GridGen Documentation
Release 0.0.1

Sayop Kim

November 05, 2015






Contents

1 Contents

1.1 Projectdescription . . . . ... ... ... ... ......
1.2 Codedevelopment . . . ... ................

1.3 How to run the code

14 Resultssummary . . . . ... ... ... .. ........

2 FORTRAN 90 Source code

2.1 CMakeList.txt . . . . ... ... .. ... ..
2.2 dodirectory . . . ... ..o e e
23 maindirectory . . . ... ..o







GridGen Documentation, Release 0.0.1

This documentation pages are made for CFD class at Geogia Tech in 2014 Spring. This is online available at
http://gridgen.readthedocs.org

Author: Sayop Kim(sayopkim @ gatech.edu)

Affilation: School of Aerospace Engineering, Georgia Institute of Technology

Contents 1


http://gridgen.readthedocs.org
mailto:sayopkim@gatech.edu

GridGen Documentation, Release 0.0.1

2 Contents



CHAPTER 1

Contents

1.1 Project description

1.1.1 Given task

In this exercise you will generate an inviscid, 2-D computational grid around a modified NACA 00xx series airfoil in
a channel. The thickness distribution of a modified NACA 00xx series airfoil is given by:

y(x) = £5t[0.2969\/Tinix — 0126242 — 0.3516(24ms2)? + 0.2843(24,0x)> — 0.1015(z )"

where the “+” sign is used for the upper half of the airfoil, the “—” sign is used for the lower half and z;,; =
1.008930411365. Note that in the expression above z, y, and ¢ represent values which have been normalized by the
airfoil by the airf oil chord.

A sketch of the computational domain is shown below:

A 4 &
7 LU
N
._l
Ll s E T T, ¢ x
—_—

Each grid point can be described by (x,y) location or (i, j) location where i is the index in the £ direction and the
7 index is in the 7 direction. The grid should have imax=41 points in the ¢ direction and jmax=19 points in the n
direction. The coordinates of points A-F shown in the figure are given in the following table:

(4,5) | (=,9)

(1,19) (-0.8,1.0)
41,19) | (1.8,1.0)
41,1 (1.8,0.0)
(31,1) (1.0,0.0) | (trailing edge)
(11,1) (0.0,0.0) | (leading edge)
(1,1 (-0.8,0.0)

’TJFHUOW}BU
=




GridGen Documentation, Release 0.0.1

Algebraic Grid

To complete this project you will first generate a grid using algebraic methods. Use uniform spacing in the x direction
along FE, along ED, and along DC. (However, note that the spacing in the x direction along FE and DC will be different
from the spacing along ED). Use uniform spacing in the x direction along AB. (However, note that the spacing in the
x direction along AB will be different from that along FE, ED, and DC). For the interior points of the initial algebraic
grid use a linear interpolation (in computational space) of the boundary x values:

2(i,§) = (i, 1) + (J_l) (w(i, jmaz) — (i, 1)

Jjmax — 1

Use the following stretching formula to define the spacing in the y direction:

v(i.) = oti. 1) = IS [y ey (2215 )

Cy jmaz — 1

where () is a parameter that controls the amount of grid clustering in the y-direction. (If nearly uniform spacing were
desired we would use C,, = 0.001).

The algebraic grid generated now serves as the initial condition for the subroutines which generate the elliptic grid.
The bounday values of the initial algebraic grid will be the same as those of the final elliptic grid.

Elliptic Grid

The elliptic grid will be generated by solving Poisson Equations:
Exa + gyy = P(f,’r])
N + Ny = Q€M)
where the source terms,
Ar(zee + Pxe) — 2A0a¢y + As(zny + bay) =0
A1 (yee + Qye) — 2A2yen + Az(yyy + Yyy) =0

where the A‘s must be defined by mathmatical manipulation.

On the boundaries, ¢ and v are defined as follows:

55 if el > Jyel

. . . 3 Ye
On]:1and]:]ma$1¢:{_;€i i 2] < [yl
Ve el < lye

Tyn .
—= if |z, | > |y
Oni=1landi=imaz: =4 " [zl > 1yn|
Ty if |zn] < [yy]
At interior points, ¢ and 1) are found by linear interpolation (in computational space) of these boundary values. For
example,

1 —1
/(/)i,j = 7vzjl,j + 1 (wimaz,j - 1pl,j)

imazxr —

1.1.2 Challenges

Demonstrate your solver by generating 5 grids (each with 41x19 grid points):

4 Chapter 1. Contents



GridGen Documentation, Release 0.0.1

Grid #1

Initial algebraic grid, non-clustered (C'y = 0.001)

Grid #2

Initial algebraic grid, clustered (C, = 2.0)

Grid #3

Elliptic grid, clustered (Cy = 2.0), no control terms (¢ =1 = 0)

Grid #4

Elliptic grid, clustered (C, = 2.0), with control terms

Grid #5

Now, use your program to generate the best grid you can for inviscid , subsonic flow in the geometry shown. You must
keep imax = 41, jmax = 19 and not change the size or shape of the outer and wall boundaries. You may, however,
change the grid spacing along any and all of the boundaries and use different levels of grid clustering wherever you
think it is appropriate.

1.2 Code development

The current project is for developing elliptic grid generator in 3-dimensional domain. Hereafter, the program developed
in this project is called ‘GridGen’.

1.2.1 GridGen Code summary

The present project is to make a grid-generator for 3-D computational domain around a modified NACA 00xx series
airfoil in a channel. The assigned project is inherently aimed at 2-D grid. However, the currently built GridGen code
has a capability of 3-D grid generation.

The source code contains two directories, ‘i0’, and ‘main’, for input/output related sources and grid-setup related
sources, respectively. ‘CMakeLists.txt’ file is also included for cmake compiling.

$ cd GridGen/CODEdev/src/
$ 1s
$ CMakelLists.txt 1o main

The io folder has i0.F90 file which contains ReadGridInput() and WriteTecPlot() subroutines. It also includes input
directory which contains default input.dat file.

The main folder is only used for containing grid-setup related source files. The main routine is run by main.F90
which calls important subroutines from main folder itself and io folder when needed. All the fortran source files main
folder contains are listed below:

1.2. Code development 5




GridGen Documentation, Release 0.0.1

GridSetup.F90
GridTransform.F90
GridTransformSetup.F90
main.F90
Parameters.F90
SimulationSetup.F90
SimulationVars.F90

V V.V V V V V

1.2.2 Details of GridGen development

The GridGen code is made for creating 3-D computational domain with pre-described points value along the 2D airfoil
geometry. The schematic below shows the flow chart of how the GridGen code runs.

Read input data

v

Initialize variables

'

Set algebraic grid

~-«—— |nput.dat

- N

Set airfoil / edge points

v

Y

Set control term (if iControl == 1)

v

Start main loop

v

» Calculate Al, A2, A3 variables

Thomas loop
for z*(n+1)
(k = const row)

Thomas loop
for x(n+1)
(k = const row)

Check convergence

Set surface points

Y

Set interior points

N -

Convergence OK

¥
Write RMS residual log

'

Write Tecplot output

Y

Terminate GridGen

NOT converged

The source code shown below is main.F90 and it calls skeletal subroutines for generating grid structure. The main
features of the main code is to (1) read input file, (2) make initialized variable arrays, (3) set initial algebraic grid
points, (4) create elliptic grid points, and (5) finally write output files:

PROGRAM main

USE SimulationSetup_m, ONLY: InitializeCommunication
USE GridSetup_m, ONLY: InitializeGrid

USE GridTransform_m, ONLY: GridTransform

USE io_m, ONLY: WriteTecPlot, filenameLength

USE Parameters_m, ONLY: wp

Chapter 1. Contents




GridGen Documentation, Release 0.0.1

IMPLICIT NONE
CHARACTER (LEN=filenamelLength) :: outputfile = 'output.tec'

CALL InitializeCommunication

! Make initial condition for grid point alignment

! Using Algebraic method

CALL InitializeGrid

! Use Elliptic grid points

CALL GridTransform

CALL WriteTecPlot (outputfile,'"1I","J","K", "Jacobian"")
END PROGRAM main

Creation of algebraic grid points

The code starts to run by reading the important input parameters defined in input.dat file. The input data file first
contains the number of i, j, k directional grid points. Then the code reads airfoil geometry data from this input file,
which provides the bottom edge points of the domain. The input file also contains four vertex points in (z,y, 2)
coordinates. Thus those points forms a 2-dimensional surface, which is supposed to be created in this project. Next,
the code clones these grid points and locates them away from this surface in j-direction, resulting in 3-dimensional
computational domain. Based on these boundary grid points, the code runs with Algebratic grid generating subroutine
and gives initial conditions for elliptic solution for grid transformation.

The main.F90 file first refers to InitializeGrid subroutine defined in GridSetup.F90 file. The main function of this
routine is to call again multiple subroutines defined in same file. The subroutine definition shown below summarizes
the how the code runs for the grid initialization:

USE io_m, ONLY: ReadGridInput

USE SimulationVars_m, ONLY: imax, jmax, kmax,&
xblkV, cy

IMPLICIT NONE

! Create Bottom Edge coordinate wvalues
CALL ReadGridInput

CALL InitializeGridArrays

CALL CreateBottomEdge

CALL SetEdgePnts

CALL GridPntsAlgbra

CALL GenerateInteriorPoints

END SUBROUTINE

ReadGridInput: Reads important user defined variables and parameters for grid configuration.

* InitializeGridArrays: Initialize the single- and multi-dimensional arrays and set their size with input parame-
ters(for example, imax, jmax, kmax).

* CreateBottomEdge: Generate point values for airfoil geometry.

SetEdgePnts: Generate grid points along 8 edges of the computational domain.

GridPntsAlgbra: Based on the edge points, this routine will distribute grid points located on each 6 surfaces of
the computational domain.

