

Welcome to graf-python’s documentation!

The library graf-python is an open source Python implemenation to parse and write GrAF/XML files as described in ISO 24612.

The project’s homepage is: http://media.cidles.eu/poio/graf-python/

Contents

	Introduction to graf-python
	How to use the library
	Parsing GrAF

	Querying GrAF graphs

	Translation Graphs from GrAF/XML files

	GrAF/XML Data Sources

	graf-python Classes
	Annotation

	AnnotationSpace

	Edge

	FeatureStructure

	GrafRenderer

	Graph

	GraphParser

	Link

	Node

	Region

	StandoffHeader

	FileDesc

	ProfileDesc

	DataDesc

Indices and tables

	Index

	Module Index

	Search Page

Introduction to graf-python

The library graf-python is a Python implemenation to parse files GrAF/XML files as described in ISO 24612. The parser of the library create an annotation graph from the files. The user may then query the annotation graph via the API of graf-python. This documentation gives some examples how to acccess data and how to transform it for further processing in linguistic and computational libraries like networkX, numpy and NLTK.

	References:

	
	GrAF Wiki (http://www.americannationalcorpus.org/graf-wiki)

	ISO 24612 (http://www.iso.org/iso/catalogue_detail.htm?csnumber=37326)

How to use the library

	Parsing GrAF

	Querying GrAF graphs

	Translation Graphs from GrAF/XML files

GrAF/XML Data Sources

	MASC: http://www.anc.org/MASC/Home.html

	QuantHistLing: http://www.quanthistling.info/data

Parsing GrAF

The first step is to initialize the parser:

 import graf
 gparser = graf.GraphParser()

You can then directly pass the filename of the GrAF header to the parser:

graph = gparser.parse("filename.hdr")

The parser then collects all the dependencies from this header. You might also pass the file name of any GrAF/XML file to the parser. The parser then loads all files that are dependencies of that file as described in its header.

Alternativily the parser also accepts and open file stream. Now we have a GrAF object and it is possible to verify the nodes, regions, edges and their respectives annotations.

Checking the nodes
for node in graph.nodes():
 print(node)

Checking the regions
for region in graph.regions():
 print(region)

Checking the edges
for edge in graph.edges():
 print(edge)

Querying GrAF graphs

For a real-world example how to use the GrAF API in Python we will use data from the project “Quantitative Historical Linguistics [http://www.quanthistling.info/]”. The project publishes data as GrAF/XML files that are ready to use with the parser. Here we will use the XML files of the dictionary “Thiesen, Wesley & Thiesen, Eva. 1998. Diccionario Bora—Castellano Castellano—Bora [http://www.quanthistling.info/data/source/thiesen1998/dictionary-25-339.html]”, which are available as a ZIP package:

http://www.quanthistling.info/data/downloads/xml/thiesen1998.zip

Download and extract the files to a local folder. The following example code will extract all head and translation annotations from the XML files and write them into a separate, tab-separated text file.

First, create a parser object and parse the file “dict-thiesen1998-25-339-dictinterpretation.xml” that you extracted from the ZIP file:

import graf

gparser = graf.GraphParser()
g = parser.parse("dict-thiesen1998-25-339-dictinterpretation.xml")

This will parse the file and all its dependencies into a GrAF object that we can query now. In this case the only dependency is the file “dict-thiesen1998-25-339-entries.xml” that contains regions of dictionary entries that link to the basic data file, and annotations for each of those dictionary entries. We will use the entry nodes to find each “head” and “translation” annotation that are linked to the entry nodes via edges in the graph.

Next, open the output file:

f = codecs.open("heads_with_translations_thiesen1998.txt", "w", "utf-8")

Then you may loop through all the nodes in the graph. For each node that has a label ending in “entry” we will follow all the edges. The edges that have label “head” or “translation” link to the annotations nodes we want to extract:

loop through all nodes in the graph
for (node_id, node) in g.nodes.items():
 heads = []
 translations = []

 # if the node is a dictionary entry...
 if node_id.endswith("entry"):

 # loop thropugh all edges that are connected
 # to the entry
 for e in node.out_edges:
 # if the edge has a label "head"...
 if e.annotations.get_first().label == "head":
 # get the "head" annotation string
 heads.append(e.to_node.annotations.get_first().features.get_value("substring"))

