

Welcome to Graphlite

Graphlite is a tiny graph datastore that stores adjacency lists
similar to FlockDB but like conventional graph databases, allow
you to query them with traversals (graph-walking queries), and
works with datasets that you can fit into your SQLite database.

from graphlite import connect, V
graph = connect(':memory:', graphs=['knows'])

with graph.transaction() as tr:
 for i in range(2, 5):
 tr.store(V(1).knows(i))
 tr.store(V(2).knows(3))
 tr.store(V(3).knows(5))

who are the friends of the mutual friends
of both 1 and 2?
graph.find(V(1).knows)\
 .intersection(V(2).knows)\
 .traverse(V().knows)

If you are not familiar or new to the library perhaps you
should check out Introduction to Graphlite. Else, you are most likely
looking for the API Documentation.

	Introduction to Graphlite
	What is Graphlite?

	Cheatsheet

	Usage
	Initializing the graph

	Inserting edges

	Querying

	Deleting Edges

	API Documentation

Indices and tables

	Index

	Module Index

	Search Page

Introduction to Graphlite

What is Graphlite?

Graphlite is a social graph datastore. It doesn’t store
properties between relations, but it can store thousands
of relations between integers, which are most likely
representing objects in your other databases, such as
the ID column of your users/statuses table.

Being based on a relational DBM, Graphlite supports very
atomic transactions, similar to the transactions that
SQLite offers even with transactions, performance isn’t
degraded because the SQLite library is very, very fast.

Graphlite aims to be performant, thread safe, and have
a pleasant API for developer happiness. For example, to
create a transaction:

with graph.transaction() as tr:
 for item in range(2, 6):
 tr.store(V(1).knows(item))

And one thing I’m very happy with is how querying works
and the expressiveness of the querying “syntax”:

graph.find(V(1).knows)\
 .union(V(3).knows)\
 .traverse(V().posted)

Cheatsheet

To connect to an existing SQLite database file (substitute
URI and GRAPHS with the URI of your database file
and the graphs that you want to query/insert to):

from graphlite import connect, V
graph = connect(URI, graphs=GRAPHS)

To insert (possibly multiple) relation(s), you must create
a transaction and call methods of the transaction object:

with graph.transaction() as tr:
 tr.store(V(1).knows(2))

To query the graph, you can simply do:

graph.find(V(1).knows) # people that 1 knows
graph.find(V().knows(1)) # people that knows 1

Querying has a few more “tricks”, notably the powerful set
operations that you can do:

graph.find(...).union(...)
graph.find(...).difference(...)
graph.find(...).intersection(...)

They should be quite familiar to you (remember the Venn
diagrams from school?). If you are not familiar with set
operations or would like a demo of how they work I would
recommend looking at this [http://www.texample.net/media/tikz/examples/PNG/set-operations-illustrated-with-venn-diagrams.png]
diagram.

Graphlite also supports “graph-hopping” or graph traversal
queries, in spite of the fact that it was inspired by
FlockDB:

graph.find(V(1).knows).traverse(V().knows)

The above query states that “find all of the people that 1
knows, and then find all of the people that they know”.
You can also pass in a destination node to the second query,
to select the source nodes:

graph.find(V(1).knows).traverse(V().knows(2))

Which means “find all of the people that one knows, that
knows 2”. This can also be expressed with the help of an
intersection:

graph.find(V(1).knows).intersection(V().knows(2))

Note that you can traverse indefinitely, i.e. to find out
who are the friends of friends of the people that know 2,
you can do:

graph.find(V().knows(2)).traverse(V().knows)\
 .traverse(V().knows)

You can also count the nodes returned by a query via the
count method:

graph.find(V(1).knows).count()

To delete edges from the datastore, you have three options:

	Specific deletes

	Inverse & Forwards deletes

	Relation-wide deletes

To illustrate,

with graph.transaction() as tr:
 tr.delete(V(1).knows(2))
 # delete edges of type "1 knows ..."
 tr.delete(V(1).knows)

 # delete edges of type "... knows 1"
 tr.delete(V().knows(2))

 # delete edges of type "... knows ..."
 tr.delete(V().knows)

Usage

Note: If you have read through the cheatsheet then this document
for you, will just go deeper into the internals of Graphlite.

Initializing the graph

To initialize a graph object, you have two options- using the
graphlite.graph.Graph object or the graphlite.connect()
function. Usually you would use graphlite.connect() because
it encapsulates anything that the codebase would want to do in
the future.

from graphlite import V, connect
graph = connect(':memory:', graphs=['knows'])

Note that since Graphlite is based internally on SQLite (in fact
it can be thought as a minimal wrapper around SQLite to give you
a graph layer), you will need to pass in the graphs that you want
to create and query because the appropriate tables need to be
created.

