Greenplum-Spark Connector Examples
Documentation

kong-yew,chan

Feb 06, 2019

Contents

Overview

1.1 Pivotal Greenplum,
1.2 Pivotal Greenplum-Spark Connector
1.3 ApacheSpark.
Prerequisites

2.1 Whatyouneedtoknow L.
22 Software

Setup Greenplum and Spark

3.1 Pre-requisites:
3.2 Usingdocker-compose
3.3 Setup Greenplum with sample tables
3.4 Connect to Spark master instance
3.5 Connect to Greenplum instance

How to setup Greenplum database and table

4.1 Pre-requiSites: i it e e e e e e e
4.2 Runthedockerinstances:
4.3 Verify the docker instance is running:
44 HowtorunthesetupDB:

Reading data from Greenplum into Spark

5.1 Conclusions o o i i e e e

Writing data from Spark into Greenplum

Writing data from Spark into Greenplum via JDBC

Using PySpark

8.1 How to read data from Greenplum into Spark
8.2 How to write data from Spark DataFrame into Greenplum

About Greenplum-Spark examples

9.1 AbouttheAuthor.,
0.2 QUESHION: i e e e e e e e e e e e

10 Indices and tables

—_ =

W W W

AN N L W

AU NEENEEN N |

o

13

15

17

.............................. 17
....................... 18

21

................... 21
................... 21

23

CHAPTER 1

Overview

1.1 Pivotal Greenplum

The Pivotal Greenplum Database is an advanced, fully featured, open source data warehouse. It provides powerful
and rapid analytics on petabyte scale data volumes. Uniquely geared toward big data analytics, Greenplum Database
is powered by the world’s most advanced cost-based query optimizer delivering high analytical query performance on
large data volumes.

1.2 Pivotal Greenplum-Spark Connector

The Pivotal Greenplum Spark Connector provides high speed, parallel data transfer between Greenplum Database and
Apache Spark clusters to support:

* Interactive data analysis
* In-memory analytics processing

e Batch ETL

1.3 Apache Spark

Apache Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java,
Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a
rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLIib for machine learning, GraphX for
graph processing, and Spark Streaming for stream processing.

References: - [Introduction](https://gitpitch.com/kongyew/greenplum-spark-connector) - [Greenplum-Spark connec-
tor docs](http://greenplum-spark.docs.pivotal.io/latest/index.html)

https://pivotal.io/pivotal-greenplum
http://greenplum-spark.docs.pivotal.io/latest/index.html
http://spark.apache.org
https://gitpitch.com/kongyew/greenplum-spark-connector
http://greenplum-spark.docs.pivotal.io/latest/index.html

Greenplum-Spark Connector Examples Documentation

2 Chapter 1. Overview

CHAPTER 2

Prerequisites

2.1 What you need to know

The tutorial assumes some basic familiarity with commandline prompt in a terminal.
You’ll need to know basic knowledge about Pivotal Greenplum. and Apache Spark.
Git repository : ‘https://github.com/kongyew/greenplum-spark-connector’.

Greenplum-Spark connector documentation: <http://greenplum-spark.docs.pivotal.io>

2.2 Software

The tutorial assumes that you’re using a Unix-like system and docker.

If your system already has Docker and Docker-compose running that you’ve installed, you probably already have what
you need and know what you need to know.

2.2.1 Docker-Compose

You’ll need a reasonably up-to-date version of Docker-compose installed on your machine. 1.14.0 or newer should be
fine.

2.2.2 Greenplum-Spark connector

Please download the Greenplum-Spark connector jar from Pivotal Network.

https://pivotal.io/pivotal-greenplum
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://github.com/kongyew/greenplum-spark-connector/
http://greenplum-spark.docs.pivotal.io
https://network.pivotal.io/products/pivotal-gpdb/#/releases/280281/file_groups/702

Greenplum-Spark Connector Examples Documentation

4 Chapter 2. Prerequisites

CHAPTER 3

Setup Greenplum and Spark

This page describes how to setup Greenpum and Spark dockers

3.1 Pre-requisites:

* docker compose
¢ Greenplum Spark connector

* Postgres JDBC driver - if you want to write data from Spark into Greenplum.

