

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/gpxpy/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/gpxpy/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

 [image: Build Status] [https://travis-ci.org/tkrajina/gpxpy]
[image: Coverage Status] [https://coveralls.io/github/tkrajina/gpxpy?branch=master]

gpxpy – GPX file parser

This is a simple Python library for parsing and manipulating GPX files. GPX is an XML based format for GPS tracks.

You can see it in action on my online GPS track editor and organizer [http://www.trackprofiler.com].

There is also a Golang port of gpxpy: gpxgo [http://github.com/tkrajina/gpxgo].

See also srtm.py [https://github.com/tkrajina/srtm.py] if your track lacks elevation data.

Usage

import gpxpy
import gpxpy.gpx

Parsing an existing file:

gpx_file = open('test_files/cerknicko-jezero.gpx', 'r')

gpx = gpxpy.parse(gpx_file)

for track in gpx.tracks:
 for segment in track.segments:
 for point in segment.points:
 print 'Point at ({0},{1}) -> {2}'.format(point.latitude, point.longitude, point.elevation)

for waypoint in gpx.waypoints:
 print 'waypoint {0} -> ({1},{2})'.format(waypoint.name, waypoint.latitude, waypoint.longitude)

for route in gpx.routes:
 print 'Route:'
 for point in route.points:
 print 'Point at ({0},{1}) -> {2}'.format(point.latitude, point.longitude, point.elevation)

There are many more utility methods and functions:
You can manipulate/add/remove tracks, segments, points, waypoints and routes and
get the GPX XML file from the resulting object:

print 'GPX:', gpx.to_xml()

Creating a new file:

gpx = gpxpy.gpx.GPX()

Create first track in our GPX:
gpx_track = gpxpy.gpx.GPXTrack()
gpx.tracks.append(gpx_track)

Create first segment in our GPX track:
gpx_segment = gpxpy.gpx.GPXTrackSegment()
gpx_track.segments.append(gpx_segment)

Create points:
gpx_segment.points.append(gpxpy.gpx.GPXTrackPoint(2.1234, 5.1234, elevation=1234))
gpx_segment.points.append(gpxpy.gpx.GPXTrackPoint(2.1235, 5.1235, elevation=1235))
gpx_segment.points.append(gpxpy.gpx.GPXTrackPoint(2.1236, 5.1236, elevation=1236))

You can add routes and waypoints, too...

print 'Created GPX:', gpx.to_xml()

GPX Version:

gpx.py can parse and generate GPX 1.0 and 1.1 files. Note that the generated file will always be a valid XML document, but it may not be (strictly speaking) a valid GPX document. For example, if you set gpx.email to “my.email AT mail.com” the generated GPX tag won’t confirm to the regex pattern. And the file won’t be valid. Most applications will ignore such errors, but... Be aware of this!

WARNING: The only part of the GPX standard which is not completely implemented are GPX extensions. The API for GPX extensions will change in future versions!!!

Be aware that the gpxpy object model is not 100% equivalent with the underlying GPX XML file schema. That’s because the library object model works with both GPX 1.0 and 1.1.

For example, the GPX 1.0 specified a speed attribute for every track point, but that was removed in GPX 1.1. If you parse GPX 1.0 and serialize back with gpx.to_xml() everything will work fine. But if you have a GPX 1.1 object, changes in the speed attribute will be lost after gpx.to_xml(). If you want to force using 1.0, you can gpx.to_xml(version="1.0"). Another possibility is to use extensions to save the speed in GPX 1.1.

XML parsing

If lxml is available, then it will be used for XML parsing.
Otherwise minidom is used.
Note that lxml is 2-3 times faster so, if you can choose – use it :)

The GPX version is automatically determined when parsing by reading the version attribute in the gpx node. If this attribute is not present then the version is assumed to be 1.0. A specific version can be forced by setting the version parameter in the parse function. Possible values for the ‘version’ parameter are 1.0, 1.1 and None.

Pull requests

OK, so you found a bug and fixed it. Before sending a pull request – check that all tests are OK with Python 2.6+ and Python 3+.

Run all tests with:

$ python -m unittest test
$ python3 -m unittest test

Run only minidom parser tests with:

$ python -m unittest test.MinidomTests
$ python3 -m unittest test.MinidomTests

Run only lxml parser tests with:

$ python -m unittest test.LxmlTests
$ python3 -m unittest test.LxmlTests

Run a single test with:

$ python -m unittest test.LxmlTests.test_method
$ python3 -m unittest test.LxmlTests.test_method

GPXInfo

The repository contain a little command line utility to extract basic statistics from a file.
Example usage:

$ gpxinfo voznjica.gpx
File: voznjica.gpx
 Length 2D: 63.6441229018
 Length 3D: 63.8391428454
 Moving time: 02:56:03
 Stopped time: 00:21:38
 Max speed: 14.187909492m/s = 51.0764741713km/h
 Total uphill: 1103.1626183m
 Total downhill: 1087.7812703m
 Started: 2013-06-01 06:46:53
 Ended: 2013-06-01 10:23:45

License

GPX.py is licensed under the Apache License, Version 2.0 [http://www.apache.org/licenses/LICENSE-2.0]

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/minus.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

