModelFactory(frequencyBandSpec, models)
Bases: object

A factory for AttenuationModel instances.

Parameters

• frequencyBandSpec (FrequencyBandSpec) – The frequency band specification of
the corresponding FrequencyBand

• models (List[~AttenuationModel]) – A non-empty list of AttenuationModel sub-
classes that will be used for instantiating attenuation models.

2.4. gymwipe.networking package 23

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.List

Gym-WiPE Documentation

setCustomModels(deviceA, deviceB, models)
Sets the AttenuationModel subclasses for signals sent from deviceA to deviceB and vice versa.

Note: In order for this method to work, it has to be invoked before an AttenuationModel instance is
requested for the first time for the specified pair of devices.

Parameters

• deviceA (Device) – One device

• deviceB (Device) – Another device

• models (List[~AttenuationModel]) – A non-empty list of AttenuationModel sub-
classes that will be used for instantiating attenuation models for signals sent from deviceA
to deviceB and vice versa

getInstance(deviceA, deviceB)
Returns the AttenuationModel for signals sent from deviceA to deviceB and vice versa. If not yet
existent, a new AttenuationModel instance will be created. If the factory was initialized with multiple
AttenuationModel subclasses, a JoinedAttenuationModel will be handed out.

Return type AttenuationModel

class FrequencyBand(modelClasses, frequency=2400000000.0, bandwidth=22000000.0)
Bases: object

The FrequencyBand class serves as a manager for transmission objects and represents a wireless frequency
band. It also offers a getAttenuationModel() method that returns a frequency-band-specific Attenua-
tionModel for any pair of devices.

Parameters

• modelClasses (List[~AttenuationModel]) – A non-empty list AttenuationModel
subclasses that will be used for attenuation calculations regarding this frequency band.

• frequency (float) – The frequency band’s frequency in Hz. Defaults to 2.4 GHz.

• bandwidth (float) – The frequency band’s bandwidth in Hz. Defaults to 22 MHz (as
in IEEE 802.11)

spec = None
The frequency band’s specification object

Type FrequencyBandSpec

nNewTransmission = None
A notifier that is triggered when transmit() is executed, providing the Transmission object that
represents the transmission.

Type Notifier

getAttenuationModel(deviceA, deviceB)
Returns the AttenuationModel instance that provides attenuation values for transmissions between deviceA
and deviceB.

Return type AttenuationModel

transmit(sender, power, packet, mcsHeader, mcsPayload)
Simulates the transmission of packet with the given properties. This is achieved by creating a
Transmission object with the values passed and triggering the transmissionStarted event of
the FrequencyBand.

24 Chapter 2. API Reference

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Gym-WiPE Documentation

Parameters

• sender (Device) – The device that transmits

• mcs – The modulation and coding scheme to be used (represented by an instance of an
Mcs subclass)

• power (float) – Transmission power in dBm

• brHeader – Header bitrate

• brPayload – Payload bitrate

• packet (Packet) – Packet object representing the packet being transmitted

Return type Transmission

Returns The Transmission object representing the transmission

getActiveTransmissions()
Returns a list of transmissions that are currently active.

Return type List[Transmission]

getActiveTransmissionsInReach(receiver, radius)
Returns a list of transmissions that are currently active and whose sender is positioned within the radius
specified by radius around the receiver.

Parameters

• receiver (Device) – The NetworkDevice, around which the radius is considered

• radius (float) – The radius around the receiver (in metres)

Return type List[Transmission]

nNewTransmissionInReach(receiver, radius)
Returns a notifier that is triggered iff a new Transmission starts whose sender is positioned within the
radius specified by radius around the receiver.

Parameters

• receiver (Device) – The NetworkDevice, around which the radius is considered

• radius (float) – The radius around the receiver (in metres)

Return type Notifier

gymwipe.networking.simple_stack module

The simple_stack package contains basic network stack layer implementations. Layers are modelled by gymwipe.
networking.construction.Module objects.

TIME_SLOT_LENGTH = 1e-06
The length of one time slot in seconds (used for simulating slotted time)

Type float

class SimplePhy(name, device, frequencyBand)
Bases: gymwipe.networking.construction.Module

A physical layer implementation that does not take propagation delays into account. It provides a port called
mac to be connected to a mac layer. Slotted time is used, with the length of a time slot being defined by
TIME_SLOT_LENGTH .