¢ GeneratelnteriorPoints: Based on grid points along the edges and surfaces, this routine will create interior
grid points that are aligned with user-defined grid point interpolations.

1.2. Code development 7




GridGen Documentation, Release 0.0.1

Creaction of elliptic grid points

In order to determine the elliptic grid points with the pre-specified boundary points, the following Poisson equations,
which is given in previous Project description section, have to be resolved numerically. The coefficients of the
equations can be determined by:

A = x% + yf]
A = zewy + Yeyy

Then, applying finite difference approximation to the governing equations can be transformed into the linear system
of equations. The arranged matrix form of equations shown below can be solved for unknown implicitly at every
pseudo-time level. At every time loop, the code updates the coefficients composed of ¢ and 1, and adjacent points.
The detailed relations of each coefficients are not shown here for brevity.

o entl o entl Coentl o g
Qi ;" 5+ bwmi,j +Ci Ty = di
n+1 n+1 n+1 __
€ij¥i1;+ fig¥i,; +9iiYi41,; = hij

Above equations can be numerically evaluated by the following descritized expressions:

n
L. . — AN Y
QAij = Cij = A1 j <1 oy >

bij=fi;=—2(A1:;+Asi;)

n
Cij = 9ij = Ay (1 + ;)

n A’ﬂ
R 21,5 n n+1 n n+1 n n n+1 21, n n n+1
Cij = 9 (w1 = 2o = @ — 20 0) — Ay (@8 +2)0) — 5 Vi (541 = 2350)
AR, AR
. 247 (n n+1 n n+1 n n n+1 24,5 n n n+1
hij = D) (ym,j T Yit1,-1 T Yi-15+41 T ?/i—l,jfl) —A34 (?/z‘,j+1 + ym'fl) T Vi (?/z‘,j+1 - ym,l)

where n and n + 1 indicate pseudo time index. Thus above equations will update grid point coordinates for n + 1
time level by referring to already resolved n time level solution. Note that the pseudo time looping goes along the
successive j-constant lines. Therefore, when writing the code, time level index in above equations was not considered
as a separate program variable because 7 — 1 constant line is already updated in the previous loop.

The expressions above are only evaluted in the interior grid points. The points on the boundaries are evaluated seprately
by applying given solutions as problem handout.

Once initial algebraic grid points are created, the code is ready to make elliptic grid points with some control terms in
terms of ¢ and . GridTransform.F90 file contains a subroutine named by GridTransform as shown below:

IMPLICIT NONE
INTEGER :: n

CALL InitializeArrays
IF ( iControl == 1) CALL CalculatePiPsi
DO n = 1, nmax
CALL CalculateAl23
CALL ThomasLoop
CALL WriteRMSlog (n,RMSlogfile)
IF (RMSres <= RMScrit) EXIT
ENDDO
CALL CopyFrontTOBack

8 Chapter 1. Contents




GridGen Documentation, Release 0.0.1

CALL GeneratelInteriorPoints
CALL CalculateGridJacobian
END SUBROUTINE GridTransform

Before going into the main loop for solving poisson equations, the code calculate control terms with ¢ and . Even
though the assigned project made an assumption of linear interpolated distribution of ¢ and 1) at interior points, the
GridGen code is designed to allow ¢ and 1 be weighted in j and ¢ directions, respectively. This effect is made by the
grid stretching formula. This will be revisited for discussion on Grid 5.

Here, main DO-loop routine goes with setup of coefficients of governing equations and Thomas loop. The Thomas
loop operates with line Gauss-Siedel method for resolving unknown variables, x and y, with tri-diagonal matrix of
coefficients of finite difference approximation equation in a k = constant line. Note that the GridGen code transforms
the grid points with elliptic solution only in front surface, then clones the grid points to the back surface and finally
creates interior points. The front surface is made up of ¢ and k& coordinates.

Write Convergence history: RMS residual

In order to avoid infinite time-looping for the Thomas method, the GridGen code employs the following definition of
RMS residual based on the new (n + 1) and old(n) values of grid point coordinates.

imaxr—1

RMS" = Z Z (@it = ap,)” + (i = )]

Jjmax—1

where N = 2z(imax — 2)x(jmax — 2) and the RMS criterion is pre-specified as: 1x10~°. In this code, the convergend
is assumed to be achived when RMS residual is less than the RMS criterion.

1.3 How to run the code

1.3.1 Machine platform for development

This Grid Generation code has been developed on personal computer operating on linux system (Ubuntu Linux 3.2.0-
38-generic x86_64). Machine specification is summarized as shown below:

vendor_id : Genuinelntel

cpu family : 6

model name : Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz

cpu cores : 4

Memory : 16418112 kB

1.3.2 Code setup

The GridGen source code has been developed with version management tool, GIT. The git repository was built on
‘github.com’. Thus, the source code as well as related document files can be cloned into user’s local machine by
following command:

$ git clone http://github.com/sayop/GridGen.git

1.3. How to run the code 9




GridGen Documentation, Release 0.0.1

If you open the git-cloned folder GridGen, you will see two different folder and README file. The CODEdev folder
contains again bin folder, Python folder, and src folder. In order to run the code, user should run setup.sh script in
the bin folder. Python folder contains python script that is used to postprocess RMS residual data. It may contain
build folder, which might have been created in the different platform. Thus it is recommended that user should remove
build folder before setting up the code. Note that the setup.sh script will run cmake command. Thus, make sure to
have cmake installed on your system:

S rm -rf build

$ ./setup.sh

—— The C compiler identification is GNU 4.6.3

—— The CXX compiler identification is GNU 4.6.3

-— Check for working C compiler: /usr/bin/gcc

—— Check for working C compiler: /usr/bin/gcc —-- works

—— Detecting C compiler ABI info

—— Detecting C compiler ABI info - done

—— Check for working CXX compiler: /usr/bin/c++

—-— Check for working CXX compiler: /usr/bin/c++ —-— works

—— Detecting CXX compiler ABI info

—— Detecting CXX compiler ABI info - done

—— The Fortran compiler identification is Intel

-— Check for working Fortran compiler: /opt/intel/composer_xe_2011_spl.11.339/bin/intel
-— Check for working Fortran compiler: /opt/intel/composer_xe_2011_spl.11.339/bin/intel
—— Detecting Fortran compiler ABI info

—— Detecting Fortran compiler ABI info - done

—— Checking whether /opt/intel/composer_xe 2011_spl.11.339/bin/intelé64/ifort supports Fq
—— Checking whether /opt/intel/composer_xe_2011_spl.11.339/bin/intel64/ifort supports Fq
-— Configuring done

—-— Generating done

—— Build files have been written to: /data/ksayop/GitHub.Clone/GridGen/CODEdev/bin/build
Scanning dependencies of target cfd.x

[ 12%] Building Fortran object CMakeFiles/cfd.x.dir/main/Parameters.F90.0
[ 25%] Building Fortran object CMakeFiles/cfd.x.dir/main/SimulationVars.F90.0
[ 37%] Building Fortran object CMakeFiles/cfd.x.dir/io/i0.F90.0
[ 50%] Building Fortran object CMakeFiles/cfd.x.dir/main/SimulationSetup.F90.0
[ 62%] Building Fortran object CMakeFiles/cfd.x.dir/main/GridSetup.F90.0
[ 75%] Building Fortran object CMakeFiles/cfd.x.dir/main/GridTransformSetup.F90.0
[ 87%] Building Fortran object CMakeFiles/cfd.x.dir/main/GridTransform.F90.0
X

[100%] Building Fortran object CMakeFiles/cfd.x.dir/main/main.F90.0
Linking Fortran executable cfd.x

[100%] Built target cfd.x

$ 1s

$ build cfd.x input.dat setup.sh

If you run this, you will get executable named cfd.x and input.dat files. The input file is made by default. You can
quickly change the required options.

1.3.3 Input file setup

The GridGen code allows user to set multiple options to generate grid by reading input.dat file at the beginning of the
computation. Followings are default setup values you can find in the input file when you run setup.sh script:

# Input file for tecplot print
Flow in a channel

imax 41
jmax 2
kmax 19

# domain input (Corner points: x,y coordinates)

10 Chapter 1. Contents

4/ifort
4/ifort —-— 1

rtran 90
rtran 90 ——



GridGen Documentation, Release 0.0.1

pl -0.8 0.0 0.0
p2 1.8 0.0 0.0
r3 -0.8 0.0 1.0
p4 1.8 0.0 1.0
GeoStart 0.0 0.0 0.0
GeoEnd 1.0 0.0 0.0
FEsize 11

GeoSize 21

DCsize 11

width 0.1

# Grid clustering:

# cyl: stretched grid in z

# cy2: stretched Pi in z

# cy3: stretched Psi in x

# cy4: stretched grid along FE
# cy5: stretched grid along ED
# cy6: stretched grid along DC

cyl 2.0

cy2 -5.001

cy3 0.001

cyé -1.2

cy5 1.0

cy6 0.001

# Iteration max: If nmax == 0, elliptic grid won't be calculated
nmax 500

# RMS Criterion

RMScrit 1.0E-6

# Calculate control terms: Pi, Psi
iControl 1

* imax, jmax, kmax: These three parameters set the size of grid points in z, y, and z direction, respectively.

* pl, p2, p3, p4: Define the corner points that form the front surface of the 3-dimensional computational domain.
* GeoStart, GeoEnd: Start and end points of airfoil geometry

* FEsize, GeoSize, DCsize: Number of grid points along FE, airfoil shape, and DC

» width: Depth of 3D computational domain in y-direction.

* ¢yl ~ ¢cy6: Stretching parameters used in the stretching formula, which is inherently defined for the grid point
spacing in the z direction. In this code, this formula is applied to control terms and bottom edge spacing to
define a new grid alignment for Grid #5.

e nmax: Maximum number of main loop. If the residual criterion is met before this maximum number is reached,
the code will be terminated. If nmax is set to 0, the code will only run for the algebraic grid.