3.2 Using docker-compose

To create a standalone Greenplum cluster with the following command in the root directory. It builds a docker image
with Pivotal Greenplum binaries and download some existing images such as Spark master and worker. Initially, it
may take some time to download the docker image.

$./runDocker.sh -t usecasel -c up

Creating network “usecasel_default” with the default driver Creating sparkmaster ... done Creating gpdbsne ... done
Creating sparkworker ... done

The SparkUI will be running at http://localhost:8081 with one worker listed.

3.3 Setup Greenplum with sample tables

Click on the section “Create database and table”

http://docs.docker.com/compose
http://greenplum-spark.docs.pivotal.io/latest/index.html
https://jdbc.postgresql.org/download/postgresql-42.1.4.jar

Greenplum-Spark Connector Examples Documentation

3.4 Connect to Spark master instance

1. Connect to the Spark master docker image

’$ docker exec -it sparkmaster /bin/bash

3.5 Connect to Greenplum instance

1. Connect to the GPDB docker image

$ docker exec —-it gpdbsne bin/bash
root@master:/usr/spark-2.1.0#

Chapter 3. Setup Greenplum and Spark

CHAPTER 4

How to setup Greenplum database and table

This readme describes how to setup Greenplum database and table(s).

4.1 Pre-requisites:

* docker-compose.

4.2 Run the docker instances:

You can run spark and GPDB instances by using existing scripts.

’$./runDocker.sh -t usecasel -c up

4.3 Verify the docker instance is running:

Make sure the docker instances are running by running docker ps

’$ docker ps

4.4 How to run the setupDB:
This setupDB.sh script automatically creates default database and table(s). The script is located under
<src>/data/scripts/setupDB.sh.

1. Connect to the GPDB docker image The Greenplum DB cluster will be running with this instance name: gpdbsne
with two segments. To access this docker instance, exec into a container:

http://docs.docker.com/compose

Greenplum-Spark Connector Examples Documentation

’$ docker exec -it gpdbsne bin/bash

2. Execute the command below to access the scripts folder under “/code/data”

’[root@d632f535db87}# cd /code/data

3. Run scripts/setupDB.sh, in order to create a database and table.

[root@d632f535db87 datal # scripts/setupDB.sh

psqgl:./sample_table.sqgl:1: NOTICE: table "basictable" does not exist, skipping
DROP TABLE

psgl:./sample_table.sgl:5: NOTICE: CREATE TABLE will create implicit sequence
—"basictable_id_seqg" for serial column "basictable.id"

CREATE TABLE

INSERT 0 1
INSERT 0 1
INSERT 0 1
INSERT 0 1
INSERT 0 1
INSERT 0 1
INSERT 0 1
INSERT 0 1
INSERT O 1
INSERT 0 9
INSERT O 18
INSERT 0 36
INSERT 0 72
INSERT 0 144
INSERT 0 288
INSERT 0 576
INSERT 0 1152
INSERT 0 2304
0

INSERT 4608

4. Run the following psql command to verify database (basic_db) and table (basictable) are created correctly.

[root@d632f535db87 datal# psqgl —-h localhost -U gpadmin —-d basic _db —c "\dt"
List of relations

Schema | Name | Type | Owner
———————— B A
public | basictable | table | gpadmin

(1 row)

[root@d632£535db87 datal# psgl —-h localhost -U gpadmin -d basic_db -c "select_,
—count () from basictable"
count

8 Chapter 4. How to setup Greenplum database and table

CHAPTER B

Reading data from Greenplum into Spark

In this example, we will describe how to configure Greenplum-Spark connector when you run Spark-shell. It assumes
the database and table are already created.

1. Make sure you download greenplum-spark_2.11-x.x.jar from Pivotal Network.

2. Connect to the Spark master instance.

$ docker exec —it sparkmaster /bin/bash

3. Run the command to start a spark shell that loads Greenplum-Spark connector. This section assumes
you have downloaded greenplum-spark_2.11.jar under the github repo with subfolder scripts. The root
directory is mounted by the docker images under /code directory. You can also use scripts such as
scripts/download_postgresql.sh and scripts/download_greenplum-spark-connector.sh to download required bi-
naries.