2.4. gymwipe.networking package 25

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Gym-WiPE Documentation

During simulation the frequency band is sensed and every successfully received packet is sent via the macOut
gate.

The macIn gate accepts Message objects with the following StackMessageTypes:

• SEND

Send a specified packet on the frequency band.

Message args:

packet The Packet object representing the packet to be sent

power The transmission power in dBm

mcs The Mcs object representing the MCS for the transmission

NOISE_POWER_DENSITY = 4.0454699999999995e-21
The receiver’s noise power density in Watts/Hertz

Type float

macInHandler()
A SimPy process method which is decorated with the GateListener decorator. It is processed when
the module’s macIn Gate receives an object.

class SimpleMac(name, device, frequencyBandSpec, addr)
Bases: gymwipe.networking.construction.Module

A MAC layer implementation of the contention-free protocol described as follows:

• Every SimpleMac has a unique 6-byte-long MAC address.

• The MAC layer with address 0 is considered to belong to the RRM.

• Time slots are grouped into frames.

• Every second frame is reserved for the RRM and has a fixed length (number of time slots).

• The RRM uses those frames to send a short announcement containing a destination MAC address and the
frame length (number of time slots n) of the following frame. By doing so it allows the specified device
to use the frequency band for the next frame. Announcements are packets with a SimpleMacHeader
having the following attributes:

sourceMAC: The RRM MAC address

destMAC: The MAC address of the device that may transmit next

flag: 1 (flag for allowing a device to transmit)

The packet’s payload is the number n mentioned above (wrapped inside a Transmittable)

• Every other packet sent has a SimpleMacHeader with flag 0.

The networkIn gate accepts objects of the following types:

• Message

Types:

– RECEIVE

Listen for packets sent to this device.

Message args:

duration The time in seconds to listen for

26 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#float

Gym-WiPE Documentation

When a packet destinated to this device is received, the eProcessed event of the
Message will be triggered providing the packet as the value. If the time given by
duration has passed and no packet was received, it will be triggered with None.

• Packet

Send a given packet (with a SimpleNetworkHeader) to the MAC address defined in the
header.

The phyIn gate accepts objects of the following types:

• Packet

A packet received by the physical layer

Parameters

• name (str) – The layer’s name

• device (Device) – The device that operates the SimpleMac layer

• addr (bytes) – The 6-byte-long MAC address to be assigned to this MAC layer

rrmAddr = b'\x00\x00\x00\x00\x00\x00'
The 6 bytes long RRM MAC address

Type bytes

classmethod newMacAddress()
A method for generating unique 6-byte-long MAC addresses (currently counting upwards starting at 1)

Return type bytes

phyInHandler()
A SimPy process method which is decorated with the GateListener decorator. It is processed when
the module’s phyIn Gate receives an object.

networkInHandler()
A method which is decorated with the GateListener decorator. It is invoked when the module’s
networkIn Gate receives an object.

class SimpleRrmMac(name, device, frequencyBandSpec)
Bases: gymwipe.networking.construction.Module

The RRM implementation of the protocol described in SimpleMac

The networkIn gate accepts objects of the following types:

• Message

StackMessageTypes:

• ASSIGN

Send a frequency band assignment announcement that permits a device to transmit
for a certain time.

Message args:

dest The 6-byte-long MAC address of the device to be allowed to transmit

duration The number of time steps to assign the frequency band for the
specified device

2.4. gymwipe.networking package 27

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Gym-WiPE Documentation

The payloads of packets from other devices are outputted via the networkOut gate, regardless of their destina-
tion address. This enables an interpreter to extract observations and rewards for a frequency band assignment
learning agent.

addr = None
The RRM’s MAC address

Type bytes

phyInHandler()
A method which is decorated with the GateListener decorator. It is invoked when the module’s phyIn
Gate receives an object.

networkInHandler()
A method which is decorated with the GateListener decorator. It is invoked when the module’s
networkIn Gate receives an object.

