

    
      
          
            
  
Graviton

Graviton is an app browser and cross-platform software manager.

Download now

  
    
    Introduction
    

    
 
  

    
      
          
            
  
Introduction

We would like a competitor to the web browser for JVM application distribution and deployment. This would be an alternative
to applets, the now deprecated Java Web Start and javapackager style bundled distribution.

Initial target markets:


	Internal apps in industrial and enterprise scenarios, e.g. finance and trading applications where web apps are often
not preferred for productivity/usability/security and other reasons. Slick updates and a deploy-once runtime are
useful here.


	Hobbyist and learner apps where users do not want the overhead of the complex web frontend stack or desktop deployment,
but do want to publish their apps. They aren’t attempting to maximise the user acquisition funnel so don’t mind
telling users to download an app browser component. These are people who distribute JARs or only source code today.


	The Java gaming community.


	People who want to write cross platform command line apps.


	IoT devices that struggle to provide secure administration interfaces, given the demands of web browser makers to use
web PKI SSL and the poor fit of SSL with embedded web servers that do not have domain names.


	People who want to write apps in languages other than JavaScript, although we plan for JS to be a first class citizen
along with all other mainstream languages (via the Truffle project).




We feel these market segments are under-served by web browser developers.

The resulting platform should use the JVM for platform independence, sandboxing, code streaming and other services but
should otherwise be language and UI toolkit agnostic to the extent possible.


FAQ

Why the JVM? We don’t want to repeat the web’s mistake of restricting us to a single language. The JVM has the best
support for running multiple languages and having them interoperate. It also has some of the best cross platform user
interface frameworks, many excellent libraries and modules, good tools and a relatively clean design for its age. Through Graal
and Truffle languages we can combine not only scripting languages like JavaScript, Python and Ruby but also C/C++
modules via Sulong. This gives us a direct equivalent to WebAssembly.

Aren’t JVMs bloated and sluggish? Historically yes. We aren’t worried about this though for three reasons.
(1) Our competition isn’t expertly written C++ apps but web apps, which are much worse. (2) The bulk of the JVM’s
reputation for sluggishness comes from startup time and memory usage, not peak runtime performance. All of these
are being tackled by the JVM team through recently added features like ahead of time compilation, AppCDS (class data
pre-computation and sharing), GCs that don’t pause the application and other such features. (3) The JVM’s reputation
largely dates from the late 1990’s and early 2000’s when hardware wasn’t as good as it is now. Over time hardware got
bigger and JVMs got more efficient. So we aren’t worried about this so much anymore.

Do apps need to be written specifically for it? No, Graviton can download and run ordinary Java apps with a main
method that have been uploaded to a Maven repository or github. There are many such apps already. But with small
adaptations, the user experience will get a lot better. As such there is no bright line between a JVM app and a
Graviton app. Learn more about Graviton apps.







          

      

      

    

  

  
    
    Newsletters
    

    
 
  

    
      
          
            
  
Newsletters


30th December 2018

The first release is finally ready! Bugs have been fixed, a download page created and signed binaries uploaded.
The next step is to request some testing from people following the project, before announcing it in a few Java
related forums after the New Year, when people are returning to work.

Beyond eating mince pies the bulk of the work in the last 20 days has been bug fixes to the Linux and Windows
online update engines, filing more ideas in the issue tracker and investigating app compatibility issues.




10th December 2018

Rampdown continues in preparation for the first release. Mac and Windows builds have passed the test plans, and testing
has now moved on to Linux (which has already revealed a strange visual bug). Many bugs have been fixed during this test phase.
Unfortunately, download cancellation had to be disabled, as it needs more work.

A new mailing list has been created in preparation for launch. Please join the graviton-dev mailing list [https://groups.google.com/forum/#!forum/graviton-dev].

I presented Graviton at JavaFX Days Zürich, which was a great conference. Feedback was overwhelmingly positive, and
some firms expressed interest in using it as a replacement for Java Web Start. Collaboration with Karakun on their
planned reimplementation of Web Start is a possibility in future. I have re-recorded the talk I gave; it can be viewed
here:



  
    
    Roadmap
    

    
 
  

    
      
          
            
  
Roadmap

Here are various feature ideas and plans broken down by area, to give an idea of where the project might go.
GitHub Issues is the canonical issue tracker for the project.


Shell UI

Beyond coordinates. In future, other forms of app identifier beyond Maven coordinates may be considered, like git/github URLs.

Agile. The shell will become separated from the main browser and updatable independently, so we can rapidly push new versions
and iterate the content.

URL handler. Graviton will register a URL handler so it can be invoked from the web. Clicking a URL will open the
shell window with the app coordinate pre-filled but the user will still be expected to press enter to run it. This is
so the user gets a chance to opt in or out of sandboxing, and also to train the user to go straight to Graviton to run
apps (it’s faster for them and reduces the risk of browser makers trying to kill the platform by blocking the URL scheme).

App streaming. The average web page is 2mb in size. Experimentation shows that many apps can easily be
made to fit within this size budget using pack200 compression and by not re-downloading commonly used dependencies.
Please see Code fetching for more information on how code is fetched and kept fresh. Various optimisations
will be implemented to move beyond the rudimentary Maven repository protocol and enable “instant on” apps.

Custom app tile artwork. Allow apps to customise their tile with background art, rich text, quick launch buttons.

Tabbed UI. Allow multiple apps to run simultaneously with a Chrome-style tabbed UI.