Also, we included Postgresql, in order to write data from Spark into Greenplum. Greenplum-Spark connector will
support write features in future release and support parallel data transfer that performs significantly better than JDBC
driver.

root@master:/usr/spark—-2.1.0#GSC_JAR=S$ (ls /code/scripts/greenplum-spark_2.11—-%*.
—jar)

root@master:/usr/spark-2.1.0#POSTGRES_JAR=$ (1ls /code/scripts/postgresgl-*.jar)

root@master:/usr/spark-2.1.0#spark-shell --jars "${GSC_JAR}, S{POSTGRES_JAR}" ——
—driver-class-path ${POSTGRES_JAR}

Using Scala version 2.11.8 (Java HotSpot (TM) 64-Bit Server VM, Java 1.8.0_112)
Type in expressions to have them evaluated.

Type :help for more information.

scala>

4. Verify Greenplum-Spark driver is successfully loaded by Spark Shell. You can follow the example below to verify
the Greenplum-Spark driver. The scala repl confirms the driver is accessible by returning resO result.

scala> Class.forName ("io.pivotal.greenplum.spark.GreenplumRelationProvider")
res0: Class[_] = class io.pivotal.greenplum.spark.GreenplumRelationProvider

https://network.pivotal.io/api/v2/products/pivotal-gpdb/releases/7106/product_files/30352/download/

Greenplum-Spark Connector Examples Documentation

Verify JDBC driver is successfully loaded by Spark Shell. You can follow the example below to verify the JDBC
driver. The scala repl confirms the driver is accessible by returning res/ result.

scala> Class.forName ("org.postgresgl.Driver")
resl: Class[_] = class org.postgresgl.Driver

5. By default, you can run the command below to retrieve data from Greenplum with a single data partition in
Spark cluster. In order to paste the command, you need to type :paste in the scala environment and paste the
code below, followed by Ctri-D.

scala> :paste

// Entering paste mode (ctrl-D to finish)

// that gives an one-partition Dataset

val dataFrame = spark.read.format ("io.pivotal.greenplum.spark.

—GreenplumRelationProvider™")

.option("dbtable", "basictable")

.option ("url", "jdbc:postgresql://gpdbsne/basic_db")

.option (

.option ("password", "pivotal")
(
(

'user", "gpadmin")

.option("driver", "org.postgresqgl.Driver")
.option("partitionColumn", "id")
.load ()

// Exiting paste mode, now interpreting.

2. You can verify the Spark DataFrame by running these commands dataFrame.printSchema and
dataFrame.show().

scala> dataFrame.printSchema

root
|-— 1d: integer (nullable = false)
|-— value: string (nullable = true)
scala> dataFrame.show ()
ot +
[id| value |
ot +
1| Alice|
3| Charlie]|
5] Jim|
71 Jack |
9 Zim |
15] Jim|
11 Bob |
13] Eve |

\

\

\

\

\

\

\

\

| 17|Victoria]
| 25|Victoria]
| 27| Alice|
\

\

\

\

\

\

\

\

\

29| Charlie]
31 Zim|
19] Alice|
21| Charlie]
23| Jim|
33| Jim|
35] Eve |
43 |Victorial
45| Alice|
-t +

only showing top 20 rows
scala> dataFrame.filter (dataFrame ("id") > 40) .show ()

(continues on next page)

10 Chapter 5. Reading data from Greenplum into Spark

Greenplum-Spark Connector Examples Documentation

(continued from previous page)

