

GraphI - Python Graph Interface and Types

[image: Code Health]
 [https://landscape.io/github/MaineKuehn/graphi/master][image: Documentation Status]
 [http://graphi.readthedocs.io/en/latest/?badge=latest]
Documentation Topics Overview:

	Quick Usage Reference

	Common Graph Operations

	Graph Syntax

	Glossary

	Changelog

	Module Index

GraphI is a lightweight graph library - it is suitable to model networks, connections and other relationships.
Compared to other graph libraries, GraphI aims for being as pythonic as possible.
If you are comfortable using list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict] or other types, GraphI is intuitive and straight-forward to use.

create a graph with initial nodes
from graphi import graph
airports = graph("New York", "Rio", "Tokyo")
add connections between nodes
airports["New York":"Rio"] = timedelta(hours=9, minutes=50)
airports["New York":"Tokyo"] = timedelta(hours=13, minutes=55)

At its heart, GraphI is built to integrate with Python’s data model.
It natively works with primitives, iterables, mappings and whatever you need.
For example, creating a multigraph is as simple as using multiple edge values:

add multiple connections between nodes -> Multigraph
airports["Rio":"Tokyo"] = timedelta(days=1, hours=2), timedelta(days=1, hours=3)

By design, GraphI is primarily optimized for general convenience over specific brute force performance.
It heavily exploits lazy iteration, data views and other modern python paradigms under the hood.
This allows the use of common operations without loss of performance:

get number of outgoing edges of nodes -> outdegree
outgoing_flights = {city: len(airports[city]) for city in airports}

With its general-purpose design, GraphI makes no assumptions about your data.
You are free to use whatever is needed to solve your problem, not please data structure.

Frequently Asked Questions

	Yet another graph library?

	The goal of GraphI is not to be another graph library, but to provide an intuitive way to work with graphs.
Working with complex graphs should be as easy for you as working with any other primitive type.

	What is this thing you call ABC?

	GraphI does not just provide graph implementations, but also an efficient graph interface.
This interface is defined by the graphi.abc abstract base classes [https://docs.python.org/3/glossary.html#term-abstract-base-class].

Any custom graph implementation can be made a virtual subclass of these ABCs.
This allows you to adopt graph implementations optimized for your use-case without changing your code.

	Where are all the algorithms?

	First and foremost, GraphI is designed for you to work on graph data instead of pre-sliced storybook data.
GraphI implements only algorithms that

	are fundamental building blocks for advanced algorithms, and/or

	benefit from knowledge of internal data structures.

At the moment, you can find basic operators in the graphi.operators module.

	What about performance?

	At its core, GraphI uses Python’s native, highly optimized data structures.
For any non-trivial graph algorithm, the provided performance is more than sufficient.

From our experience, performance critical code is best run with PyPy [https://pypy.org].
This will not just optimize isolated pieces, but the actual combination of your algorithm and GraphI as a whole.

Indices and tables

	Index

	Module Index

	Search Page

Documentation built from graphi 0.2.0 at Nov 17, 2017.

Quick Usage Reference

GraphI is primarily meant for working directly on graph data.
The primitives you need to familiarise yourself with are

	graphs, which are extended containers,

	nodes, which are arbitrary objects in a graph,

	edges, which are connections between objects in a graph, and

	edge values, which are values assigned to connections in a graph.

[image: \mathtt{ \underbrace{\vphantom{\bigl[}\mathtt{flighttime}}_\mathtt{graph} [\overbrace{ \underbrace{\vphantom{\bigl[}\mathtt{Berlin}}_\mathtt{node} : \underbrace{\vphantom{\bigl[}\mathtt{London}}_\mathtt{node} }^{edge}] = \underbrace{\vphantom{\bigl[}\mathtt{3900}}_\mathtt{value} }]

This documentation page gives an overview of the most important aspects.
The complete interface of GraphI is defined and documented by Graph.

Creating Graphs and adding Nodes

You can create graphs empty, via cloning, from nodes or with nodes, edges and values.
For many use-cases, it is simplest to start with a set of nodes:

from graphi import graph

planets = graph("Earth", "Jupiter", "Mars", "Pluto")

Once you have a graph, it works similar to a set [https://docs.python.org/3/library/stdtypes.html#set] for nodes.
You can simply add() and discard() nodes:

planets.add("Venus")
planets.add("Mercury")
planets.discard("Pluto")

Working with Edges and Values

To really make use of a graph, you will want to add edges and give them values.
Simply pick a connection from a node to a node and assign it a value:

store the average distance between planets
planets["Earth":"Venus"] = 41400000

An edge is always of the form start:end, but values can be of arbitrary type.
For example, you can easily add multiple values for a single edge using containers:

add multiple values as an implicit tuple
planets["Earth":"Venus"] = 41400000, 258000000
add multiple values as an explicit, mutable list
planets["Earth":"Mars"] = [78000000, 378000000]

The :-syntax of edges is not just pretty - it ensures that you never, ever accidentally mix up nodes and edges.
This allows you to safely use the same graph[item] interface for nodes and edges.