2.4.2 Module contents

The networking package provides classes for network stack modeling and wireless data transmission simulations, as
well as network stack implementations and Device implementations that run network stacks.

2.5 gymwipe.plants package

2.5.1 Submodules

gymwipe.plants.core module

Core components for plant implementations.

class Plant
Bases: object

Plants are supposed to hold the state of a simulated plant and make it accessible to simulated sensors and
modifyable by simulated actuators. The Plant class itself does not provide any features.

class OdePlant(world=None)
Bases: gymwipe.plants.core.Plant

A Plant implementation that interacts with an ODE world object: It offers an updateState() method that
makes the ODE world simulate physics for the SimPy simulation time that has passed since the most recent
updateState() call.

Parameters world (Optional[World]) – A py3ode World object. If not provided, a new one
will be created with gravity (0,-9.81,0).

updateState()
Performs an ODE time step to update the plant’s state according to the current simulation time.

gymwipe.plants.sliding_pendulum module

A plant, sensor, and actuator implementation for an inverted pendulum.

class SlidingPendulum(world=None, visualized=False)
Bases: gymwipe.plants.core.OdePlant

28 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Optional

Gym-WiPE Documentation

Simulates a pendulum, mounted on a motorized slider.

getAngle()

Return type float

getAngleRate()

getWagonPos()

Return type float

getWagonVelocity()

Return type float

setMotorVelocity(velocity)

class AngleSensor(name, frequencyBand, plant, controllerAddr, sampleInterval)
Bases: gymwipe.networking.devices.SimpleNetworkDevice

A networked angle sensor implementation for the SlidingPendulum plant

class WagonActuator(name, frequencyBand, plant)
Bases: gymwipe.networking.devices.SimpleNetworkDevice

A networked actuator implementation for moving the SlidingPendulum plant’s wagon

onReceive(packet)
This method is invoked whenever receiving is True and a packet has been received.

Note: After receiving has been set to False it might still be called within RECEIVE_TIMEOUT
seconds.

Parameters packet (Packet) – The packet that has been received

2.5.2 Module contents

2.6 gymwipe.simtools module

Module for simulation tools

class SimulationManager
Bases: object

The SimulationManager offers methods and properties for managing and accessing a SimPy simulation.

Note: Do not create instances on your own. Reference the existing instance by SimMan instead.

env
The SimPy Environment object belonging to the current simulation

nextTimeSlot(timeSlotLength)
Returns a SimPy timeout event that is scheduled for the beginning of the next time slot. A time slot starts
whenever now % timeSlotLength is 0.

Parameters timeSlotLength (float) – The time slot length in seconds

Return type Event

2.6. gymwipe.simtools module 29

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://simpy.readthedocs.io/en/latest/api_reference/simpy.core.html#simpy.core.Environment
https://docs.python.org/3/library/functions.html#float
https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event

Gym-WiPE Documentation

now
The current simulation time step

Type int

process(generator)
Registers a SimPy process generator (a generator yielding SimPy events) at the SimPy environment and
returns it.

Parameters process – The generator to be registered as a process

Return type Process

event()
Creates and returns a new Event object belonging to the current environment.

runSimulation(until)
Runs the simulation (or continues running it) until the amount of simulated time specified by until has
passed (with until being a float) or until is triggered (with until being an Event).

init()
Creates a new Environment.

timeout(duration, value=None)
Shorthand for env.timeout(duration, value)

Return type Event

timeoutUntil(triggerTime, value=None)
Returns a SimPy EventEvent that succeeds at the simulated time specified by triggerTime.

Parameters

• triggerTime (float) – When to trigger the Event

• value (Optional[Any]) – The value to call succeed() with

Return type Event

triggerAfterTimeout(event, timeout, value=None)
Calls succeed() on the event after the simulated time specified in timeout has passed. If the event has
already been triggered by then, no action is taken.

SimMan = <gymwipe.simtools.SimulationManager object>
A globally accessible SimulationManager instance to be used whenever the SimPy simulation is involved

class SourcePrepender(logger)
Bases: logging.LoggerAdapter

A LoggerAdapter that prepends the string representation of a provided object to log messages.

