
Gpiozero Documentation
Release 1.1.0

Ben Nuttall

March 17, 2016

Contents

1 About 3

2 Install 5

3 Documentation 7

4 Development 9

5 Contributors 11

6 Table of Contents 13
6.1 Recipes . 13
6.2 Notes . 25
6.3 Input Devices . 26
6.4 Output Devices . 32
6.5 Boards and Accessories . 37
6.6 Generic Devices . 49
6.7 Pins . 57
6.8 Changelog . 61
6.9 License . 62

i

ii

Gpiozero Documentation, Release 1.1.0

A simple interface to everyday GPIO components used with Raspberry Pi.

Created by Ben Nuttall of the Raspberry Pi Foundation, Dave Jones, and other contributors.

Contents 1

https://github.com/bennuttall
https://www.raspberrypi.org/
https://github.com/waveform80

Gpiozero Documentation, Release 1.1.0

2 Contents

CHAPTER 1

About

Component interfaces are provided to allow a frictionless way to get started with physical computing:

from gpiozero import LED
from time import sleep

led = LED(17)

while True:
led.on()
sleep(1)
led.off()
sleep(1)

With very little code, you can quickly get going connecting your components together:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(3)

button.when_pressed = led.on
button.when_released = led.off

pause()

The library includes interfaces to many simple everyday components, as well as some more complex things like
sensors, analogue-to-digital converters, full colour LEDs, robotics kits and more.

3

Gpiozero Documentation, Release 1.1.0

4 Chapter 1. About

CHAPTER 2

Install

First, update your repositories list:

sudo apt-get update

Then install the package of your choice. Both Python 3 and Python 2 are supported. Python 3 is recommended:

sudo apt-get install python3-gpiozero

or:

sudo apt-get install python-gpiozero

5

Gpiozero Documentation, Release 1.1.0

6 Chapter 2. Install

CHAPTER 3

Documentation

Comprehensive documentation is available at https://gpiozero.readthedocs.org/.

7

https://gpiozero.readthedocs.org/

Gpiozero Documentation, Release 1.1.0

8 Chapter 3. Documentation

CHAPTER 4

Development

This project is being developed on GitHub. Join in:

• Provide suggestions, report bugs and ask questions as issues

• Provide examples we can use as recipes

• Contribute to the code

Alternatively, email suggestions and feedback to mailto:ben@raspberrypi.org or add to the Google Doc.

9

https://github.com/RPi-Distro/python-gpiozero
https://github.com/RPi-Distro/python-gpiozero/issues
http://gpiozero.readthedocs.org/en/latest/recipes.html
mailto:ben@raspberrypi.org
https://goo.gl/8zJLif

Gpiozero Documentation, Release 1.1.0

10 Chapter 4. Development

CHAPTER 5

Contributors

• Ben Nuttall (project maintainer)

• Dave Jones

• Martin O’Hanlon

11

https://github.com/bennuttall
https://github.com/waveform80
https://github.com/martinohanlon

Gpiozero Documentation, Release 1.1.0

12 Chapter 5. Contributors

CHAPTER 6

Table of Contents

6.1 Recipes

The following recipes demonstrate some of the capabilities of the gpiozero library. Please note that all recipes are
written assuming Python 3. Recipes may work under Python 2, but no guarantees!

6.1.1 Pin Numbering

This library uses Broadcom (BCM) pin numbering for the GPIO pins, as opposed to physical (BOARD) number-
ing. Unlike in the RPi.GPIO library, this is not configurable.

Any pin marked GPIO in the diagram below can be used for generic components:

13

https://pypi.python.org/pypi/RPi.GPIO

Gpiozero Documentation, Release 1.1.0

3V3
Power

GPIO2
SDA I²C

GPIO3
SCL I²C

GPIO4

Ground

GPIO17

GPIO27

GPIO22

3V3
Power

GPIO10
SPI MOSI

GPIO9
SPI MISO

GPIO11
SPI SCLK

Ground

ID SD
I²C ID

GPIO5

GPIO6

GPIO13

GPIO19

GPIO26

Ground

5V
Power

5V
Power

Ground

GPIO14
UART0 TXD

GPIO15
UART0 RXD

GPIO18

Ground

GPIO23

GPIO24

Ground

GPIO25

GPIO8
SPI CE0

GPIO7
SPI CE1

ID SC
I²C ID

Ground

GPIO12

Ground

GPIO16

GPIO20

GPIO21

All Models

A+,B+,2B

11

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

14 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.1.0

6.1.2 LED

Turn an LED on and off repeatedly:

from gpiozero import LED
from time import sleep

red = LED(17)

while True:
red.on()
sleep(1)
red.off()
sleep(1)

Alternatively:

from gpiozero import LED
from signal import pause

red = LED(17)

red.blink()

pause()

Note: Reaching the end of a Python script will terminate the process and GPIOs may be reset. Keep your script
alive with signal.pause(). See Keep your script running for more information.

6.1. Recipes 15

http://docs.python.org/3.4/library/signal.html#signal.pause

Gpiozero Documentation, Release 1.1.0

6.1.3 Button

Check if a Button is pressed:

from gpiozero import Button

button = Button(2)

while True:
if button.is_pressed:

print("Button is pressed")
else:

print("Button is not pressed")

Wait for a button to be pressed before continuing:

from gpiozero import Button

button = Button(2)

button.wait_for_press()
print("Button was pressed")

Run a function every time the button is pressed:

from gpiozero import Button
from signal import pause

def say_hello():
print("Hello!")

button = Button(2)

button.when_pressed = say_hello

pause()

6.1.4 Button controlled LED

Turn on an LED when a Button is pressed:

16 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.1.0

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

button.when_pressed = led.on
button.when_released = led.off

pause()

Alternatively:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

led.source = button.values

pause()

6.1.5 Traffic Lights

A full traffic lights system.

