

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributor Code of Conduct

As contributors and maintainers of this project, and in the interest of
fostering an open and welcoming community, we pledge to respect all people who
contribute through reporting issues, posting feature requests, updating
documentation, submitting pull requests or patches, and other activities.

We are committed to making participation in this project a harassment-free
experience for everyone, regardless of level of experience, gender, gender
identity and expression, sexual orientation, disability, personal appearance,
body size, race, ethnicity, age, religion, or nationality.

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery

	Personal attacks

	Trolling or insulting/derogatory comments

	Public or private harassment

	Publishing other’s private information, such as physical or electronic
addresses, without explicit permission

	Other unethical or unprofessional conduct

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

By adopting this Code of Conduct, project maintainers commit themselves to
fairly and consistently applying these principles to every aspect of managing
this project. Project maintainers who do not follow or enforce the Code of
Conduct may be permanently removed from the project team.

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community.

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting a project maintainer at andimarek@fastmail.fm. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. Maintainers are
obligated to maintain confidentiality with regard to the reporter of an
incident.

This Code of Conduct is adapted from the Contributor Covenant [https://contributor-covenant.org],
version 1.3.0, available at
https://contributor-covenant.org/version/1/3/0/

 Thanks for contributing to graphql-java!

Please be sure that you read the Code of Conduct before contributing to this project and please
create a new Issue and discuss first what you are planning to do for larger changes.

The overall goal of graphql-java is to have a correct implementation of the GraphQL Spec [https://github.com/facebook/graphql/] in a production ready way.

In order to achieve that we have a strong focus on maintainability and high test coverage:

	We expect new or modified unit test for every change (written in Spock [https://spockframework.org/]).

	Your code should be formatted with our IntelliJ graphql-java-code-style.

	We don’t add a new dependency to graphql-java: dependency conflicts will make adaption of graphql-java harder for users,
therefore we avoid adding any new dependency.

	graphql-java has a strict focus on executing a GraphQL request, this means JSON parsing, http communication, databases
access etc is out of scope.

If you have any question please consider asking in our Discussions [https://github.com/graphql-java/graphql-java/discussions]. For bug reports or specific code related topics create a new issue.

Thanks!

 The MIT License (MIT)

Copyright (c) 2015 Andreas Marek and Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
(the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

GraphQL Java

Discuss and ask questions in our Discussions: https://github.com/graphql-java/graphql-java/discussions

This is a GraphQL [https://github.com/graphql/graphql-spec] Java implementation.

[image: https://github.com/graphql-java/graphql-java/actions/workflows/master.yml/badge.svg]Build [https://github.com/graphql-java/graphql-java/actions/workflows/master.yml]
[image: https://img.shields.io/maven-central/v/com.graphql-java/graphql-java?versionPrefix=20.]Latest Release [https://maven-badges.herokuapp.com/maven-central/com.graphql-java/graphql-java/]
[image: https://img.shields.io/maven-central/v/com.graphql-java/graphql-java?label=maven-central%20snapshot&versionPrefix=0]Latest Snapshot [https://maven-badges.herokuapp.com/maven-central/com.graphql-java/graphql-java/]
[image: https://img.shields.io/badge/license-MIT-green]MIT licensed [https://github.com/graphql-java/graphql-java/blob/master/LICENSE]

Documentation

We have a tutorial for beginners: Getting started with GraphQL Java and Spring Boot [https://www.graphql-java.com/tutorials/getting-started-with-spring-boot/]

For details how to use graphql-java please look at the documentation: https://www.graphql-java.com/documentation/getting-started

Please take a look at our list of releases [https://github.com/graphql-java/graphql-java/releases] if you want to learn more about new releases and the changelog.

Code of Conduct

Please note that this project is released with a Contributor Code of Conduct.
By contributing to this project (commenting or opening PR/Issues etc) you are agreeing to follow this conduct, so please
take the time to read it.

License

Copyright (c) 2015, Andreas Marek and Contributors [https://github.com/graphql-java/graphql-java/graphs/contributors]

Supported by

[image: https://www.yourkit.com/images/yklogo.png]YourKit

YourKit [https://www.yourkit.com/] supports this project by providing the YourKit Java Profiler.