Examples

The following command sets up a Logger that prepends message sources:

logger = SourcePrepender(logging.getLogger(__name__))

Assuming self is the object that logs a message, it could prepend str(self) to a message like this:

logger.info("Something happened", sender=self)

If str(self) is myObject, this example would result in the log message “myObject: Something happened”.

30 Chapter 2. API Reference

https://docs.python.org/3/library/functions.html#int
https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Process
https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event
https://docs.python.org/3/library/functions.html#float
https://simpy.readthedocs.io/en/latest/api_reference/simpy.core.html#simpy.core.Environment
https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event
https://docs.python.org/3/library/functions.html#float
https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event.succeed
https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event
https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event.succeed
https://docs.python.org/3/library/logging.html#logging.LoggerAdapter
https://docs.python.org/3/library/logging.html#logging.LoggerAdapter
https://docs.python.org/3/library/logging.html#logging.Logger

Gym-WiPE Documentation

Parameters logger (Logger) – The Logger instance to be wrapped by the SourcePrepender
LoggerAdapter

process(msg, kwargs)
If a sender keyword argument is provided, prepends “obj: ” to msg, with obj being the string representation
of the sender keyword argument.

class SimTimePrepender(logger)
Bases: gymwipe.simtools.SourcePrepender

A LoggerAdapter that prepends the current simulation time (fetched by requesting SimMan.now) to any
log message sent. Additionally, the sender keyword argument can be used for logging calls, which also prepends
a sender to messages like explained in SourcePrepender.

Examples

The following command sets up a Logger that prepends simulation time:

logger = SimTimePrepender(logging.getLogger(__name__))

Parameters logger (Logger) – The Logger instance to be wrapped by the SimTimePrepender
LoggerAdapter

process(msg, kwargs)
Prepends “[Time: x]” to msg, with x being the current simulation time. Additionally, if a sender argument
is provided, str(sender) is also prepended to the simulation time.

ensureType(input, validTypes, caller)
Checks whether input is an instance of the type / one of the types provided as validTypes. If not, raises a
TypeError with a message containing the string representation of caller.

Parameters

• input (Any) – The object for which to check the type

• validTypes (Union[type, Tuple[type]]) – The type / tuple of types to be allowed

• caller (Any) – The object that (on type mismatch) will be mentioned in the error
message.

Raises TypeError – If the type of input mismatches the type(s) specified in validClasses

class Notifier(name=”, owner=None)
Bases: object

A class that helps implementing the observer pattern. A Notifier can be triggered providing a value. Both
callback functions and SimPy generators can be subscribed. Every time the Notifier is triggered, it will
run its callback methods and trigger the execution of the subscribed SimPy generators. Aditionally, SimPy
generators can wait for a Notifier to be triggered by yielding its event.

Parameters

• name (str) – A string to identify the Notifier instance (e.g. among all other
Notifier instances of the owner object)

• owner (Optional[Any]) – The object that provides the Notifier instance

subscribeCallback(callback, priority=0, additionalArgs=None)
Adds the passed callable to the set of callback functions. Thus, when the Notifier gets triggered, the
callable will be invoked passing the value that the Notifier was triggered with.

2.6. gymwipe.simtools module 31

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.LoggerAdapter
https://docs.python.org/3/library/logging.html#logging.LoggerAdapter
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.LoggerAdapter
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any

Gym-WiPE Documentation

Note: A callable can only be added once, regardless of its priority.

Parameters

• callback (Callable[[Any], None]) – The callable to be subscribed

• priority (int) – If set, the callable is guaranteed to be invoked only after every
callback with a higher priority value has been executed. Callbacks added without a
priority value are assumed to have priority 0.

• additionalArgs (Optional[List[Any]]) – A list of arguments that are passed
as further arguments when the callback function is invoked

unsubscribeCallback(callback)
Removes the passed callable from the set of callback functions. Afterwards, it is not triggered anymore
by this Notifier.

Parameters callback (Callable[[Any], None]) – The callable to be removed

subscribeProcess(process, blocking=True, queued=False)
Makes the SimPy environment process the passed generator function when trigger() is called. The
value passed to trigger() will also be passed to the generator function.

Parameters

• blocking – If set to False, only one instance of the generator will be processed at
a time. Thus, if trigger() is called while the SimPy process started by an earlier
trigger() call has not terminated, no action is taken.