Using a TrafficLights kit like Pi-Stop:

from gpiozero import TrafficLights
from time import sleep

lights = TrafficLights(2, 3, 4)

lights.green.on()

while True:
sleep(10)
lights.green.off()
lights.amber.on()
sleep(1)
lights.amber.off()
lights.red.on()
sleep(10)
lights.amber.on()
sleep(1)
lights.green.on()
lights.amber.off()
lights.red.off()

Alternatively:

from gpiozero import TrafficLights
from time import sleep
from signal import pause

def traffic_light_sequence():
while True:

yield (0, 0, 1) # green
sleep(10)
yield (0, 1, 0) # amber
sleep(1)

6.1. Recipes 17

Gpiozero Documentation, Release 1.1.0

yield (1, 0, 0) # red
sleep(10)
yield (1, 1, 0) # red+amber
sleep(1)

lights.source = traffic_light_sequence()

pause()

Using LED components:

from gpiozero import LED
from time import sleep

red = LED(2)
amber = LED(3)
green = LED(4)

green.on()
amber.off()
red.off()

while True:
sleep(10)
green.off()
amber.on()
sleep(1)
amber.off()
red.on()
sleep(10)
amber.on()
sleep(1)
green.on()
amber.off()
red.off()

6.1.6 Push button stop motion

Capture a picture with the camera module every time a button is pressed:

from gpiozero import Button
from picamera import PiCamera

button = Button(2)

with PiCamera() as camera:
camera.start_preview()
frame = 1
while True:

button.wait_for_press()
camera.capture('/home/pi/frame%03d.jpg' % frame)
frame += 1

See Push Button Stop Motion for a full resource.

6.1.7 Reaction Game

When you see the light come on, the first person to press their button wins!

from gpiozero import Button, LED
from time import sleep

18 Chapter 6. Table of Contents

https://www.raspberrypi.org/learning/quick-reaction-game/

Gpiozero Documentation, Release 1.1.0

import random

led = LED(17)

player_1 = Button(2)
player_2 = Button(3)

time = random.uniform(5, 10)
sleep(time)
led.on()

while True:
if player_1.is_pressed:

print("Player 1 wins!")
break

if player_2.is_pressed:
print("Player 2 wins!")
break

led.off()

See Quick Reaction Game for a full resource.

6.1.8 GPIO Music Box

Each button plays a different sound!

from gpiozero import Button
import pygame.mixer
from pygame.mixer import Sound
from signal import pause

pygame.mixer.init()

sound_pins = {
2: Sound("samples/drum_tom_mid_hard.wav"),
3: Sound("samples/drum_cymbal_open.wav"),

}

buttons = [Button(pin) for pin in sound_pins]
for button in buttons:

sound = sound_pins[button.pin.number]
button.when_pressed = sound.play

pause()

See GPIO Music Box for a full resource.

6.1.9 All on when pressed

While the button is pressed down, the buzzer and all the lights come on.

FishDish:

from gpiozero import FishDish
from signal import pause

fish = FishDish()

fish.button.when_pressed = fish.on
fish.button.when_released = fish.off

6.1. Recipes 19

https://www.raspberrypi.org/learning/quick-reaction-game/
https://www.raspberrypi.org/learning/gpio-music-box/

Gpiozero Documentation, Release 1.1.0

pause()

Ryanteck TrafficHat:

from gpiozero import TrafficHat
from signal import pause

th = TrafficHat()

th.button.when_pressed = th.on
th.button.when_released = th.off

pause()

Using LED, Buzzer, and Button components:

from gpiozero import LED, Buzzer, Button
from signal import pause

button = Button(2)
buzzer = Buzzer(3)
red = LED(4)
amber = LED(5)
green = LED(6)

things = [red, amber, green, buzzer]

def things_on():
for thing in things:

thing.on()

def things_off():
for thing in things:

thing.off()

button.when_pressed = things_on
button.when_released = things_off

pause()

6.1.10 RGB LED

Making colours with an RGBLED:

from gpiozero import RGBLED
from time import sleep

led = RGBLED(red=9, green=10, blue=11)

led.red = 1 # full red
sleep(1)
led.red = 0.5 # half red
sleep(1)

led.color = (0, 1, 0) # full green
sleep(1)
led.color = (1, 0, 1) # magenta
sleep(1)
led.color = (1, 1, 0) # yellow
sleep(1)
led.color = (0, 1, 1) # cyan

20 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.1.0

sleep(1)
led.color = (1, 1, 1) # white
sleep(1)

led.color = (0, 0, 0) # off
sleep(1)

slowly increase intensity of blue
for n in range(100):

led.blue = n/100
sleep(0.1)

6.1.11 Motion sensor

Light an LED when a MotionSensor detects motion:

from gpiozero import MotionSensor, LED
from signal import pause

pir = MotionSensor(4)
led = LED(16)

pir.when_motion = led.on
pir.when_no_motion = led.off

pause()

6.1.12 Light sensor

Have a LightSensor detect light and dark:

from gpiozero import LightSensor

sensor = LightSensor(18)

while True:

6.1. Recipes 21

Gpiozero Documentation, Release 1.1.0

sensor.wait_for_light()
print("It's light! :)")
sensor.wait_for_dark()
print("It's dark :(")

Run a function when the light changes:

from gpiozero import LightSensor, LED
from signal import pause

sensor = LightSensor(18)
led = LED(16)

sensor.when_dark = led.on
sensor.when_light = led.off

pause()

Or make a PWMLED change brightness according to the detected light level:

from gpiozero import LightSensor, LED
from signal import pause

sensor = LightSensor(18)
led = PWMLED(16)

led.source = sensor.values

pause()

6.1.13 Motors

Spin a Motor around forwards and backwards:

from gpiozero import Motor
from time import sleep

motor = Motor(forward=4, back=14)

while True:
motor.forward()
sleep(5)
motor.backward()
sleep(5)

6.1.14 Robot

Make a Robot drive around in (roughly) a square:

from gpiozero import Robot
from time import sleep

robot = Robot(left=(4, 14), right=(17, 18))

for i in range(4):
robot.forward()
sleep(10)
robot.right()
sleep(1)