Loading splash. Apps can provide a logo image that’ll be displayed whilst an app is being initialized.

JediTerm for Windows users. The Windows shell is notoriously not very good. Allow CLI apps to be run from the
Graviton GUI for Windows users, using JetBrains JediTerm.

View source. When an artifact has an attached source JAR, allow the user to ‘view source’ on the app with a simple
embedded source code viewer for whatever screen the user happens to be on.

History/navigation. If an app wants it, expose a form of browser-style page oriented navigation with Graviton
controlled back button, history list and ability to wrap up current app state in a bookmark/textual form, similar to
URLs. This would be entirely opt in but may be useful for apps that want to allow users to rapidly share locations and
context via a URL-like copy/pasteable string.




App discovery

Showcase. The shell may create tiles for apps the user has never used before, to advertise great or interesting
desktop apps that Graviton can launch.

mDNS/Bonjour discovery. Be able to locate domain names and apps that are advertising themselves on the local network.
Whilst this would be ineffective for very large enterprise networks that are multi-segment and do not support broadcast,
it is sufficient for IoT devices to advertise themselves (e.g. printers, wifi hotspots, etc). It is also sufficient for
factory floor applications, smaller offices, and so on. mDNS/Bonjour names look like this “foobar.local” where the name
is chosen by the app itself.

Enterprise internal repositories. For larger networks, Graviton will support a variety of “well known”
(i.e. hard coded) domain names that may be pointed at internal Maven repositories. By linking continuous integration
systems to an internal Artifactory or Nexus deployment, code will be automatically pushed direct from source repositories
through to the desktops in a smooth and silent manner.

IoT secure repositories. A server may present a self signed certificate if it was reached via mDNS. This certificate
is then remembered and may not change in future without generating a giant red scary warning page. This is different to
how web browsers use SSL and is intended to make life easier for internal app developers and embedded devices that struggle
to obtain a web PKI certificate today.

P2P networks. In future the peer to peer DAT protocol may be interesting as an additional protocol, if consumer
use cases turn out to be more popular than hoped for.

Active Directory and other SSO integration. Internet Explorer and some other browsers allow for automatic remote
sign-in based on local credentials, when the network is properly configured. It’d be nice to enable this automatically
for apps that can benefit from it, for arbitrary remote servers and app repositories.




Versions and updates

Version control. Allow the user to pin apps to a particular version (partially implemented already). Allow network
admins to do the same for both apps and the JVM itself, and also to trigger rollbacks in case of regressions.

Don’t use metered connections. Try to detect roaming connections and don’t do updates when using them.

Target versioning. Allow apps to declare what version of Graviton/Java they were tested against. Enable backwards
compatibility goo for older apps to keep them working, allowing developers to opt-in to potentially breaking changes
when they’re ready.

Just-in-time module downloads. Expose Maven resolution via the Graviton API, so that apps can request plugins and
additional features be downloaded and added to their classpath on the fly.

Better JitPack integration. If an app request is being satisfied by jitpack.io then monitor build progress and feed
it back to the user.

Support reproducible builds inside SGX enclaves. Investigate using Oblivium to do what JitPack does, but in a
remotely auditable manner, so anyone can run build servers.

Better app distribution format than JARs. The JAR format is old and works well enough for now but pack200 showed
it’s possible to improve on it significantly.

Canary channel. Distribute regular automated daily OpenJDK and OpenJFX builds through a canary channel to allow for
rapid-fire testing of new code.

Delta updates. Download only what changed between Graviton releases, to reduce bandwidth consumption and improve
reliability.




Security

Sandboxing. Resurrect the applet sandbox and make it fit for the 21st century. Use the SecurityManager infrastructure
to implement the PowerBox pattern, in which sandboxing rules are tweaked on the fly via natural UI interactions like
using the operating system file open dialogs, drag and drop and so on. Allow an app’s activity to be watched, and
allow the sandbox to have multiple levels of aggression to reflect the varying nature of trust. No code signing required.

Dependency pinning. Avoid problems with hacked CDNs or overlapping artifacts, by allowing JARs to specify the hashes of their entire
dependency graphs. Useful in combination with:

Signature consistency enforcement. If an app is signed with a public key (or sub-key), require it to continue being
signed with that key. This ensures only the original app publisher can publish updates and is similar to the Android
scheme, in which app identity is linked to the signing key. This is not the same as CA legal identity code signing.
Sandbox permissions would become linked to the signing keys rather than coordinates.

JVM security upgrades with Arabica. Arabica is a way to run some of the native libraries that come with a JVM
(like e.g. GUI libraries) inside a Google NaCL sandbox for native code. It could be integrated to provide a more robust
virtual machine.

Execution timeouts. Terminate an app forcibly if it goes into an infinite loop - requires Graal, see below.




Java 11+ features

JavaScript/LLVM. Graviton is not Kotlin or JavaFX specific. It should come with the Graal compiler and Truffle
backends, as GraalVM itself does. In this way apps should be authorable in JavaScript, Python, Ruby, C++, Rust, Haskell
and so on, if they depend on the right runtime modules that Graal can recognise.

Graal is on the verge of offering several features that are of particular interest:


	Support for NodeJS modules.


	Ability to impose execution time limits and interrupt execution asynchronously, to break infinite loops. This is
effectively a compiler-supported version of the deprecated Thread.stop()  and is useful for browser style code
sandboxing. In early versions it is acceptable for Graviton to hang in the face of a DoS attack by a malicious app - it
is unlikely to matter for the initial use cases.