If you need to define an edge outside of graph accesses, explicitly use Edge:

from graphi import Edge

if Edge["Venus":"Earth"] in planets:
 print("Wait, isn't there a pattern for this?")

Graphs as Python Containers

GraphI is all about letting you handle graphs with well-known interfaces.
A graph is a container indexed by either nodes or edges:

print(planets["Venus":"Earth"])
del planets["Jupiter"]

Even though it contains nodes, edges and values, it presents its nodes first - similar to keys in a dict [https://docs.python.org/3/library/stdtypes.html#dict].
However, you can efficiently access its various elements via views:

print("My father only told me about %d of our planets." % len(planets))
print("But I looked up %d distances between planets:" % len(planets.edges())
for planet_a, planet_b, distances in planets.items():
 print(" %s to %s: %s" % (planet_a, planet_b, '-'.join(distances)))

Common Graph Operations

Many common graph operations map to simple operators in graphi.
Unless parameters are needed, builtin operations usually suffice.
For example, the outdegree of a node is simply its number of outgoing edges, i.e.

out_degree = len(graph[node])

in a directed graph.
Since graphi makes heavy use of data views (instead of copies), this has optimal performance.

Pythonic Graph Operations

Nodes of a graph

Graphs behave like a set [https://docs.python.org/3/library/stdtypes.html#set] with regard to nodes.
Note that removing a node also invalidates all its edges and their values.

	
graph[a] = True

	
graph.add(a)

	
graph.discard(a)

	Safely add or remove a node a from graph.

	
del graph[a]

	Remove a node a from graph.

	
a in graph

	Whether there is a node a in graph.

	
list(graph)

	
iter(graph)

	
for a in graph:

	List/iterate/traverse all nodes in graph .

	
len(graph)

	The number of nodes in the graph.

Edges and values of a graph

Graphs special-case edges: an edge is a secondary key,
being the value to nodes and the key to edge values.

	
Edge[a:b] in graph

	Whether there is an edge from node a to node b in graph.

	
Loop[a] in graph

	
Edge[a:a] in graph

	Whether there is a loop from node a to itself in graph.

	
list(graph[a])

	
iter(graph[a])

	
for b in graph[a]:

	List/iterate/loop all nodes for which there is an
edge from node a, i.e. its neighbours.

	
len(graph[a])

	The number of outgoing edges of node a, i.e. its outdegree.

Edge values of a graph

Graphs behave similar to a dict [https://docs.python.org/3/library/stdtypes.html#dict], tying values to edges.
Note that removing a node also invalidates all its edges and their values.

	
graph[a:b] = w

	
graph[Edge[a:b]] = w

	Add an edge from node a to node b with value w.

Pythonic Graph Types

By default, every graph is a weighted, directed graph
- edges are oriented from start to end node and have one edge value.
However, other graph types can be created with standard language features.

	
graph[a:b] = True

	Add an edge from node a to node b with
the primitive value True.

This creates an unweighted graph edge.

	
graph[a:b] = [w1, w2, w3, ...]

	
graph[a:b] = w1, w2, w3, ...

	Add an edge from node a to node b with
multiple values w1, w2, w3,

This creates a multigraph edge.

Graph Syntax

Graphs use both key and slice notation to refer to nodes and edges, respectively.
This works for both assignment and lookup of the respective value.

Nodes

A node is written directly.
Its value is the adjacency associated with the node in the graph,
i.e. a mapping to all neighbours and the respective edge value.

[image: \mathtt{ \underbrace{\vphantom{\bigl[}\mathtt{flighttime}}_\mathtt{graph} [\underbrace{\vphantom{\bigl[}\mathtt{Berlin}}_\mathtt{node}] = \overbrace{ \{ \underbrace{\vphantom{\bigl[}\mathtt{London}}_\mathtt{node} : \underbrace{\vphantom{\bigl[}\mathtt{3900}}_\mathtt{value} , ... \} }^\mathtt{adjacency} }]

Edges

An edge is written using slice [https://docs.python.org/3/glossary.html#term-slice] notation.
Its value is the edge value associated with the edge in the graph.