Inserting edges

Graphlite represents edges as a row which contains a source node,
a destination node, which is where the source node is “pointing
to”, i.e. in the edge “John knows Don”, John is the source node
and Don is the destination node. Graphlite also stores the nodes
as unsigned integers, so you will need a separate backing store
to store the documents, i.e. key-value.

with graph.transaction() as tr:
 for item in range(2, 5):
 tr.store(V(1).knows(item))
 tr.store(V(3).knows(1))
 tr.store(V(2).knows(6))
 tr.store(V(6).knows(7))

When your generator gets too large, it is often better to use the
graphlite.transaction.Transaction.store_many() method because
it’s more efficient in terms of space:

with graph.transaction() as tr:
 tr.store_many(V(1).knows(n) for n in range(2, 200))

Tip: anything that modifies the graph (i.e. storage, removal)
will be done within a transaction. This is partially because
Graphlite is based on an SQLite backend and implementing transactions
are quite straightforward this way.

Transactions are automatically committed at the end of the with
block, so you don’t have to hold a lock throughout the entirety of
the block.

Querying

Querying can come in two flavours- you either do a forwards query,
where you select the destination nodes and specify the source node,
or an inverse query, where you get the source nodes but specify the
destination node. Again, best explained by example:

>>> list(graph.find(V(1).knows()))
[2, 3, 4]
>>> list(graph.find(V().knows(1)))
[3]

You can also do queries which involve set operations, i.e. unions,
differences, and intersections. They are all very efficient and
does not require any data processing on our (Graphlite’s) side
because they can be represented easily by set operations. Possible
queries:

graph.find(...).intersection(...)
graph.find(...).difference(...)
graph.find(...).union(...)

Graph traversal queries are also possible via Graphlite. For example
to select the friends of friends of 1:

graph.find(V(1).knows).traverse(V().knows)

And you can also specify the destination node to the traverse
query to select the source nodes that have the specific relation
to the destination node. For example, to select the friends of friends
of 1 that are friends with 2:

graph.find(V(1).knows).traverse(V().knows(2))

Perhaps you want to keep traversing and find out the friends of those
people? You can do that as well:

graph.find(V(1).knows).traverse(V().knows(2))\
 .traverse(V().knows)

You can also slice the query objects the same way you’d slice a slice
object, but you will only get an iterable back. For example to get the
first five people that 1 knows:

graph.find(V(1).knows)[:5]

Note that you can only iterate over the iterable, because internally
Graphlite uses the itertools.islice function to generate an
iterable that takes the slice into account. Basically, the need to
do this is because we:

	Need to take slice.step into account

	Want to prevent people from doing queries like
graph.find(...)[1:].union(...) because these are not allowed
in SQLite, as only the rightmost select can contain a LIMIT
statement.

Deleting Edges

Deleting edges can come in four flavours- you either do a specific
delete of a specific edge, a forwards query, then delete all the
rows (edges) matching it, an inverse query, or just wipe out everything
from the table. Either way, an example would illustrate it best:

with graph.transaction() as tr:
 tr.delete(V(1).knows(2))

 # every edge with source node 1
 tr.delete(V(1).knows)

 # every edge with destination node 2
 tr.delete(V().knows(2))

 # everything within the knows table
 tr.delete(V().knows)

Similar to graphlite.transaction.Transaction.store_many()
method, you should use the graphlite.transaction.Transaction.delete_many()
method if you are deleting many specific nodes at once. For
example:

with graph.transaction() as tr:
 tr.delete_many(V(1).knows(i) for i in gen())

Note that transactions are not locked, in a sense that the
code within the with block is not ran in a thread lock.
The lock will only be held during block exit, which is also
when the transaction will be committed. Also, nested transactions
are not recommended. They will not be treated as a
single atomic operation since there is no way to enforce
atomicity when we have multiple transactions within a
transaction.

API Documentation

	
graphlite.connect(uri, graphs=())

	Returns a Graph object with the given uri and
created graphs.

	Parameters:	
	uri – The URI to the SQLite DB.

	graphs – The graphs to create.

	
class graphlite.graph.Graph(uri, graphs=())

	Initializes a new Graph object.

	Parameters:	
	uri – The URI of the SQLite db.

	graphs – Graphs to create.

	
close()

	Close the SQLite connection.

	
find

	Returns a Query object that acts on the graph.

	
setup_sql(graphs)

	Sets up the SQL tables for the graph object,
and creates indexes as well.