¢ RMScrit: Minimum RMS residual value to obtain the coverged Thomas method calculation.

* iControl: If it is 1, the code runs with pre-specified ¢ and ¢ at the boundary points.

1.4 Results summary

The GridGen code builds 3-dimensional computational domain. Note that the 3-D domain is made with 2-dimensional
front surface composed of = and z coordinates. In the given handout, the coordinate is inherently based on x and y
coordinates. In this code, however, the vertical alignment is defined in z, then the ‘width’ of the 3-D domain is defined
along the y direction.

1.4. Results summary 11




GridGen Documentation, Release 0.0.1

1.4.1 Grid #1: Algebraic grid with non-clustered points in z

The figure below shows the grid point alignments made by the GridGen code with algebraic grid and uniform grid
spacing assumptions at every boundary edges. The interior points were generated by applying linear interpolation
based two opposed pre-specified grid points. Thus the current grid has almost straight lines but with normally inclined
angles, which makes a little skewed cells in the leading edge of the air foil. Also we can find a sudden change in cell
volume across two grid lines anchored in leading and trailing edges of the airfoil.

<Figure: Grid points alignment of Grid #1>

The more quantitative analysis is available with grid Jacobian contour on the current mesh. The ‘Jacobian’ here is
inherently defined as determinant of inverse grid Jacobian matrix at every single grid point. Thus, it indicates a grid
cell volume in 3D and cell area in 2D. Here, since the currently used Jacobian is defined at 3-dimensional coordinates,
the grid shown below was made with a width of 0.1 m in y direction , however, it does not have grid resolution in this
direction.

\
|

<Figure: Inverse Grid Jacobian distribution of Grid #1>

1.4.2 Grid #2: Algebraic grid with clustered points in z

The second trial was made on the point spacing stretching with algebraic grid alignment. This grid is based on the
same approach for Grid #1. The only change in this grid was to apply gradually clustered grid points downward at left
and right boundaries. Note that the linear interpolation of z-coordinates along the each vertical line is made only on
the basis of j-index as formulated earlier. The effect of this is to make x coordinate shifting along the vertical line is
identical for every point. Thus it leads to the somewhat much shifting for concentrated grid points in y-direction. Now
we can observe non-linear grid lines in j-direction. This makes grid less skewer in the leading edge of the airfoil.

12 Chapter 1. Contents



GridGen Documentation, Release 0.0.1

<Figure: Grid points alignment of Grid #2>

The grid Jacobian contour is shown below. Applying grid stretching along the y direction gives big cell volume
distribution gradually upper. Change in volume along the bottom edge looks more less significant even in the leading
edge. Since, however, the grid spacing is not changed in = direction from Grid #1 alignment, we could expect some
error in flux throught the cell face at leading edge achored point. The same situation happens at the trailing point of
the airfoil. In some point, this grid alignment is more reliable for this geometry because the significantly high gradient
of flow velocity will only take place in the leading edge so that we need more dense grid points in this reagion.

<Figure: Inverse Grid Jacobian distribution of Grid #2>

1.4.3 Grid #3: Elliptic grid with clustered points in z & no control terms

The grid shown below is made by the elliptic Poisson equations with clustered grid points in vertical direction. As
expected, the Poisson equation with no control terms draws grid aliments resembled with iso-stream lines and iso-
potention lines around the airfoil body. This is because the set of Posson equation is exactly same as a set of stream
function and potention function when the control terms are ignored.

<Figure: Grid points alignment of Grid #3>

1.4. Results summary 13



GridGen Documentation, Release 0.0.1

However, it is expected that curved lines right at the inlet edge and outlet edge are not aligned with the inlet flow.
This misaligment could cause the flux of flow properties across the k-constant lines and thus it would make numerical
errors. From the grid Jacobian contour result, sudden change in cell volume along the flow direction can be found.
Maximum and minimum cell volume are found at left and right top edge and bottom edge, respectively.

<Figure: Inverse Grid Jacobian distribution of Grid #3>

1.4.4 Grid #4: Elliptic grid with clustered points in z & control terms

The problem that arise in Grid #3 case was able to be resolved by adding control terms for Poisson equation. From the
mesh shape of Grid #4 shown below, it can be found that adding control terms plays an important role in improving
grid orthogonality. Thus now we have better grid aligment especially along the flow stream lines that can be expected
intuitively. Even though there is a significant change in grid size along the vertical line, it may not act as a critical
issue for numerical accuracy because the flux in vertical direction will be quite important.

<Figure: Grid points alignment of Grid #4>

In this grid, we can find a severely skewed cell in the leading edge of airfoil. This is more severe than Grid #3.
Making orthogonality for the vertical lines cause more vertically stand i-constant lines, hence it leads to the sharp
angle between airfoil arc and i-constant line anchored at the leading edge.

L WL T ] Jagobian |
EREEN -'lllmll

14 Chapter 1. Contents



GridGen Documentation, Release 0.0.1

<Figure: Inverse Grid Jacobian distribution of Grid #4>

1.4.5 Grid #5: Improved grid quality

We observed several issues in grid quality stepping through the Grid #1 ~ #4. Since Grid #4 shows better quality
than others, the new approach started with the method employed in Grid #4. The unresolved issues in Grid #4 can be
summarized as followings:

* Sudden chanege in grid cell size at the leading edge point and trailing edge point.
» Skewness becomes more severe when applying control terms especially at leading edge point.

In this approach, an effort was made to resolve the above issues. First of all, to make the smooth change in grid cell
size, stretching formula was employed along the FE, ED, and DC lines. As already mentioned earlier, this can be
controlled by adding ‘cy’ values in ‘input.dat’ file. The following shows a part of ‘input.dat’ which is applied to Grid

# Grid clustering:

# cyl: stretched grid in z

# cy2: stretched Pi in z

# cy3: stretched Psi in x

# cy4: stretched grid along FE
# cy5: stretched grid along ED
# cy6: stretched grid along DC

cyl 2.0
cy?2 -10.0
cy3 0.001
cy4 -1.2
cy5 1.0
cyb6 0.001

<Figure: Grid points alignment of Grid #4>

The ‘cyl’ remains unchanged but ‘cy4’, ‘cy5’, and ‘cy6’ are aditionally defined to change the grid spacing along the
FE, airfoil arc, and DC, respectively. Here, negative value makes the grid points more concentrated towards the right
corner. As a result, by adding proper values for these parameters, sudden change in grid size was avoided. Moreover,
this results in more grid points near the leading edge. This is better grid alignment because we can intuitively expect
that there is more significant change in flow properties when flow meet the leading edge.

In this approach, the grid spacing along the top edge (A-B) is left uniform because the flow properties will not experi-
ence significant change. Only significant change we care about will take place only in the leading edge.

1.4. Results summary 15




GridGen Documentation, Release 0.0.1

* No stretched ‘cy = 0.001” e Stretching factor ‘cy2 =-10" applied

<Figure: Change in ¢ by stretching factor ‘cy3’>

As can be found above, control terms can be aditionally controlled by changing ‘cy2’ and ‘cy3’. The zoomed-in grid
shown below confirmed an effect of changing ‘cy3’ value on the distribution of ¢ value. Less ¢ value helps the grid
alignment resemble with the Grid #3, which shows the less skew cell in the leading edge.

L W T T T Jadol
HEER ARENEN

<Figure: Inverse Grid Jacobian distribution of Grid #4>

From the Jacobian contour, we can find that the smallest Jacobian value has been shifted towards the leading edge.
This is because the Grid #5 has more grid points near this region. It is expected that the significant flow property
change will be covered by blue and dark blue colored region in the above grid.

Convergence check: RMS residual log

A figure shown below illustrates the convergence history as a function of iteration number. This log is made only for
the Elliptic grid solution because it is stored while Thomas method is being looped. Every cases meet the pre-specified
RMS criterion. Here we can find that adding control terms helps fast convergence.

16 Chapter 1. Contents



GridGen Documentation, Release 0.0.1

RMS residual

. ——Grid #5 |

—_Grid #3
___Grid #4

-6 I I !
1070 50 100 150
Number of iteration

200 250

1.4. Results summary

17



GridGen Documentation, Release 0.0.1

18 Chapter 1. Contents



CHAPTER 2

FORTRAN 90 Source code

2.1 CMakelList.txt

cmake_minimum_required (VERSION 2.6)
project (CED)
enable_language (Fortran)

#

# add sub-directories defined for each certain purpose
#

add_subdirectory (main)

add_subdirectory (io)

#

# set executable file name

#

set (CFD_EXE_NAME cfd.x CACHE STRING "CFD executable name")

#

# set source files

#

set (CFD_SRC_FILES S$S{MAIN_SRC_FILES}
S{IO_SRC_FILES})

#

# define executable

#

add_executable (${CFD_EXE_NAME} S${CFD_SRC_FILES})

2.2 io directory

2.2.1 CMakelLists.txt

set (IO_SRC_FILES
$ {CMAKE_CURRENT_SOURCE_DIR}/i0.F90 CACHE INTERNAL "" FORCE)

19




GridGen Documentation, Release 0.0.1

2.2.2 i0.F90

> \file: 1i0.F90
!> \author: Sayop Kim
!> \brief: Provides routines to read input and write output

MODULE io_m
USE Parameters_m, ONLY: wp
USE SimulationVars_m, ONLY: nmax
USE GridTransformSetup_m, ONLY: RMScrit
IMPLICIT NONE

PUBLIC :: filenameLength, Gpnts, FEsize, GeoSize, DCsize, &
ReadGridInput, WriteTecPlot, WriteRMSlog, width, &
iControl

REAL (KIND=wp), DIMENSION(3,2) :: Gpnts ! Geometry points (start,end)