[image: \mathtt{ \underbrace{\vphantom{\bigl[}\mathtt{flighttime}}_\mathtt{graph} [\overbrace{ \underbrace{\vphantom{\bigl[}\mathtt{Berlin}}_\mathtt{node} : \underbrace{\vphantom{\bigl[}\mathtt{London}}_\mathtt{node} }^{edge}] = \underbrace{\vphantom{\bigl[}\mathtt{3900}}_\mathtt{value} }]

Glossary

	loop

	An edge from a node to itself.
Counts as both an ingoing and outgoing edge for outdegree, indegree and degree.

	indegree

	The number of ingoing edges of a node.
If a node has a loop, it also counts as an ingoing edge.

The number of nodes to which a node is a neighbour.

	outdegree

	The number of outgoing edges of a node.
If a node has a loop, it also counts as an outgoing edge.

The number of neighbours of a node.

	degree

	The number of ingoing and outgoing edges of a node.
If a node has a loop, it counts as both an ingoing and outgoing edge.

The degree of a node is the sum of its indegree and outdegree.

	graph

	A collection of nodes, edges between them
and possibly values associated with any edges.

	node

	A regular object in a graph.

	edge	arrow

	A connection between two nodes in a graph.

	edge value	weight

	The value associated with an edge in a graph.

	neighbour

	A node with an edge from a specific node.
Given an edge a:b, b is a neighbour of a.

The number of neighbours is the outdegree.

 graphi Changelog

graphi Changelog

prerelease 2017-??-??

	Notes

	Added operator interface and implementations

Added graph input/output

	Major Changes

	Added graph[item] = True, which is equal to graph.add(item).
Deprecates both graph[node] = node and graph[node] = None.

	New Features

	Operator interface allowing graphs to provide optimized implementations

Added operators:

	neighbours(graph, node, ..)

	density(graph)

Added input/output:

	csv

Minor Changes

Graphs explicitly define bool(graph). This was previously implicitly available as bool falls back to __len__.

0.2.0 2017-07-31

	Notes

	Definition of primary interface, algorithms (Graph.neighbours) will be revised

	New Features

	Added AdjacencyGraph

	Major Changes

	Defined graph container interface

	Minor Changes

	Added documentation

 graphi

graphi

	graphi package
	Subpackages
	graphi.graph_io package
	Submodules

	graphi.operators package
	Submodules

	graphi.types package
	Submodules

	Submodules
	graphi.abc module

	graphi.edge module

 graphi package

graphi package

	
graphi.graph

	Default graph type implementation

An implementation of the Graph interface,
suitable for most purposes.
Support of all graph interfaces for both reading and writing is
provided.
The implementation is adequate for most use-cases, and provides
a balance of complexity, performance and storage.

	See:	The corresponding class
AdjacencyGraph
for details.

alias of AdjacencyGraph

	
graphi.GraphABC

	Graph abstract base class [https://docs.python.org/3/glossary.html#term-abstract-base-class] for type checks and virtual subclasses

The ABC is primarily needed for two cases:

	Type checking to find graph classes via isinstance() [https://docs.python.org/3/library/functions.html#isinstance], as in
isinstance(candidate, GraphABC).

	Actual or virtual subclasses acting as implementations of the graphi
interface for type checks.

	See:	The corresponding class
Graph
for details.

alias of Graph

Subpackages

	graphi.graph_io package
	Submodules
	graphi.graph_io.csv module
	CSV Graph Format

	Reading Graphs

	graphi.operators package
	Submodules
	graphi.operators.interface module

	graphi.types package
	Submodules
	graphi.types.adjacency_graph module

Submodules

	graphi.abc module

	graphi.edge module

 graphi.graph_io package

graphi.graph_io package

Submodules

	graphi.graph_io.csv module
	CSV Graph Format

	Reading Graphs

 graphi.graph_io.csv module

graphi.graph_io.csv module

Utilities for loading and storing Graphs as csv

CSV Graph Format

The CSV graph format uses an optional header to define nodes, and a body storing the adjacency matrix.
By default, a graph with n nodes is stored as a matrix literal of n columns and n+1 rows:

a b c d
0 2 1 0
2 0 3 2
1 4 0 0
0 1 3 0

Separators and formatting are handled by the csv Dialect [https://docs.python.org/3/library/csv.html#csv.Dialect].
Value conversion and interpretation is handled by the appropriate reader/writer.