 # if the edge has a label "translation"...
 elif e.annotations.get_first().label == "translation":
 # get the "translation" annotation string
 translations.append(e.to_node.annotations.get_first().features.get_value("substring"))
 # write all combinations of heads and translations
 # to the output file
 for h in heads:
 for t in translations:
 f.write(u"{0}\t{1}\n".format(h, t))

This will write heads and translations to the file, separated by a tab. Don’t forget to close the file in the end:

f.close()

The complete script is available in the Github repository of graf-python:

https://github.com/cidles/graf-python/blob/master/examples/query_quanthistling_graf.py

Translation Graphs from GrAF/XML files

In this tutorial we will demonstrate how to extract a translation graph
from data in digitized dictionaries. The translation graph connects
entries in dictionaries, via annotation for “heads” and “translations”
within the dictionary. We will demonstrate how to visualize this data
with a plotting library and how to export parts of the graph to JSON for
interactive visualizations in the web.

You can download this tutorial as IPython notebook here:

https://github.com/cidles/graf-python/blob/master/examples/Translation%20Graph%20from%20GrAF.ipynb

Or as a Python script here:

https://github.com/cidles/graf-python/blob/master/examples/Translation%20Graph%20from%20GrAF.py

Data

For this tutorial we will use data from the project “Quantitative
Historical Linguistics [http://www.quanthistling.info/]”. The
website of the project provides a ZIP package of GrAF/XML files for the
printed sources that were digitized within the project:

http://www.quanthistling.info/data/downloads/xml/data.zip

The ZIP package contains several files encoded as described in the ISO
standard
24612 [http://www.iso.org/iso/catalogue_detail.htm?csnumber=37326]
“Linguistic annotation framework (LAF)”. The QuantHistLing data contains
dictionary and wordlist sources. Those were first tokenized into
entries, for each entry you will find annotations for at least the head
word(s) (“head” annotation) and translation(s) (“translation”
annotation) in the case of dictionaries. We will only use the
dictionaries of the “Witotoan” component in this tutorial. The ZIP
package also contains a CSV file “sources.csv” that contains some
information for each source, for example the languages as ISO codes,
type of source, etc. Be aware that the ZIP package contains a filtered
version of the sources: only entries that contain a Spanish stem that is
included in the Spanish swadesh
list [http://en.wiktionary.org/wiki/Appendix:Spanish_Swadesh_list] are
included in the download package.

For a simple example how to parse one of the source please see here:

http://graf-python.readthedocs.org/en/latest/Querying%20GrAF%20graphs.html

What are translation graphs?

In our case, translation graphs are graphs that connect all spanish
translation with every head word that we find for each translation in
our sources. The idea is that spanish is some kind of interlingua in our
case: if a string of a spanish translation in one source matches a
string in another source this will only be ‘’‘one’‘’ node in our graph.
For the head words, this is not the case: matching strings in head words
in different source are different nodes in the graph. This holds even if
the different sources describe the same language, as different sources
will use different orthographies.

To fullfil that need, head words are internally represented as a string
with two parts: the head word and its source. Both parts are seperated
by a pipe symbol “|”. For example, in a DOT
file [http://en.wikipedia.org/wiki/DOT_language] such a node looks
like this:

“ócáji|thiesen1998” [lang=boa, source=thiesen1998_25_339];

The square brackets contain additional attributes here. These attributes
are not part of the node’s name, they contain just additonal information
the user wants to store with the nodes.

In comparison, a spanish translation looks like this:

“vaca” [lang=spa];

There is no attribute “source” here, as this translation might occur in
several sources. An edge connecting the two nodes looks like this:

“vaca” – “ócáji|thiesen1998”;

To handle such graphs our scripts use the NetworkX Python
library [http://networkx.lanl.gov/]. It is kind of a standard in
scientific graph computing with Python (remark: I started with the
pygraph library, which has more or less the same API but by far not
enough operations to compute with graphs later).