REAL (KIND=wp) :: width ! width: domain width

INTEGER :: FEsize, GeoSize, DCsize

INTEGER :: iControl

INTEGER, PARAMETER :: IOunit = 10, filenamelength = 64

CHARACTER (LEN=50) :: prjTitle

CONTAINS

USE SimulationVars_m, ONLY: imax, Jjmax, kmax, &
xblkVv, cyl, cy2, cy3, cy4, cy5, cyb6
IMPLICIT NONE

INTEGER :: ios, i, 7

CHARACTER (LEN=8) :: inputVar

OPEN (IOunit, FILE = 'input.dat', FORM = 'FORMATTED', ACTION = 'READ', &
STATUS = 'OLD', IOSTAT = ios)

IF (ios /= 0) THEN
WRITE (%, '(a)') ""
WRITE(*,'(a)') "Fatal error: Could not open the input data file."
RETURN
ELSE
WRITE (%, '(a)') ""
WRITE (%, ' (a)') "Reading input file for transformation 1"
ENDIF

READ (IOunit, *)

READ (IOunit, ' (a)') prijTitle

WRITE (*, ' (4a)') 'Project Title:', '"',TRIM(prjTitle),'"'
READ (IOunit, *) inputVar, imax

WRITE (%, ' (a,16)"') inputVar, imax

READ (IOunit, ») inputVar, jmax

WRITE (%, ' (a,16)"') inputVar, jmax

READ (IOunit, *) inputVar, kmax

WRITE (*,'(a,16)"') inputVar, kmax

READ (IOunit, )

READ (IOunit, *) inputvVar, xblkv(l,1), xblkV(2,1), xblkV(3,1)

20 Chapter 2. FORTRAN 90 Source code




GridGen Documentation, Release 0.0.1

WRITE (*, ' (a,3f6.3)")
READ (IOunit, )
WRITE (*, ' (a,3f6.3)")
READ (IOunit, *)
WRITE (%, ' (a,3f6.3)")
READ (IOunit, *)
WRITE (%, ' (a,3f6.3)")

inputvVvar,
inputVar,

inputvVvar,

inputVar, xblkV(l,1), xblkV(2,1), xblkVv(3,1)
xb1kV (1,2), xblkV(2,2), xblkV(3,2)
inputVar, xblkV(l,2), xblkV(2,2), xblkV(3,2)
xb1lkV (1, 3), xblkV(2,3), xblkV(3,3)
inputVar, xblkV(l,3), xblkV(2,3), xblkV(3,3)
xb1lkV (1,4), xblkV(2,4), xblkV(3,4)

inputVar, xblkV(1l,4), xblkV(2,4), xblkV(3,4)

! Set remaining corner points for 3D

DO i = 4
DO § =1, 3, 2
xblkV (3, i+4)
ENDDO
xblkV (2, i+4)
ENDDO

1,

xb1kV (3, 1)

width

! Read Airfoil corner point data

READ (IOunit, *)
WRITE (%, ' (a,3f6.3)")
READ (IOunit, *)
WRITE (%, ' (a,3f6.3)")
! Read Airfoil grid
READ (IOunit, *)
WRITE (%, ' (a,i6)")
READ (IOunit, *)
WRITE (*, "' (a,16)")
READ (IOunit, =)
WRITE (, ' (a,i6) ")
READ (IOunit, *)
WRITE (%, '(a,f6.3)")
READ (IOunit, *

inputvVvar,

inputVar,

inputvVvar,
inputvVvar,
inputvar,
inputvVvar,
inputvVvar,
inputvar,
inputvVvar,

Gpnts (1,1), Gpnts(2,1), Gpnts(3,1)
Gpnts(1,1), Gpnts(2,1), Gpnts(3,1)
Gpnts (1,2), Gpnts(2,2), Gpnts(3,2)
Gpnts(1,2), Gpnts(2,2), Gpnts(3,2)
(at bottom edge)

inputvar,

inputVvar,
resolution data
FEsize
FEsize
GeoSize
GeoSize
DCsize
DCsize
width
inputVar,width

)
READ (IOunit, )
READ (IOunit, *)
READ (IOunit, )
READ (IOunit, )
READ (IOunit, *)
READ (IOunit, )
READ (IOunit, ») inputVvar, cyl
WRITE (%, ' (a,f£f6.3)"') inputVar, cyl
READ (IOunit, *) inputVar, cy2
WRITE (*,'(a,£6.3)"') inputVar, cy2
READ (IOunit, x) inputVar, cy3
WRITE (%, ' (a,£6.3)"') inputVar, cy3
READ (IOunit, ») inputVar, cy4
WRITE (%, ' (a,f£f6.3)"') inputVar, cy4
READ (IOunit, *) inputVar, cyb5
WRITE (*,'(a,£6.3)"') inputVar, cy5
READ (IOunit, *) inputVar, cyb6
WRITE (%, ' (a,£6.3)"') inputVar, cy6
READ (IOunit, )
READ (IOunit, *) inputVar, nmax
WRITE (%, ' (a,16)"') inputVar, nmax
READ (IOunit, )
READ (IOunit, *) inputVar, RMScrit
WRITE (%, ' (a,£6.3)"') inputVar, RMScrit
READ (IOunit, )
READ (IOunit, *) inputVar, iControl
WRITE (%, ' (a,16)"') inputVar, iControl

! Set remaining corner points for 3D

DO i =1, 4

2.2. io directory

21




GridGen Documentation, Release 0.0.1

DO § =1, 3, 2

xb1kV (§,i+4) = xblkV (3, i)
ENDDO
xblkV (2,i+4) = width

ENDDO

CLOSE (IOunit)
END SUBROUTINE ReadGridInput

USE SimulationVars_m, ONLY: imax, jmax, kmax,&

xXp, 1inverseJacobian
USE GridTransformSetup_m, ONLY: Pi, Psi
IMPLICIT NONE

CHARACTER (LEN=filenameLength), INTENT (IN) :: fileName

CHARACTER (LEN=%), INTENT (IN) :: varList

INTEGER :: i, 3, k

OPEN (IOunit, File = fileName, FORM = 'FORMATTED', ACTION = 'WRITE')
! writes the two line TECPLOT header

WRITE (IOunit, '(a)') 'Title="' // TRIM(prjTitle) // '™'

WRITE (IOunit, '(a)') 'Variables=' // TRIM(varList)

WRITE (IOunit, '(a)') ""

WRITE (IOunit, '(a,i6,a,1i6,a,1i6,a)"') 'Zone I=', imax, ', J=', jmax, ', K=', kmax, ', F3

DO k = 1, kmax

DO Jj 1, Jmax
DO i = 1, imax
WRITE (IOunit, ' (6gl5.6)") xp(l,1i,3,k), xp(2,1i,3,k), xp(3,1,73,k), &
inverseJacobian(i, j, k), Pi(i,Jj, k), Psi(i,j, k)
ENDDO
ENDDO
ENDDO

CLOSE (IOunit)

END SUBROUTINE WriteTecPlot

USE GridTransformSetup_m, ONLY: RMSres
IMPLICIT NONE

CHARACTER (LEN=filenamelLength), INTENT (IN) :: fileName
INTEGER :: nlIter
IF ( nIter == 1 ) THEN
OPEN (IOunit, File = fileName, FORM = 'FORMATTED', ACTION = 'WRITE')
ELSE
OPEN (IOunit, File = fileName, FORM = 'FORMATTED', ACTION = 'WRITE', &
POSITION = 'APPEND')

rPOINT'

22 Chapter 2. FORTRAN 90 Source code



GridGen Documentation, Release 0.0.1

ENDIF

write (IOunit, ' (i6,g915.6) ') nIter, RMSres
CLOSE (IOunit)

END SUBROUTINE WriteRMSlog

END MODULE io_m

2.3 main directory

2.3.1 CMakelLists.txt

set (MAIN_SRC_FILES

${CMAKE_CURRENT_SOURCE_DIR}/main.F90
${CMAKE_CURRENT_SOURCE_DIR}/SimulationSetup.F90
${CMAKE_CURRENT_SOURCE_DIR}/SimulationVars.F90

$ {CMAKE_CURRENT_SOURCE_DIR}/GridSetup.F90

S {CMAKE_CURRENT_SOURCE_DIR}/GridTransform.F90

$ {CMAKE_CURRENT_SOURCE_DIR}/GridTransformSetup.F90
${CMAKE_CURRENT_SOURCE_DIR}/Parameters.F90 CACHE INTERNAL "" FORCE)

2.3.2 main.F90

!> \file: main.F90

!> \author: Sayop Kim

PROGRAM main

USE SimulationSetup_m, ONLY: InitializeCommunication
USE GridSetup_m, ONLY: InitializeGrid

USE GridTransform_m, ONLY: GridTransform

USE io_m, ONLY: WriteTecPlot, filenameLength

USE Parameters_m, ONLY: wp

IMPLICIT NONE

CHARACTER (LEN=filenamelLength) :: outputfile = 'output.tec'

CALL InitializeCommunication

! Make initial condition for grid point alignment

! Using Algebraic method

CALL InitializeGrid

! Use Elliptic grid points

CALL GridTransform

CALL WriteTecPlot (outputfile,'"1","J","K","Jacobian","Pi", "Psi"")

END PROGRAM main

2.3.3 SimulationVars.F90

!> \file: SimulationVars.F90

!> \author: Sayop Kim

MODULE SimulationVars_m
USE parameters_m,

IMPLICIT NONE

wp

2.3. main directory

23




GridGen Documentation, Release 0.0.1

INTEGER :: imax, Jmax, kmax, nmax

REAL (KIND=wp), ALLOCATABLE, DIMENSION(:,:,:,:) :: Xp

REAL (KIND=wp), ALLOCATABLE, DIMENSION(:,:) :: BOTedge

REAL (KIND=wp) :: cyl, cy2, cy3, cy4, cy5, cyb6

REAL (KIND=wp), ALLOCATABLE, DIMENSION(:,:,:) :: inverseJacobian

REAL (KIND=wp), DIMENSION(3,8) :: xblkV ! x,y,2z points at 8 vertices of block

END MODULE SimulationVars_m

2.3.4 parameters.F90

!> \file parameters.F90
!> \author Sayop Kim
!> \brief Provides parameters and physical constants for use throughout the