Reading Graphs

Graphs can be read using graph_reader() from iterables of CSV lines, such as files or str.splitlines.
The csv itself is parsed using a csv.reader() [https://docs.python.org/3/library/csv.html#csv.reader], which allows setting the CSV dialect.

from graphi.graph_io import csv

literal = """\
a, b, c
0, 2, 3
2, 0, 2
1, 2, 0
"""

graph = csv.graph_reader(
 literal.splitlines(),
 skipinitialspace=True,
)
for nodes in graph:
 print(repr(node), "=>", graph[nodes])

	
class graphi.graph_io.csv.DistanceMatrixLiteral

	Bases: csv.Dialect [https://docs.python.org/3/library/csv.html#csv.Dialect]

CSV dialect for a Graph Matrix Literal, suitable for numeric data and string literals

A graph with alphabetic node names and numeric values would look like this:

 a b c
 0 2 1.3
 2 0 .5
16 .5 1

	
delimiter = ' '

	no explicit delimeter between fields

	
doublequote = False

	

	
escapechar = '\\'

	use regular escaping

	
lineterminator = '\n'

	

	
quotechar = "'"

	string values are written as “foo”, multi-values as ‘1,2,3’

	
quoting = 0

	

	
skipinitialspace = True

	allow for alignment with arbitrary whitespace

	
exception graphi.graph_io.csv.ParserError(error, row, column=None)

	Bases: exceptions.Exception

Error during parsing of a graph from a csv

	
graphi.graph_io.csv.graph_reader(iterable, nodes_header=True, literal_type=<function stripped_literal>, valid_edge=<type 'bool'>, undirected=False, *args, **kwargs)

	Load a graph from files or iterables

	Parameters:	
	iterable – an iterable yielding lines of CSV, such as an open file

	nodes_header – whether and how to interpret a header specifying nodes

	literal_type – type callable to evaluate literals

	valid_edge – callable to test whether an edge should be inserted

	undirected – whether to mirror the underlying matrix

The iterable argument can be any object that returns a line of
input for each iteration step, such as a file object or a list of strings.

Nodes are created depending on the value of nodes_header:

	False

	Nodes are numbered 1 to len(iterable[0]). Elements in the first
line of iterable are not consumed by this.

	iterable

	Nodes are read from node_header.

	True

	Nodes are taken as the elements of the first line of iterable. The
first line is consumed by this, and not considered as containing graph
edges. Nodes are read plainly of type :py:class:str, not using literal_type.

	callable

	Like True, but nodes are not taken as plain str()
but individually interpreted via node_header(element).

The CSV is interpreted as a matrix, where the row marks the origin of an
edge and the column marks the destination. Thus, loops are specified on the diagonal,
while an asymmetric matrix creates different edge values for opposite directions.
For an undirected graph, the matrix is automatically treated as symmetric.
Trailing empty lines may be removed.

In the following example, the edges a:b and a:c are symmetric and there
are no edges or self-loops a:a or b:b. In contrast, b:c is 3 whereas
c:b is 4, and there is a self-loop c:c. The node d only has an
ingoing edge b:d, but no outgoing edges:

a b c d
0 2 1 0
2 0 3 2
1 4 1 0

If undirected evaluates to True, the upper right corner is mirrored to
the lower left. Note that the diagonal must be provided. The following
matrices give the same output if symmetric is True:

a b c a b c a b c
0 2 1 0 2 1 0 2 1
2 0 3 0 3 5 0 3
1 4 1 1 7 1

Each value is evaluated and filtered by literal_type and valid_edge:

	
graphi.graph_io.csv.literal_type(literal) → object

	Fields read from the csv are passed to literal_type directly as the
sole argument. The return value is considered as final, and inserted
into the graph without further conversions.

	
graphi.graph_io.csv.valid_edge(object) → bool

	Similarly, valid_edge is called on the result of literal_type.
The default is bool(), which should work for most data types.

The default for literal_type is capable of handling regular python literals,
e.g. int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float] and str [https://docs.python.org/3/library/stdtypes.html#str]. In combination with
valid_edge, any literal of non-True values signifies a missing edge:
None, False, 0 etc.

	See:	All *args and **kwargs are passed on directly to
csv.reader for extracting lines.

	
graphi.graph_io.csv.stripped_literal(literal)

	evaluate literals, ignoring leading/trailing whitespace

This function is capable of handling all literals supported by
ast.literal_eval() [https://docs.python.org/3/library/ast.html#ast.literal_eval], even if they are surrounded by whitespace.

 graphi.operators package

graphi.operators package

	
graphi.operators.neighbours(graph, *args, **kwargs)

	Yield all nodes to which there is an outgoing edge from node in graph

	Parameters:	
	graph (Graph) – graph in which to search for edges

	node – node from which edges originate.

	maximum_distance – maximum distance to other nodes

	Returns:	iterator of neighbour nodes

	Raises:	NodeError – if node is not in the graph

When maximum_distance is not None, it is the maximum allowed edge value.
This is interpreted using the <= operator as graph[edge] <= distance.