Requirements

The following Python libraries are required to process the GrAF/XML
files and create the translation graphs:

	NetworkX: http://networkx.lanl.gov/

	graf-python: https://github.com/cidles/graf-python

	NLTK: http://nltk.org

To visualize the graphs you have to install matplotlib:

	matplotlib: http://matplotlib.org/

When you have installed all the libraries you are able to import the
following modules:

In[22]:

import os
import csv
import codecs
import re
import glob

import networkx
import graf
import nltk

Get Witotoan sources

Change to the directory where you extracted the ZIP archive that you
downloaded from the QuantHistLing website:

In[2]:

os.chdir("h:/Corpora/qlc/graf")

Now we open the file “sources.csv” and read out all the sources that are
part of the component “Witotoan” and that are dictionaries. We will
store a list of those source in witotoan_sources:

In[3]:

sources = csv.reader(open("sources.csv", "rU"), delimiter="\t")
witotoan_sources = list()
for source in sources:
 if source[5] == "Witotoan" and source[1] == "dictionary":
 witotoan_sources.append(source[0])

GrAF to NetworkX

Next we define a helper function that transform a GrAF graph into a
networkx graph. For this we traverse the graph by querying for all
entries. For each entry we look for connected nodes that have “head” or
“translation” annotation. All of those nodes that are Spanish are stored
in the list spa. All non-Spanish annotations are stored in
others. In the end the collected annotation are added to the new
networkx graph, and each spanish node is connected to all the other
nodes for each entry:

In[51]:

def graf_to_networkx(graf, source = None):
 g = networkx.Graph()
 for (node_id, node) in graf.nodes.items():
 spa = list()
 others = dict()
 if node_id.endswith("entry"):
 for e in node.out_edges:
 if e.annotations.get_first().label == "head" or e.annotations.get_first().label == "translation":
 # get lang
 for n in e.to_node.links[0][0].nodes:
 if n.annotations.get_first().label == "iso-639-3":
 if n.annotations.get_first().features.get_value("substring") == "spa":
 spa.append(e.to_node.annotations.get_first().features.get_value("substring"))
 break
 else:
 others[e.to_node.annotations.get_first().features.get_value("substring")] = n.annotations.get_first().features.get_value("substring")
 break
 if len(spa) > 0:
 for head in spa:
 g.add_node(head, attr_dict={ "lang": "spa" })
 for translation in others:
 g.add_node(u"{0}|{1}".format(translation, source), attr_dict={ "lang": others[translation], "source": source })
 g.add_edge(head, u"{0}|{1}".format(translation, source))
 return g

Parse GrAF/XML files

Now we parse all the XML files of the extracted ZIP package. For this we
traverse through all the directories that have a name in
`witotoan_sources’. The files we are looking for are the
“-dictinterpretation.xml” files within each directory, as those contain
the annotations for “heads” and “translations”.

First we create an empty list graphs that will later store all the
networkx graphs:

In[52]:

parser = graf.GraphParser()
graphs = []

Then we loop through all the Witotoan sources, parse the XML files and
transform the graphs into networkx graph by calling the helper function
that we defined above. We print a progress report within the loop, as
parsing and transformation might take some time:

In[53]:

for d in witotoan_sources:
 for f in glob.glob(os.path.join(d, "dict-*-dictinterpretation.xml")):
 print("Parsing {0}...".format(f))
 graf_graph = parser.parse(f)
 g = graf_to_networkx(graf_graph, d)
 graphs.append(g)
print("OK")

Parsing thiesen1998dict-thiesen1998-25-339-dictinterpretation.xml...
Parsing minor1987dict-minor1987-1-126-dictinterpretation.xml...
Parsing minor1971dict-minor1971-3-74-dictinterpretation.xml...
Parsing burtch1983dict-burtch1983-19-262-dictinterpretation.xml...
Parsing leach1969dict-leach1969-67-161-dictinterpretation.xml...
Parsing walton1997dict-walton1997-9-120-dictinterpretation.xml...
Parsing preuss1994dict-preuss1994-797-912-dictinterpretation.xml...
Parsing rivet1953dict-rivet1953-336-377-dictinterpretation.xml...
Parsing griffiths2001dict-griffiths2001-79-199-dictinterpretation.xml...
OK

Merge all graphs

Now we can merge all the individual graphs for each source into one big
graph. This will collapse all Spanish nodes and so connect the nodes
that have a common Spanish translation:

In[54]:

import copy
combined_graph = copy.deepcopy(graphs[0])
for gr in graphs[1:]:
 for node in gr:
 combined_graph.add_node(node, gr.node[node])
 for n1, n2 in gr.edges_iter():
 combined_graph.add_edge(n1, n2, gr.edge[n1][n2])