	Support for Python, Ruby and LLVM. Thus Graviton programs could conceivably utilise sandboxed modules written in C/C++,
offering an alternative to WebAssembly.




Modules. Graviton should assemble the module and classpaths automatically, placing modular JARs onto the module
path by default and the rest onto the classpath. Graviton may additionally split JARs into multiple layers in order
to automatically resolve version conflicts, when an app has to use two different and conflicting versions of the same
module (common with Guava). When not run in a sandbox all modules should be opened to the app, or the app should be able to
request a list of –add-opens flags, to avoid crashes due to module encapsulation.

Auto AOT. Graviton should pre-optimise the JVM image using ahead of time compilation for the java.base module,
and consider AOT compiling modules of apps that have opted in via a background task, for faster startup. Tools that
indicate they can support it could be automatically fed through SubstrateVM to generate small native binaries.

JavaFX. Bundle all JavaFX modules out of the box so app developers don’t have to worry about this.




Command line tools

Graviton already provides some nice features to CLI programs, such as activating ANSI escapes on Windows and auto-update.
But there is much more we can do here.

Aliases. When an app is used for the first time, make a small startup script in a special directory named (by default)
after the artifact name that acts as an alias for graviton coordinate. This directory can be added to the end of the
PATH, allowing you to start the tool in a natural way after the first time.

CLI store. In the background update task, pre-populate a different special directory with launchers for popular tools you
haven’t used yet, selected by the Graviton team. If this is at the end of the PATH, then you may find there is no need
to ever install CLI tools again: on first run the tool will be downloaded and then kept fresh for you.

Update callbacks. If a CLI app is Graviton-aware, run a callback if a new version is downloaded. If the app is a long
running server, it can then choose to restart itself to pick up the new version. This allows for self-updating servers.

Start-on-boot registration. Abstract the OS start-on-boot mechanisms e.g. systemd and Windows Services, to make
server installation and maintenance absolutely painless.

Sandboxing. CLI specific sandboxing, so untrusted CLI tools can be invoked. Never run curl ... | bash ever again!
For apps where it fits, command line parameter parsing can be used to auto-configure the sandbox e.g. to only include
paths and servers that were passed in.




Gaming features

EGL and advanced graphics. The Java game dev community is surprisingly large and successful - consider that Minecraft
came out of it. They would be a great market segment to target and a potentially enthusiastic userbase. For this to work
they need access to OpenGL contexts. A simple starting point is to let them run unsandboxed in a separate JVM instance.
Later versions of Graviton could offer an API to open a new OpenGL window and expose the handle back such that it could
be combined with JMonkeyEngine, LWJGL and other popular game engines. Chrome uses an open source layer to implement
EGL on top of Direct3D which improves support on Windows, and it could be integrated into Graviton. Once this work is
done an eGL surface for JavaFX apps should be relatively straightforward for experienced systems/graphics programmers.

API for opening ports via UPnP. Expose an API to allow sandboxed apps to request firewall/NAT port forwarding.

Sandboxed full screen mode. Provide a browser-style full screen mode which helps the user exit it, independently
of the app itself.




Desktop integration

Integration with native desktop IPC. Graviton apps should be able to expose control surfaces via platform native
OO IPC mechanisms, in particular, COM and DBUS. This would allow scripting and interaction with Graviton apps from
tools like MS Office macros.

Support cross platform file associations. Enable registration of file extensions to Graviton apps. The user would
be prompted the first time such a registration is used (not registered) if they want to open the file type with that
app, so registration can be seamless and ‘optimistic’.

Single-instance mode. Only allow a single instance of an app to be run at once, if the app has requested that.

Connectivity callbacks. Expose a JavaFX observable bean that indicates the current status of network connectivity,
along with a higher level API so downloads can be transparently paused and resumed when the network is back.







          

      

      

    

  

  
    
    Graviton apps
    

    
 
  

    
      
          
            
  
Graviton apps

Graviton can run any JVM app with a main method or subclass of javafx.application.Application. However, apps can
opt-in to new features that Graviton makes available to you if you agree to run inside its JVM.

You can reuse the Graviton window to avoid annoying flicker and disappearing/reappearing shell windows. This may also
make startup faster because you will also be running in the Graviton JVM. This imposes some requirements on you, but
they are not onerous. Here are some things to be aware of:


	The primary requirement is that you test your app thoroughly, and in particular, you test your app after starting it
from the same shell twice. At this time Graviton does not provide total isolation between app runs - if you reconfigure
the JVM by e.g. registering classes with various APIs, those registered classes may still be there when you restart.


	You should avoid making big changes to the primary stage, and accept it how you find it. You can change the title.


	Don’t use System.exit or explicitly shut down JavaFX. That will quit the browser. You may use Window.setOnCloseRequest
to register a callback for when the user closes the window or presses Alt-F4/Cmd-Q.


	You should use setOnCloseRequest to tidy up any threads that you started which may still be running. Otherwise
in the current version of Graviton they may hang around and continue executing after your app appears to have quit.





Note

Future versions of Graviton will use varying levels of sandboxing to help your app clean up.



There are two ways to opt in to Graviton features: by adding an attribute to your app’s MANIFEST.MF file, or by implementing
the Graviton API.


Using the API

Read the Graviton API documentationTo use the API add a dependency on the app.graviton:graviton-api library.
This provides various types that can be used to opt-in to features and communicate with the browser. Although this will
become a runtime dependency, it’s very small (contains only interfaces and annotation) and adds no overhead when
Graviton is not in use.