R s -
[id| value |
ot +
| 41| Jim|
| 43] Jack |
| 45| Zim|
| 47| Alice|
| 49| Charlie]
| 51| Jim|
| 53] Jack |
55	Bob
57	Eve
59	John
61	Victoria]
63 Zim	
65] Bob	
67	Eve
69	John
71	Victoria]
73] Bob	
75	Alice]
77	Charlie]
79 Jim	
ot +

only showing top 20 rows

3. You create a temporary table to cache the results from Greenplum and using option to speed your in-memory
processing in Spark cluster. Global temporary view. is tied to a system preserved database global_temp, and
we must use the qualified name to refer it, e.g. SELECT * FROM global_temp.viewl. Meanwhile, Temporary
views in Spark SQL are session-scoped and will disappear if the session that creates it terminates.

scala>

// Register the DataFrame as a global temporary view
dataFrame.createGlobalTempView ("tempdataFrame")

// Global temporary view is tied to a system preserved database ‘global_temp’
spark.sqgl ("SELECT % FROM global_temp.tempdataFrame") .show ()

5.1 Conclusions

Greenplum-Spark connector uses Greenplum gpfdist protocol to parallelize data transfer between Greenplum and
Spark clusters. Therefore, this connector provides better read throughput, compared to typical JDBC driver.

5.1. Conclusions 11

https://spark.apache.org/docs/latest/sql-programming-guide.html

Greenplum-Spark Connector Examples Documentation

12 Chapter 5. Reading data from Greenplum into Spark

CHAPTER O

Writing data from Spark into Greenplum

In this section, you can write data from Spark DataFrame into Greenplum table by using Greenplum-Spark connector.

1. Run the script under scripts/download_postgresql.sh to download postgresql jar to the directory ‘scripts’.

$ scripts/download_postgreql.sh

HTTP request sent, awaiting response... 200 OK
Length: 713037 (696K) [application/java—-archive]
Saving to: ‘postgresqgl-42.1.4.7jar’

postgresqgl-42.1.4.jar 100
[s==========================s========ss=========== >] 696.33K 850KB/s in 0.8s

2017-09-24 20:59:25 (850 KB/s) - ‘postgresql-42.1.4.jar’ saved [713037/713037]

2. Make sure your spark shell is loaded the Postgresq] jar.

3. Determine the number of records in the “basictable” table by using psql command.

$ docker exec —-it docker_gpdb_1 /bin/bash
[root@d632£535db87 datal# psgl —-h localhost -U gpadmin -d basic_db —-c "select,,
—count () from basictable"

4. Configure JDBC URL and connection Properties and use DataFrame write operation to write data from Spark
into Greenplum. You can use different write mode

scala> :paste
// Entering paste mode (ctrl-D to finish)
val jdbcUrl = s"]jdbc:postgresqgl://docker_gpdb_1/basic_db?user=gpadmin&password=pivotal

"
—

val connectionProperties = new Jjava.util.Properties|()

dataFrame.write.mode ("Append") .jdbc(url = jdbcUrl, table = "basictable", |
—connectionProperties = connectionProperties)

// Exiting paste mode, now interpreting.

5. Verify the write operation is successful by exec into GPDB container and run psql command-line. The total
number records in the Greenplum table must be 2x of the original data.

13

Greenplum-Spark Connector Examples Documentation

$ docker exec -it docker_gpdb_1 /bin/bash
[root@d632£535db87 datal # psgl —-h localhost -U gpadmin —-d basic_db —-c "select,,
—count () from basictable"

6. Next, you can write DataFrame data into an new Greenplum table via append mode.

scala>dataFrame.write.mode ("Append") .jdbc(url = jdbcUrl, table = "NEWTable", |
—connectionProperties = connectionProperties)

7. Run psql commands to verify the new table with new records.

[root@d632£535db87 scripts]# psgl —-h localhost —U gpadmin —d basic_db —c "\dt"
List of relations

Schema | Name | Type | Owner
———————— B s s et
public | basictable | table | gpadmin
public | newtable | table | gpadmin
public | spark_7acl947bl17al17725_0_41 | table | gpadmin
public | spark_7acl947bl17al17725_0_42 | table | gpadmin
(4 rows)

14 Chapter 6. Writing data from Spark into Greenplum

CHAPTER /

Writing data from Spark into Greenplum via JDBC

In this section, you can write data from Spark DataFrame into Greenplum table by using JDBC driver.