We count the nodes in the graph and the number of connected
components [http://networkx.lanl.gov/reference/generated/networkx.algorithms.components.connected.number_connected_components.html#networkx.algorithms.components.connected.number_connected_components]
to get an impression how the graph “looks”. The number of nodes is much
higher than the number of connected components, so we already have a lot
of the nodes connected in groups, either as a consequence from being
part of one dictionary entry or through the merge we did via the Spanish
node:

In[55]:

len(combined_graph.nodes())

Out[55]:

73022

In[56]:

networkx.algorithms.components.number_connected_components(combined_graph)

Out[56]:

17021

Connect nodes with the same stem

The next step is to connect spanish translations that contain the same
stem. For this we first remove certain stop words from the translation
(list of stopwords from NLTK). There are two cases then: just one word
remains, or more than one word remains.

We have two options now what to do with the latter: either they are not
connected with anything at all (default behaviour), or each word is
stemmed and the translation is connected with every other translation
that contain the same stems. Right now this results in many connections
that look not very useful. This should be done in a more intelligent way
in the future (for example find heads of phrases in multiword expressions
and only connect those; split the weight of the connections between all
stems and work with weighted graphs from this step on; …).

To connect the spanish translations the script adds additional “stem
nodes” to the graph. The name of these nodes consists of a spanish word
stem plus a pipe symbol plus the string “stem”. These nodes look like
this in a dot file:

“tom|stem” [is_stem=True];

The introduction of these nodes later facilites the output of
translation matrixes, as you can just search for stems within the graph
and only output direct neighbours with spanish translations. It would
also be possible to directly connect the spanish translations if they
have a matching stem, but then the graph traversal to find matching
translations and their heads is a bit more complex later.

First we create a stemmer object from the SpanishStemmer in NLTK:

In[57]:

from nltk.stem.snowball import SpanishStemmer
stemmer = SpanishStemmer(True)

We create the list of stopwords and encode them as unicode strings:

In[58]:

combined_graph_stemmed = copy.deepcopy(combined_graph)
stopwords = nltk.corpus.stopwords.words("spanish")
stopwords = [w.decode("utf-8") for w in stopwords]

Then we loop through all the nodes of the merged graph and add the stem
nodes to each Spanish node. If the node has only one word (after
stopword removal) we will use the NLTK stemmer; otherwise we just leave
the phrase as it is:

In[59]:

combined_graph_stemmed = copy.deepcopy(combined_graph)
for node in combined_graph.nodes():
 if "lang" in combined_graph.node[node] and combined_graph.node[node]["lang"] == "spa":
 e = re.sub(" ?\([^)]\)", "", node)
 e = e.strip()
 stem = e
 words = e.split(" ")
 if len(words) > 1:
 words = [w for w in words if not w in stopwords or w == ""]
 if len(words) == 1:
 stem = stemmer.stem(words[0])

 stem = stem + "|stem"
 combined_graph_stemmed.add_node(stem, is_stem=True)
 combined_graph_stemmed.add_edge(stem, node)

Again we can count the nodes and the number of connected components. We
see that the number of connected components decreases, as more nodes are
connected into groups now:

In[60]:

networkx.algorithms.components.number_connected_components(combined_graph_stemmed)

Out[60]:

13944

In[61]:

len(combined_graph_stemmed.nodes())

Out[61]:

100447

Export the merged graph as DOT

The graph may now be exported to the DOT format, to be used in other
tools for graph analysis or visualization. For this we use a helper
function from the qlc library [https://github.com/pbouda/qlc]:

In[15]:

from qlc.translationgraph import read, write
OUT = codecs.open("translation_graph_stemmed.dot", "w", "utf-8")
OUT.write(write(combined_graph_stemmed))
OUT.close()

Extract a subgraph for the stem of “comer”

As an example how to further process the graph we will extract the
subgraph for the stem “comer” now. For this the graph is traversed again
until the node “com|stem” is found. All the neighbours of this node are
copied to a new graph. We will also remove the sources from the node
strings to make the final visualization more readable:

In[66]:

comer_graph = networkx.Graph()
for node in combined_graph_stemmed:
 if node == "com|stem":
 comer_graph.add_node(node)
 # spanish nodes
 comer_graph.add_node("spa")
 comer_graph.add_edge(node, "spa")

 for sp in combined_graph_stemmed[node]:
 if "lang" in combined_graph_stemmed.node[sp] and combined_graph_stemmed.node[sp]["lang"] == "spa":
 comer_graph.add_node(sp)
 comer_graph.add_edge("spa", sp)

 for n in combined_graph_stemmed[sp]:
 if ("lang" in combined_graph_stemmed.node[n] and combined_graph_stemmed.node[n]["lang"] != "spa") and \
 ("is_stem" not in combined_graph_stemmed.node[n] or not combined_graph_stemmed.node[n]["is_stem"]):
 s = n.split("|")[0]
 lang = combined_graph_stemmed.node[n]["lang"]
 comer_graph.add_node(lang)
 comer_graph.add_edge(node, lang)
 comer_graph.add_node(s)
 comer_graph.add_edge(lang, s)

Plot the subgraph with matplotlib

The subgraph that was extracted can now be plotted with matplotlib:

In[67]:

import matplotlib.pyplot as plt
fig = plt.figure(figsize(22,17))
networkx.draw_networkx(comer_graph, font_family="Arial", font_size=10, node_size=3000, node_shape="H")

[image: _images/Translation_Graph_from_GrAF_fig_00.png]

Export the subgraph as JSON data

Another method to visualize the graph is the D3 Javascript
library [http://d3js.org/]. For this we need to export the graph as
JSON data that will be loaded by a HTML document. The networkx contains
a networkx.readwrite.json_graph module that allows us to easily
transform the graph into a JSON document:

In[68]:

from networkx.readwrite import json_graph
comer_json = json_graph.node_link_data(comer_graph)

The JSON data structure can now be written to a file with the help of the
Python json module:

In[69]:

import json
json.dump(comer_json, codecs.open("swadesh_data.json", "w", "utf-8"))

An example HTML file to visualize with D3 is here:

http://bl.ocks.org/4250342

graf-python Classes

	Annotation

	AnnotationSpace

	Edge

	FeatureStructure

	GrafRenderer

	Graph

	GraphParser

	Link

	Node

	Region

	StandoffHeader

	FileDesc

	ProfileDesc

	DataDesc

Annotation

	
class graf.Annotation(label, features=None, id=None)

	An Annotation is the artifact being annotated. An annotation is a
labelled feature structure. The annotation class/interface also
provides convenience methods for setting and getting values
from a feature structure.

	
__init__(label, features=None, id=None)

	Construct a new C{Annotation}.

	Parameters

	
	label – C{str}

	features – C{list} of C{Feature} objects

AnnotationSpace

	
class graf.AnnotationSpace(as_id)

	A collection of Annotations. Each AnnotationSpace has a name (C{Str})
and a type (C{URI}) and a set of annotations.

	
__init__(as_id)

	Constructor for C{AnnotationSpace}

	Parameters

	
	name – C{str}

	type – C{str}

	
remove(ann)

	Remove the given C{Annotation} object.

	Parameters

	a – Annotation

	
remove_where(label, fs=None)

	Remove the C{Annotation}s with the given label in
the given C{FeatureStructure}

	Parameters

	
	label – C{str}

	fs – C{FeatureStructure}

Edge

	
class graf.Edge(id, from_node, to_node, pos=None)

	Class of edges in Graph:
- Each edge maintains the source (from) graf.Node and the destination
(to) graf.Node.
- Edges may also contain one or more graf.Annotation objects.

	
__init__(id, from_node, to_node, pos=None)

	Edge Constructor.

	idstr

	The ID for the new edge.

	from_nodegraf.Node

	The source node for the edge.

	to_nodegraf.Node

	The target node for the edge.

	posint, optional

	An optional position of the edge in the graph. This will
only be used when we render the graf, to make it easier to
store an order of the edges.

FeatureStructure

	
class graf.FeatureStructure(type_var=None, items=None)

	A dict of key -> feature, where feature is either a string or another FeatureStructure.
A FeatureStructure may also have a type.
When key is a tuple of names, or a string of names joined by ‘/’, it is interpreted as the path to a nested feature structure.
Additionally, a FeatureStructure defines the operations ‘subsumes’ and ‘unify’.

