

 Navigation

 	
 index

 	
 next |

 	gs.group.messages.text 1.0.0 documentation

gs.group.messages.text

Support for displaying the plain-text version of a post

	Author:	Michael JasonSmith [http://groupserver.org/p/mpj17]

	Contact:	Michael JasonSmith <mpj17@onlinegroups.net>

	Date:	2015-10-30

	Organization:	GroupServer.org [http://groupserver.org/]

	Copyright:	This document is licensed under a
Creative Commons Attribution-Share Alike 4.0 International License [http://creativecommons.org/licenses/by-sa/4.0/]
by OnlineGroups.net [https://onlinegroups.net].

Contents:

	gs.group.messages.text API
	Split message

	HTML body

	Matcher

	Changelog
	1.1.0 (2016-03-31)

	1.0.0 (2015-10-30)

This product provides the utilities and functions that supports
the displaying of these posts, particularly the conversion of the
plain-text post to HTML, documented in the API.

The actual rendering of the messages is carried out in
either:

	gs.group.messages.post.text.base [https://github.com/groupserver/gs.group.messages.post.text.base] for the plain-text
version of the post shown on the web, or

	gs.group.list.email.html [https://github.com/groupserver/gs.group.list.email.html] for the HTML version of the
plain-text message (the pseudo HTML) that is used in
email messages.

Indices and tables

	Index

	Module Index

	Search Page

Resources

	Documentation
https://groupserver.readthedocs.io/projects/gsgroupmessagestext

	Code repository:
https://github.com/groupserver/gs.group.messages.text/

	Questions and comments to
http://groupserver.org/groups/development

	Report bugs at https://redmine.iopen.net/projects/groupserver

 Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gs.group.messages.text 1.0.0 documentation

gs.group.messages.text API

There are three parts to the API provided by the
gs.group.messages.text product. The split message code
separates the bottom quoting and signatures from the rest of the
message. The HTML body code will format the parts of the
message, using the matcher code.

Split message

An email message is normally in two parts: the actual body of the
message, and then some trailing bottom quoting and
signatures. The SplitMessage named tuple represents this
duality, while the split_message() function does the actual
splitting. Both parts of the message can be fed into the
HTMLBody class to generate the markup.

	
gs.group.messages.text.SplitMessage (:class:`collections.namedtuple`)

	The 2-tuple containing the strings representing

	The main body of the message (intro) and

	The rest of the message, including the bottom-quoting and the footer (remainder).

	
gs.group.messages.text.split_message(messageText, max_consecutive_comment=12, max_consecutive_whitespace=3)[source]

	Split the message into main body and the footer.

	Parameters:	
	messageText (str [https://docs.python.org/library/functions.html#str]) – The text to process.

	max_consecutive_comment (int [https://docs.python.org/library/functions.html#int]) – The maximum number of lines of quoting to allow before snipping.

	max_consecutive_whitespace (int [https://docs.python.org/library/functions.html#int]) – The maximum number of lines that just contain whitespace to
allow before snipping.

	Returns:	2-tuple, containing the strings representing the main-body of the message, and the footer.

	Return type:	SplitMessage

Email messages often contain a footer at the bottom, which identifies the user, and who they work
for. However, GroupServer has lovely profiles which do this, so normally we want to snip the footer,
to reduce clutter.

In addition, many users only write a short piece of text at the top of the email, while the
remainder of the message consists of all the previous posts. This method also removes the
bottom quoting.

Originally a ZMI-side script in Presentation/Tofu/MailingListManager/lscripts.

HTML body

The HTMLBody class will format a plain-text message as
HTML. The changes that are made include the following.

	The characters that would cause issues with the XML are
escaped. This includes " and ' characters.

	Each line is placed within a element, with the CSS
class set to line.

Like this

	Lines that start with > but not >From are considered
quotes, and given the additional CSS class muted.

> Like this

	The words of the line markup by the matcher classes.

	
class gs.group.messages.text.HTMLBody(originalText)[source]

	The HTML form of a plain-text email body.

	Parameters:	originalText (str [https://docs.python.org/library/functions.html#str]) – The original (plain) text

	
__iter__()[source]

	The marked-up lines in the main body

	
__unicode__()[source]

	The main part of the HTML body, as a Unicode string

	
__str__()[source]

	The main part of the HTML body, as an ASCII string. Non-ASCII characters are replaced
with XML entities.

	
markup(line)[source]

	Markup the line, and the words in the line

	Parameters:	line (str [https://docs.python.org/library/functions.html#str]) – The line to mark up.