  
    
    Tutorial: graphical hello world
    

    
 
  

    
      
          
            
  
Tutorial: graphical hello world

Graviton can run unmodified Java apps, but you can improve the user experience by making small upgrades to your program.

This tutorial takes you through how to make a simple GUI app and then improve how it runs. This isn’t the only way
to publish software for Graviton - it’s just a gentle getting started guide.


Note

You can find the code for this app with one commit per stage here, on GitHub [https://github.com/graviton-browser/hello-world].




Step 1: publish from GitHub

Make a hello world app that uses JavaFX. It could also use Swing, SWT, OpenGL etc but for now pick JavaFX. Here’s
what such an app might look like:

package hello

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class HelloWorld extends Application  {
    @Override
    public void start(Stage primaryStage) throws Exception {
        StackPane helloPane = new StackPane(new Button("Hello world!"));
        primaryStage.setScene(new Scene(helloPane));
        primaryStage.setWidth(300);
        primaryStage.setHeight(200);
        primaryStage.show();
    }
}





Of course it could also use Kotlin, Scala, Haskell, Ruby etc as these languages all run on the JVM.

Use Gradle or Maven as the build system. Your IDE can generate such build files if you aren’t sure where to start.
A simple Gradle build.gradle file for the above program might look like this:

plugins {
    id 'java'
}

group 'com.github.yourusername'
version '1'





The group should be set to a package / reverse DNS name you control. If you don’t have one, you can use the GitHub
pattern shown above.

Talking of which, now upload your hello world app to GitHub and use the GitHub UI to make a release of version 1.


Note

The description you provide for your GitHub repository will appear in the recent apps list, so set a good one!



Open Graviton and enter com.github.yourusername:reponame where obviously the string is derived from the URL
of your repository (https://github.com/yourusername/reponame for the prior example). Graviton will work in
conjunction with JitPack [https://jitpack.io] to check out your source code from your repository, build it,
package it into JARs, publish it via a Maven repository and then download it to your computer and run it.

Try clearing the cache and starting the app again. It’ll download much faster this time as JitPack won’t need to download
your code or build it.

Now try starting your app once last time from the recent apps list. It should start instantly. That’s how it’ll be
for your users after their first run too, as updates are applied asynchronously in Graviton. Your app will also work
offline.

Now change the label on the button and make a new GitHub release. Either go do something else for a few hours, or
just right click on the app tile and select ‘Refresh’. When you start your app from Graviton again, it’ll be on the
latest version. Your users should get the new version within about 6 hours or so if their computer is switched on,
or shortly after they’ve logged in when it’s been off for a while.

That’s it! You just published your first desktop app, direct from your git repository.


Note

JitPack is useful for development purposes but you will probably want to do your own builds in future.
For that you should investigate BinTray, which lets you easily create and publish programs to the JCenter Maven
repository. In future this tutorial may cover how to do that.






Step 2: Specify the main class name

In the first step, we made a class that subclasses javafx.application.Application. That was sufficient for Graviton
to figure out where the program should begin. But this way to start apps will get slower as our app gets bigger, because
Graviton had to scan all the files in our app looking for Application subclasses.

It’s more efficient to tell Graviton exactly where the program is meant to start. Add the application plugin in
your Gradle file, set the mainClassName property and then set the version to 2, so it looks like this:

plugins {
    id 'java'
    id 'application'
}

group 'com.github.yourusername'
version '2'

mainClassName = 'hello.HelloWorld'





Commit it, push to GitHub and make a new release. You probably won’t see any observable difference in speed just yet,
but it’s good practice to always explicitly specify your entry point.







          

      

      

    

  

  
    
    Online update
    

    
 
  

    
      
          
            
  
Online update

One of the most annoying tasks with distributing desktop apps is keeping them up to date. This is something browsers
excel at and, along with sandboxing and a smooth developer on-ramp, can largely explain the web’s success as an app
platform.


Goals


	Chrome-style silent upgrade of the JVM, of Graviton and of the apps.


	Updates can be applied whilst the browser is running, without any user intervention or disruption.


	Updates can be applied even when the browser is not running.


	Most updates do not require platform-specific rebuilds.







Non-goals


	In this first iteration, network administrator control is out of scope. It can be tackled in future.


	Linux support - Linux users have their own platform level update mechanisms that can be reused.







Design


Note

This design is implemented.



The browser uses Java 8 and the javapackager tool, which produces a directory layout and native installer for each
platform, with a small native startup tool that loads JVM parameters from a config file.

We modify the directory layout before the native installers are produced to replace the startup program with our own,
the bootstrap program, which selects a ‘sub install’ to run. In this way new versions can be unpacked alongside the
current running version. Apps are downloaded to a Maven cache stored in the OS specific cache directories, which uses
the same design of versioned directories.

The operating system task scheduler on each platform is used to invoke Graviton at 6 hour intervals. It checks for new
versions of itself, and uses a history file that records the last 20 app invocations the user made. It then uses Maven
Resolver to re-resolve each in turn - if the app had no version specified this will download the latest version (otherwise
it’s a no-op unless the cache was cleared).


Bootstrap

The directory structure of the browser app looks like this:

/graviton
/1/bin/graviton
/1/lib/...
/2/bin/graviton
/2/lib/...