'l code.
MODULE Parameters_m
INTEGER, PARAMETER :: wp = SELECTED_REAL_KIND (8)
CHARACTER (LEN=10), PARAMETER :: CODE_VER_STRING = "Vv.001.001"

REAL (KIND=wp), PARAMETER :: PI = 3.14159265358979323846264338_wp

END MODULE Parameters_m

2.3.5 GridSetup.F90

!> \file: GridSetup.F90
!> \author: Sayop Kim

MODULE GridSetup_m
USE Parameters_m, ONLY: wp
USE SimulationSetup_m, ONLY: GridStretching
IMPLICIT NONE

PUBLIC :: InitializeGrid, GeneratelInteriorPoints

CONTAINS

USE io_m, ONLY: ReadGridInput
IMPLICIT NONE

! Create Bottom Edge coordinate values
CALL ReadGridInput

CALL InitializeGridArrays

CALL CreateBottomEdge

CALL SetEdgePnts

CALL GridPntsAlgbra

CALL GeneratelnteriorPoints

END SUBROUTINE

24 Chapter 2. FORTRAN 90 Source code




GridGen Documentation, Release 0.0.1

! imax: number of grid points in i-drection
! Jmax: number of grid points in j-direction
! kmax: number of grid points in k-direction
! xp (3, imax, jmax, kmax) : curvilinear coordinates in physical space
USE SimulationVars_m, ONLY: imax, Jjmax, kmax, &
Xp, 1lnverseJacobian
IMPLICIT NONE

WRITE (%, "' (a)') ""
WRITE (x,'(a)') "Initializing data arrays..."
ALLOCATE (xp (3, imax, jmax, kmax) )
ALLOCATE (inverseJacobian (imax, jmax, kmax))
xp = 0.0_wp
inverseJacobian = 0.0_wp
END SUBROUTINE

USE io_m, ONLY: width, FEsize, GeoSize, DCsize, &
Gpnts

USE SimulationVars_m, ONLY: imax, Jjmax, kmax, &
xblkV, cy4, cy5, cyé6

USE SimulationVars_m, ONLY: BOTedge

USE SimulationSetup_m, ONLY: UniformSpacing

IMPLICIT NONE

INTEGER :: i

ALLOCATE (BOTedge (3, imax) )

WRITE (%, %) ""

WRITE (%, x) "Creating Bottome edge point values with Airfoil geometry"

DO i = 2, FEsize
BOTedge (1,i) = GridStretching(xblkVv(l,1), Gpnts(l,1), i, FEsize, cy4)
!'BOTedge (2,1) = UniformSpacing(xblkV(2,1), Gpnts(2,1), i, FEsize)
BOTedge (3,1) = GridStretching(xblkVv(3,1), Gpnts(3,1), i, FEsize, cy4)

ENDDO

DO i1 = FEsize + 1, FEsize + GeoSize - 1
BOTedge (1,1i) = GridStretching(Gpnts(l,1), Gpnts(l,2), i-FEsize+l, GeoSize, cy5)
!BOTedge (2,1) = UniformSpacing(Gpnts(2,1), Gpnts(2,2), i-FEsize+l, GeoSize)
!'BOTedge (3,1) = UniformSpacing(Gpnts(3,1), Gpnts(3,2), i-FEsize+l, GeoSize)
BOTedge (3,1) = Airfoil (BOTedge(1l,1))

ENDDO

DO i = FEsize + GeoSize, imax - 1
BOTedge (1,1i) = GridStretching(Gpnts(1l,2), xblkV(l,2), i-FEsize-GeoSize+2, &

DCsize, cyb6)
!'BOTedge (2,1) = UniformSpacing(Gpnts(2,2), xblkV(2,2), i-FEsize-GeoSize+2, DCsize)
BOTedge (3,1) = GridStretching(Gpnts(3,2), xblkV(3,2), i-FEsize-GeoSize+2, &
DCsize, cyb6)
ENDDO

END SUBROUTINE

FUNCTION Airfoil (xx) RESULT (yx)

IMPLICIT NONE

2.3. main directory 25



GridGen Documentation, Release 0.0.1

REAL (KIND=wp) xint, thick, =xx, yx
xint = 1.008930411365_wp
thick = 0.15_wp
yx = 0.2969_wp * sqgrt(xint * xx) - 0.126_wp * xint » xx - 0.3516_wp * &
(xint » xx)*%x2 + 0.2843_wp * (xint x xx)#**3 — 0.1015_wp * (xint % xx)~*x4
yx = 5.0_wp * thick x yx

END FUNCTION Airfoil

USE SimulationVars_m, ONLY: imax, Jmax, kmax, &

xp, xblkV, BOTedge, cyl
USE SimulationSetup_m, ONLY: UniformSpacing
IMPLICIT NONE
INTEGER :: i

WRITE (%, "'(a)') ""

WRITE (x,'(a)') "Setting Boundary Conditions..."

L L o e
! Assign coordinates value in xblkV (8, 3) !
! Below shows 8 vertices defined in one single block!

Vbt 4 +++++++++++ ]
! Vertex (1)

'xblkV(1,1) = 0.0
'xblkV(2,1) = 0.0
1xblkV(3,1) = 0.0

DO 1 =1, 3

xp(i,1,1,1) = xblkv(i,1)

ENDDO

! Vertex (2)

'xblkV (1,2) = 0.0
I'xblkV(2,2) = 0.0

!xblkV( ,2) = 0.0

po i =1, 3

xp (i, imax,1,1) = xblkV(i,2)
ENDDO
! Vertex
I'xblkV (1,

(3)
1,3
'xblkV (2,3
3,3
1

|
o o o
o o o

3
)
) =
Ixb1kV ( ) =
Do i =1, 3

xp (i, 1,1, kmax)
ENDDO

14

xblkV (i, 3)

26 Chapter 2. FORTRAN 90 Source code



GridGen Documentation, Release 0.0.1

I Vertex (4)
'xb1kV(1,4) = 0.0
'xblkv(2,4) = 0.0
'xb1kV (3,4) = 0.0
DO i =1, 3
xp (i, imax,1,kmax) = xblkV (i, 4)
ENDDO
! Vertex (5)
'xpblkVv(1,5) = 0.0
'xb1lkV (2,5) = 0.0
‘XblkV( ,5) = 0.0
po i =1, 3
xp(i,1, jmax,1l) = xblkV(i,5)
ENDDO
! Vertex (6)
'xblkV(1,6) = 0.0
I'xblkVv(2,6) = 0.0
'xb1lkV (3,6) = 0.0
Do i =1, 3
xp (i, imax, jmax, 1) = xblkV (i, 6)
ENDDO
! Vertex (7)
I'xblkVv(1,7) = 0.0
'xblkV (2,7) = 0.0
‘xblkV( ,7) = 0.0
Do i =1, 3
xp (1,1, jmax, kmax) = xblkV (i, 7)
ENDDO
! Vertex (8)
'xblkV(1,8) = 0.0
'xblkVv(2,8) = 0.0
!XblkV( ,8) = 0.0
Do i =1, 3
Xp (i, imax, jmax, kmax) = xblkV (i, 8)
ENDDO

L i B
! Set up boundary point coordinates at every edge

! e ) R — +

! /1 /]

! (11) | (12) |

! /] /o

! Fmmm e (4) ———————— + (6)

! (5 L

! I o z vy
! I L |/
! (1) 4= (7) —=—=—- |-+ 1/

! o/ 2) / ——-x
! 1(9) | (10)

! 1/ 1/

! T — ) e —— +

Vbt 4 +++++++++++++ AR
! edge (1)
DO i = 2, kmax - 1
xp(l,1,1,i) = UniformSpacing(xblkV(1l,1), xblkV (1,
xp(2,1,1,1) = UniformSpacing(xblkVv(2,1), xblkV (2,

3),
3)

i,

i,

kmax)
kmax)

2.3. main directory

27




GridGen Documentation,

Release 0.0.1

xp(3,1,1,i) = GridStretching(xblkVv(3,1), xblkVv(3,3), i, kmax, cyl)

ENDDO

! edge (2)

DO i = 2, kmax - 1
xp(l,imax,1,i) = UniformSpacing(xblkVv(1l,2), xblkv(l,4), i, kmax)
xp(2,1imax,1,i) = UniformSpacing(xblkV(2,2), xblkv(2,4), i, kmax)
xp(3,1imax,1,1i) = GridStretching(xblkVv(3,2), xblkVv(3,4), i, kmax, cyl)

ENDDO

! edige (3)

DO i = 2, imax - 1
'xp(l,i,1,1) = UniformSpacing(xblkVv(1l,1), xblkv(1l,2), i, imax)
xp(2,1,1,1) = UniformSpacing(xblkV(2,1), xblkV(2,2), i, imax)
'xp(3,1i,1,1) = UniformSpacing(xblkV(3,1), xblkV(3,2), i, imax)
xp(l,i,1,1) = BOTedge(l,1i)
xp(3,1,1,1) = BOTedge(3,1)

ENDDO

! edge (4)

DO i = 2, imax - 1
xp(l,i,1,kmax) = UniformSpacing(xblkVv(1l,3), xblkv(l,4), i, imax)
xp(2,1,1,kmax) = UniformSpacing(xblkV(2,3), xblkv(2,4), i, imax)
xp(3,1,1,kmax) = UniformSpacing(xblkVv(3,3), xblkVv(3,4), i, imax)

ENDDO

! edge (5)

DO i = 2, kmax - 1
xp(l,1,jmax,1i) = xp(1,1,1,1)
xp (2,1, jmax,i) = UniformSpacing(xblkVv(2,5), xblkv(2,7), i, kmax)
xp (3,1, jmax,1) = xp(3,1,1,1)