	Returns:	An HTML form of the line: the characters escaped, the words marked up, and surrounded
in a element.

	Return type:	str [https://docs.python.org/library/functions.html#str]

	
markup_words(line)[source]

	Mark up the words on the line

	Parameters:	line (str [https://docs.python.org/library/functions.html#str]) – The line to mark up

	Returns:	The line with the words marked up

	Return type:	str [https://docs.python.org/library/functions.html#str]

Matcher

The matcher classes

	Test that a word matches, and

	Produce a substitute for the word.

They all inherit from the Matcher class.

	
class gs.group.messages.text.Matcher(matchRE, subStr, weight=10)[source]

	Match a word, by a regular expression, and make a substitution

	Parameters:	
	matchRE (str [https://docs.python.org/library/functions.html#str]) – The regular expression used to check if there was a match
(see re.match() [https://docs.python.org/library/re.html#re.match])

	subStr (str [https://docs.python.org/library/functions.html#str]) – The string specifying the subsitution (see re.sub() [https://docs.python.org/library/re.html#re.sub])

	
re = None

	The regular expression used to make the match. The flags re.I, re.M,
and re.U are set.

	
match(s)[source]

	Does the string match the regular expression?

	Parameters:	s (str [https://docs.python.org/library/functions.html#str]) – The string to evaluate

	Returns:	True if the string matches the regular expression, False otherwise.

	Return type:	bool [https://docs.python.org/library/functions.html#bool]

	
sub(s)[source]

	Substitute the string in for the substitution string

	Parameters:	s (str [https://docs.python.org/library/functions.html#str]) – The string to process

	Returns:	The new string substituted in self.subStr

	Return type:	unicode [https://docs.python.org/library/functions.html#unicode]

Instances

Four instances of the Matcher class are provided to make
the following changes to the email.

	Words in *asterisk* characters are made bold

	
gs.group.messages.text.boldMatcher = <gs.group.messages.text.matcher.Matcher object>

	Turn words within *asterisk* characters into bold-elements. This is as close as
GroupServer gets to implementing a wiki.

	Email addresses are made clickable

	
gs.group.messages.text.emailMatcher = <gs.group.messages.text.matcher.Matcher object>

	Turn email addresses (person@example.com) into clickable mailto: links. Surrounding
text (such as parenthesis) is added to the link text, while the address is extractd and used
as for the link target.

	Site names starting with www are made clickable.

	
gs.group.messages.text.wwwMatcher = <gs.group.messages.text.matcher.Matcher object>

	Turn site names that start with www (www.example.com) into clickable http:// links.

	URLs (http and https) are made clickable.

	
gs.group.messages.text.uriMatcher = <gs.group.messages.text.matcher.URIMatcher object>

	Turn URIs (both http and https) into clickable
links. If the link is particularly long (over 64 characters)
then small text will be used (<a class="small"). Leading and
trailing characters (like parenthesis) will be used in the
link text while just the URL will be used for the link target.

 Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	gs.group.messages.text 1.0.0 documentation

Changelog

1.1.0 (2016-03-31)

	Adding the quotation symbols (``> ``) to wrapped lines.

	Tweaking the bottom-quoting detection code so messages from
Mozilla Thunderbird (like this message [http://groupserver.org/r/post/4l8yWaMqinDBwtyqiZ3ZvU] are handled
correctly.

1.0.0 (2015-10-30)

Initial version. Prior to the creation of this product the code
for handling the plain-text version of the posts was split
between gs.group.messages.post.text [https://github.com/groupserver/gs.group.messages.post.text] and
gs.group.list.email.html [https://github.com/groupserver/gs.group.list.email.html].

 Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	gs.group.messages.text 1.0.0 documentation

Index

 _
 | B
 | E
 | H
 | M
 | R
 | S
 | U
 | W

_

 	

 	__iter__() (gs.group.messages.text.HTMLBody method)

 	__str__() (gs.group.messages.text.HTMLBody method)

 	

 	__unicode__() (gs.group.messages.text.HTMLBody method)

B

 	

 	boldMatcher (in module gs.group.messages.text)

E

 	

 	emailMatcher (in module gs.group.messages.text)

H

 	

 	HTMLBody (class in gs.group.messages.text)

M

 	

 	markup() (gs.group.messages.text.HTMLBody method)

 	markup_words() (gs.group.messages.text.HTMLBody method)

 	

 	match() (gs.group.messages.text.Matcher method)

 	Matcher (class in gs.group.messages.text)

R

 	

 	re (gs.group.messages.text.Matcher attribute)