If there is a valid edge graph[node:node] <= distance, then node
is part of its own neighbourhood.

	Note:	The order of neighbours is arbitrary.

	
graphi.operators.density(graph, *args, **kwargs)

	Return the density of the graph, i.e. the connectedness of its nodes

	Parameters:	graph (Graph) – graph for which to calculate density

	Raises:	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if graph has no nodes

The density is the ratio of actual edge count versus the maximum, non-looping edge count.

A graph without edges has a density of 0, whereas a complete graph has a density of 1.
A graph with a loop may have a density bigger than 1.
The density is undefined for a graph less than two nodes, and raises ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

Submodules

	graphi.operators.interface module

 graphi.operators.interface module

graphi.operators.interface module

	
graphi.operators.interface.graph_operator(prefix='graphi')

	Implement a callable as a graph operator

	Parameters:	prefix – identifier to prepend to special method names

Adds the operator lookup and fallback procedure to allow
Graph subclasses to implement optimized algorithms.
For example, a graph storing edges in a sorted data structure may prematurely
end a search for neighbours given a maximum distance.

A graph can influence the evaluation of a graph operator by providing an attribute
named __<prefix>_<operator name>__, e.g. __graphi_neighbours__ for an operator neighbours.
If this is the case, the attribute is called with the provided arguments as a replacement
for the operator implementation.

	
graphi.operators.interface.operator(graph, *args, **kwargs)

	The generic implementation of a graph operator.

	
graph.__graphi_operator__(*args, **kwargs)

	The optimized implementation of a graph operator.

There are three special conditions to this procedure:

	attribute is None

	The graph does not support the operation.

Attempting the operation on the graph raises TypeError [https://docs.python.org/3/library/exceptions.html#TypeError].

	attribute is NotImplemented

	The graph does not overwrite the operation.
The operator implementation is always used.

	calling the attribute returns NotImplemented

	The graph does not overwrite the operation for the specific parameters.
The operator implementation is used.

The name of an operator is taken from operator.__name__ or operator.__class__.__name__.

 graphi.types package

graphi.types package

Submodules

	graphi.types.adjacency_graph module

 graphi.types.adjacency_graph module

graphi.types.adjacency_graph module

	
class graphi.types.adjacency_graph.AdjacencyGraph(*source, **kwargs)

	Bases: graphi.abc.Graph

Graph storing edge distances via adjacency lists

	Parameters:	
	source – adjacency information

	undirected – whether the graph enforces symmetry

This graph provides optimal performance for random, direct access to nodes
and edges. As it stores individual nodes and edges, it is optimal in both
space and time for sparse graphs.

However, ordering of nodes(), edges() and values()
is arbitrary. The expected complexity for searches is the worst case of
O(len(nodes()) = n) and O(len(edges()) -> n2),
respectively.

	
clear()

	

	
edges()

	

	
update(other)

	

	
values()

	

	
class graphi.types.adjacency_graph.EdgeView(graph)

	Bases: graphi.abc.EdgeView

View on the edges in a graph

	
class graphi.types.adjacency_graph.ValueView(graph)

	Bases: graphi.abc.ValueView

View on the values of edges in a graph

 graphi.abc module

graphi.abc module

	
class graphi.abc.AdjacencyList

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict], _abcoll.MutableMapping

Edge values of nodes to a node in a graph

This represents edges in a graph originating from node as a mapping to their values.
For example, the edge graph[a:b] = c corresponds to adjacency[b] = c for node a.

	
exception graphi.abc.AdjacencyListTypeError(item)

	Bases: exceptions.TypeError

AdjacencyList set with an incorrect type

	
exception graphi.abc.EdgeError

	Bases: exceptions.Exception

Graph edge not found

	
class graphi.abc.EdgeView(graph)

	Bases: graphi.abc.GraphView

View on the edges in a graph

	
class graphi.abc.Graph(*source, **kwargs)

	Bases: _abcoll.Container

Abstract Base Class for graphs representing values of edges between nodes

A Graph is a container for primitive nodes and edges.
There are three types of elements handled by a graph:

	primitive nodes,

	slice-like edges as pairs of nodes, and

	primitive edge values.

Both nodes and edge values are conceptually similar to keys and values of dict [https://docs.python.org/3/library/stdtypes.html#dict].
However, the concept of node pairs as edges adds additional functionality.
The fixed relation between arbitrary nodes a, b and the directed pair a:b creates two value-type layers:

	each node is mapped to all its outgoing edges,

	each edge is mapped to the respective edge value.

In short, graph[a] provides a collection of edges originating at a,
while graph[a:b] provides the specific edge value from a to b.