• queued – Only relevant if blocking is True. If queued is set to false False, a
trigger() call while an instance of the generator is still active will not result in
an additional generator execution. If queued is set to True instead, the values of
trigger() calls that happen while the subscribed generator is being processed will
be queued and as long as the queue is not empty, a new generator instance with a
queued value will be processed every time a previous instance has terminated.

trigger(value=None)
Triggers the Notifier. This runs the callbacks, makes the event succeed, and triggers the processing
of subscribed SimPy generators.

event
A SimPy event that succeeds when the Notifier is triggered

Type Event

name
The Notifier’s name as it has been passed to the constructor

Type str

2.7 gymwipe.utility module

Domain-independent utility functions

ownerPrefix(ownerObject)
Calls __repr__() on the ownerObject (if it is not None) and returns the result concatenated with ‘.’. If the
object is None, an empty string will be returned.

32 Chapter 2. API Reference

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event
https://docs.python.org/3/library/stdtypes.html#str

Gym-WiPE Documentation

Return type str

strAndRepr(obj)
Returns “str (repr)” where str and repr are the result of str(obj) and repr(obj).

Return type str

2.7. gymwipe.utility module 33

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Gym-WiPE Documentation

34 Chapter 2. API Reference

CHAPTER 3

Bibliography

35

Gym-WiPE Documentation

36 Chapter 3. Bibliography

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

37

Gym-WiPE Documentation

38 Chapter 4. Indices and tables

Bibliography

[KL07] George K Karagiannidis and Athanasios S Lioumpas. An improved approximation for the gaussian q-
function. IEEE Communications Letters, 2007.

[Sta05] William Stallings. Data and computer communications. Prentice Hall, 2005.

[VH08] András Varga and Rudolf Hornig. An overview of the omnet++ simulation environment. In Proceedings of
the 1st international conference on Simulation tools and techniques for communications, networks and sys-
tems & workshops, 60. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2008.

39

Gym-WiPE Documentation

40 Bibliography

Python Module Index

g
gymwipe.control, 4
gymwipe.control.inverted_pendulum, 3
gymwipe.devices, 5
gymwipe.devices.core, 4
gymwipe.envs, 10
gymwipe.envs.core, 5
gymwipe.envs.counter_traffic, 7
gymwipe.envs.inverted_pendulum, 9
gymwipe.networking, 28
gymwipe.networking.attenuation_models,

10
gymwipe.networking.construction, 10
gymwipe.networking.devices, 14
gymwipe.networking.messages, 16
gymwipe.networking.physical, 19
gymwipe.networking.simple_stack, 25
gymwipe.plants, 29
gymwipe.plants.core, 28
gymwipe.plants.sliding_pendulum, 28
gymwipe.simtools, 29
gymwipe.utility, 32

41

Gym-WiPE Documentation

42 Python Module Index

Index

Symbols
__str__() (Packet method), 17
_addGate() (Module method), 13
_addPort() (Module method), 13
_addSubmodule() (CompoundModule method), 14

A
actuatorAddr (InvertedPendulumPidController at-

tribute), 3
addr (SimpleRrmMac attribute), 28
AngleSensor (class in

gymwipe.plants.sliding_pendulum), 29
approxQFunction() (in module

gymwipe.networking.physical), 19
args (Message attribute), 18
ASSIGN (StackMessageTypes attribute), 19
assignFrequencyBand() (SimpleRrmDevice

method), 16
ASSIGNMENT_DURATION_FACTOR (BaseEnv at-

tribute), 5
attenuation (AttenuationModel attribute), 23
AttenuationModel (class in

gymwipe.networking.physical), 22
AttenuationModelFactory (class in

gymwipe.networking.physical), 23

B
BaseEnv (class in gymwipe.envs.core), 5
biConnectProxy() (Port method), 11
biConnectWith() (Port method), 11
bitRate (BpskMcs attribute), 20
bitRate (Mcs attribute), 20
bitSize (Transmittable attribute), 17
BpskMcs (class in gymwipe.networking.physical), 20
byteSize (Transmittable attribute), 16