S

 	

 	split_message() (in module gs.group.messages.text)

 	SplitMessage (in module gs.group.messages.text)

 	

 	sub() (gs.group.messages.text.Matcher method)

U

 	

 	uriMatcher (in module gs.group.messages.text)

W

 	

 	wwwMatcher (in module gs.group.messages.text)

 Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

 _modules/gs/group/messages/text/matcher.html

 Navigation

 		
 index

 		gs.group.messages.text 1.0.0 documentation »

 		Module code »

 Source code for gs.group.messages.text.matcher

-*- coding: utf-8 -*-
##
#
Copyright © 2015 OnlineGroups.net and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##
from __future__ import absolute_import, unicode_literals, print_function
from re import compile as re_compile, I as re_I, M as re_M, U as re_U
from string import punctuation

[docs]class Matcher(object):
 '''Match a word, by a regular expression, and make a substitution

:param str matchRE: The regular expression used to check if there was a match
 (see :func:`re.match`)
:param str subStr: The string specifying the subsitution (see :func:`re.sub`)'''
 def __init__(self, matchRE, subStr, weight=10):
 self.matchRE = matchRE
 self.subStr = subStr
 self.weight = weight

 #: The regular expression used to make the match. The flags :const:`re.I`, :const:`re.M`,
 #: and :const:`re.U` are set.
 self.re = re_compile(self.matchRE, re_I | re_M | re_U)

[docs] def match(self, s):
 '''Does the string match the regular expression?

:param str s: The string to evaluate
:returns: ``True`` if the string matches the regular expression, ``False`` otherwise.
:rtype: bool'''
 return self.re.match(s)

[docs] def sub(self, s):
 '''Substitute the string in for the substitution string

:param str s: The string to process
:returns: The new string substituted in :attr:`self.subStr`
:rtype: unicode'''
 return self.re.sub(self.subStr, s)

#: Turn words within ``*asterisk*`` characters into bold-elements. This is as close as
#: GroupServer gets to implementing a wiki.
boldMatcher = Matcher("(?P<boldText>*.**)", r'\g<boldText>', 10)

#: Turn email addresses (``person@example.com``) into clickable ``mailto:`` links. Surrounding
#: text (such as parenthesis) is added to the *link text*, while the address is extractd and used
#: as for the *link target*.
emailMatcher = Matcher(
 r"(?P<leading>.*?)(?P<address>[A-Z0-9\._%+-]+@[A-Z0-9.-]+\.[A-Z]+)(?P<trailing>.*)",
 r'<a class="email" href="mailto:\g<address>">\g<leading>\g<address>\g<trailing>', 20)

#: Turn site names that start with *www* (``www.example.com``) into clickable ``http://`` links.
wwwMatcher = Matcher(r"(?P<siteName>www\..+)",
 r'<a href="http://\g<siteName>">\g<siteName>', 30)

class URIMatcher(Matcher):
 '''A horrid hack for a horrid issue'''
 def __init__(self):
 super(URIMatcher, self).__init__(
 r"(?P<leading>\<|\(|\[|\{|\"|\'|^)"
 r"(?P<protocol>http://|https://)"
 r"(?P<host>([a-z\d][-a-z\d]*[a-z\d]\.)*[a-z][-a-z\\d]+[a-z])"
 r"(?P<rest>.*?)"
 r"(?P<trailing>\>|\)|\]|\}|\"|\'|$|\s)",
 r'<a href="\g<protocol>\g<host>\g<rest>">\g<leading>\g<protocol>\g<host>'
 r'\g<rest>\g<trailing>', 40)

 def sub(self, s):
 if len(s) <= 32:
 retval = super(URIMatcher, self).sub(s)
 else:
 retval = self.long_url_sub(s)
 return retval

 @staticmethod
 def add_zws(s):
 'Add zero-width spaces to the string'
 retval = ''
 for c in s:
 if c in punctuation:
 retval += ('​' + c)
 else:
 retval += c
 return retval

 def long_url_sub(self, s):
 m = self.re.match(s)
 gd = m.groupdict()
 brokenRest = self.add_zws(gd['rest'])
 c = '{leading}{protocol}{host}{rest}{trailing}'
 content = c.format(leading=gd['leading'], protocol=gd['protocol'], host=gd['host'],
 rest=brokenRest, trailing=gd['trailing'])
 if len(s) > 64:
 r = '{1}'
 else:
 r = '{1}'
 url = '{0}{1}{2}'.format(gd['protocol'], gd['host'], gd['rest'])
 retval = r.format(url, content)
 return retval