1. Run the script under scripts/download_postgresql.sh to download postgresql jar to the directory ‘scripts’.

$ scripts/download_postgreql.sh

HTTP request sent, awaiting response... 200 OK
Length: 713037 (696K) [application/java—-archive]
Saving to: ‘postgresqgl-42.1.4.7jar’

postgresqgl-42.1.4.jar 100
[s==========================s========ss=========== >] 696.33K 850KB/s in 0.8s

2017-09-24 20:59:25 (850 KB/s) - ‘postgresql-42.1.4.jar’ saved [713037/713037]

2. Make sure your spark shell is loaded the Postgresq] jar.

3. Determine the number of records in the “basictable” table by using psql command.

$ docker exec —-it docker_gpdb_1 /bin/bash
[root@d632£535db87 datal# psgl —-h localhost -U gpadmin -d basic_db —-c "select,,
—count () from basictable"

4. Configure JDBC URL and connection Properties and use DataFrame write operation to write data from Spark
into Greenplum. You can use different write mode

scala> :paste
// Entering paste mode (ctrl-D to finish)
val jdbcUrl = s"]jdbc:postgresqgl://docker_gpdb_1/basic_db?user=gpadmin&password=pivotal

"
—

val connectionProperties = new Jjava.util.Properties|()

dataFrame.write.mode ("Append") .jdbc(url = jdbcUrl, table = "basictable", |
—connectionProperties = connectionProperties)

// Exiting paste mode, now interpreting.

5. Verify the write operation is successful by exec into GPDB container and run psql command-line. The total
number records in the Greenplum table must be 2x of the original data.

15

Greenplum-Spark Connector Examples Documentation

$ docker exec -it docker_gpdb_1 /bin/bash
[root@d632£535db87 datal # psgl —-h localhost -U gpadmin —-d basic_db —-c "select,,
—count () from basictable"

6. Next, you can write DataFrame data into an new Greenplum table via append mode.

scala>dataFrame.write.mode ("Append") .jdbc(url = jdbcUrl, table = "NEWTable", |
—connectionProperties = connectionProperties)

7. Run psql commands to verify the new table with new records.

[root@d632£535db87 scripts]# psgl —-h localhost —U gpadmin —d basic_db —c "\dt"
List of relations

Schema | Name | Type | Owner
———————— B s s et
public | basictable | table | gpadmin
public | newtable | table | gpadmin
public | spark_7acl947bl17al17725_0_41 | table | gpadmin
public | spark_7acl947bl17al17725_0_42 | table | gpadmin
(4 rows)

16 Chapter 7. Writing data from Spark into Greenplum via JDBC

CHAPTER 8

Using PySpark

In this example, we will describe how to run PySpark-shell.

8.1 How to read data from Greenplum into Spark

1. Connect to the Spark master docker image

’$ docker exec —-it sparkmaster /bin/bash

2. Execute the command below to run pySpark

root@master: /usr/spark-2.1.0#GSC_JAR=S(ls /code/greenplum-spark_2.11-+*.jar)
root@master: /usr/spark-2.1.0#pyspark —-jars "S{GSC_JAR}"

Python 3.4.2 (default, Oct 8 2014, 10:45:20)

[GCC 4.9.1] on linux

Type "help", "copyright", "credits" or "license" for more information.
Setting default log level to "WARN".

To adjust logging level use sc.setLoglLevel (newLevel). For SparkR, use
—setLogLevel (newLevel) .

17/09/23 18:51:37 WARN util.NativeCodeLoader: Unable to load native-hadoop library,,
—for your platform... using builtin-java classes where applicable

Welcome to

Using Python version 3.4.2 (default, Oct 8 2014 10:45:20)
SparkSession available as 'spark'.

3. Verfiy the Greenplum-Spark connector is loaded by pySpark

Use the command sc.getConf{).getAll() to verify spark.repl.local.jars is referring to Greenplum-Spark
connector jar.

