

 Navigation

 	
 index

 	
 next |

 	gs.group.list.command 1.0.3 documentation

gs.group.list.command

Contents:

	gs.group.list.command API Reference
	Processing commands

	Command Abstract Base Class

	The Result Enumeration

	Changelog
	1.0.3 (2015-12-11)

	1.0.2 (2015-01-26)

	1.0.1 (2014-11-13)

	1.0.0 (2014-10-01)

Introduction

This product provides support for email-commands. It does this by
providing a function for processing commands (to check for a
command in an email message), a way to register command
processors, and the result enumeration for returning the result
of a command.

Register command processors

The commands are named adaptors that implement the
gs.group.list.command.interfaces.IEmailCommand
interface. The name is the command-name in lower case. So
the command to unsubscribe someone from a group will have the
adaptor name unsubscribe. The adaptor must

	Take the group in the __init__() method (it adapts the
group),

	Provide a process() method that takes the email and
browser-request as an argument.

Example

I prefer to declare adaptors using ZCML. This will declare a
command named example. This command will be executed by
process_command() whenever the subject line of an email
message contains starts with example (in upper or lower
case). The command itself is implemented by the
ExampleCommand class in the example module in the
local directory:

<adapter
 name="example"
 for="gs.group.base.interfaces.IGSGroupMarker"
 provides="gs.group.list.command.interfaces.IEmailCommand"
 factory=".example.ExampleCommand" />

The example module would contain the
ExampleCommand class, which inherits from the abstract
base-class for commands.

from gs.group.list.command import CommandABC, CommandResult
class ExampleCommand(CommandABC):
 def process(email, request):
 # TODO: Stuff
 return CommandResult.commandStop

The request is passed in to the process() method so the
class can issue email-notifications.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, GroupServer.org.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gs.group.list.command 1.0.3 documentation

gs.group.list.command API Reference

The API for email-commands is in two parts: processing
commands, and the result enumeration.

Processing commands

The gs.group.list.command.process_command() function is
used to process the commands in an email message.

	
gs.group.list.command.process_command(group, email, request)[source]

	Process a command in an email message

	Parameters:	
	group (obj) – The group that recieved the email message.

	email (str or email.message.Message [http://docs.python.org/library/email.message.html#email.message.Message]) – The email message that was recieved (which may or may not
contain a command).

	request (obj) – The current browser request object.

	Returns:	If a command was processed, and if email processing should
continue.

	Return type:	CommandResult

When an email is recieved it needs to checked to see if its Subject
header is command, and the command executed if necessary. The
process_command() function performs both of these tasks. The result
will be either

	CommandResut.notACommand if the email is a normal message,

	CommandResut.commandStop if the email contained a command and
processing should stop, or

	CommandResut.commandContinue if the email contained a command and
processing should continue.

Example

r = process_command(self.group, email, request)
if r == gs.group.list.command.CommandResult.commandStop:
 return

Command Abstract Base Class

The CommandABC abstract base-class provides some useful
functionality

	
class gs.group.list.command.CommandABC(group)[source]

	Abstract base-class for command-adaptors

	Parameters:	group (object [http://docs.python.org/library/functions.html#object]) – The group that is adapted.

	
static get_command_components(email)[source]

	Get the components of the command in the Subject

	Parameters:	email (email.message.Message [http://docs.python.org/library/email.message.html#email.message.Message]) – The email message that contains the command.

	Returns:	The Subject of the email, split into components and
lower-cased.

	Return type:	list of strings

The get_command_components() method splits the command in the
Subject into parts using the shlex.split() [http://docs.python.org/library/shlex.html#shlex.split] function. The
components of the command are in lower-case, with all re: parts
discarded.

	
process(email, request)[source]

	Process the command in the email

	Parameters:	
	email (email.message.Message [http://docs.python.org/library/email.message.html#email.message.Message]) – The email message that contains the command.

	request – The HTTP request made to process the email.

	Returns:	If a command was processed, and if email processing should
continue.

	Return type:	CommandResult

Concrete classes must implement this method.

Sub-classes of CommandABC will need to provide the
process() method. The browser-request is passed in so the
command can issue email-notifications.

The Result Enumeration

The result enumeration is returned by the
gs.group.list.command.process_command() function, and the
command that are registered.

	
class gs.group.list.command.CommandResult[source]

	An enumeration of the different results from processing a command.

	
commandContinue = <CommandResult.commandContinue: 2>

	The command was processed, and processing of this email should
continue.

	
commandStop = <CommandResult.commandStop: 1>

	The command was processed, and processing of this email should stop.

	
notACommand = <CommandResult.notACommand: 0>

	The Subject did not contain a command

 Copyright 2014, GroupServer.org.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	gs.group.list.command 1.0.3 documentation

Changelog

1.0.3 (2015-12-11)

	Fixing the unit tests (possibly an issue with Zope2 2.13.23)

1.0.2 (2015-01-26)

	Tweaking the MANIFEST

1.0.1 (2014-11-13)

	Dealing with subject lines that only have one quote

	Dealing with subject lines that are missing, empty, or blank

1.0.0 (2014-10-01)

	Initial release

Prior to the creation of this product the command processing was
carried out in the
Products.XWFMailingListManager.XWFMailingList class.

 Copyright 2014, GroupServer.org.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	gs.group.list.command 1.0.3 documentation

Index

 C
 | G
 | N
 | P

C

 	

 	CommandABC (class in gs.group.list.command)

 	commandContinue (gs.group.list.command.CommandResult attribute)

 	

 	CommandResult (class in gs.group.list.command)

 	commandStop (gs.group.list.command.CommandResult attribute)

G

 	

 	get_command_components() (gs.group.list.command.CommandABC static method)

N

 	

 	notACommand (gs.group.list.command.CommandResult attribute)

P

 	

 	process() (gs.group.list.command.CommandABC method)

 	

 	process_command() (in module gs.group.list.command)

 Copyright 2014, GroupServer.org.
 Created using Sphinx 1.3.1.