In other words, there is a native executable at the root location, and then several sub-installations identified by
sub-directories with integer names. The native executable at the root scans the directory list at startup and selects
the directory with the highest name before re-executing the binary found under that location with the same set of
command line arguments. The native executable is called the bootstrap and it does very little, so will need to change
rarely. It is be written in Kotlin/Native and there are different versions for macOS and Windows.

This design means that it’s possible for a running instance of the browser to download and unpack new versions of itself
whilst running. Partially unpacked installations should be put in a directory with a name that starts with a letter,
and then the directory can be renamed to the final integer name when unpacking and preparation is finished. The browser
can monitor this directory to see if a new version has become available whilst running and notify the user with an
unobtrusive hint in the user interface, as Chrome does it.

It is assumed the user is either an admin user (on macOS) or that the app was installed to the user’s home directory.
On Windows the installer we provide does not offer any customisation options, thus, it will always be in the user’s
home directory (under the hidden AppData folder).

The javapackager tool is used to assemble the final download.




Update tracking and batched updates

The browser stores its current integer version (all versions are integers in the update system) in a file called
last-run-version. If the browser starts and discovers its hard-coded current version is different to the version
stored in the file, it knows it has been updated.

There may be situations where the user has been offline for a long time or uninstalled the browser without removing its
data files. The browser may thus end up skipping versions, where the last run version was e.g. 5 but the current version
is 10. The browser must be designed to be able to iteratively upgrade its data files from older versions.

We use this design rather than allow the browser to only have to upgrade from the last version of itself because, whilst
the update system could step through each update in sequence, this would mean no way to recover from botched releases.
More importantly, it would mean if the user uninstalled the app and reinstalled it a long time later, we’d have to
download and run all the old versions to step through the upgrade sequence, which would be bad. So instead we insist that
the browser be able to read and upgrade data files from any prior version of itself.




Background updates

The browser runtime accepts a command line flag --background-update which causes it to poll a remote server
to see if new versions are available instead of starting the normal codepaths. If the running version is the latest
version, it exits silently. Otherwise it begins a background download of an update, and proceeds to create a new directory
with the new version inside it so it will be picked up next time the browser is started.

On each platform the operating system task scheduler is used to trigger this process. A new library, Graviton Scheduler
has been created to abstract the OS task scheduling functionality. On Windows, the Task Scheduler is configured to
run this program once a day by running c:\Windows\System32\Schtasks.exe with an XML file like this one [https://msdn.microsoft.com/en-us/library/windows/desktop/aa446863(v=vs.85).aspx].
This will take place on first run. On macOS there is a similar process, in which an XML file is dropped into the
~/Library/LaunchAgents directory, and on Linux the user-local cron is used.

In this way the browser is guaranteed to be up to date (secure) even if the user hasn’t used it for a while, which will
be typical in the early days when there aren’t many apps.




Update security

Updates take two forms.

On macOS and Linux, it is a platform specific JAR file that’s unpacked to the target directory by the update process
itself. It is not a platform specific installer. Tasks that are needed will have to be done on first-run (identified
by an old or missing last-run-version file). The JAR does not contain class files. Instead we use it only for its
signing capability.

We sign the update pack with the jarsigner tool. There may be multiple signatures required from different parties,
to provide a more secure multi-signature update scheme (everyone reproduces the build and a quorum of developers signs it).

The unpacking code verifies each signature against a hard coded list of public keys. If any file fails to present the
right list of signatures, the update is discarded and will be retried.


Note

This means if a bad update is pushed users will keep trying to re-download it until it’s fixed.



On Windows, the update is the same NSIS installer that users download the first time they install the browser. It is
run with special command line flags that make it run invisibly in the background, and ignore files that are the same
version or newer (i.e. comparing the PE headers). Because of the numbered install directories, this installer can be
run whilst Graviton itself is running.




Update protocol

The updater requests the URL https://update.graviton.app/<osname>/control?c=5 where 5 is the current version of the app and
“osname” is either “mac” or “win”. The control file is a properties file that must have at least one key, “Latest-Update-URL” which
contains a relative URL to the update pack. The value of this key will be interpreted as if it were an HTML link, so, you can use either
absolute URLs or a path like “/foo/bar” in it.

The filename must be of the form “5.something.whatever”, i.e. a dot separated name where the first component is the integer version
number. It will be downloaded and unpacked only if the version number in the filename is higher than the currently executing version. The
other components are arbitrary and ignored.

The signed pack will be downloaded, verified and either unpacked into the numbered directory indicated by the file name,
or executed. On UNIX systems the execute bit is set on a hard-coded OS specific path to ensure the main executable can
be invoked. Once this is done the update is complete.




Updating the updater

Because the update process is performed by the app itself, triggered by a command line flag, the update process also by
implication update the updater. In the unlikely event that the bootstrap program needs to be changed, that can
also be handled by special case code, assuming the user can write to that program. However given it does so little the
hope is it never needs to be updated once created.

This mechanism can be used to change the signing keys that are authorised to push upgrades, as the set of developers
evolves over time.




JRE minimisation

Java 9+ introduces a nice feature; the jlink and javapackager tools can now minimise the JRE by stripping out modules
that aren’t needed. Unfortunately it comes with a huge caveat - this only works for fully modularised apps, and the
tooling, Gradle and Kotlin support for this is half baked. Building and jlinking a modular Kotlin app is still far from
easy. For now we will punt this to later in the hope that the ecosystem eventually catches up.






