
grampg Documentation
Release 0.2.0

Elvio Toccalino

August 06, 2015

Contents

1 Description 3
1.1 The PasswordGenerator / Generator duality . 3
1.2 Technical description . 4

2 grampg API 5

3 The password generation algorithm 9

4 Indices and tables 11

Python Module Index 13

i

ii

grampg Documentation, Release 0.2.0

Password generation with a fluent interface... a nice treat when you’re under supervision of a grumpy sysadmin.

Contents:

Contents 1

grampg Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Description

The grampg code provides you with a password generator object, a bottomless barrel from which you
can pull passwords. The difference between this generator object and something like /dev/random or
’’.join([random.choice(letters) for i in range(LEN)]) is that you get to build that generator
with great specificity, to obtain passwords adequate to your needs.

You will first have to build the generator, though. This could be a tedious, and a difficult task. Consider the following
example:

how would you tell the builder you want passwords 10 characters long,
with lower letters and at least 3 numbers, starting with a letter?

grampg provides an easy to use interface, aimed at translating your needs intuitively.

Building the generator object is done in steps, using a builder object. At each step you add a spec (think of it as a
piece of specification). You proceed working on the builder object accumulating specs, all of which add up to the
requirements your passwords must satisfy. In the case of the example, you could use something like this:

gen = PasswordGenerator().of().length(10).at_most(10, 'lower_letters')
.at_least(3, 'numbers')
.beginning_with('lower_letters')
.done()

The expression above will yield a generator object ready to produce passwords, exactly as you require them.

Note: The order in which specs are added is irrelevant. You are encourage to declare your specs as they sound more
natural in your head; doing so greatly improves maintainability of the code.

Now that you have your generator object, you can use it throughout your own code:

passwords = [gen.generate() for i in xrange(so_many_passwords)]

And that’s what grampg offers: a simple way to specify contrived password schema.

Note: In case you’re wondering, passwords generated by the resulting generator object are strong. You can revise
the algorithm later in this docs. XXX add reference to that.

1.1 The PasswordGenerator / Generator duality

Apart from a small hierarchy of three exceptions to deal with errors, the grampg exposes two classes to the user: the
Generator and the PasswordGenerator. The naming might be confusing, but (as much in the design of this library)

3

grampg Documentation, Release 0.2.0

it is for the sake of code readability.

Of the two classes, the grampg.Generator is the actual password generator. It accumulates and holds your specs,
generates the passwords and is the object which the user will keep reference to (in most, but not all, use cases). It
implements the grampg.Generator.generate() method, and that says it all.

The grampg.PasswordGenerator, on the other hand, is the builder class. Its instances will create and stow
away a grampg.Generator instance for the user, and will act as its interface as specs are added. It relinquishes
control of the generator object only when the building phase is terminated (when it receives a call to done()).

This explains the naming choices: the user should never have the need to write Generator() but
PasswordGenerator.of() (both idioms being equivalent, the second instantiates the generator object inter-
nally).

1.2 Technical description

The two classes exposed by the grampg module constitute a builder and product pair. The builder aids the user in
specifying an adequate representation of the product.

Generators are instances of grampg.Generator. A generator object is instantiated with the sets of characters to
use, and is responsible for accumulating the specs through method calls. The user, however, does not need to know
any of that. The user never really interacts with a grampg.Generator instance directly, but through the builder.
For the user, generator objects have one method of interest, generate(), which produces a single, independent and
strong password string each time it’s called, but which can be called only when the specification phase is done.

A builder object is an instances of grampg.PasswordGenerator, and provides a fluent interface to the Generator
internal object being specified. The interface leverages method chaining and the builder pattern to provide a quick and
easy specification phase. The grampg.PasswordGenerator provides a means of defining non-default character
sets (characters to choose from when generating passwords), and passes user specs to the generator object being built.
The builder object returns the generator object only when a call to done() succeeds. The generator object returned
is ready to receive calls to generate().

4 Chapter 1. Description

CHAPTER 2

grampg API

When interfacing the grampg you will instantiate PasswordGenerator, configure your character sets if neces-
sary, and call of() on it to instantiate an internal Generator. The PasswordGenerator is in fact little more
than a fluent interface to build generators. The generator instance is returned only when done() is called.

By means of the PasswordGenerator instance, the Generator instance can then be progressively spec’ed, so
passwords generated by it can conform to you’re twisted needs.

class grampg.PasswordGenerator(from_sets={})
Build the password generator.

Provides a fluent interface to build Generator instances, by means of method chaining.

Exposes the character sets. Default character sets are provided for upper and lower case letters (upper_letters and
lower_letters, respectively, all mashed up in letters) and numbers. A conjunction of the three is also provided,
under the name alphanumeric.