 _static/file.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		gs.group.list.command 1.0.3 documentation »

 All modules for which code is available

		gs.group.list.command.adapter

		gs.group.list.command.processor

		gs.group.list.command.result

 © Copyright 2014, GroupServer.org.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/plus.png

_static/minus.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/comment-bright.png

_modules/gs/group/list/command/adapter.html

 Navigation

 		
 index

 		gs.group.list.command 1.0.3 documentation »

 		Module code »

 Source code for gs.group.list.command.adapter

-*- coding: utf-8 -*-
##
#
Copyright © 2014 OnlineGroups.net and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##
from __future__ import absolute_import, unicode_literals
from abc import ABCMeta, abstractmethod
import shlex

[docs]class CommandABC(object):
 '''Abstract base-class for command-adaptors

:param object group: The group that is adapted.
 '''
 __metaclass__ = ABCMeta

 def __init__(self, group):
 self.context = self.group = group

 @abstractmethod
[docs] def process(self, email, request):
 '''Process the command in the email

:param email: The email message that contains the command.
:type email: :class:`email.message.Message`
:param request: The HTTP request made to process the email.
:returns: If a command was processed, and if email processing should
 continue.
:rtype: :class:`.CommandResult`

Concrete classes must implement this method.'''

 @staticmethod
[docs] def get_command_components(email):
 '''Get the components of the command in the ``Subject``

:param email: The email message that contains the command.
:type email: :class:`email.message.Message`
:returns: The ``Subject`` of the email, split into components and
 lower-cased.
:rtype: list of strings

The :meth:`get_command_components` method splits the command in the
``Subject`` into parts using the :func:`shlex.split` function. The
components of the command are in lower-case, with all ``re:`` parts
discarded.'''
 subj = email['Subject']
 comp = shlex.split(subj)
 retval = [c.lower() for c in comp if c.lower() != 're:']
 return retval

 © Copyright 2014, GroupServer.org.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_modules/gs/group/list/command/processor.html

 Navigation

 		
 index

 		gs.group.list.command 1.0.3 documentation »

 		Module code »

 Source code for gs.group.list.command.processor

-*- coding: utf-8 -*-
##
#
Copyright © 2014, 2015 OnlineGroups.net and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##
from __future__ import absolute_import, unicode_literals, print_function
from email.message import Message
from email.parser import Parser
import shlex
import sys
from zope.cachedescriptors.property import Lazy
from zope.component import queryAdapter
from .interfaces import IEmailCommand
from .result import CommandResult

class ProcessEmailCommand(object):
 '''Process an email command

:param group: A group object.
:param email: An email message.
:type email: :class:`email.message.Message`'''

 def __init__(self, group, email, request):
 self.group = group
 self.email = email
 self.request = request

 @Lazy
 def command(self):
 retval = None
 subject = self.email.get('Subject', '')
 try:
 splitSubject = shlex.split(subject)
 except ValueError:
 splitSubject = None
 if splitSubject:
 components = [c.lower() for c in splitSubject
 if c.lower() != 're:']
 retval = components[0] if components else None
 return retval

 def process(self):
 '''Process the command in the email

:returns: The result of processing the command
:rtype: ``.result.CommandResult``'''
 retval = CommandResult.notACommand
 if self.command:
 a = queryAdapter(self.group, IEmailCommand, self.command)
 if a:
 retval = a.process(self.email, self.request)
 return retval

STRING = basestring if (sys.version_info < (3,)) else str

[docs]def process_command(group, email, request):
 '''Process a command in an email message

:param obj group: The group that recieved the email message.
:param email: The email message that was recieved (which may or may not
 contain a command).
:type email: str or :class:`email.message.Message`
:param obj request: The current browser request object.
:returns: If a command was processed, and if email processing should
 continue.
:rtype: :class:`.CommandResult`

When an email is recieved it needs to checked to see if its ``Subject``
header is command, and the command executed if necessary. The
:func:`.process_command` function performs both of these tasks. The result
will be either

* :attr:`.CommandResut.notACommand` if the email is a normal message,
* :attr:`.CommandResut.commandStop` if the email contained a command and
 processing should stop, or
* :attr:`.CommandResut.commandContinue` if the email contained a command and
 processing should continue.
'''
 if isinstance(email, Message):
 e = email
 elif isinstance(email, STRING):
 p = Parser()
 e = p.parsestr(email)
 else:
 m = 'email must be a string or a email.message.Message'
 raise TypeError(m)
 emailProcessor = ProcessEmailCommand(group, e, request)
 retval = emailProcessor.process()
 return retval

 © Copyright 2014, GroupServer.org.
 Created using Sphinx 1.3.1.

_modules/gs/group/list/command/result.html

 Navigation

 		
 index

 		gs.group.list.command 1.0.3 documentation »

 		Module code »

 Source code for gs.group.list.command.result

-*- coding: utf-8 -*-
##
#
Copyright © 2014 OnlineGroups.net and Contributors.
All Rights Reserved.
#
This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.
#
##
from __future__ import unicode_literals
from enum import Enum

[docs]class CommandResult(Enum):
 '''An enumeration of the different results from processing a command.'''
 # __order__ is only needed in 2.x
 __order__ = 'notACommand commandStop commandContinue '

 #: The ``Subject`` did not contain a command
 notACommand = 0

 #: The command was processed, and processing of this email should stop.
 commandStop = 1

 #: The command was processed, and processing of this email should
 #: continue.
 commandContinue = 2

 © Copyright 2014, GroupServer.org.
 Created using Sphinx 1.3.1.