22 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.1.0

6.1.15 Button controlled robot

Use four GPIO buttons as forward/back/left/right controls for a robot:

from gpiozero import RyanteckRobot, Button
from signal import pause

robot = RyanteckRobot()

left = Button(26)
right = Button(16)
fw = Button(21)
bw = Button(20)

fw.when_pressed = robot.forward
fw.when_released = robot.stop

left.when_pressed = robot.left
left.when_released = robot.stop

right.when_pressed = robot.right
right.when_released = robot.stop

bw.when_pressed = robot.backward
bw.when_released = robot.stop

pause()

6.1.16 Keyboard controlled robot

Use up/down/left/right keys to control a robot:

from gpiozero import RyanteckRobot
from evdev import InputDevice, list_devices, ecodes

robot = RyanteckRobot()

devices = [InputDevice(device) for device in list_devices()]
keyboard = devices[0] # this may vary

keypress_actions = {
ecodes.KEY_UP: robot.forward,
ecodes.KEY_DOWN: robot.backward,
ecodes.KEY_LEFT: robot.left,
ecodes.KEY_RIGHT: robot.right,

}

for event in keyboard.read_loop():
if event.type == ecodes.EV_KEY:

if event.value == 1: # key down
keypress_actions[event.code]()

if event.value == 0: # key up
robot.stop()

6.1.17 Motion sensor robot

Make a robot drive forward when it detects motion:

from gpiozero import Robot, MotionSensor
from signal import pause

6.1. Recipes 23

Gpiozero Documentation, Release 1.1.0

robot = Robot(left=(4, 14), right=(17, 18))
pir = MotionSensor(5)

pir.when_motion = robot.forward
pir.when_no_motion = robot.stop

pause()

Alternatively:

from gpiozero import Robot, MotionSensor
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))
pir = MotionSensor(5)

robot.source = zip(pir.values, pir.values)

pause()

6.1.18 Potentiometer

Continually print the value of a potentiometer (values between 0 and 1) connected to a MCP3008 analog to digital
converter:

from gpiozero import MCP3008

while True:
with MCP3008(channel=0) as pot:

print(pot.value)

6.1.19 Measure temperature with an ADC

Wire a TMP36 temperature sensor to the first channel of an MCP3008 analog to digital converter:

from gpiozero import MCP3008
from time import sleep

def convert_temp(gen):
for value in gen:

yield (value * 3.3 - 0.5) * 100

adc = MCP3008(channel=0)

for temp in convert_temp(adc.values):
print('The temperature is', temp, 'C')
sleep(1)

6.1.20 Full color LED controlled by 3 potentiometers

Wire up three potentiometers (for red, green and blue) and use each of their values to make up the colour of the
LED:

from gpiozero import RGBLED, MCP3008

led = RGBLED(red=2, green=3, blue=4)
red_pot = MCP3008(channel=0)
green_pot = MCP3008(channel=1)

24 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.1.0

blue_pot = MCP3008(channel=2)

while True:
led.red = red_pot.value
led.green = green_pot.value
led.blue = blue_pot.value

Alternatively, the following example is identical, but uses the source property rather than a while loop:

from gpiozero import RGBLED, MCP3008
from signal import pause

led = RGBLED(2, 3, 4)
red_pot = MCP3008(0)
green_pot = MCP3008(1)
blue_pot = MCP3008(2)

led.source = zip(red_pot.values, green_pot.values, blue_pot.values)

pause()

Please note the example above requires Python 3. In Python 2, zip() doesn’t support lazy evaluation so the
script will simply hang.

6.2 Notes

6.2.1 Keep your script running

The following script looks like it should turn an LED on:

from gpiozero import LED

led = LED(17)
led.on()

And it does, if you’re using the Python (or IPython or IDLE) shell. However, if you saved this script as a Python
file and ran it, it would flash on briefly, then the script would end and it would turn off.

The following file includes an intentional pause() to keep the script alive:

from gpiozero import LED
from signal import pause

led = LED(17)
led.on()
pause()

Now the script will stay running, leaving the LED on, until it is terminated manually (e.g. by pressing Ctrl+C).
Similarly, when setting up callbacks on button presses or other input devices, the script needs to be running for
the events to be detected:

from gpiozero import Button
from signal import pause

def hello():
print("Hello")

button = Button(2)
button.when_pressed = hello
pause()

6.2. Notes 25

http://docs.python.org/3.4/reference/compound_stmts.html#while
http://docs.python.org/3.4/library/functions.html#zip
http://docs.python.org/3.4/library/signal.html#signal.pause

Gpiozero Documentation, Release 1.1.0

6.2.2 Importing from GPIO Zero

In Python, libraries and functions used in a script must be imported by name at the top of the file, with the
exception of the functions built into Python by default.

For example, to use the Button interface from GPIO Zero, it should be explicitly imported:

from gpiozero import Button

Now Button is available directly in your script:

button = Button(2)

Alternatively, the whole GPIO Zero library can be imported:

import gpiozero

In this case, all references to items within GPIO Zero must be prefixed:

button = gpiozero.Button(2)

6.3 Input Devices

These input device component interfaces have been provided for simple use of everyday components. Components
must be wired up correctly before use in code.

Note: All GPIO pin numbers use Broadcom (BCM) numbering. See the Recipes page for more information.

6.3.1 Button

class gpiozero.Button(pin, pull_up=True, bounce_time=None)
Extends DigitalInputDevice and represents a simple push button or switch.

Connect one side of the button to a ground pin, and the other to any GPIO pin. Alternatively, connect one
side of the button to the 3V3 pin, and the other to any GPIO pin, then set pull_up to False in the Button
constructor.

The following example will print a line of text when the button is pushed:

from gpiozero import Button

button = Button(4)
button.wait_for_press()
print("The button was pressed!")

Parameters

• pin (int) – The GPIO pin which the button is attached to. See Notes for valid pin
numbers.

• pull_up (bool) – If True (the default), the GPIO pin will be pulled high by default.
In this case, connect the other side of the button to ground. If False, the GPIO pin
will be pulled low by default. In this case, connect the other side of the button to 3V3.