Note

Many interfaces return the rich Edge type for its added usability.
To access an edge value, using slice [https://docs.python.org/3/library/functions.html#slice] such as graph[a:b] is sufficient, however.

Similar to Mappings, nodes are the primary keys of a Graph.
As a result, the container interfaces, such as iter and len, operate on nodes.
In general, nodes can be of arbitrary type as long as they are hashable [https://docs.python.org/3/glossary.html#term-hashable].

By default, edges in a Graph are directed and unique:
The edges represented by graph[a:b] and graph[b:a] are separate with opposite direction.
Each edge is unique, i.e. there is only one edge graph[a:b].
A loop is represented by the edge graph[a:a].
The edge entities stored in the graph may be arbitrary objects.

As such, the interface of Graph defaults to describing a directed graph.
However, other types of graph can be expressed as well.
These generally do not form separate types in term of implementation.

Multigraphs allow for multiple edges between pairs of nodes.
In this case, all edge values are containers (such as list [https://docs.python.org/3/library/stdtypes.html#list] or set [https://docs.python.org/3/library/stdtypes.html#set]) of arbitrary size.
Whether a Graph is a graph of containers or a multigraph depends on the context.

Undirected Graphs do not distinguish between graph[a:b] and graph[b:a].
This can be enforced by symmetry of edge values, which guarantees that graph[a:b] == graph[b:a] always applies.

	
g.undirected

	Indicates whether Graph g is guaranteed to be undirected, having only
symmetric edge values. If True, g[a:b] is g[b:a] for any nodes a and b
in g; the graph enforces this, e.g. g[a:b] = c implies g[b:a] = c.
If False, symmetric edges are allowed but not enforced.

Read-only unless explicitly indicated otherwise.

There are several ways to initialise a new graph;
their main difference is which element types are left empty.

	
Graph()

	Create a new empty graph.
No nodes, edges or values are filled in.

	
Graph(graph)

	Create a new graph with all nodes, edges and values of graph.
The resulting graph is a shallow copy of graph - the identity of elements is preserved.

	
Graph(a, b, c, ...)

	
Graph([a, b, c, ...])

	
Graph({a, b, c, ...})

	
Graph(<iterable for a, b, c, ...>)

	Create a new graph with nodes a, b, c, d, and so on.
No edges or values are created explicitly.

	
Graph({a: {b: ab_edge, c: ...}, b: {a: ab_edge, ...}})

	
Graph({a: AdjacencyList({b: ab_edge, c: ...}), b: AdjacencyList(...), ...})

	Create a new graph with nodes a, b, c, and so on.
Initialize edges to graph[a:b] = ab_edge, graph[b:a] = ba_edge, and so on.

Note

If only a single argument is provided, graph and mapping initialization is preferred over iterable initialisation.
To initialize a graph with a graph or mapping as the sole node, wrap it in an iterable, e.g. Graph([graph]).

All implementations of this ABC guarantee the following operators:

	
bool(g)

	Whether there are any nodes in the graph g.

	
len(g)

	Return the number of nodes in the graph g.

	
g[a:b]

	Return the value of the edge between nodes a and b. Raises EdgeError if
no edge is defined for the nodes. Undirected graphs guarantee g[a:b] == g[b:a].

	
g[a:b] = value

	Set the value of the edge between nodes a and b to value for graph g.

	
del g[a:b]

	Remove the edge and value between nodes a and b from g. Raises
EdgeError if the edge is not in the graph.

	
g[a]

	Return the edges between nodes a and any other node as an AdjacencyList
corresponding to {b: ab_edge, c: ac_edge, ...}. Raises NodeError if
a is not in g.

	
g[a] = True

	
g.add(a)

	Add the node a to graph g if it does not exist. Do not add, remove or modify existing edges.
Graphs for which edges are computed, not set, may create them implicitly.

Changed in version 0.3.0: Added g[a] = True, deprecated g[a] = a and g[a] = None.

	
g[a] = {}

	
g[a] = AdjacencyList()

	Add the node a to graph g if it does not exist. Remove any existing
edges originating at a from graph g.

	
g[a] = {b: ab_edge, c: ac_edge, ...}

	
g[a] = AdjacencyList(b=ab_edge, c=c_edge)

	Add the node a to graph g if it does not exist. Set the value of the edge between
nodes a and b to ab_edge, between a and c to ac_edge, and so on.
Remove any other edge from a. Raises NodeError if any of b,
c, etc. are not in g.

	
del g[a]

	Remove the node a and all its edges from g. Raises
NodeError if the node is not in the graph.

	
a in g

	Return True if g has a node a, else False.