GraphQL Java

请在 Discussions 进行问题讨论和寻求帮助：https://github.com/graphql-java/graphql-java/discussions

该组件是 GraphQL 规范 [https://github.com/graphql/graphql-spec] 的 Java 实现。

[image: https://github.com/graphql-java/graphql-java/actions/workflows/master.yml/badge.svg]Build [https://github.com/graphql-java/graphql-java/actions/workflows/master.yml]
[image: https://img.shields.io/maven-central/v/com.graphql-java/graphql-java?versionPrefix=20.]Latest Release [https://maven-badges.herokuapp.com/maven-central/com.graphql-java/graphql-java/]
[image: https://img.shields.io/maven-central/v/com.graphql-java/graphql-java?label=maven-central%20snapshot&versionPrefix=0]Latest Snapshot [https://maven-badges.herokuapp.com/maven-central/com.graphql-java/graphql-java/]
[image: https://img.shields.io/badge/license-MIT-green]MIT licensed [https://github.com/graphql-java/graphql-java/blob/master/LICENSE]

文档

入门教程：Getting started with GraphQL Java and Spring Boot [https://www.graphql-java.com/tutorials/getting-started-with-spring-boot/]

更多细节请参考graphql-java官方文档: https://www.graphql-java.com/documentation/getting-started

如果您想了解新版本更多的信息和变更日志请参阅 releases 列表 [https://github.com/graphql-java/graphql-java/releases]。

行为规范

请您注意该项目是与 Contributor Code of Conduct 一起发布的，通过提交 PR 或 Issues 参与该项目表示您已经同意遵守该准则，所以请您花时间仔细阅读它。

License

Copyright (c) 2015, Andreas Marek and 贡献者们 [https://github.com/graphql-java/graphql-java/graphs/contributors]

帮助支持

[image: https://www.yourkit.com/images/yklogo.png]YourKit

YourKit [https://www.yourkit.com/] 通过 YourKit Java Profiler 能力对该项目提供了支持。

Security Policy

Supported Versions

We support the latest release with security updates.

We retain the discretion to backport security updates, this is decided on a case-by-case basis.

Version	Supported
——-	——————
v20.x	:white_check_mark:

Reporting a Vulnerability

:rotating_light: To report a vulnerability, DO NOT open a pull request or issue or GitHub discussion. DO NOT post publicly.

Instead, report the vulnerability privately via the Security tab on graphql-java GitHub repository [https://github.com/graphql-java/graphql-java]. See instructions at https://docs.github.com/en/code-security/security-advisories/guidance-on-reporting-and-writing/privately-reporting-a-security-vulnerability

GraphQL Java Coding guidelines used in GraphQL Java

General principles

	We prefer closer to zero dependencies. Don’t bring in guava, apache-commons, spring-xxx, y or z however much some StringUtils method might be useful. Fewer dependencies makes graphql-java more applicable to everyone

	We prefer staying out of the HTTP stack. We are the low level engine of running graphql queries. Other concerns such as JSON and HTTP are handled better by other layers

	We prefer simple code to clever code. It should be readable with well named methods. Clever nested streams and lambdas are not our thing.

	We prefer general to specific. So the code should be generally applicable to use cases, not highly specific to just some use cases, even if it takes more setup.

more specific topics

	Use @Public and @Internal to communicate what level of stability is supported.

	Never make a class or method package private or protected:
make it public or private and use @Internal to communicate that the class can be changed without notice.
The user can decide itself about the risk when they use internal things.

Optional vs null

We have a mix of Optional and allowing null values because GraphQL Java was originally written in Java 6.

We are aiming to not use Optional moving forward in order to be consistent overall.

Unit testing and dependencies

All tests are written in Spock [https://spockframework.org].

All new code has to have unit tests.

The general pattern is that every method of every class is by default non static and that every dependency is an instance field with package private visibility
to allow for easy mocking in unit tests. The field should be annotated with @VisibleForTesting.

Example:

public class Foo {

 @VisibleForTesting
 Bar bar = new Bar();

 public void doSomething(){
 ...
 }

}

Static methods

Static methods are only allowed for methods which are very limited in functionality and don’t have any dependencies.
Static methods imply that you never want to mock them.