• bounce_time (float) – If None (the default), no software bounce compensation
will be performed. Otherwise, this is the length in time (in seconds) that the component
will ignore changes in state after an initial change.

26 Chapter 6. Table of Contents

http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.1.0

wait_for_press(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is active.

wait_for_release(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is inactive.

is_pressed
Returns True if the device is currently active and False otherwise.

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the
close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

pull_up
If True, the device uses a pull-up resistor to set the GPIO pin “high” by default. Defaults to False.

when_pressed
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_released
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

6.3.2 Motion Sensor (PIR)

class gpiozero.MotionSensor(pin, queue_len=1, sample_rate=10, threshold=0.5, partial=False)
Extends SmoothedInputDevice and represents a passive infra-red (PIR) motion sensor like the sort
found in the CamJam #2 EduKit.

A typical PIR device has a small circuit board with three pins: VCC, OUT, and GND. VCC should be
connected to a 5V pin, GND to one of the ground pins, and finally OUT to the GPIO specified as the value
of the pin parameter in the constructor.

The following code will print a line of text when motion is detected:

from gpiozero import MotionSensor

pir = MotionSensor(4)
pir.wait_for_motion()
print("Motion detected!")

Parameters

• pin (int) – The GPIO pin which the button is attached to. See Notes for valid pin
numbers.

6.3. Input Devices 27

http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://camjam.me/?page_id=623
http://docs.python.org/3.4/library/functions.html#int

Gpiozero Documentation, Release 1.1.0

• queue_len (int) – The length of the queue used to store values read from the sen-
sor. This defaults to 1 which effectively disables the queue. If your motion sensor is
particularly “twitchy” you may wish to increase this value.

• sample_rate (float) – The number of values to read from the device (and append
to the internal queue) per second. Defaults to 10.

• threshold (float) – Defaults to 0.5. When the mean of all values in the internal
queue rises above this value, the sensor will be considered “active” by the is_active
property, and all appropriate events will be fired.

• partial (bool) – When False (the default), the object will not return a value for
is_active until the internal queue has filled with values. Only set this to True if
you require values immediately after object construction.

wait_for_motion(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is active.

wait_for_no_motion(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is inactive.

motion_detected
Returns True if the device is currently active and False otherwise.

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the
close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

when_motion
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_no_motion
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

6.3.3 Light Sensor (LDR)

class gpiozero.LightSensor(pin, queue_len=5, charge_time_limit=0.01, threshold=0.1, par-
tial=False)

Extends SmoothedInputDevice and represents a light dependent resistor (LDR).

Connect one leg of the LDR to the 3V3 pin; connect one leg of a 1µf capacitor to a ground pin; connect
the other leg of the LDR and the other leg of the capacitor to the same GPIO pin. This class repeatedly
discharges the capacitor, then times the duration it takes to charge (which will vary according to the light
falling on the LDR).

The following code will print a line of text when light is detected:

28 Chapter 6. Table of Contents

http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.1.0

from gpiozero import LightSensor

ldr = LightSensor(18)
ldr.wait_for_light()
print("Light detected!")

Parameters

• pin (int) – The GPIO pin which the button is attached to. See Notes for valid pin
numbers.

• queue_len (int) – The length of the queue used to store values read from the circuit.
This defaults to 5.

• charge_time_limit (float) – If the capacitor in the circuit takes longer than
this length of time to charge, it is assumed to be dark. The default (0.01 seconds) is
appropriate for a 0.01µf capacitor coupled with the LDR from the CamJam #2 EduKit.
You may need to adjust this value for different valued capacitors or LDRs.

• threshold (float) – Defaults to 0.1. When the mean of all values in the internal
queue rises above this value, the area will be considered “light”, and all appropriate
events will be fired.

• partial (bool) – When False (the default), the object will not return a value for
is_active until the internal queue has filled with values. Only set this to True if
you require values immediately after object construction.

wait_for_dark(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is inactive.

wait_for_light(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is active.

light_detected
Returns True if the device is currently active and False otherwise.

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the
close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

when_dark
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_light
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

6.3. Input Devices 29

http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#float
http://camjam.me/?page_id=623
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.1.0

6.3.4 Analog to Digital Converters (ADC)

class gpiozero.MCP3004(channel=0, device=0, differential=False)
The MCP3004 is a 10-bit analog to digital converter with 4 channels (0-3).

bus
The SPI bus that the device is connected to. As the Pi only has a single (user accessible) SPI bus, this
always returns 0.

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), and the MCP3301 only has 1 channel.

device
The select pin that the device is connected to. The Pi has two select pins so this will be 0 or 1.

differential
If True, the device is operated in pseudo-differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1.

class gpiozero.MCP3008(channel=0, device=0, differential=False)
The MCP3008 is a 10-bit analog to digital converter with 8 channels (0-7).

bus
The SPI bus that the device is connected to. As the Pi only has a single (user accessible) SPI bus, this
always returns 0.

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), and the MCP3301 only has 1 channel.

device
The select pin that the device is connected to. The Pi has two select pins so this will be 0 or 1.

differential
If True, the device is operated in pseudo-differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1.

class gpiozero.MCP3204(channel=0, device=0, differential=False)
The MCP3204 is a 12-bit analog to digital converter with 4 channels (0-3).

bus
The SPI bus that the device is connected to. As the Pi only has a single (user accessible) SPI bus, this
always returns 0.

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), and the MCP3301 only has 1 channel.

device
The select pin that the device is connected to. The Pi has two select pins so this will be 0 or 1.

differential
If True, the device is operated in pseudo-differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

30 Chapter 6. Table of Contents

http://www.farnell.com/datasheets/808965.pdf
http://www.farnell.com/datasheets/808965.pdf
http://www.farnell.com/datasheets/808967.pdf

Gpiozero Documentation, Release 1.1.0

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1.

class gpiozero.MCP3208(channel=0, device=0, differential=False)
The MCP3208 is a 12-bit analog to digital converter with 8 channels (0-7).

bus
The SPI bus that the device is connected to. As the Pi only has a single (user accessible) SPI bus, this
always returns 0.