C
calculateBitErrorRate() (BpskMcs method), 21
calculateBitErrorRate() (Mcs method), 20

calculateEbToN0Ratio() (in module
gymwipe.networking.physical), 19

codeRate (Mcs attribute), 20
completed (Transmission attribute), 22
CompoundModule (class in

gymwipe.networking.construction), 13
connectTo() (Gate method), 11
control() (InvertedPendulumPidController method),

4
COUNTER_BOUND (CounterTrafficEnv attribute), 7
COUNTER_BYTE_LENGTH (CounterTrafficEnv at-

tribute), 7
COUNTER_INTERVAL (CounterTrafficEnv attribute), 7
CounterTrafficEnv (class in

gymwipe.envs.counter_traffic), 7
CounterTrafficEnv.CounterTrafficInterpreter

(class in gymwipe.envs.counter_traffic), 7
CounterTrafficEnv.SenderDevice (class in

gymwipe.envs.counter_traffic), 7

D
dataRate (BpskMcs attribute), 21
dataRate (Mcs attribute), 20
dbmToMilliwatts() (in module

gymwipe.networking.physical), 20
destMAC (SimpleMacHeader attribute), 17
destMAC (SimpleNetworkHeader attribute), 18
Device (class in gymwipe.devices.core), 5
deviceIndexToMacDict (SimpleRrmDevice at-

tribute), 15
distanceTo() (Position method), 5
duration (Transmission attribute), 22

E
eCompletes (Transmission attribute), 22
eHeaderCompletes (Transmission attribute), 22
ensureType() (in module gymwipe.simtools), 31
env (SimulationManager attribute), 29
eProcessed (Message attribute), 18

43

Gym-WiPE Documentation

event (Notifier attribute), 32
event() (SimulationManager method), 30

F
FakeTransmittable (class in

gymwipe.networking.messages), 17
flag (SimpleMacHeader attribute), 18
FrequencyBand (class in

gymwipe.networking.physical), 24
frequencyBand (NetworkDevice attribute), 14
FrequencyBandSpec (class in

gymwipe.networking.physical), 22
frequencyBandSpec (Mcs attribute), 20
FsplAttenuation (class in

gymwipe.networking.attenuation_models),
10

G
Gate (class in gymwipe.networking.construction), 10
GateListener (class in

gymwipe.networking.construction), 12
gates (Module attribute), 13
getActiveTransmissions() (FrequencyBand

method), 25
getActiveTransmissionsInReach() (Frequen-

cyBand method), 25
getAngle() (SlidingPendulum method), 29
getAngleRate() (SlidingPendulum method), 29
getAttenuationModel() (FrequencyBand

method), 24
getDone() (CounterTraffi-

cEnv.CounterTrafficInterpreter method),
8

getDone() (Interpreter method), 7
getDone() (InvertedPendulumInterpreter method), 9
getFeedback() (Interpreter method), 7
getInfo() (CounterTraffi-

cEnv.CounterTrafficInterpreter method),
8

getInfo() (Interpreter method), 7
getInfo() (InvertedPendulumInterpreter method), 9
getInstance() (AttenuationModelFactory method),

24
getObservation() (CounterTraffi-

cEnv.CounterTrafficInterpreter method),
8

getObservation() (Interpreter method), 6
getObservation() (InvertedPendulumInterpreter

method), 9
getReward() (CounterTraffi-

cEnv.CounterTrafficInterpreter method),
8

getReward() (Interpreter method), 6

getReward() (InvertedPendulumInterpreter method),
9

getWagonPos() (SlidingPendulum method), 29
getWagonVelocity() (SlidingPendulum method),

29
gymwipe.control (module), 4
gymwipe.control.inverted_pendulum (mod-

ule), 3
gymwipe.devices (module), 5
gymwipe.devices.core (module), 4
gymwipe.envs (module), 10
gymwipe.envs.core (module), 5
gymwipe.envs.counter_traffic (module), 7
gymwipe.envs.inverted_pendulum (module), 9
gymwipe.networking (module), 28
gymwipe.networking.attenuation_models

(module), 10
gymwipe.networking.construction (module),

10
gymwipe.networking.devices (module), 14
gymwipe.networking.messages (module), 16
gymwipe.networking.physical (module), 19
gymwipe.networking.simple_stack (module),