	
__init__(type_var=None, items=None)

	Constructor for C{FeatureStructure}.

	Parameters

	type – C{str}

	
get_fs(key)

	Returns the value corresponding to key if it is a FeatureStructure, and otherwise throws a ValueError

	
get_value(key)

	Returns the value corresponding to key but throws a ValueError if it is a FeatureStructure

GrafRenderer

	
class graf.GrafRenderer(outputfile)

	Renders a GrAF XML representation that can be read back by an instance
of L{GraphParser}.

Version: 1.0.

	
__init__(outputfile)

	Create an instance of a GrafRenderer.

	
render_ann(a)

	Used to render the annotation elements of the Graph.

	
render_edge(e)

	Used to render the edge elements of the Graph.

	
render_feature(name, value)

	Used to render the features elements of the Graph.

	
render_fs(fs)

	Used to render the feature structure elements of the Graph.

	
render_link(link)

	Used to render the link elements of the Graph.

	
render_node(n)

	Used to render the node elements of the Graph.

	
render_region(region)

	Used to render the region elements of the Graph.

	
write_header(g)

	Writes the header tag at the beginning of the XML file.

	
write_header_elements(g)

	Helper method for write_header.

Graph

	
class graf.Graph

	Class of Graph.

	
__init__()

	Constructor for Graph.

	
create_edge(from_node, to_node, id=None)

	Create graf.Edge from id, from_node, to_node and add it to
this graf.Graph.

	from_nodegraf.Node

	The start node for the edge.

	to_node: graf.Node

	The end node for the edge.

	idstr, optional

	An ID for the edge. We will create one if none is given.

	resgraf.Edge

	The Edge object that was created.

	
find_edge(from_node, to_node)

	Search for C{Edge} with its from_node, to_node, either nodes or ids.

	Parameters

	
	from_node – C{Node} or C{str}

	to_node – C{Node} or C{str}

	Returns

	C{Edge} or None

GraphParser

	
class graf.GraphParser(get_dependency=None, parse_anchor=<type 'int'>, constants=<class 'graf.io.Constants'>)

	Used to parse the GrAF XML representation and construct the instance
of C{Graph} objects.

version: 1.0.

	
__init__(get_dependency=None, parse_anchor=<type 'int'>, constants=<class 'graf.io.Constants'>)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
parse(stream, graph=None)

	Parses the XML file at the given path.

	Returns

	a Graph representing the annotated text in GrAF format

	Return type

	Graph

Link

	
class graf.Link(vals=())

	Link objects are used to associate nodes in the graph with the
regions of the graph they annotate. Links are almost like edges except a
link is a relation between a node and a region rather than a relation
between two nodes. A node may be linked to more than one region.

	
__init__(vals=())

	x.__init__(…) initializes x; see help(type(x)) for signature

Node

	
class graf.Node(id='')

	Class for nodes within a C{Graph} instance.
Each node keeps a list of in-edges and out-edges.
Each collection is backed by two data structures:
1. A list (for traversals)
2. A hash map
Nodes may also contain one or more C{Annotation} objects.

	
__init__(id='')

	Constructor for C{GraphElement}.

	Parameters

	id – C{str}

	
add_region(region)

	Adds the given region to the first link for this node

	
clear()

	Clears this node’s visited status and those of all visited descendents

Region

	
class graf.Region(id, *anchors)

	The area in the text file being annotated. A region is defined
by a sequence of anchor values.

	
__init__(id, *anchors)

	Constructor for C{Region}.

	Parameters

	
	id – C{str}

	anchors – C{list} of C{Anchor}

StandoffHeader

	
class graf.StandoffHeader(version='1.0.0', **kwargs)

	Class that represents the primary data document header.
The construction of the file is based on the
ISO 24612.

	
__init__(version='1.0.0', **kwargs)

	Class’s constructor.

	versionstr

	Version of the document header file.

	filedescElementTree

	Element with the description of the file.

	profiledescElementTree

	Element with the description of the source file.

	datadescElementTree

	Element with the description of the annotations.

FileDesc

	
class graf.FileDesc(**kwargs)

	Class that represents the descriptions of the file
containing the primary data document.