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), and the MCP3301 only has 1 channel.

device
The select pin that the device is connected to. The Pi has two select pins so this will be 0 or 1.

differential
If True, the device is operated in pseudo-differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1.

class gpiozero.MCP3301(device=0)
The MCP3301 is a signed 13-bit analog to digital converter. Please note that the MCP3301 always operates
in differential mode between its two channels and the output value is scaled from -1 to +1.

bus
The SPI bus that the device is connected to. As the Pi only has a single (user accessible) SPI bus, this
always returns 0.

device
The select pin that the device is connected to. The Pi has two select pins so this will be 0 or 1.

value
The current value read from the device, scaled to a value between 0 and 1.

class gpiozero.MCP3302(channel=0, device=0, differential=False)
The MCP3302 is a 12/13-bit analog to digital converter with 4 channels (0-3). When operated in differential
mode, the device outputs a signed 13-bit value which is scaled from -1 to +1. When operated in single-ended
mode (the default), the device outputs an unsigned 12-bit value scaled from 0 to 1.

bus
The SPI bus that the device is connected to. As the Pi only has a single (user accessible) SPI bus, this
always returns 0.

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), and the MCP3301 only has 1 channel.

device
The select pin that the device is connected to. The Pi has two select pins so this will be 0 or 1.

differential
If True, the device is operated in pseudo-differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

6.3. Input Devices 31

http://www.farnell.com/datasheets/808967.pdf
http://www.farnell.com/datasheets/1669397.pdf
http://www.farnell.com/datasheets/1486116.pdf

Gpiozero Documentation, Release 1.1.0

value
The current value read from the device, scaled to a value between 0 and 1.

class gpiozero.MCP3304(channel=0, device=0, differential=False)
The MCP3304 is a 12/13-bit analog to digital converter with 8 channels (0-7). When operated in differential
mode, the device outputs a signed 13-bit value which is scaled from -1 to +1. When operated in single-ended
mode (the default), the device outputs an unsigned 12-bit value scaled from 0 to 1.

bus
The SPI bus that the device is connected to. As the Pi only has a single (user accessible) SPI bus, this
always returns 0.

channel
The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), and the MCP3301 only has 1 channel.

device
The select pin that the device is connected to. The Pi has two select pins so this will be 0 or 1.

differential
If True, the device is operated in pseudo-differential mode. In this mode one channel (specified by
the channel attribute) is read relative to the value of a second channel (implied by the chip’s design).

Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 in differential mode, channel 0 is read relative to channel 1).

value
The current value read from the device, scaled to a value between 0 and 1.

6.4 Output Devices

These output device component interfaces have been provided for simple use of everyday components. Compo-
nents must be wired up correctly before use in code.

Note: All GPIO pin numbers use Broadcom (BCM) numbering. See the Recipes page for more information.

6.4.1 LED

class gpiozero.LED(pin, active_high=True, initial_value=False)
Extends DigitalOutputDevice and represents a light emitting diode (LED).

Connect the cathode (short leg, flat side) of the LED to a ground pin; connect the anode (longer leg) to a
limiting resistor; connect the other side of the limiting resistor to a GPIO pin (the limiting resistor can be
placed either side of the LED).

The following example will light the LED:

from gpiozero import LED

led = LED(17)
led.on()

Parameters

• pin (int) – The GPIO pin which the LED is attached to. See Notes for valid pin
numbers.

• active_high (bool) – If True (the default), the LED will operate normally with
the circuit described above. If False you should wire the cathode to the GPIO pin, and
the anode to a 3V3 pin (via a limiting resistor).

32 Chapter 6. Table of Contents

http://www.farnell.com/datasheets/1486116.pdf
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.1.0

• initial_value (bool) – If False (the default), the LED will be off initially. If
None, the LED will be left in whatever state the pin is found in when configured for
output (warning: this can be on). If True, the LED will be switched on initially.

blink(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

off()
Turns the device off.

on()
Turns the device on.

toggle()
Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.

is_lit
Returns True if the device is currently active and False otherwise.

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the
close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

6.4.2 PWMLED

class gpiozero.PWMLED(pin, active_high=True, initial_value=0, frequency=100)
Extends PWMOutputDevice and represents a light emitting diode (LED) with variable brightness.

A typical configuration of such a device is to connect a GPIO pin to the anode (long leg) of the LED, and
the cathode (short leg) to ground, with an optional resistor to prevent the LED from burning out.

Parameters

• pin (int) – The GPIO pin which the LED is attached to. See Notes for valid pin
numbers.

• active_high (bool) – If True (the default), the on() method will set the GPIO
to HIGH. If False, the on() method will set the GPIO to LOW (the off() method
always does the opposite).

• initial_value (bool) – If 0 (the default), the LED will be off initially. Other
values between 0 and 1 can be specified as an initial brightness for the LED. Note that
None cannot be specified (unlike the parent class) as there is no way to tell PWM not
to alter the state of the pin.

• frequency (int) – The frequency (in Hz) of pulses emitted to drive the LED. De-
faults to 100Hz.

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

6.4. Output Devices 33

http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.1.0

• off_time (float) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

off()
Turns the device off.

on()
Turns the device on.

toggle()
Toggle the state of the device. If the device is currently off (value is 0.0), this changes it to “fully”
on (value is 1.0). If the device has a duty cycle (value) of 0.1, this will toggle it to 0.9, and so on.

is_lit
Returns True if the device is currently active (value is non-zero) and False otherwise.

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the
close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

value
The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values in between may be specified for
varying levels of power in the device.

6.4.3 RGBLED

class gpiozero.RGBLED(red, green, blue, active_high=True, initial_value=(0, 0, 0))
Extends CompositeDevice and represents a full color LED component (composed of red, green, and
blue LEDs).

Connect the common cathode (longest leg) to a ground pin; connect each of the other legs (representing the
red, green, and blue anodes) to any GPIO pins. You can either use three limiting resistors (one per anode)
or a single limiting resistor on the cathode.