25
gymwipe.plants (module), 29
gymwipe.plants.core (module), 28
gymwipe.plants.sliding_pendulum (module),

28
gymwipe.simtools (module), 29
gymwipe.utility (module), 32

H
header (Packet attribute), 17
headerBits (Transmission attribute), 22
headerDuration (Transmission attribute), 22

I
init() (SimulationManager method), 30
input (Port attribute), 11
Interpreter (class in gymwipe.envs.core), 6
interpreter (SimpleRrmDevice attribute), 15
InvertedPendulumEnv (class in

gymwipe.envs.inverted_pendulum), 9
InvertedPendulumInterpreter (class in

gymwipe.envs.inverted_pendulum), 9
InvertedPendulumPidController (class in

gymwipe.control.inverted_pendulum), 3

J
JoinedAttenuationModel (class in

gymwipe.networking.physical), 23

M
macAddr (SimpleNetworkDevice attribute), 14

44 Index

Gym-WiPE Documentation

macAddr (SimpleRrmDevice attribute), 15
macInHandler() (SimplePhy method), 26
macToDeviceIndexDict (SimpleRrmDevice at-

tribute), 15
MAX_ASSIGN_DURATION (BaseEnv attribute), 5
maxCorrectableBer() (Mcs method), 20
Mcs (class in gymwipe.networking.physical), 20
mcsHeader (Transmission attribute), 21
mcsPayload (Transmission attribute), 21
Message (class in gymwipe.networking.messages), 18
metadata (BaseEnv attribute), 5
milliwattsToDbm() (in module

gymwipe.networking.physical), 19
Module (class in gymwipe.networking.construction), 13

N
name (Device attribute), 5
name (Gate attribute), 11
name (Module attribute), 13
name (Notifier attribute), 32
name (Port attribute), 11
nAttenuationChanges (AttenuationModel at-

tribute), 23
nChange (Position attribute), 4
nConnectsTo (Gate attribute), 11
NetworkDevice (class in

gymwipe.networking.devices), 14
networkInHandler() (SimpleMac method), 27
networkInHandler() (SimpleRrmMac method), 28
newMacAddress() (gymwipe.networking.simple_stack.SimpleMac

class method), 27
nextTimeSlot() (SimulationManager method), 29
nNewTransmission (FrequencyBand attribute), 24
nNewTransmissionInReach() (FrequencyBand

method), 25
NOISE_POWER_DENSITY (SimplePhy attribute), 26
Notifier (class in gymwipe.simtools), 31
now (SimulationManager attribute), 30
nReceives (Gate attribute), 11
nReceives (Port attribute), 12

O
OdePlant (class in gymwipe.plants.core), 28
onFrequencyBandAssignment() (CounterTraffi-

cEnv.CounterTrafficInterpreter method), 8
onFrequencyBandAssignment() (Interpreter

method), 6
onFrequencyBandAssignment() (InvertedPendu-

lumInterpreter method), 9
onPacketReceived() (CounterTraffi-

cEnv.CounterTrafficInterpreter method),
8

onPacketReceived() (Interpreter method), 6

onPacketReceived() (InvertedPendulumInterpreter
method), 9

onReceive() (InvertedPendulumPidController
method), 3

onReceive() (SimpleNetworkDevice method), 15
onReceive() (WagonActuator method), 29
output (Port attribute), 11
ownerPrefix() (in module gymwipe.utility), 32

P
Packet (class in gymwipe.networking.messages), 17
packet (Transmission attribute), 21
payload (Packet attribute), 17
payloadBits (Transmission attribute), 22
payloadDuration (Transmission attribute), 22
phyInHandler() (SimpleMac method), 27
phyInHandler() (SimpleRrmMac method), 28
Plant (class in gymwipe.plants.core), 28
Port (class in gymwipe.networking.construction), 11
ports (Module attribute), 13
Position (class in gymwipe.devices.core), 4
position (Device attribute), 5
PositionalAttenuationModel (class in

gymwipe.networking.physical), 23
power (Transmission attribute), 21
process() (SimTimePrepender method), 31
process() (SimulationManager method), 30
process() (SourcePrepender method), 31