	
Edge[a:b] in g

	
Edge(a, b) in g

	Return True if g has an edge from node a to b, else False.

	
iter(g)

	Return an iterator over the nodes in g.

In addition, several methods are provided. While methods and operators for
retrieving data must be implemented by all subclasses, methods for
modifying data may not be applicable to certain graphs.

	
add(item)

	Safely add a node or edge to the graph, without modifying existing edges

If a node is not part of the graph, it is added without any explicit edges.
If a edge is not part of the graph, its value is set to True.

Note

Graphs which compute edges may implicitly create new edges if node is new to the graph.

	
clear()

	Remove all elements from this graph

	
copy()

	Return a shallow copy of this graph

	
discard(item)

	Remove a node or edge from the graph if it is a member

	Parameters:	item – node or edge to discard from the graph

	
edges()

	Return a new view of the graph’s edges

	Returns:	view of the graph’s edges

	Return type:	EdgeView

	
get(item, default=None)

	Return the value for node or edge item if it is in the graph, else default. If
default is not given, it defaults to None, so that this method never
raises a NodeError or EdgeError.

	Parameters:	
	item – node or edge to look up in the graph

	default – default to return if item is not in the graph

	
items()

	Return a new view of the graph’s edges and their values

	Returns:	view of the graph’s edges and their values

	Return type:	ItemView

	
nodes()

	Return a new view of the graph’s nodes

	Returns:	view of the graph’s nodes

	Return type:	NodeView

	
undirected = False

	whether this graph is undirected, having only symmetric edges

	
update(other)

	Update the graph with the nodes, edges and values from other,
overwriting existing elements.

	Parameters:	other (Graph or ItemView) – graph or items from which to pull elements

	
values()

	Return a new view of the values of the graph’s edges

	Returns:	view of the values of the graph’s edges

	Return type:	ValueView

	
class graphi.abc.GraphView(graph)

	Bases: _abcoll.Sized

Dynamic view on the content of a Graph

View objects represent a portion of the content of a graph.
A view allows to work with its scope without copying the viewed content.
It is dynamic, meaning that any changes to the graph are reflected by the view.

Each view works only on its respective portion of the graph.
For example, edge in nodeview will always return False.

	
len(graphview)

	Return the number of nodes, node pairs or edges in the graph.

	
x in graphview

	Return True if x is a node, node pair or edge of the graph.

	
iter(graphview)

	Return an iterator over the nodes, node pairs or edges in the graph.

Each view strictly defines the use of nodes, edges or values.
As such, edges are safely represented as a tuple of start and end node.

	
undirected

	

	
class graphi.abc.ItemView(graph)

	Bases: graphi.abc.GraphView

View on the edges and values in a graph

Represents edges and their value as a tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of (tail, head, value).
For example, the edge graph[a:b] = c corresponds to the item (a, b, c).

	
exception graphi.abc.NodeError

	Bases: exceptions.Exception

Graph node not found

	
class graphi.abc.NodeView(graph)

	Bases: graphi.abc.GraphView

View on the nodes of a graph

	
class graphi.abc.ValueView(graph)

	Bases: graphi.abc.GraphView

View on the values of edges in a graph

 graphi.edge module

graphi.edge module

	
class graphi.edge.Edge(start, stop, step=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An edge in a graph as a pair of nodes

	Parameters:	
	start – the start or tail of an edge

	stop – the stop or head of an edge

	step – currently unused

This is a verbose interface for creating edges between nodes for use in a graph.
It allows using slice notation independent of a graph:

>>> atb = Edge[a:b]
>>> a2b = Edge(a, b)
>>> graph[a2b] = 1337
>>> graph[a:b] == graph[atb] == graph[a2b] == graph[Edge[a:b]] == graph[Edge(a, b)]
True

A Edge can also be used for explicit containment tests:

>>> Edge[a:b] in graph
True

In addition to their slice-like nature, Edge is iterable and indexable.
This allows for easy unpacking:

>>> edge = Edge[a:b]
>>> tail, head = edge

Note

This class creates a representation of an edge as a connection between nodes.
Edge values can be arbitrary objects.