	
__init__(**kwargs)

	Class’s constructor.

	titlestmtstr

	Name of the file containing the primary data
document.

	extentdict

	Size of the resource. The keys are ‘count’ -
Value expressing the size. And ‘unit’ - Unit
in which the size of the resource is expressed.
Both keys are mandatory.

	titlestr

	Title of the primary data document.

	authordict

	Author of the primary data document. The keys
are ‘age’ and ‘sex’.

	sourcedict

	Source from which the primary data was obtained.
The keys are ‘type’ - Role or type the source
with regard to the document. And ‘source’. Both
keys are mandatory.

	distributorstr

	Distributor of the primary data (if different
from source).

	publisherstr

	Publisher of the source.

	pubAddressstr

	Address of publisher.

	eAddressdict

	Email address, URL, etc. of publisher. The keys
are ‘email’ and ‘type’ - Type of electronic
address, such as email or URL. Both keys are
mandatory.

	pubDatestr

	Date of original publication. Should use the
ISO 8601 format YYYY-MM-DD.

	idnodict

	Identification number for the document. The keys
are ‘number’ and ‘type’ - Type of the identification
number (e.g. ISBN). Both keys are mandatory.

	pubNamestr

	Name of the publication in which the primary data was
originally published (e.g. journal in which it appeared).

	documentationstr

	PID where documentation concerning the data may be found.

ProfileDesc

	
class graf.ProfileDesc(**kwargs)

	Class that represents the descriptions of the file
containing the primary data document.

	
__init__(**kwargs)

	Class’s constructor.

	catRefstr

	One or more categories defined in the resource
header.

	subjectstr

	Topic of the primary data.

	domainstr

	Primary domain of the data.

	subdomainstr

	Subdomain of the data.

	languagesarray_like

	Array that contains the codes of the language(s)
of the primary data. The codes should be in the
ISO 639.

	participantsarray_like

	Array that contains the participants in an
interaction. Each person is a dict element and
the keys are ‘age’, ‘sex’, ‘role’ and ‘id’ -
Identifier for reference from annotation documents.
The ‘id’ key is mandatory.

	settingsarray_like

	Array that contains the settings within which a
language interaction takes place. Each settings is
a dictionary and the keys are ‘who’, ‘time’, ‘activity’
and ‘locale’.

	
add_language(language_code)

	This method is responsible to add the
annotations to the list of languages.

The language list in this class will
represents the language(s) that the
primary data use.

	language_codestr

	ISO 639 code(s) for the language(s) of the primary data.

	
add_participant(id, age=None, sex=None, role=None)

	This method is responsible to add the
annotations to the list of participants.

The parcipant list in this class will
represents participants in an interaction
with the data manipulated in the files pointed
by the header.

A participant is a person in this case and it’s
important and required to give the id.

	idstr

	Identifier for reference from annotation documents.

	ageint

	Age of the speaker.

	rolestr

	Role of the speaker in the discourse.

	sexstr

	One of male, female, unknown.

	
add_setting(who, time, activity, locale)

	This method is responsible to add the
annotations to the list of settings.

The setting list in this class will
represents the setting or settings
within which a language interaction takes
place, either as a prose description or a
series of setting elements.

A setting is a particular setting in which
a language interaction takes place.

	whostr

	Reference to person IDs involved in this interaction.

	timestr

	Time of the interaction.

	activitystr

	What a participant in a language interaction is doing
other than speaking.

	localestr

	Place of the interaction, e.g. a room, a restaurant,
a park bench.

DataDesc

	
class graf.DataDesc(primaryData)

	Class that represents the annotations to the document associated
with the primary data document this header describes.

	
__init__(primaryData)

	Class’s constructor.

	primaryDatadict

	Provides the location of the primary data
document. The keys are ‘loc’ - relative
path or PID of the primary data document,
‘loctype’ - Indicates whether the primary
data path is a fully specified path (PID)
or a path relative to the location of
this header file, the default is ‘relative’,
the other option is ‘URL’. The other key is
‘f.id’ - File type via reference to definition
in the resource header. All keys are mandatory.

	
add_annotation(loc, fid, loctype='relative')

	This method is responsible to add the
annotations to the list of annotations.