A character set can be registered by keying its name to a list of eligible characters in the sets attribute, or by
extending the default character sets during instantiation.

at_least(low, setname)
Spec method: require no less than low but no more than high characters from that set. This spec defines a
range of characters.

at_most(high, setname)
Spec method: require no more than high characters from that set. This spec defines a range of characters.

beginning_with(setname)
Spec method: passwords will start with a char from this set.

Some other spec method must be called to define a number or range for that same set. Beginning with
characters not specified is an error.

between(low, high, setname)
Spec method: require no less than low but no more than high characters from that set. This spec defines a
range of characters.

done()
Finalize the generator and return it.

The returned instance can receive calls to generate(), each of which will produce an independent
password complying with the specs.

ending_with(setname)
Spec method: passwords will end with a char from this set.

5

grampg Documentation, Release 0.2.0

Some other spec method must be called to define a number or range for that same set. Ending with
characters not specified is an error.

exactly(quantity, setname)
Spec method: require exactly this many characters from the set.

length(length)
Spec method: adjust the total length of passwords to generate.

of()
Commence a method chain building a fresh generator instance.

The generator instanciated by this call is new, but the character sets fed to it are always the same
(the ones configured during __init__()). If a different character set is desired, a new instance of
PasswordGenerator is neccessary.

The generator will be finalized by a done() call, and then used by calling generate() on it.

some(setname)
Spec method: use characters from the set, if they fit.

Once the you have specified your password scheme, you will have access to the generator instance.

class grampg.Generator(sets)
The generator object.

A generator instance undergoes three phases during its existance: create it with the character sets to choose
from, specify it by calling its methods finalizing in a call to done(), and generate passwords with it by calling
its generate() method.

Character sets should not be modified once the generator is instantiated. If other character sets are required, a
new instance should be used.

During the specification, repeated calls to the same method (consecutively or otherwise) overrides previous
calls, so it is not an error to call them more than once. Specification is over after a call done() succeds. Once
done, the generator cannot be further spec’ed, and only calls to generate() are valid (although it is possible
to call done() over and over again, it does not have effect).

Any attempt to add new specs to a done generator will raise PasswordGeneratorIsDone.

Note: Generator instances should be built by means of PasswordGenerator, and only the generate()
method should ever be directly called on instances of this class.

generate()
Return one generated password based on the collected specs.

Can be called any number of times, each yielding a new, independant password.

Raises PasswordSpecsNonValidatedError if the generator is not done (the done() method
has not yet been called). Raises PasswordSpecError if frame spec methods (length,
beginning_with ending_with) collide.

In case of errors during the specification, the following exceptions are used.

exception grampg.PasswordSpecsError
Root of grampg exceptions.

Itself used to signal errors during specification or validation of a generator.

exception grampg.PasswordSpecsNonValidatedError
Raised when generate() is called on a generator before a it is done.

6 Chapter 2. grampg API

grampg Documentation, Release 0.2.0

exception grampg.PasswordGeneratorIsDone
Raised when a new specification is attempted on a done generator.

7

grampg Documentation, Release 0.2.0

8 Chapter 2. grampg API

CHAPTER 3

The password generation algorithm

XXX describe the algorithm, its strengh and limitation.

9

grampg Documentation, Release 0.2.0

10 Chapter 3. The password generation algorithm

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

11

grampg Documentation, Release 0.2.0

12 Chapter 4. Indices and tables

Python Module Index

g
grampg (Unix, Windows), ??

13

grampg Documentation, Release 0.2.0

14 Python Module Index

Index

A
at_least() (grampg.PasswordGenerator method), 5
at_most() (grampg.PasswordGenerator method), 5

B
beginning_with() (grampg.PasswordGenerator method),

5
between() (grampg.PasswordGenerator method), 5

D
done() (grampg.PasswordGenerator method), 5

E
ending_with() (grampg.PasswordGenerator method), 5
exactly() (grampg.PasswordGenerator method), 6

G
generate() (grampg.Generator method), 6
Generator (class in grampg), 6
grampg (module), 1, 5

L
length() (grampg.PasswordGenerator method), 6

O
of() (grampg.PasswordGenerator method), 6

P
PasswordGenerator (class in grampg), 5
PasswordGeneratorIsDone, 6
PasswordSpecsError, 6
PasswordSpecsNonValidatedError, 6

S
some() (grampg.PasswordGenerator method), 6

15

	Description
	The PasswordGenerator / Generator duality
	Technical description

	grampg API
	The password generation algorithm
	Indices and tables
	Python Module Index