Warning

Even though Edge behaves like a slice [https://docs.python.org/3/library/functions.html#slice] in graphs,
builtin containers such as list [https://docs.python.org/3/library/stdtypes.html#list] cannot make use of an Edge.

	
start

	

	
stop

	

	
class graphi.edge.EdgeMeta

	Bases: type [https://docs.python.org/3/library/functions.html#type]

Metaclass for Edge to support Edge[a:b]

	
class graphi.edge.Loop(start, stop=None, step=None)

	Bases: graphi.edge.Edge

An edge in a graph from a node to itself

	Parameters:	
	start – the start or tail of a loop

	stop – optional stop or head of a loop, same as start

	step – currently unused

	Raises:	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if stop is given but not equal to start

 Python Module Index

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 graphi	

 	
 	
 graphi.abc	

 	
 	
 graphi.edge	

 	
 	
 graphi.graph_io	

 	
 	
 graphi.graph_io.csv	

 	
 	
 graphi.operators	

 	
 	
 graphi.operators.interface	

 	
 	
 graphi.types	

 	
 	
 graphi.types.adjacency_graph	

 Index

Index

 _
 | A
 | C
 | D
 | E
 | G
 | I
 | L
 | N
 | O
 | P
 | Q
 | S
 | U
 | V
 | W

_

 	
 	__graphi_operator__() (graphi.operators.interface.graph method)

A

 	
 	add() (graphi.abc.Graph method)

 	AdjacencyGraph (class in graphi.types.adjacency_graph)

 	
 	AdjacencyList (class in graphi.abc)

 	AdjacencyListTypeError

 	arrow

C

 	
 	clear() (graphi.abc.Graph method)

 	(graphi.types.adjacency_graph.AdjacencyGraph method)

 	
 	copy() (graphi.abc.Graph method)

D

 	
 	degree

 	delimiter (graphi.graph_io.csv.DistanceMatrixLiteral attribute)

 	density() (in module graphi.operators)

 	
 	discard() (graphi.abc.Graph method)

 	DistanceMatrixLiteral (class in graphi.graph_io.csv)

 	doublequote (graphi.graph_io.csv.DistanceMatrixLiteral attribute)

E

 	
 	edge

 	Edge (class in graphi.edge)

 	edge value

 	EdgeError

 	EdgeMeta (class in graphi.edge)

 	
 	edges() (graphi.abc.Graph method)

 	(graphi.types.adjacency_graph.AdjacencyGraph method)

 	EdgeView (class in graphi.abc)

 	(class in graphi.types.adjacency_graph)

 	escapechar (graphi.graph_io.csv.DistanceMatrixLiteral attribute)

G

 	
 	get() (graphi.abc.Graph method)

 	graph

 	Graph (class in graphi.abc)

 	graph (in module graphi)

 	graph_operator() (in module graphi.operators.interface)

 	graph_reader() (in module graphi.graph_io.csv)

 	GraphABC (in module graphi)

 	graphi (module)

 	
 	graphi.abc (module)

 	graphi.edge (module)

 	graphi.graph_io (module)

 	graphi.graph_io.csv (module)

 	graphi.operators (module)

 	graphi.operators.interface (module)

 	graphi.types (module)

 	graphi.types.adjacency_graph (module)

 	GraphView (class in graphi.abc)

I

 	
 	indegree

 	
 	items() (graphi.abc.Graph method)

 	ItemView (class in graphi.abc)

L

 	
 	lineterminator (graphi.graph_io.csv.DistanceMatrixLiteral attribute)

 	literal_type() (in module graphi.graph_io.csv)

 	
 	loop

 	Loop (class in graphi.edge)

N

 	
 	neighbour

 	neighbours() (in module graphi.operators)

 	node

 	
 	NodeError

 	nodes() (graphi.abc.Graph method)

 	NodeView (class in graphi.abc)

O

 	
 	operator() (in module graphi.operators.interface)

 	
 	outdegree

P

 	
 	ParserError

Q

 	
 	quotechar (graphi.graph_io.csv.DistanceMatrixLiteral attribute)

 	
 	quoting (graphi.graph_io.csv.DistanceMatrixLiteral attribute)

S

 	
 	skipinitialspace (graphi.graph_io.csv.DistanceMatrixLiteral attribute)

 	start (graphi.edge.Edge attribute)

 	
 	stop (graphi.edge.Edge attribute)

 	stripped_literal() (in module graphi.graph_io.csv)

U

 	
 	undirected (graphi.abc.Graph attribute)

 	(graphi.abc.GraphView attribute)

 	
 	update() (graphi.abc.Graph method)

 	(graphi.types.adjacency_graph.AdjacencyGraph method)

V

 	
 	valid_edge() (in module graphi.graph_io.csv)

 	values() (graphi.abc.Graph method)

 	(graphi.types.adjacency_graph.AdjacencyGraph method)

 	
 	ValueView (class in graphi.abc)

 	(class in graphi.types.adjacency_graph)

W

 	
 	weight

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

nav.xhtml

 Table of Contents

 		GraphI - Python Graph Interface and Types

 		Quick Usage Reference

 		Creating Graphs and adding Nodes

 		Working