The annotations list in this class will
represents the documents associated with
the primary data document that this header
will describe.

	locstr

	Relative path or PID of the annotation document.

	fidstr

	File type via reference to definition in the resource header.

	loctypestr

	Indicates whether the path is a fully specified path or a
path relative to the header file.

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | L
 | N
 | P
 | R
 | S
 | W

_

 	
 	__init__() (graf.Annotation method)

 	(graf.AnnotationSpace method)

 	(graf.DataDesc method)

 	(graf.Edge method)

 	(graf.FeatureStructure method)

 	(graf.FileDesc method)

 	(graf.GrafRenderer method)

 	(graf.Graph method)

 	(graf.GraphParser method)

 	(graf.Link method)

 	(graf.Node method)

 	(graf.ProfileDesc method)

 	(graf.Region method)

 	(graf.StandoffHeader method)

A

 	
 	add_annotation() (graf.DataDesc method)

 	add_language() (graf.ProfileDesc method)

 	add_participant() (graf.ProfileDesc method)

 	
 	add_region() (graf.Node method)

 	add_setting() (graf.ProfileDesc method)

 	Annotation (class in graf)

 	AnnotationSpace (class in graf)

C

 	
 	clear() (graf.Node method)

 	
 	create_edge() (graf.Graph method)

D

 	
 	DataDesc (class in graf)

E

 	
 	Edge (class in graf)

F

 	
 	FeatureStructure (class in graf)

 	
 	FileDesc (class in graf)

 	find_edge() (graf.Graph method)

G

 	
 	get_fs() (graf.FeatureStructure method)

 	get_value() (graf.FeatureStructure method)

 	
 	GrafRenderer (class in graf)

 	Graph (class in graf)

 	GraphParser (class in graf)

L

 	
 	Link (class in graf)

N

 	
 	Node (class in graf)

P

 	
 	parse() (graf.GraphParser method)

 	
 	ProfileDesc (class in graf)

R

 	
 	Region (class in graf)

 	remove() (graf.AnnotationSpace method)

 	remove_where() (graf.AnnotationSpace method)

 	render_ann() (graf.GrafRenderer method)

 	render_edge() (graf.GrafRenderer method)

 	
 	render_feature() (graf.GrafRenderer method)

 	render_fs() (graf.GrafRenderer method)

 	render_link() (graf.GrafRenderer method)

 	render_node() (graf.GrafRenderer method)

 	render_region() (graf.GrafRenderer method)

S

 	
 	StandoffHeader (class in graf)

W

 	
 	write_header() (graf.GrafRenderer method)

 	
 	write_header_elements() (graf.GrafRenderer method)

Introduction

This document explains some functions of the graf-python library such as the parsing of GrAF files.

To use the graf-python library is important to know that the files must use the GrAF ISO standards. Thoses need to follow some rules because of the dependencies between the nodes and the rest of the elements like annotations, regions and edges. The header file (.hdr) in the GrAF ISO standard is the file that contain the relevant information about the GrAF. The information passes by the author, date of creation and all the relevant data. The important parts of that file are the annotations and the primary file. The annotations are the dependent files to create all the nodes, edges, feature and everything needed to the GrAF. The primary file is the raw file that has the words that are the values of the nodes.

To know more about GrAF and GrAF ISO standards you can consult:

	GrAF-wiki (http://www.americannationalcorpus.org/graf-wiki)

	GrAF ISO standards (http://www.iso.org/iso/catalogue_detail.htm?csnumber=37326)

 _static/file.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/Translation_Graph_from_GrAF_files/Translation_Graph_from_GrAF_fig_00.png

nav.xhtml

 Table of Contents

 		
 Welcome to graf-python’s documentation!

 		
 Introduction to graf-python

 		
 How to use the library

 		
 Parsing GrAF

 		
 Querying GrAF graphs

 		
 Translation Graphs from GrAF/XML files

 		
 GrAF/XML Data Sources

 		
 graf-python Classes

 		
 Annotation

 		
 AnnotationSpace

 		
 Edge

 		
 FeatureStructure

 		
 GrafRenderer

 		
 Graph

 		
 GraphParser

 		
 Link

 		
 Node

 		
 Region

 		
 StandoffHeader

 		
 FileDesc

 		
 ProfileDesc

 		
 DataDesc

_static/ajax-loader.gif

_images/Translation_Graph_from_GrAF_fig_00.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