#: Turn URIs (both ``http`` and ``https``) into clickable
#: links. If the link is particularly long (over 64 characters)
#: then small text will be used (``<a class="small"``). Leading and
#: trailing characters (like parenthesis) will be used in the
#: *link text* while just the URL will be used for the *link target*.
uriMatcher = URIMatcher()

 © Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_modules/gs/group/messages/text/htmlbody.html

 Navigation

 		
 index

 		gs.group.messages.text 1.0.0 documentation »

 		Module code »

 Source code for gs.group.messages.text.htmlbody

-*- coding: utf-8 -*-
##
#
Copyright © 2015 OnlineGroups.net and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##
from __future__ import absolute_import, unicode_literals, print_function
from operator import attrgetter
from xml.sax.saxutils import escape
from zope.cachedescriptors.property import Lazy
from .matcher import (boldMatcher, emailMatcher, wwwMatcher, uriMatcher,)
from .splitmessage import split_message

[docs]class HTMLBody(object):
 '''The HTML form of a plain-text email body.

:param str originalText: The original (plain) text'''
 HTML_ESCAPE_TABLE = {
 '"': """,
 "'": "'"
 }

 def __init__(self, originalText):
 if not originalText:
 raise(ValueError('"originalText" argument required'))
 self.originalText = originalText
 self.matchers = [boldMatcher, emailMatcher, wwwMatcher, uriMatcher]
 sorted(self.matchers, key=attrgetter('weight'))

[docs] def __iter__(self):
 '''The marked-up lines in the main body'''
 mainBody = self.splitBody[0]
 lines = mainBody.rstrip().split('\n')
 for line in lines:
 retval = self.markup(line)
 yield retval

[docs] def __unicode__(self):
 '''The main part of the HTML body, as a Unicode string'''
 retval = '\n'.join(self)
 return retval

[docs] def __str__(self):
 '''The main part of the HTML body, as an ASCII string. Non-ASCII characters are replaced
with XML entities.'''
 retval = unicode(self).encode('ascii', 'xmlcharrefreplace')
 return retval

 @Lazy
 def splitBody(self):
 '''The body as a 2-tuple: main body, and remainder'''
 retval = split_message(self.originalText)
 return retval

[docs] def markup(self, line):
 '''Markup the line, and the words in the line

:param str line: The line to mark up.
:returns: An HTML form of the line: the characters escaped, the words marked up, and surrounded
 in a ```` element.
:rtype: str'''
 if line.strip() == '':
 retval = '
'
 else:
 cssClass = "line"
 # The ">From" is a Unix from, so the line is not a quote
 if ((line.lstrip()[0] == '>') and (line.lstrip()[:5] != '>From')):
 cssClass += " muted"
 # <https://wiki.python.org/moin/EscapingHtml>
 escapedLine = escape(line.rstrip(), self.HTML_ESCAPE_TABLE)
 markedUpLine = self.markup_words(escapedLine)
 r = '{1}
'
 retval = r.format(cssClass, markedUpLine)
 assert(retval)
 return retval

[docs] def markup_words(self, line):
 '''Mark up the words on the line

:param str line: The line to mark up
:returns: The line with the words marked up
:rtype: str'''
 rwords = []
 for word in line.split(' '):
 subWord = None # Word that will be substituted for the current word
 # Short-circut if the word is ''. It will be turned back in ' ' when we ``' '.join``
 if word:
 for matcher in self.matchers:
 if matcher.match(word):
 subWord = matcher.sub(word)
 break
 rword = subWord if subWord is not None else word
 rwords.append(rword)
 retval = ' '.join(rwords)
 return retval

 © Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		gs.group.messages.text 1.0.0 documentation »

 All modules for which code is available

		gs.group.messages.text.htmlbody

		gs.group.messages.text.matcher

		gs.group.messages.text.splitmessage

 © Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

_modules/gs/group/messages/text/splitmessage.html

 Navigation

 		
 index

 		gs.group.messages.text 1.0.0 documentation »

 		Module code »

 Source code for gs.group.messages.text.splitmessage

-*- coding: utf-8 -*-
##
#
Copyright © 2012, 2013, 2014, 2015 OnlineGroups.net and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##
from __future__ import absolute_import, unicode_literals, print_function
from collections import (deque, namedtuple)
from re import (compile as re_compile,)

#: The 2-tuple containing the strings representing
#:
#: 0. The main body of the message (``intro``) and
#: 1. The rest of the message, including the bottom-quoting and the footer (``remainder``).
SplitMessage = namedtuple('SplitMessage', ['intro', 'remainder'])