4. To load a DataFrame from a Greenplum table in PySpark

17

Greenplum-Spark Connector Examples Documentation

>>>source_df = sglContext.read.format ('io.pivotal.greenplum.spark.
—GreenplumRelationProvider') .options (
url="'jdbc:postgresqgl://docker_gpdb_1/basic_db"',
dbtable='basictable',
user="gpadmin',
password='pivotal',
driver='org.postgresqgl.Driver',
partitionColumn="id"') .load()

5. Verify source dataframe by running these commands

>>> source_df.count ()

18432

>>> source_df.printSchema ()

root
|-— 1d: integer (nullable = false)
|-— value: string (nullable = true)

>>> source_df.show ()

fom +

| id] value |

-t +

| 1] Alice|

| 3] Charlie|

| 5] Jim|

| 71 Jack|

| 9| Zim|

| 13| John |

| 11| Alice|

| 15| Charlie|

| 17| Jack|

| 19| Alice|

| 21 Jim|

| 23] Zim|

| 25| Alice|

| 27 Jack |

| 29| Eve |

| 31|Victoria]

| 33] Eve|

| 35] Jim|

| 37| Bob |

| 39] Eve |

-t +

only showing top 20 rows

8.2 How to write data from Spark DataFrame into Greenplum

In this section, you can write data from Spark DataFrame into Greenplum table.

1. Determine the number of records in the “basictable” table by using psql command.

$ docker exec -it gpdbsne /bin/bash
[root@d632f535db87 datal# psgl -h localhost -U gpadmin -d basic_db -c "select,,
—count (x) from basictable"

2. Configure JDBC URL and connection Properties and use DataFrame write operation to write data from Spark
into Greenplum.

18 Chapter 8. Using PySpark

Greenplum-Spark Connector Examples Documentation

source_df.write.format (' jdbc') .options (
url="'jdbc:postgresql://gpdbsne/basic_db',
dbtable="basictable',
user="'gpadmin',
password='"pivotal',
driver='org.postgresgl.Driver') .mode ('append') .save ()

3. Verify the write operation is successful by exec into GPDB container and run psql command-line. The total
number records in the Greenplum table must be 2x of the original data.

$ docker exec -it gpdbsne /bin/bash

[root@d632£535db87 datal # psgl —-h localhost -U gpadmin —d basic_db —-c "select,,
—count () from basictable"

count

8.2. How to write data from Spark DataFrame into Greenplum 19

Greenplum-Spark Connector Examples Documentation

20 Chapter 8. Using PySpark

CHAPTER 9

About Greenplum-Spark examples

This documentation describes examples with Pivotal Greenplum and Spark by using GPDB-Spark connector and
Postgres JDBC driver.

9.1 About the Author

Kong-Yew,Chan has more than 15 years of experience in product management & development for enterprise and con-
sumer applications. Currently, he is working as Product Manager @Pivotal to develop data integrations for Greenplum
and GemFire platforms. He completed BSc Computer Engineering degree at the prestigious Nanyang Technological
University and MBA at Babson.

9.2 Question:

If you have a problem with any aspect of this documentations, you can contact me at kochan @pivotal.io, and I will do
my best to address the problem.

21

mailto:kochan@pivotal.io

Greenplum-Spark Connector Examples Documentation

22 Chapter 9. About Greenplum-Spark examples

cHAaPTER 10

Indices and tables

* genindex
* modindex

e search

23

	Overview
	Pivotal Greenplum
	Pivotal Greenplum-Spark Connector
	Apache Spark

	Prerequisites
	What you need to know
	Software

	Setup Greenplum and Spark
	Pre-requisites:
	Using docker-compose
	Setup Greenplum with sample tables
	Connect to Spark master instance
	Connect to Greenplum instance

	How to setup Greenplum database and table
	Pre-requisites:
	Run the docker instances:
	Verify the docker instance is running:
	How to run the setupDB:

	Reading data from Greenplum into Spark
	Conclusions

	Writing data from Spark into Greenplum
	Writing data from Spark into Greenplum via JDBC
	Using PySpark
	How to read data from Greenplum into Spark
	How to write data from Spark DataFrame into Greenplum

	About Greenplum-Spark examples
	About the Author
	Question:

	Indices and tables