R
RECEIVE (StackMessageTypes attribute), 19
RECEIVE_TIMEOUT (SimpleNetworkDevice attribute),

15
receiving (SimpleNetworkDevice attribute), 15
render() (BaseEnv method), 6
render() (CounterTrafficEnv method), 9
render() (InvertedPendulumEnv method), 10
reset() (CounterTrafficEnv method), 8
reset() (CounterTrafficEnv.CounterTrafficInterpreter

method), 8
reset() (Interpreter method), 7
reset() (InvertedPendulumEnv method), 9
rrmAddr (SimpleMac attribute), 27
runSimulation() (SimulationManager method), 30

S
seed() (BaseEnv method), 6
SEND (StackMessageTypes attribute), 19
send() (Gate method), 11
send() (SimpleNetworkDevice method), 15
sender (Transmission attribute), 21
senderProcess() (CounterTrafficEnv.SenderDevice

method), 7

Index 45

Gym-WiPE Documentation

sensorAddr (InvertedPendulumPidController at-
tribute), 3

set() (Position method), 5
setCustomModels() (AttenuationModelFactory

method), 23
setMotorVelocity() (SlidingPendulum method),

29
setProcessed() (Message method), 18
setup() (GateListener static method), 13
SimMan (in module gymwipe.simtools), 30
SimpleMac (class in

gymwipe.networking.simple_stack), 26
SimpleMacHeader (class in

gymwipe.networking.messages), 17
SimpleNetworkDevice (class in

gymwipe.networking.devices), 14
SimpleNetworkHeader (class in

gymwipe.networking.messages), 18
SimplePhy (class in

gymwipe.networking.simple_stack), 25
SimpleRrmDevice (class in

gymwipe.networking.devices), 15
SimpleRrmMac (class in

gymwipe.networking.simple_stack), 27
SimTimePrepender (class in gymwipe.simtools), 31
SimulationManager (class in gymwipe.simtools), 29
SlidingPendulum (class in

gymwipe.plants.sliding_pendulum), 28
sourceMAC (SimpleMacHeader attribute), 17
sourceMAC (SimpleNetworkHeader attribute), 18
SourcePrepender (class in gymwipe.simtools), 30
spec (FrequencyBand attribute), 24
StackMessageTypes (class in

gymwipe.networking.messages), 19
STANDBY_THRESHOLD (PositionalAttenuationModel

attribute), 23
startTime (Transmission attribute), 21
step() (CounterTrafficEnv method), 8
step() (InvertedPendulumEnv method), 9
stopTime (Transmission attribute), 22
strAndRepr() (in module gymwipe.utility), 33
submodules (CompoundModule attribute), 14
subscribeCallback() (Notifier method), 31
subscribeProcess() (Notifier method), 32

T
temperatureToNoisePowerDensity() (in mod-

ule gymwipe.networking.physical), 19
TIME_SLOT_LENGTH (in module

gymwipe.networking.simple_stack), 25
timeout() (SimulationManager method), 30
timeoutUntil() (SimulationManager method), 30
trailer (Packet attribute), 17

Transmission (class in
gymwipe.networking.physical), 21

transmissionTime() (Transmittable method), 17
transmit() (FrequencyBand method), 24
Transmittable (class in

gymwipe.networking.messages), 16
trigger() (Notifier method), 32
triggerAfterTimeout() (SimulationManager

method), 30
type (Message attribute), 18

U
unsubscribeCallback() (Notifier method), 32
updateState() (OdePlant method), 28

V
value (Transmittable attribute), 16

W
WagonActuator (class in

gymwipe.plants.sliding_pendulum), 29
wattsToDbm() (in module

gymwipe.networking.physical), 19

X
x (Position attribute), 4

Y
y (Position attribute), 4

46 Index

	Introduction
	Why Gym-WiPE?
	What’s included?
	Getting started
	Further steps

	API Reference
	gymwipe.control package
	gymwipe.devices package
	gymwipe.envs package
	gymwipe.networking package
	gymwipe.plants package
	gymwipe.simtools module
	gymwipe.utility module

	Bibliography
	Indices and tables
	Bibliography
	Python Module Index
	Index