Preparing an update

Make sure you have a keystore.p12 file that contains an PKCS#12 key store. You can create a signing key like this:

openssl ecparam -out ec_key.pem -name secp256r1 -genkey
openssl req -new -key ec_key.pem -nodes -x509 -days 3650 -out update_cert.pem
# Enter some plausible sounding details here. The cert details don't matter.
openssl pkcs12 -inkey ec_key.pem -in update_cert.pem  -export -out keystore.p12 -alias $USER





After running these commands, you will have a p12 file that contains an elliptic curve private key and certificate,
under the alias of your current username.

The procedure for pushing an update to the browser and runtime is as follows.


	Increase the version number in the root build.gradle file (it’s represented as a string but must be an integer value)


	Run the package-osname script in the root directory for each OS in turn. For instance package-mac.sh


	This will run the procedure to generate a native installer, unpack it, and then output a signed JAR of the update in the current directory.


	Upload this JAR to the server.


	Update the control file.





Warning

On macOS make sure you don’t have any prior disk images mounted when running, as it can interfere with the build process.









          

      

      

    

  

  
    
    Command line apps
    

    
 
  

    
      
          
            
  
Command line apps

A big part of Graviton is “instant on” streaming apps, which keep themselves fully up to date. This capability is just
as useful for command line apps as it is for GUI apps. All major operating systems have command line package managers
now. Linux paved the way with tools like apt-get and yum, macOS has brew, Windows has chocolately.

Unfortunately, it sucks to write cross platform CLI apps. Java apps are ugly from the command line as you
must set up the classpath manually, and prefix commands with “java -jar programname.jar” which is unnatural. And that
doesn’t help you keep them up to date, or manage dependencies. On the other hand, few other platforms have robust
operating system abstractions (e.g. Go isn’t that great on Windows). If you want to distribute a cross platform command
line tool you’re pretty much restricted to Python and pip: it’s fragile and isn’t ideal for more complex apps where
static typing or high performance is desirable.

Finally, many tools make assumptions that aren’t valid on Windows, e.g. by using ANSI terminal escapes.

Graviton can move into this niche if it has great support for command line tools.


Goals


	Natural, easy access to programs from the command line.


	Apps are identified by Maven coordinates, stored in Maven repositories and dependencies work correctly.


	Apps update automatically in the background unless pinned.


	Minimal OS overhead in the common case of no work for Graviton to do.


	One-liner to obtain new apps.


	Optional sandboxing.


	Support ANSI escapes.







Non-Goals


	Exposing new services or APIs for command line apps, like an argument parsing API.







Design


Usage

Either at install time or on first run, Graviton will either add itself to the path (on Windows) or symlink itself to
/usr/local/bin/graviton (on Mac/Linux). The user can run an app like this:

graviton org.jetbrains.kotlin:kotlin-compiler --help

If an app will be used frequently, a symlink can be requested with the expected name:

graviton --alias org.jetbrains.kotlin:kotlin-compiler=kotlinc

If there’s a Command-Line-Name entry in the MANIFEST.MF and if there is no other command on the path with that name,
an alias to that name will be set up the first time the app is run. From that point on the short name can be used.

Graviton remembers which packages were requested via this command line interface versus downloaded as part of dependency
resolution.

If a version number was specified in the coordinate when first installed, that version is pinned. If a range was
specified, or no version was specified at all, then Graviton will update these apps during its regular background
update check. Because Maven repositories are immutable, this will not disturb any running applications.

Every so often, old versions of apps that were installed via the CLI are removed and the local Maven repository garbage
collected to free up space.




Windows

Windows requires special support. EXE files have to be marked in the header as either GUI or console apps. GUI apps
can’t print to the console if launched from the command prompt and automatically go into the background. Console apps
pop up a console window if launched from the GUI, regardless of whether or not the app uses it, which is ugly. Finally,
although Windows 10 added support for ANSI colour and cursor escape codes, the console ignores them by default. Enabling
them requires Win32 API calls.

We solve this with a somewhat complex bootstrap:


	The Graviton bootstrapper tool (which is a native app) is compiled twice, once in GUI mode and once in console mode.


	The console mode version enables ANSI escapes support and then starts the main Graviton app and waits for it to finish.


	The GUI app starts. At this point the Windows kernel has detached it from the console and closed its input/output
handles. We re-attach to the parent console and then re-open the input/output handles, repeating the part of the JVM
startup sequence that initialises System.{in,out,err}












          

      

      

    

  

  
    
    Code fetching
    

    
 
  

    
      
          
            
  
Code fetching

A big part of the browser experience is how code is downloaded and kept fresh, whilst being as fast as possible.


Repositories

To help us get started quickly and be useful right away, Graviton currently fetches code only from Maven repositories.
It comes pre-configured with the following repos:


	Maven Central


	Bintray


	Jitpack.io - this one conveniently turns github repositories into Maven repositories on the fly, see below for more info.


	A local repository in ~/.m2/dev-local which you can deploy to directly. See below.




To make an app available it and all its dependencies must be findable via one of these four sources. In future we will
add support for auto-discovery of other repositories on the local network using registry keys, mDNS, and so on.

Because of this decision, all code modules in Graviton are identified by Maven “GAV” coordinates (group ID, artifact ID,
version). An “artifact” in Maven-speak is just a file. A group ID is a Java-style reverse DNS name. And a version is
self explanatory (if you need more info here is a good article on Maven version numbers [https://docs.oracle.com/middleware/1212/core/MAVEN/maven_version.htm].