Typical examples are util methods like GraphQLTypeUtil.isNonNull()

“Util” class or not

Don’t mix static and non static methods (except factory methods):
every class is either a general “Util” class with only static methods or a class with no static methods.

Naming

Naming is a key element of readable source code.
Every variable and method should have a clear name. Single char variable names are never ok, except for index iterations.

Comments

Public APIs should be documented via JavaDoc. The JavaDoc should describe how and why this class/method should be used. It should not specify the details of the implementation.

Internal APIs don’t have JavaDoc and in general we avoid any form of comments when possible.

Methods over comments

Most comments inside a method can be refactored by creating a method and giving the method name the comment text.

Immutable and Builders

Every public data class should be:

	Immutable

	having a Builder class

	having a transform method

Every data class should be immutable and contain a public static class Builder {..} with a static factory method newFoo (not newBuilder).

The Builder methods are just named like the property (Builder.foo(Foo foo) not Builder.setFoo(Foo foo)).

The class should also contain a public Foo transform(Consumer<Builder> builderConsumer) to allow for easy copies with minimal effort.

Private classes should follow the same design, but they don’t have to.

Default Collections idiom

The default pattern for using Set, Map and List is:

	List<Foo> fooList = new ArrayList<>()

	Set<Foo> fooSet = new LinkedHashSet<>()

	Map<Foo> fooMap = new LinkedHashMap<>()

By using the generic interface instead of using an implementation we are making sure we
don’t rely on anything impl specific.
The default implementations for Set and Map should be the LinkedHashSet and LinkedHashMap
because it offers stable iteration order.

Stream API vs for, index loop etc

Using the Stream API is ok in general, but it must be kept simple. Stream maps inside
maps should be avoided and the inner logic should be refactored into a method.

It is also ok to use the traditional for loop or other constructs: sometimes it is more readable than
the modern Stream API. The Stream API is not a replacement for all other loops/iterations.

Maximum Indentation is two

One of the most important rules is to keep the number of indentations as low as possible.
In general the max number should be two. This means a for loop inside a condition is ok.
A condition inside a for loop inside a for loop is not.

Extracting a method is the easy way out.

Early method exit

Exit the method early to avoid an indentation:

public void foo() {
 if(cond) {
 return;
 }
 ...do something
}

is better than:

public void foo() {
 if(!cond) {
 ...do something
 }
}

Maximum line length and multi line statements

We don’t have a strict max line length.
But of course every statement should be limited. Not so much in terms of length but much more in terms
of what the statement does.

If a statement is multiple lines long it should be broken down into the same indentation level.

For example this is ok:

 return myMap
 .entrySet()
 .stream()
 .map(entry -> mapEntry(entry))
 .collect(Collectors.toList());

This is not ok:

 return fooListOfList.stream().map(
 fooList -> fooList.stream()
 .sorted((x,y) -> sort(x,y))
 .map(foo -> foo.getMyProp())
 .collect(toList())

It has a lambda in streams in streams. The inside stream should be extracted to an extra method and each
method call should be on a new line:

 return fooListOfList
 .stream()
 .map(this::mapFooList)
 .collect(toList());

Every class its own file: avoid inner classes and interfaces

Every class/interface should have its own file in general.
Inner classes are almost never ok (especially public ones). Every class should have its own file to make it easier to read and explore the code.

Use graphql.Assert instead of Objects

We maintain our own small set of Assert util methods. Don’t use Objects.requireNonNull and others in order
to be consistent.

FooEnvironment method arguments for public API

Don’t use specific arguments for interface methods but rather a FooEnvironment argument. This ensures future
backwards compatibility when new inputs are added.

name: Bug report
about: Create a report to help us improve
title: ‘’
labels: ‘’
assignees: ‘’

Describe the bug
A clear and concise description of what the bug is.

To Reproduce
Please provide a code example or even better a test to reproduce the bug.

name: Other issue
about: Generic issue
title: ‘’
labels: ‘’
assignees: ‘’

If you have a general question or seeking advice how to use something please create a new topic in our GitHub discussions forum: https://github.com/graphql-java/graphql-java/discussions. Thanks.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

_static/plus.png