ENDDO

! edge (6)

DO i = 2, kmax - 1
xp (1, imax, jmax,i) = xp(l,imax,1,1)
Xp (2, imax, jmax, i) = UniformSpacing(xblkVv(2,6), xblkv(2,8), i, kmax)
xp (3, imax, jmax, i) = xp(3,imax,1,1)

ENDDO

! edge (7)

DO i = 2, imax - 1
'xp(l,1i, jmax,1l) = UniformSpacing(xblkV(1l,5), xblkV(l,6), i, imax)
xp (2,1, jmax,1l) = UniformSpacing(xblkVv(2,5), xblkv(2,6), 1, imax)
'xp (3,1, jmax,1l) = UniformSpacing(xblkV(3,5), xblkV(3,6), i, imax)
xp(l,1i, jmax,1l) = BOTedge(l,1i)
xp (3,1, jmax,1l) = BOTedge(3,1)

ENDDO

! edge (8)

DO i = 2, imax - 1
xp(l,1i, jmax, kmax) = xp(l,1i,1,kmax)
Xp (2,1, jmax, kmax) = UniformSpacing(xblkVv(2,7), xblkv(2,8), i, imax)
xp (3,1, jmax, kmax) = xp(3,1i,1,kmax)

ENDDO

! edge (9)

DO i = 2, jmax - 1
xp(l,1,i,1) = UniformSpacing(xblkv(1l,1), xblkv(l,5), i, Jjmax)
xp(2,1,1,1) = UniformSpacing(xblkVv(2,1), xblkVv(2,5), i, jmax)
xp(3,1,1,1) = UniformSpacing(xblkV(3,1), xblkV(3,5), i, jmax)

ENDDO

! edge (10)

DO i = 2, jmax - 1
xp(l,imax,i,1) = UniformSpacing(xblkv(l,2), xblkVv(l,6), i, Jmax)
Xp(2,imax,i,1) = UniformSpacing(xblkV(2,2), xblkV(2,6), i, jmax)

28

Chapter 2. FORTRAN 90 Source code




GridGen Documentation, Release 0.0.1

xp(3,imax,i,1) = UniformSpacing(xblkV(3,2), xblkV(3,6), i, Jmax)
ENDDO
! edge (11)
DO i = 2, jmax - 1

i, kmax) = UniformSpacing(xblkV(l,3), xblkv(l,7), i, Jjmax)
UniformSpacing (xblkV(2,3), xblkv(2,7), i, Jmax)
i,kmax) = UniformSpacing(xblkV(3,3), xblkv(3,7), i, jmax)

14
xp (1,1,
xp(2,1,1, kmax)
xp (3,1,

ENDDO

! edge (12)

DO i = 2, jmax - 1
xp(1l,imax,i,kmax) = UniformSpacing(xblkVv(l,4), xblkv(l,8), i,
Xp (2, imax,i,kmax) = UniformSpacing(xblkVv(2,4), xblkv(2,8), i,
xp (3, imax, i, kmax) = UniformSpacing(xblkV(3,4), xblkv(3,8), i,

ENDDO

END SUBROUTINE

USE SimulationVars_m, ONLY: imax, jmax, kmax, &
xp, xblkV, cyl

USE SimulationSetup_m, ONLY: UniformSpacing

IMPLICIT NONE

INTEGER :: i, 3, k

WRITE(*,'(a)') nn
WRITE (%, ' (a)') "Writing grid points on block surface..."

LI e o o
! "front plane"

'k=kmax @---Q@--—-@-—-@-—-@
! | | \ | | @: edge points (known)
! @-—-0-—--0-——-0---@ o©: interior points (unknown)
! | | \ | I
! @-——o0-———o0—-——0——-Q@
! | | \ | I
! k=1 @———Q@-——Q@-——@-——-0@
! i=1 i=imax
! x-coordinate is determined along the i=const lines
! y-coordinate is same as y of corner (1)
! z—coordinate is determined along the k=const lines
Vbt ++++++++++++++++++++
DO i = 2, imax - 1
= kmax - 1
= UniformSpacing(xp(1,1i,1,1), xp(l,1i,1,kmax),
UniformSpacing(xp(2,1i,1,1), xp(2,1i,1,kmax),
,k) = GridStretching(xp(3,1i,1,1), xp(3,1i,1,kmax),

~ ~
[
~ ~
~ oA
o

ENDDO
Vbt +++++ 4+
! "back plane"

jmax)
jmax)
Jmax)

k,
k’
Kk,

kmax)
kmax)
kmax,

cyl)

2.3. main directory

29




GridGen Documentation, Release 0.0.1

! -——= x (1)

! x—coordinate is determined along the i=const lines
! y-coordinate is same as y of corner (5)

! z—coordinate is determined along the k=const lines
'+ +++++++++++H++H

DO i = 2, imax - 1
DO k = 2, kmax - 1
xp(l,1, jmax,k) = xp(l,1,1,k)
xp (2,1, jmax,k) = UniformSpacing(xp(2,i, jmax,1),
xp (3,1, jmax,k) = xp(3,1,1,k)
ENDDO
ENDDO
e L o S B B
! "left plane"
! +
! /|
! /| j-k plane (i = 1)
! /|
! + +
! I/ z(k) y(3)
! |/ [/
! |/ |/
! 1 |/

! x-coordinate is same as x of corner (1)

! y—coordinate is determined along the j=const lines
! z—coordinate is determined along the k=const lines
L e o

xp (2,1, jmax, kmax),

DO j = 2, jmax — 1
DO k = 2, kmax - 1
xp(1l,1,3,k) = UniformSpacing(xp(1,1,73,1), xp(l,1,7J,kmax), k, kmax)
xp(2,1,3,k) = UniformSpacing(xp(2,1,73,1), xp(2,1,]j,kmax), k, kmax)
xp(3,1,3,k) = GridStretching(xp(3,1,3,1), xp(3,1,]j,kmax), k, kmax,
ENDDO
ENDDO

L A o e o o o e o
! "right plane"

j-k plane (i = imax)

! 2 I/

! x-coordinate is same as x of corner (2)

! y-coordinate is determined along the j=const lines
! z-coordinate is determined along the k=const lines
e L o o o A

DO j = 2, jmax - 1
DO k = 2, kmax - 1
xp(l,imax, j,k) = UniformSpacing(xp(l,imax, j, 1),
xp(2,1imax, j, k) = xp(2,1,3,k)
xp (3,imax, j, k) = xp (3,1, J,k)

xp (1, imax, j, kmax),

k, kmax)

cyl)

k,

kmax)

30

Chapter 2. FORTRAN 90 Source code




GridGen Documentation, Release 0.0.1

ENDDO
ENDDO

L T e A e e i o o o o o o o
! "bottom plane"

! 1l + ———=>x (1)

! x-coordinate is determined along the i=const lines
! y-coordinate is determined along the j=const lines
! z—coordinate is same as z of corner (1)

LI o

DO i = 2, imax - 1
DO j = 2, jmax - 1
xp(l,1,3,1) = UniformSpacing(xp(l,1i,1,1), xp(l,i, jmax,1l), Jj, Jmax)
xp(2,1,3,1) = UniformSpacing(xp(2,1,1,1), xp(2,1i, jmax,1l), Jj, Jmax)
xp(3,1,3,1) = xp(3,1i,1,1)
ENDDO
ENDDO
L e i S o e o o e e o o e o o o o o o o i
! "top plane"
! fom +
! / /vy (3)

! / i-3j plane / /

! /  (k = kmax) / /

! 3 + ———=>x (1)

! x-coordinate is determined along the i=const lines
! y-coordinate is determined along the j=const lines
! z—coordinate 1s same as z of corner (3)

L o o o el S

DO i = 2, imax - 1
DO j = 2, jmax - 1
xp (1,1, j,kmax) = xp(l,i,1,kmax)
xp (2,1, j,kmax) = xp(2,1,7,1)
xp (3,1, j,kmax) = UniformSpacing(xp(3,1i,1,kmax), xp(3,1, jmax,kmax), Jj, Jmax)
ENDDO
ENDDO
END SUBROUTINE
o |
SUBROUTINE GeneratelInteriorPoints ()
| |
USE SimulationVars_m, ONLY: imax, jmax, kmax, &
xp, xblkV, cyl
USE SimulationSetup_m, ONLY: UniformSpacing
IMPLICIT NONE
INTEGER :: i, j, k
WRITE (%, '(a)') ""
WRITE (%, ' (a)') "Writing interior grid points..."
DO i = 2, imax -1
DO k = 2, kmax - 1
DO j = 2, Jmax — 1
xp(l,1,3,k) = UniformSpacing(xp(1l,1i,1,k), xp(l,1i, jmax,k), Jj, Jmax)
xp(2,1,3,k) = UniformSpacing(xp(2,1i,1,k), xp(2,1i, jmax,k), Jj, Jmax)
2.3. main directory 31




GridGen Documentation, Release 0.0.1

xp(3,1,J,k) = GridStretching(xp(3,1i,1,k), xp(3,1i, jmax, k),

ENDDO
ENDDO
ENDDO
END SUBROUTINE

END MODULE GridSetup_m

3s

Jmax,

cyl)

2.3.6 GridTransform.F90

!> \file GridTransform.F90
!> \author Sayop Kim

MODULE GridTransform_m
USE Parameters_m, ONLY: wp
USE io_m, ONLY: iControl, WriteRMSlog, filenamelength
USE SimulationVars_m, ONLY: nmax

USE GridTransformSetup_m, ONLY: InitializeArrays, CalculateAl23,

CalculatePiPsi, ThomasLoop, &

CopyFrontTOBack, CalculateGridJacobian,

RMSres, RMScrit
USE GridSetup_m, ONLY: GeneratelInteriorPoints
IMPLICIT NONE
CHARACTER (LEN=filenameLength) :: RMSlogfile = 'RMSlog.dat'
CONTAINS