The following code will make the LED purple:

from gpiozero import RGBLED

led = RGBLED(2, 3, 4)
led.color = (1, 0, 1)

Parameters

• red (int) – The GPIO pin that controls the red component of the RGB LED.

• green (int) – The GPIO pin that controls the green component of the RGB LED.

• blue (int) – The GPIO pin that controls the blue component of the RGB LED.

• active_high (bool) – Set to True (the default) for common cathode RGB LEDs.
If you are using a common anode RGB LED, set this to False.

• initial_value (bool) – The initial color for the LED. Defaults to black (0, 0,
0).

34 Chapter 6. Table of Contents

http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.1.0

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, on_color=(1, 1, 1),
off_color=(0, 0, 0), n=None, background=True)

Make the device turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.

• on_color (tuple) – The color to use when the LED is “on”. Defaults to white.

• off_color (tuple) – The color to use when the LED is “off”. Defaults to black.

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

off()
Turn the LED off. This is equivalent to setting the LED color to black (0, 0, 0).

on()
Turn the LED on. This equivalent to setting the LED color to white (1, 1, 1).

toggle()
Toggle the state of the device. If the device is currently off (value is (0, 0, 0)), this changes it
to “fully” on (value is (1, 1, 1)). If the device has a specific color, this method inverts the color.

color
Represents the color of the LED as an RGB 3-tuple of (red, green, blue) where each value is
between 0 and 1.

For example, purple would be (1, 0, 1) and yellow would be (1, 1, 0), while orange would
be (1, 0.5, 0).

is_lit
Returns True if the LED is currently active (not black) and False otherwise.

6.4.4 Buzzer

class gpiozero.Buzzer(pin, active_high=True, initial_value=False)
Extends DigitalOutputDevice and represents a digital buzzer component.

Connect the cathode (negative pin) of the buzzer to a ground pin; connect the other side to any GPIO pin.

The following example will sound the buzzer:

from gpiozero import Buzzer

bz = Buzzer(3)
bz.on()

Parameters

• pin (int) – The GPIO pin which the buzzer is attached to. See Notes for valid pin
numbers.

• active_high (bool) – If True (the default), the buzzer will operate normally with
the circuit described above. If False you should wire the cathode to the GPIO pin, and
the anode to a 3V3 pin.

6.4. Output Devices 35

http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/stdtypes.html#tuple
http://docs.python.org/3.4/library/stdtypes.html#tuple
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.1.0

• initial_value (bool) – If False (the default), the buzzer will be silent initially.
If None, the buzzer will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True, the buzzer will be switched on initially.

beep(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

off()
Turns the device off.

on()
Turns the device on.

toggle()
Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.

is_active
Returns True if the device is currently active and False otherwise.

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the
close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

6.4.5 Motor

class gpiozero.Motor(forward, backward)
Extends CompositeDevice and represents a generic motor connected to a bi-directional motor driver
circuit (i.e. an H-bridge).

Attach an H-bridge motor controller to your Pi; connect a power source (e.g. a battery pack or the 5V pin)
to the controller; connect the outputs of the controller board to the two terminals of the motor; connect the
inputs of the controller board to two GPIO pins.

The following code will make the motor turn “forwards”:

from gpiozero import Motor

motor = Motor(17, 18)
motor.forward()

Parameters

• forward (int) – The GPIO pin that the forward input of the motor driver chip is
connected to.

• backward (int) – The GPIO pin that the backward input of the motor driver chip is
connected to.

backward(speed=1)
Drive the motor backwards.

36 Chapter 6. Table of Contents

http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
https://en.wikipedia.org/wiki/H_bridge
https://en.wikipedia.org/wiki/H_bridge
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#int

Gpiozero Documentation, Release 1.1.0

Parameters speed (float) – The speed at which the motor should turn. Can be any value
between 0 (stopped) and the default 1 (maximum speed).

forward(speed=1)
Drive the motor forwards.

Parameters speed (float) – The speed at which the motor should turn. Can be any value
between 0 (stopped) and the default 1 (maximum speed).

stop()
Stop the motor.

6.5 Boards and Accessories

These additional interfaces are provided to group collections of components together for ease of use, and as
examples. They are composites made up of components from the various Input Devices and Output Devices
provided by GPIO Zero. See those pages for more information on using components individually.

Note: All GPIO pin numbers use Broadcom (BCM) numbering. See the Recipes page for more information.

6.5.1 LED Board

class gpiozero.LEDBoard(*pins, pwm=False)
Extends CompositeDevice and represents a generic LED board or collection of LEDs.

The following example turns on all the LEDs on a board containing 5 LEDs attached to GPIO pins 2 through
6:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5, 6)
leds.on()

Parameters

• *pins (int) – Specify the GPIO pins that the LEDs of the board are attached to. You
can designate as many pins as necessary.

• pwm (bool) – If True, construct PWMLED instances for each pin. If False (the
default), construct regular LED instances. This parameter can only be specified as a
keyword parameter.

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• n (int) – Number of times to blink; None (the default) means forever.

6.5. Boards and Accessories 37

http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/exceptions.html#ValueError
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/exceptions.html#ValueError
http://docs.python.org/3.4/library/functions.html#int

Gpiozero Documentation, Release 1.1.0

• background (bool) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is finished (warning: the
default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources.

off()
Turn all the LEDs off.

on()
Turn all the LEDs on.

toggle()
Toggle all the LEDs. For each LED, if it’s on, turn it off; if it’s off, turn it on.

leds
A tuple of all the LED or PWMLED objects contained by the instance.

source
The iterable to use as a source of values for value.

value
A tuple containing a value for each LED on the board. This property can also be set to update the state
of all LEDs on the board.

values
An infinite iterator of values read from value.

6.5.2 LED Bar Graph

class gpiozero.LEDBarGraph(*pins, initial_value=0)
Extends CompositeDevice to control a line of LEDs representing a bar graph. Positive values (0 to 1)
light the LEDs from first to last. Negative values (-1 to 0) light the LEDs from last to first.