	Parameters:	graphs – The graphs to create.

	
transaction()

	Returns a Transaction object. All modifying
operations, i.e. store, delete must
then be performed on the transaction object.

	
class graphlite.transaction.Transaction(db, lock)

	Represents a single, atomic transaction. All
calls are delayed jobs- they do not execute
until the transaction is committed.

	Parameters:	
	db – An SQLite connection.

	lock – A threading.Lock instance.

	
abort()

	Raises an AbortSignal. If you used the
Graph.transaction context manager this
exception is automatically caught and ignored.

	
clear()

	Clears all the operations registered on the
transaction object.

	
commit()

	Commits the stored changes to the database.
You don’t have to call this function if
the transaction object is used as a context
manager. A transaction can only be committed
once.

	
delete(edge)

	Deletes an edge from the database. Either the
source node or destination node may be specified,
but the relation has to be specified.

	Parameters:	edge – The edge.

	
delete_many(edges)

	Delete multiple edge queries from the database. Best
used when you have a fairly large generator that
shouldn’t be loaded into memory at once for efficiency
reasons.

	Parameters:	edges – An iterable of edges or Graph.find
style edge queries to delete.

	
perform_ops()

	Performs the stored operations on the database
connection. Only to be called when within a
lock and a database transaction by the
commit method.

	
store(edge)

	Store an edge in the database. Both the source
and destination nodes must be specified, as
well as the relation.

	Parameters:	edge – The edge.

	
store_many(edges)

	Store many edges into the database. Similar to the
graphlite.transaction.Transaction.delete_many()
method.

	Parameters:	edges – An iterable of edges to store.

	
class graphlite.query.Query(db, sql=(), params=())

	
	
count()

	Counts the objects returned by the query.
You will not be able to iterate through this
query again (with deterministic results,
anyway).

	
derived(statement, params=(), replace=False)

	Returns a new query object set up correctly with
the statement and params appended to the end
of the new instance’s internal query and params,
along with the current instance’s connection.

	Parameters:	
	statement – The SQL query string to append.

	params – The parameters to append.

	replace – Whether to replace the entire
SQL query.

	
difference

	Compute the difference between the current
selected nodes and the another query, and
not a symmetric difference. Similar in
implementation to
graphlite.query.Query.intersection().

	
intersection

	Intersect the current query with another one
using an SQL INTERSECT.

	
statement

	Joins all of the SQL queries together and then
returns the result. It is the query to be ran.

	
to(datatype)

	Converts this iterable into another datatype
by calling the provided datatype with the
instance as the sole argument.

	Parameters:	datatype – The datatype.

	
traverse(edge)

	Traverse the graph, and selecting the destination
nodes for a particular relation that the selected
nodes are a source of, i.e. select the friends of
my friends. You can traverse indefinitely.

	Parameters:	edge – The edge query. If the edge’s
destination node is specified then the source
nodes will be selected.

	
union

	Compute the union between the current selected
nodes and another query. Similar to the
graphlite.query.Query.intersection()
method.

Index

 A
 | C
 | D
 | F
 | G
 | I
 | P
 | Q
 | S
 | T
 | U

A

 	
 	abort() (graphlite.transaction.Transaction method)

C

 	
 	clear() (graphlite.transaction.Transaction method)

 	close() (graphlite.graph.Graph method)

 	
 	commit() (graphlite.transaction.Transaction method)

 	connect() (in module graphlite)

 	count() (graphlite.query.Query method)

D

 	
 	delete() (graphlite.transaction.Transaction method)

 	delete_many() (graphlite.transaction.Transaction method)

 	
 	derived() (graphlite.query.Query method)

 	difference (graphlite.query.Query attribute)

F

 	
 	find (graphlite.graph.Graph attribute)

G

 	
 	Graph (class in graphlite.graph)

I

 	
 	intersection (graphlite.query.Query attribute)

P

 	
 	perform_ops() (graphlite.transaction.Transaction method)

Q

 	
 	Query (class in graphlite.query)

S

 	
 	setup_sql() (graphlite.graph.Graph method)

 	statement (graphlite.query.Query attribute)

 	
 	store() (graphlite.transaction.Transaction method)

 	store_many() (graphlite.transaction.Transaction method)

T

 	
 	to() (graphlite.query.Query method)

 	Transaction (class in graphlite.transaction)

 	
 	transaction() (graphlite.graph.Graph method)

 	traverse() (graphlite.query.Query method)

U

 	
 	union (graphlite.query.Query attribute)

 nav.xhtml

 Table of Contents

 		Welcome to Graphlite

 		Introduction to Graphlite

 		What is Graphlite?

 		Cheatsheet

 		Usage

 		Initializing the graph

 		Inserting edges

 		Querying

 		Deleting Edges

 		API Documentation

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