IMPLICIT NONE
INTEGER :: n

CALL InitializeArrays
IF ( iControl == 1) CALL CalculatePiPsi
DO n = 1, nmax
CALL CalculateAl23
CALL ThomasLoop
CALL WriteRMSlog(n,RMSlogfile)
IF (RMSres <= RMScrit) EXIT
ENDDO
CALL CopyFrontTOBack
CALL GenerateInteriorPoints
CALL CalculateGridJacobian
END SUBROUTINE GridTransform

END MODULE

2.3.7 GridTransformSetup.F90

!> \file GridTransformSetup.F90
!> \author Sayop Kim

MODULE GridTransformSetup_m
USE Parameters_m, ONLY: wp

32 Chapter 2. FORTRAN 90 Source code




GridGen Documentation, Release 0.0.1

USE SimulationVars_m, ONLY: imax, jmax, kmax, &
xp, cy2, cy3
IMPLICIT NONE

PUBLIC CalculateAl23, CalculatePiPsi, ThomasLoop, &
RMScrit, RMSres

REAL (KIND=wp), ALLOCATABLE, DIMENSION(:,:,:,:,:) :: InverseGridMetrics
REAL (KIND=wp), ALLOCATABLE, DIMENSION(:,:,:) :: Al, A2, A3, Pi, Psi
REAL (KIND=wp) :: RMScrit, RMSres

CONTAINS

IMPLICIT NONE

ALLOCATE (Al (imax, 1, kmax) )
ALLOCATE (A2 (imax, 1, kmax) )
ALLOCATE (A3 (imax, 1, kmax) )
Al = 0.0_wp
A2 = 0.0_wp
A3 = 0.0_wp

ALLOCATE (Pi (imax, 1, kmax) )
ALLOCATE (Psi (imax, 1, kmax) )
Pi = 0.0_wp
Psi = 0.0_wp

END SUBROUTINE InitializeArrays

! Evaluate Al, A2, A3 coefficients before looping Thomas method

'"'Al = (x_k)"2 + (z_k)"2
' A2 = (x_1)*(x_k) + (z_i)=*(z_k)
' A3 = (x_1)7"2 + (z_1i)"2

IMPLICIT NONE

INTEGER :: i, J, k

! i: derivative w.r.t ksi

! _k: derivative w.r.t zeta

REAL (KIND=wp) x_1i, z_i, x_k, z_k

! Evaluate only on j=1 surface (2D i-k front plane)
j =1

'WRITE (%, "(a) ') ""

'WRITE (%, '(a)') "Calculating Al, A2, A3 coefficients for the governing equation..."
DO i = 2, imax - 1
DO k = 2, kmax - 1
x_1 = 0.5_wp *» (xp(l,i+1,73,k) - xp(l,i-1,73,k))
z_1 = 0.5_wp * (xp(3,i+1l,3,k) - xp(3,i-1,73,k))
x_k = 0.5_wp » (xp(l,1i,3,k+1) - xp(1l,i,],k-1))
z_k = 0.5_wp » (xp(3,1i,3,k+1) - xp(3,1i,73,k-1))
Al (i, J,k) = x_k*x*x2 + z_k**2

2.3. main directory 33




GridGen Documentation, Release 0.0.1

A2(i,J,k) = x_ixx_k + z_ixz_k
A3(i,J,k) = x_ix*x2 + z_1i%*2
ENDDO
ENDDO

END SUBROUTINE CalculateAl23

Initialize Pi and Psy value before moving into pseudo time loop.
USE SimulationSetup_m, ONLY: UniformSpacing, GridStretching

IMPLICIT NONE
INTEGER :: i, j, k
! i: derivative w.r.t ksi
!' _k: derivative w

REAL (KIND=wp)

.r.t zeta
x_ i, z_1i, x_ii, =z_1ii, &
x_k, z_k, x_kk, z_kk

! Evaluate only on j=1 surface (2D i-k front plane)
j =1

WRITE (%, '(a)') ""

WRITE (*,'(a)') "Calculating Pi and Psi variables for controling elliptic grid..."
! Evaluate Psi on the boundaries (i=1, i=imax)
DO i = 1, imax, imax - 1
DO k = 2, kmax - 1
x_k = 0.5_wp » (xp(l,1i,3,k+1) - xp(1l,i,]J,k-1))
z_k = 0.5_wp » (xp(3,1i,3,k+1) - xp(3,1i,3,k-1))
x_kk = xp(1,1,J,k+1) - 2.0_wp * xp(1,1i,73,k) + xp(1,1i,]J,k-1)
z_kk = xp(3,1i,3,k+1) - 2.0_wp » xp(3,1i,3,k) + xp(3,1,3,k-1)
IF (abs (x_k) > abs(z_k)) THEN
Psi(i, j,k) = -x_kk / x_k
ELSE
Psi(i, j,k) = -z_kk / z_k
ENDIF
ENDDO

ENDDO
! Evaluate Pi on the boundaries (k=1, k=kmax)
DO k = 1, kmax, kmax - 1

DO i = 2, imax - 1
x_i = 0.5_wp * (xp(l,i+1,79,k) - xp(l,1i-1,7,k))
z_1 = 0.5_wp * (xp(3,i+1,3,k) - xp(3,1i-1,73,k))
x_1ii = xp(1l,i+1,3,k) - 2.0_wp * xp(l,i,3,k) + xp(1l,i-1,73,k)
z_ii = xp(3,i+1,3,k) - 2.0_wp * xp(3,1,3,k) + xp(3,i-1,7,k)
IF (abs(x_i) > abs(z_i)) THEN
Pi(i,j, k) = -x_1i / x_1
ELSE
Pi(i,j, k) = —-z_1ii / z_1i
ENDIF
ENDDO
ENDDO

! Evaluate Pi and Psi at interior points

DO i = 2, imax - 1
DO k = 2, kmax - 1
'Psi(i, j, k) = UniformSpacing(Psi(l, j, k), Psi(imax, j,k), i, imax)

34 Chapter 2. FORTRAN 90 Source code




GridGen Documentation, Release 0.0.1

Psi(i, j, k) = GridStretching(Psi(1l, j, k), Psi(imax,j,k), i, imax, cy3)

'Pi(i, j, k) = UniformSpacing(Pi(i, j,1), Pi(i, j,kmax), k, kmax)

Pi(i,3j,k) = GridStretching(Pi(i,j,1), Pi(i, j,kmax), k, kmax, cy2)
ENDDO

ENDDO
END SUBROUTINE CalculatePiPsi

! Thomas method for solving tridiagonal matrix system
! This subroutine should be run in a pseudo time loop
IMPLICIT NONE

INTEGER :: i, j, k

REAL (KIND=wp), DIMENSION (imax) :: a, b, c, d
REAL (KIND=wp) :: x_ik, x_k, z_ik, z_k

RMSres = 0.0_wp

3 =1

DO k = 2, kmax - 1
! Calculate governing equation w.r.t x-coordinate

DO i = 1, imax
IF( 1 == 1 .or. i == imax ) THEN
a(i) = 0.0_wp
b(i) = 1.0_wp
c(i) = 0.0_wp
d(i) = xp(1,1,3,k)
ELSE
a(i) = A1(i,3,k) = (1.0_wp — 0.5_wp = Pi(i,j,k))
b(i) = -2.0_wp » (Al(i,]J,k) + A3(i, 3, k))
c(i) = Al(i,3,k) » (1.0_wp + 0.5_wp = Pi(i,],k))
x_k = 0.5_wp * (xp(l,i,],k+1) - xp(l,i,j,k=-1))
x_ik = 0.25_wp * ( xp(l,i+1,3,k+1) - xp(l,1i+1,3,k-1) &
-xp(l,i-1,3,k+1) + xp(l,i-1,73,k-1) )
d(i) = 2.0_wp » A2(i,3,k) = x_ik - A3(i,J,k) * ( xp(l,i,],k+1) + &
xp(l,1i,3,k-1) + &
Psi(i, j, k) » x_k )
ENDIF
ENDDO

! Call Thomas method solver

CALL SY (1, imax, a, b, c, d)

! Update values at n+l pseudo time

DO i = 1, imax
RMSres = RMSres + (d(i) - xp(l,1i,73,k)) ** 2
xp(l,1i,3,k) = d(i)

ENDDO

! Calculate governing equation w.r.t x—-coordinate
DO i =1, imax

IF( i == 1 .or. i == imax ) THEN
a(i) = 0.0_wp
b(i) = 1.0_wp
c(i) = 0.0_wp
d(i) = xp(3,1,73,k)
ELSE
a(i) = Al(i,3,k) » (1.0_wp - 0.5_wp  Pi(i,j,k))

2.3. main directory 35



GridGen Documentation, Release 0.0.1

b (1)
c (1)
z_k
z_1ik

= -2.0_wp *
Al (i, 3, k)
0.5_wp » (xp(3,1,3,k+1)
0.25_wp *

(A1(i,3,k) + A3(i,J,k))

*

- xp(3,1i,3,k-1))
( xp(3,1+1,3,k+1)
-xp(3,1i-1, 3, k+1)
2.0_wp * A2(1i,7,k)

* z_1ik - A3 (i, j, k)

*

ENDIF
ENDDO
! Call Thomas method solver
CALL SY (1, imax, a, b, c, d)
! Update values at n+l pseudo time
DO i = 1, imax
RMSres RMSres +
xp(3liljlk) = d(i)
ENDDO
ENDDO
END SUBROUTINE ThomasLoop

(d(1) 2

* K

- Xp(3/irj,k))

IMPLICIT NONE
INTEGER, INTENT (IN)
REAL (KIND=wp) ,
REAL (KIND=wp) ,

IL, IU
DIMENSION (IL:IU),
DIMENSION (IL:IU),

INTENT (IN)
INTENT (INOUT)