The following example turns on all the LEDs on a board containing 5 LEDs attached to GPIO pins 2 through
6:

from gpiozero import LEDBarGraph

graph = LEDBarGraph(2, 3, 4, 5, 6)
graph.value = 2/5 # Light the first two LEDs only
graph.value = -2/5 # Light the last two LEDs only
graph.off()

As with other output devices, source and values are supported:

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(2, 3, 4, 5, 6)
pot = MCP3008(channel=0)
graph.source = pot.values
pause()

Parameters

• *pins (int) – Specify the GPIO pins that the LEDs of the bar graph are attached to.
You can designate as many pins as necessary.

• initial_value (float) – The initial value of the graph given as a float between
-1 and +1. Defaults to 0.0.

38 Chapter 6. Table of Contents

http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.1.0

close()
Shut down the device and release all associated resources.

off()
Turn all the LEDs off.

on()
Turn all the LEDs on.

toggle()
Toggle all the LEDs. For each LED, if it’s on, turn it off; if it’s off, turn it on.

leds
A tuple of all the LED or PWMLED objects contained by the instance.

source
The iterable to use as a source of values for value.

value
The value of the LED bar graph. When no LEDs are lit, the value is 0. When all LEDs are lit, the
value is 1. Values between 0 and 1 light LEDs linearly from first to last. Values between 0 and -1 light
LEDs linearly from last to first.

To light a particular number of LEDs, simply divide that number by the number of LEDs. For example,
if your graph contains 3 LEDs, the following will light the first:

from gpiozero import LEDBarGraph

graph = LEDBarGraph(12, 16, 19)
graph.value = 1/3

Note: Setting value to -1 will light all LEDs. However, querying it subsequently will return 1 as both
representations are the same in hardware.

values
An infinite iterator of values read from value.

6.5.3 Traffic Lights

class gpiozero.TrafficLights(red=None, amber=None, green=None, pwm=False)
Extends LEDBoard for devices containing red, amber, and green LEDs.

The following example initializes a device connected to GPIO pins 2, 3, and 4, then lights the amber LED
attached to GPIO 3:

from gpiozero import TrafficLights

traffic = TrafficLights(2, 3, 4)
traffic.amber.on()

Parameters

• red (int) – The GPIO pin that the red LED is attached to.

• amber (int) – The GPIO pin that the amber LED is attached to.

• green (int) – The GPIO pin that the green LED is attached to.

• pwm (bool) – If True, construct PWMLED instances to represent each LED. If False
(the default), construct regular LED instances.

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

6.5. Boards and Accessories 39

http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.1.0

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is finished (warning: the
default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources.

off()
Turn all the LEDs off.

on()
Turn all the LEDs on.

toggle()
Toggle all the LEDs. For each LED, if it’s on, turn it off; if it’s off, turn it on.

amber
The LED or PWMLED object representing the red LED.

green
The LED or PWMLED object representing the green LED.

leds
A tuple of all the LED or PWMLED objects contained by the instance.

red
The LED or PWMLED object representing the red LED.

source
The iterable to use as a source of values for value.

value
A 3-tuple containing values for the red, amber, and green LEDs. This property can also be set to alter
the state of the LEDs.

values
An infinite iterator of values read from value.

6.5.4 PiLITEr

class gpiozero.PiLiter(pwm=False)
Extends LEDBoard for the Ciseco Pi-LITEr: a strip of 8 very bright LEDs.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example turns on all the LEDs of the Pi-LITEr:

from gpiozero import PiLiter

lite = PiLiter()
lite.on()

40 Chapter 6. Table of Contents

http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/exceptions.html#ValueError
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/exceptions.html#ValueError
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/

Gpiozero Documentation, Release 1.1.0

Parameters pwm (bool) – If True, construct PWMLED instances for each pin. If False (the
default), construct regular LED instances. This parameter can only be specified as a keyword
parameter.

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is finished (warning: the
default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources.

off()
Turn all the LEDs off.

on()
Turn all the LEDs on.

toggle()
Toggle all the LEDs. For each LED, if it’s on, turn it off; if it’s off, turn it on.

leds
A tuple of all the LED or PWMLED objects contained by the instance.

source
The iterable to use as a source of values for value.

value
A tuple containing a value for each LED on the board. This property can also be set to update the state
of all LEDs on the board.

values
An infinite iterator of values read from value.

6.5.5 PiLITEr Bar Graph

class gpiozero.PiLiterBarGraph(initial_value=0)
Extends LEDBarGraph to treat the Ciseco Pi-LITEr as an 8-segment bar graph.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example sets the graph value to 0.5:

from gpiozero import PiLiterBarGraph

graph = PiLiterBarGraph()
graph.value = 0.5

6.5. Boards and Accessories 41

http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/exceptions.html#ValueError
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/exceptions.html#ValueError
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/

Gpiozero Documentation, Release 1.1.0

Parameters initial_value (bool) – The initial value of the graph given as a float between
-1 and +1. Defaults to 0.0.

close()
Shut down the device and release all associated resources.

off()
Turn all the LEDs off.

on()
Turn all the LEDs on.

toggle()
Toggle all the LEDs. For each LED, if it’s on, turn it off; if it’s off, turn it on.

leds
A tuple of all the LED or PWMLED objects contained by the instance.

source
The iterable to use as a source of values for value.

value
The value of the LED bar graph. When no LEDs are lit, the value is 0. When all LEDs are lit, the
value is 1. Values between 0 and 1 light LEDs linearly from first to last. Values between 0 and -1 light
LEDs linearly from last to first.

To light a particular number of LEDs, simply divide that number by the number of LEDs. For example,
if your graph contains 3 LEDs, the following will light the first:

from gpiozero import LEDBarGraph

graph = LEDBarGraph(12, 16, 19)
graph.value = 1/3

Note: Setting value to -1 will light all LEDs. However, querying it subsequently will return 1 as both
representations are the same in hardware.

values
An infinite iterator of values read from value.

6.5.6 PI-TRAFFIC

class gpiozero.PiTraffic
Extends TrafficLights for the Low Voltage Labs PI-TRAFFIC: vertical traffic lights board when at-
tached to GPIO pins 9, 10, and 11.