Future support

It’s not intended to use Maven repositories forever. Over time we could develop better formats with higher security
and performance. For example, apps could commit to the hashes of their dependency tree for more security against
compromised repository mirrors, pack200 could be brought back from the grave, and classes from many modules could be
multiplexed together into a single stream with a ‘watermark’ where execution should begin to allow apps to be started
before they’ve fully downloaded.




Jitpack

You can run apps directly from GitHub by using jitpack.io - just use coordinates of the following form:

com.github.username:repositoryname:commit-hash





For example, com.github.mikehearn:tictactoe:master-SNAPSHOT.




Local development repository

Graviton will not use your ~/.m2/repository directory if you have one, both for internal technical reasons and to
keep your development environment separated. However it will




Optimisations

Making an app start as fast as a web page is partly about download optimisation and we have many planned or already implemented:


	Parallel resolution of the dependency tree (DONE).


	Local caching of artifacts, so commonly used libraries are not re-downloaded repeatedly (DONE).


	Only re-check for new versions once a day (DONE).


	Cache the resolved classpath so it doesn’t have to be re-calculated on each use (DONE).


	Pre-generation of a dependency tree file, so a POM walk isn’t necessary.


	Proxies for common Maven repos that respond to failed download attempts by fetching the requested artifacts and
recompressing with pack200, thus automatically optimising distribution of apps that are being frequently requested.


	Early launch - monitoring a “training run” of the app and observing when classloading activity pauses for a few
seconds. Any modules accessed before that time are assumed to be needed and will be resolved before startup, any
modules accessed after that will be downloaded whilst the app is running. An attempt to access a class in a module
that wasn’t loaded yet will hang until loading completes. In this way apps can be adjusted to stream features in
the background.


	Pre-fetch of commonly used libraries so apps don’t pay any download cost for them.


	Identification of artifacts by secure hash rather than just coordinates.




All the app-specific adaptations can be made easy with Maven and Gradle plugins.







          

      

      

    

  

  
    
    Testing
    

    
 
  

    
      
          
            
  
Testing

Here are some initial notes on testing Graviton. In the early days, testing is done through a mix of unit tests
and manually executed test plans. As the product definition and UI stabilise, this will shift towards heavy usage
of integration tests.


Using WireMock to simulate Maven repositories

WireMock [http://wiremock.org/] is a Java program that can simulate web servers, with many features. Especially
useful for us is the ability to record and replay interactions with real servers, customised in various ways and
with fault/slowdown injection. The interactions are stored to JSON files.

WireMock can be used via Graviton itself. To make a recording of the interaction with a Maven repository follow
these steps.

Firstly, run graviton com.github.tomakehurst:wiremock-standalone in a new empty directory.

Now run:

curl -d '{"targetBaseUrl": "http://repo1.maven.org/maven2", "extractBodyCriteria": {"binarySizeThreshold": "1kb"}}' http://localhost:8080/__admin/recordings/start





This will set up a recording proxy that will interpose on Maven Central (obviously change the URL as desired but watch out, don’t add a trailing slash).

Invoke Graviton like this:

graviton --cache-path=/tmp/gravicache --repositories=http://localhost:8080 com.github.ricksbrown:cowsay moo





to download via the proxy into a fresh cache directory.

Finally, use curl -d '{}' http://localhost:8080/__admin/recordings/stop to stop the recording.

The directory you ran WireMock in will now have two directories, files and mappings. Any binary larger than 1kb will
have been put in the files directory, textual responses or small binary responses will be in JSON files in mappings.
If you re-run the same Graviton command against the WireMock server, all the answers will come from the recording.
You can test this by disabling your wifi or ethernet connection.




Test plans

This document contains some manual test plans. At some point we should automate them, although
testing software like Graviton can be tricky. We’ll need to use an HTTP server that can
replay recorded interactions with real Maven repositories, and use lots of TestFX for the GUI,
mock filesystems and so on. Then integration tests for the OS integrations/background updates.


Pre-flight checklist

Build the package for each OS in turn. Ensure there are no Graviton cache directories anywhere and remove them if so.
Install the package.


Mac installer


	Make sure your Mac security settings are configured to be the default, i.e. Gatekeeper is active.


	Ensure there are no Graviton installs or data directories already.


	Open the mac DMG and drag it to the Applications folder. Ensure the icon and DMG background look right.


	Start the app from the Applications folder and ensure it starts, that the menu bar shows the name Graviton.







Windows installer


	Click the Windows installer. Ensure it installs automatically and with no user interaction.


	Find the app in the start menu and start it. Shut it down.


	Open task scheduler and check the background update task is registered. Run it manually and check that in the log
that the update process ran up to the point that it knows it’s up to date.


	Go into the control panel and uninstall Graviton. Ensure the uninstall completes without errors
(this is a common failure point!)







CLI


	Run graviton --help and ensure a useful help output is created. On Windows, ensure it’s in colour.


	Run graviton --version and ensure the version number is correct.


	Run graviton com.github.ricksbrown:cowsay --cowthink moo! and ensure it downloads and runs correctly.


	Run it again and ensure there’s no download or other UI text this time, just the cow.


	Go offline (disable wifi) and run graviton --clear-cache com.github.ricksbrown:cowsay "cannot work". Check
the error message you get is sensible and helpful.


	Run graviton --clear-cache com.github.ricksbrown:cowsay "Downloaded again!" and ensure it re-downloads and runs like before.


	Run graviton -r com.github.ricksbrown:cowsay moo and ensure it checks for an update again.