#: The regular expression for the **title** **element** **contents.** For example,
#: ``Post by Dinsdale Piranha: Violence: British gangland: Ethel the Frog``. If we see this then
#: an email client, such as Mozilla Thunderbird, has decided to bottom quote, and convert the
#: contents of the ``<head>`` element to plain text. This would be fine if it was just the
#: ``<title>`` element, but it will be followed by some rather ugly CSS from some ``<style>``
#: elements.
#:
#: The four components seperated by a colon are the author-name, topic-name, group name, and
#: site name. *At least* three groups sperated by colons are expected, but there could be more if
#: any name contains a colon itself.
postByRE = re_compile('^\s*Post by (.*:){3,}')

#: The strings that are commonly used to explicitly indicate a signiture starting
EXPLICIT_SIG_START = ['--', '==', '~~', '__']

[docs]def split_message(messageText, max_consecutive_comment=12, max_consecutive_whitespace=3):
 """Split the message into main body and the footer.

:param str messageText: The text to process.
:param int max_consecutive_comment: The maximum number of lines of quoting to allow before snipping.
:param int max_consecutive_whitespace: The maximum number of lines that just contain whitespace to
 allow before snipping.
:returns: 2-tuple, containing the strings representing the main-body of the message, and the footer.
:rtype: :class:`SplitMessage`

Email messages often contain a footer at the bottom, which identifies the user, and who they work
for. However, GroupServer has lovely profiles which do this, so normally we want to snip the footer,
to reduce clutter.

In addition, many users only write a short piece of text at the top of the email, while the
remainder of the message consists of all the previous posts. This method also removes the
bottom quoting.

Originally a ZMI-side script in ``Presentation/Tofu/MailingListManager/lscripts``."""
 intro = []
 remainder = deque()
 remainder_start = False
 consecutive_comment = 0
 consecutive_whitespace = 0

 for i, line in enumerate(messageText.split('\n'), 1):
 if ((line[:2] in EXPLICIT_SIG_START) or (line[:3] == '- -') or postByRE.match(line)):
 remainder_start = True

 if remainder_start:
 # If we've started on the remainder, just append to the remainder
 remainder.append(line)
 elif (consecutive_comment > max_consecutive_comment) and (i > 25):
 # Add comments (quotes) to the remainder, but don't penalise top-quoting
 remainder.append(line)
 remainder_start = True
 elif (i <= 15):
 # if we've got less than 15 lines, just put it in the intro
 intro.append(line)
 elif (len(line) > 3) and ((line[:4] != '>') or (line[:2] != '> ')):
 intro.append(line)
 elif consecutive_whitespace < max_consecutive_whitespace:
 # It is < (rather than <=) because of how we count the lines
 intro.append(line)
 else:
 remainder.append(line)
 remainder_start = True

 # Raise a flag if we see a quote (comment). This is used in the if-statement above
 if (line and ((((line[:4] == '>') or (line[:1] == '>')) and
 ((line[:9] != '>From ') or line[:6] != '>From '))
 or (line.lower().find('wrote:') != -1))):
 consecutive_comment += 1
 else:
 consecutive_comment = 0
 # Raise a flag if we see a whitespace. This is used in the major if-statement above
 if len(line.strip()):
 consecutive_whitespace = 0
 else:
 consecutive_whitespace += 1

 # Backtrack through the intro, in reverse order, adding things to either the remainder or
 # keeping them in the intro
 rintro = deque()
 trim = len(intro) > 5
 for i, line in enumerate(intro[::-1]):
 if trim:
 ls = line[:4] if len(line) > 3 else ''
 if (((ls == '>') or (ls[:2] == '> ') or (ls.strip() == '')
 or (line.find('wrote:') > 2))):
 # IF we are trimming, and we are looking at a quote-character or an empty string
 # OR we have seen the 'wrote:' marker
 # THEN add it to the snipped-text.
 remainder.appendleft(line)
 else:
 trim = False
 rintro.appendleft(line)
 else:
 rintro.appendleft(line)

 # Do not snip, if we will only snip a single line of actual content
 if (len(remainder) == 1) or ((len(remainder) == 2) and ('' in remainder)):
 rintro.extend(remainder)
 remainder = []

 intro = '\n'.join(rintro).strip()
 remainder = '\n'.join(remainder)

 # If we have snipped too much
 if not intro:
 intro = remainder
 remainder = ''

 retval = SplitMessage(intro, remainder)
 return retval

 © Copyright 2015, GroupServer.org.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