AA, BB
cc, DD

INTEGER LP,

REAL (KIND=wp)

I, J
R

IL + 1

CC(IU) /DD (IU)
LP, IU
J =10 -1 + IL
CC (J) (cc(J)
ENDDO
END SUBROUTINE SY

- AA(J)*CC(J+1)) /DD (J)

ONLY:
ONLY:

USE SimulationVars_m,
USE SimulationSetup_m,

imax, Jjmax, kmax,

UniformSpacing

XpP

IMPLICIT NONE

INTEGER i, k

DO i = imax - 1

2,

- xp(3!i+lljlk_l)
+ xp(3,i-1,3,k-1)

(1.0_wp + 0.5_wp * Pi(i, ], k))

&
)
( xp(3,1i,3,kt1)

xp(3,1i,3,k-1)
Psi(i,J,k) % z_k )

+ &
+ &

36

Chapter 2. FORTRAN 90 Source code




GridGen Documentation, Release 0.0.1

DO k = 2, kmax - 1

xp (1,1, jmax,k) = xp(l,1i,1,k)
xp (2,1, jmax,k) = UniformSpacing(xp(2,i, jmax,1l), xp(2,1i, jmax,kmax), k, kmax)
xp(3liljmaxlk) = xp(3lllllk)

ENDDO

USE SimulationVars_m, ONLY: imax, Jmax, kmax, xp, inverseJacobian

IMPLICIT NONE

INTEGER :: i, Jj, k
! xgst, ygst, zgst: arbitrary ghost cell points
REAL (KIND=wp) :: x_1i, y_i, =z_i, x_3j, v_3, z_3j, x_k, y_k, z_k, &

xgst, ygst, zgst

DO i = 1, imax
DO j = 1, Jjmax
DO k = 1, kmax

! calculate x_i, y_i, z_1i

IF ( 1 == 1 ) THEN
xgst = xp(l,1i,3,k) - (xp(l,i+1,3,k) - xp(l,1i,3,k))
ygSt = Xp(zllljrk) - (Xp(211+lljrk) - Xp(zllrjlk))
zgst = xp(3,1i,7J,k) - (xp(3,1+1,3,k) - xp(3,1i,3,k))

x i =0.5_wp » (xp(l,i+1,3,k) - xgst)

y_i = 0.5_wp * (xp(2,i+1,7j,k) - ygst)

z_1i 0.5_wp » (xp(3,1i+1,73,k) - zgst)
ELSEIF ( i1 == imax ) THEN

XgSt = Xp(l,l,],k) + (Xp(l/lrjrk) - Xp(lrl_lrj/k))
ygst = Xp(2rlr]lk) + (Xp(zrlr]rk) - Xp(zrl_lrjlk))
zgst = xp(3,1,3,k) + (xp(3,1i,3,k) - xp(3,1-1,3,k))

x_1 = 0.5_wp * (xgst - xp(l,i-1,7,k))
y_i = 0.5_wp *x (ygst - xp(2,1i-1,7,k))
z_i = 0.5_wp » (zgst - xp(3,i-1,7,k))
ELSE
x_ 1 =0.5_wp » (xp(l,i+1,3,k) - xp(l,i-1,7,k))

y_i = 0.5_wp * (xp(2,i+1,73,k) - xp(2,1i-1,7,k))
z_1i = 0.5_wp * (xp(3,i+1,3,k) - xp(3,i-1,7,k))
ENDIF
! calculate x_3j, v_3J, z_]j
IF ( §j == 1 ) THEN
xgst = xp(l,i,3,k) - (xp(l,i,3+1,k) - xp(1,1i,7,k))
ygst = xp(2,i,3,k) - (xp(2,1,3+1,k) - xp(2,1,3,k))
zgst = xp(3,i,3,k) - (xp(3,i,3+1,k) - xp(3,1i,3,k))

x_3 = 0.5_wp » (xp(l,i,J+1,k) - xgst)

v_J 0.5_wp * (xp(2,1i,3j+1,k) - ygst)
z_3 = 0.5_wp * (xp(3,1i,Jj+1,k) — zgst)
ELSEIF ( j == jmax ) THEN
xgst = xp(1l,1i,3,k) + (xp(l,i,3,k) - xp(l,1i,3-1,%k))
ygSt = Xp(zllr]rk) + (XP(2rlr]rk) - Xp(zrirj_llk))
zgst = xp(3,1,3,k) + (xp(3,1,3,k) - xp(3,1,3-1,%))
X_J 0.5_wp * (xgst - xp(l,i,3-1,k))
v_3 = 0.5_wp » (ygst - xp(2,1i,3-1,k))

2.3. main directory 37



GridGen Documentation, Release 0.0.1

z_j = 0.5_wp % (zgst - xp(3,1,3-1,%k))

ELSE

X_] = O5_Wp * (Xp(lrll]+1rk)
yv_3 = 0.5_wp * (xp(2,1i,3+1,k)
z_3 = 0.5_wp » (xp(3,1i,3+1,k)

ENDIF

! calculate x_k, vyv_k, z_k

IF ( k == 1 ) THEN
xgst = xp(l,i,J,k) - (xp(
ygst = xp(2,1,J,k) - (xp(
ZgSt = Xp(Brlr]lk) - (XP(
x_k = 0.5_wp * (xp(l,1i,],

y_k = 0.5_wp * (xp(2,1i,7,
z_k 0.5_wp » (xp(3,1, 3,
ELSEIF ( k == kmax ) THEN
xgst xp(l,1i,3,k) + (xp(
ygst = xp(2,1,J,k) + (xp(
zgst = xp(3,1i,3,k) + (xp(

- xp(l,1i,3-1,k))
- Xp(zlllj_llk))
- Xp(3lll j_lrk))

1Iiljlk+l) - xp(lll/]lk))
Zliljlk+l) - Xp(zllrj/k))
3Ii!j!k+1) - Xp(Brlrjlk))

k+1) - xgst)
k+1) - ygst)
k+1) - zgst)

lliljlk) - Xp(lrlr]rk_l))
Z,i,j,k) - Xp(2,i,j,k—1))
3Iiljlk) - Xp(3ll/]/k71))

x_k = 0.5_wp » (xgst - xp(l,i,]j,k-1))

y_k = 0.5_wp * (xp(2,1i,7,
z_k = 0.5_wp > (xp(3,1i,73,
ELSEIF ( k == kmax ) THEN
xgst = xp(l,i,j,k) + (xp
ygst xp(2,1,3,k) + (xp
zgst = xp(3,1i,J,k) + (xp(

k+1) - ygst)
k+1) - zgst)

l,i,j,k) - Xp(l,i,j,k—l))
Zliljlk) - Xp(2ll/]rk71))
3Iiljlk) - Xp(3rlr]rk_l))

x_k = 0.5_wp * (xgst - xp(l,1i,3,k-1))
yv_k = 0.5_wp » (ygst - xp(2,1i,3,k-1))
z_k = 0.5_wp * (zgst - xp(3,1i,7J,k-1))

ELSE
X_k = 05_Wp * (xp(lrlljl
y_k = 0.5_wp * (xp(2,1i,],
z_k = 0.5_wp * (xp(3,1i,7,

ENDIF
! Calculate 1/J: Inverse of grid Jacobian
inverseJacobian (i, j, k) = x_i «*
X_J
ENDDO
ENDDO

ENDDO

END SUBROUTINE CalculateGridJacobian

END MODULE

k+1) - xp(1l,1i,3,k-1))
k+1) - Xp(leljlk_l))
k+1) - Xp(3/lljlk_1))

(v_3 » z_k -y k » z_3J) - &
&

* (y_1 * z_k - y_k x z_1) +
X_k * (y_i *x z_j - vyv_J = z_1i)

2.3.8 SimulationSetup.F90

!> \file SimulationSetup.F90
!> \author Sayop Kim

MODULE SimulationSetup_m
USE Parameters_m, ONLY: wp
IMPLICIT NONE

PUBLIC :: InitializeCommunication, UniformSpacing,

GridStretching

38

Chapter 2. FORTRAN 90 Source code




GridGen Documentation, Release 0.0.1

CONTAINS

USE Parameters_m, ONLY: CODE_VER_STRING
IMPLICIT NONE

WRITE(*,l(a)V) nn
WRITE (%, '(a)') "CFD code Version: ", CODE_VER_STRING

END SUBROUTINE InitializeCommunication

FUNCTION UniformSpacing (xmin, xmax,indx, indxMax) RESULT (outcome)

!Distribute interior grid points based on edge points' coordinates.

!Linear Interpolateion is made by referring to (i, j,k) indices
IMPLICIT NONE
REAL (KIND=wp), INTENT (IN) :: xmin, xmax
INTEGER, INTENT (IN) :: indx, indxMax
REAL (KIND=wp) :: outcome, coef
coef = REAL(indx - 1) / REAL(indxMax - 1)
outcome = xmin + coef x (xmax — xmin)
END FUNCTION UniformSpacing

FUNCTION GridStretching(xmin, xmax,indx, indxMax,cy) RESULT (outcome)

'Distribute interior grid points based on stretching coefficient
!Interpolateion is made by referring to (i, j,k) indices

IMPLICIT NONE

REAL (KIND=wp) :: CYy

REAL (KIND=wp), INTENT(IN) :: xmin, xmax

INTEGER, INTENT (IN) :: indx, indxMax

REAL (KIND=wp) :: outcome, coef

coef = log(l.0_wp + (exp(-cy) - 1.0_wp) * REAL(indx - 1) / REAL(indxMax - 1))
outcome = xmin - coef * (xmax - xmin) / cy

END FUNCTION GridStretching

END MODULE SimulationSetup_m

2.3. main directory

39



	Contents
	Project description
	Code development
	How to run the code
	Results summary

	FORTRAN 90 Source code
	CMakeList.txt
	io directory
	main directory