	Edit the history file to set the time of the last update to more than 24 hours ago. Then run
graviton --offline com.github.ricksbrown:cowsay moo and ensure it doesn’t check for an update even though
the history entry is old.







GUI shell


	Start the GUI. Run Tic-Tac-Toe and ensure it downloads properly, the main window disappears, TTT starts. Quit and ensure GUI is restored.


	Ensure the history list populates with an app tile for it.


	Start com.github.rohitawate:everest and click cancel during the download. Make sure it stops.


	Start Everest again, this time, quit during the download and ensure Graviton properly quits.


	Start it for a third time and this time let it succeed.


	Right click on one of the tiles and ensure each item works.







Online update


	Clear your cache. Start net.plan99:tictactoe:1.0.1 - it should download an old version of the app. Now go into
your history file and edit it so the version number is missing from the coordinate fragment field.
This makes it look like the user just hasn’t updated for a while and a new version has been released.


	Start Graviton GUI. Now from the command line run graviton --background-update and check the log file to ensure
it updated you to the latest version of tictactoe. Start the app in the GUI ensure it’s now the latest version.




If the bootstrapper, installers, packaging or runtime update code was changed, for each platform:


	Bump the version number and prepare an update site that has the dummy update


	Install the current (under test) version


	Leave the machine or VM until an update check interval has passed, with Graviton running


	Make sure that the update has been downloaded, applied and restarting Graviton makes it appear











Next steps to improve testing


	Implement or find a recording HTTP proxy that can simulate errors and slowness. WireMock isn’t quite there for us,
I could never make its browser proxy mode really work. Make recordings of installing various apps. The manual
test cases should now be executable entirely offline.


	Write an integration test tool that verifies, given a random/clean cache directory:
* the CLI tool can be used to install and run basic programs
* when run against the proxy recordings


	Write a basic TestFX test that generates a clean cache directory and installs/runs TicTacToe from the
proxy recordings.


	Extend the test to ensure that the clear cache function works.










          

      

      

    

  

  
    
    Index
    

    
 
  

    
      
          
            

Index



 




          

      

      

    

  
_static/ajax-loader.gif





_images/nov4th.jpg
( raviton

com.github.edvin.tornadofx-samples:charts:master

Charts

Show all the charts that tornadoFX can do.

tictactoe

cowsay

Java port of the original cowsay by Tony Monroe.
Moo!






_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/down.png





_static/file.png





nav.xhtml

    
      Table of Contents


      
        		
          Graviton
        


        		
          Introduction
          
            		
              FAQ
            


          


        


        		
          Newsletters
          
            		
              30th December 2018
            


            		
              10th December 2018
            


            		
              27th November 2018
            


            		
              4th November 2018
            


            		
              29th September 2018
            


            		
              23rd September 2018
            


            		
              17th September 2018
            


            		
              3rd September 2018
            


            		
              29th May 2018
              
                		
                  Progress report
                


              


            


            		
              20th May 2018
              
                		
                  Progress report
                


              


            


            		
              16th April 2018
              
                		
                  Progress report
                


                		
                  Next steps
                


              


            


            		
              8th April 2018
              
                		
                  Progress report
                


                		
                  Next steps
                


              


            


          


        


        		
          Roadmap
          
            		
              Shell UI
            


            		
              App discovery
            


            		
              Versions and updates
            


            		
              Security
            


            		
              Java 11+ features
            


            		
              Command line tools
            


            		
              Gaming features
            


            		
              Desktop integration
            


          


        


        		
          Graviton apps
          
            		
              Using the API
            


            		
              Testing your app locally
            


            		
              Set the main class in your app
            


            		
              Reusing the shell window: Manifest
            


            		
              Reusing the top level window: API
            


          


        


        		
          Tutorial: graphical hello world
          
            		
              Step 1: publish from GitHub
            


            		
              Step 2: Specify the main class name
            


          


        


        		
          Online update
          
            		
              Goals
            


            		
              Non-goals
            


            		
              Design
              
                		
                  Bootstrap
                


                		
                  Update tracking and batched updates
                


                		
                  Background updates
                


                		
                  Update security
                


                		
                  Update protocol
                


                		
                  Updating the updater
                


                		
                  JRE minimisation
                


              


            


            		
              Preparing an update
            


          


        


        		
          Command line apps
          
            		
              Goals
            


            		
              Non-Goals
            


            		
              Design
              
                		
                  Usage
                


                		
                  Windows
                


              


            


          


        


        		
          Code fetching
          
            		
              Repositories
            


            		
              Future support
            


            		
              Jitpack
            


            		
              Local development repository
            


            		
              Optimisations
            


          


        


        		
          Testing
          
            		
              Using WireMock to simulate Maven repositories
            


            		
              Test plans
              
                		
                  Pre-flight checklist
                


              


            


            		
              Next steps to improve testing
            


          


        


      


    
  

_static/nov4th.jpg
( raviton

com.github.edvin.tornadofx-samples:charts:master

Charts

Show all the charts that tornadoFX can do.

tictactoe

cowsay

Java port of the original cowsay by Tony Monroe.
Moo!






_static/plus.png





_static/graviton-everest.gif
G graviton

plan99.net:tictactoe

Everest
A beautiful REST workbench.

Tic Tac Toe

A reimplementation of the React.JS tutorial ap

S0 complexity and lines of code can be directi

CalendarFX

Sample app for the CalendarFX widget

SpotBugs

S