There’s no need to specify the pins if the PI-TRAFFIC is connected to the default pins (9, 10, 11). The
following example turns on the amber LED on the PI-TRAFFIC:

from gpiozero import PiTraffic

traffic = PiTraffic()
traffic.amber.on()

To use the PI-TRAFFIC board when attached to a non-standard set of pins, simply use the parent class,
TrafficLights.

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

42 Chapter 6. Table of Contents

http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.1.0

• off_time (float) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.
Must be 0 if pwm was False when the class was constructed (ValueError will be
raised if not).

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is finished (warning: the
default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources.

off()
Turn all the LEDs off.

on()
Turn all the LEDs on.

toggle()
Toggle all the LEDs. For each LED, if it’s on, turn it off; if it’s off, turn it on.

amber
The LED or PWMLED object representing the red LED.

green
The LED or PWMLED object representing the green LED.

leds
A tuple of all the LED or PWMLED objects contained by the instance.

red
The LED or PWMLED object representing the red LED.

source
The iterable to use as a source of values for value.

value
A 3-tuple containing values for the red, amber, and green LEDs. This property can also be set to alter
the state of the LEDs.

values
An infinite iterator of values read from value.

6.5.7 TrafficLightsBuzzer

class gpiozero.TrafficLightsBuzzer(lights, buzzer, button)
Extends CompositeDevice and is a generic class for HATs with traffic lights, a button and a buzzer.

Parameters

• lights (TrafficLights) – An instance of TrafficLights representing the
traffic lights of the HAT.

• buzzer (Buzzer) – An instance of Buzzer representing the buzzer on the HAT.

• button (Button) – An instance of Button representing the button on the HAT.

blink(on_time=1, off_time=1, n=None, background=True)
Make all the board’s components turn on and off repeatedly.

Parameters

6.5. Boards and Accessories 43

http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/exceptions.html#ValueError
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/exceptions.html#ValueError
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.1.0

• on_time (float) – Number of seconds on

• off_time (float) – Number of seconds off

• n (int) – Number of times to blink; None means forever

• background (bool) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is finished (warning: the
default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources.

off()
Turn all the board’s components off.

on()
Turn all the board’s components on.

toggle()
Toggle all the board’s components. For each component, if it’s on, turn it off; if it’s off, turn it on.

all
A tuple containing objects for all the items on the board (several LED objects, a Buzzer, and a
Button).

source
The iterable to use as a source of values for value.

value
Returns a named-tuple containing values representing the states of the LEDs, and the buzzer. This
property can also be set to a 4-tuple to update the state of all the board’s components.

values
An infinite iterator of values read from value.

6.5.8 Fish Dish

class gpiozero.FishDish(pwm=False)
Extends TrafficLightsBuzzer for the Pi Supply FishDish: traffic light LEDs, a button and a buzzer.

The FishDish pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example waits for the button to be pressed on the FishDish, then turns on all the LEDs:

from gpiozero import FishDish

fish = FishDish()
fish.button.wait_for_press()
fish.lights.on()

Parameters pwm (bool) – If True, construct PWMLED instances to represent each LED. If
False (the default), construct regular LED instances.

blink(on_time=1, off_time=1, n=None, background=True)
Make all the board’s components turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on

• off_time (float) – Number of seconds off

• n (int) – Number of times to blink; None means forever

44 Chapter 6. Table of Contents

http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#int

Gpiozero Documentation, Release 1.1.0

• background (bool) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is finished (warning: the
default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources.

off()
Turn all the board’s components off.

on()
Turn all the board’s components on.

toggle()
Toggle all the board’s components. For each component, if it’s on, turn it off; if it’s off, turn it on.

all
A tuple containing objects for all the items on the board (several LED objects, a Buzzer, and a
Button).

source
The iterable to use as a source of values for value.

value
Returns a named-tuple containing values representing the states of the LEDs, and the buzzer. This
property can also be set to a 4-tuple to update the state of all the board’s components.

values
An infinite iterator of values read from value.

6.5.9 Traffic HAT

class gpiozero.TrafficHat(pwm=False)
Extends TrafficLightsBuzzer for the Ryanteck Traffic HAT: traffic light LEDs, a button and a
buzzer.

The Traffic HAT pins are fixed and therefore there’s no need to specify them when constructing this class.
The following example waits for the button to be pressed on the Traffic HAT, then turns on all the LEDs:

from gpiozero import TrafficHat

hat = TrafficHat()
hat.button.wait_for_press()
hat.lights.on()

Parameters pwm (bool) – If True, construct PWMLED instances to represent each LED. If
False (the default), construct regular LED instances.

blink(on_time=1, off_time=1, n=None, background=True)
Make all the board’s components turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on

• off_time (float) – Number of seconds off

• n (int) – Number of times to blink; None means forever

• background (bool) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is finished (warning: the
default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources.

6.5. Boards and Accessories 45

http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.1.0

off()
Turn all the board’s components off.

on()
Turn all the board’s components on.

toggle()
Toggle all the board’s components. For each component, if it’s on, turn it off; if it’s off, turn it on.

all
A tuple containing objects for all the items on the board (several LED objects, a Buzzer, and a
Button).

source
The iterable to use as a source of values for value.

value
Returns a named-tuple containing values representing the states of the LEDs, and the buzzer. This
property can also be set to a 4-tuple to update the state of all the board’s components.

values
An infinite iterator of values read from value.

6.5.10 Robot

class gpiozero.Robot(left=None, right=None)
Extends CompositeDevice to represent a generic dual-motor robot.

This class is constructed with two tuples representing the forward and backward pins of the left and right
controllers respectively. For example, if the left motor’s controller is connected to GPIOs 4 and 14, while
the right motor’s controller is connected to GPIOs 17 and 18 then the following example will turn the robot
left:

from gpiozero import Robot

robot = Robot(left=(4, 14), right=(17, 18))
robot.left()

Parameters

• left (tuple) – A tuple of two GPIO pins representing the forward and backward
inputs of the left motor’s controller.

• right (tuple) – A tuple of two GPIO pins representing the forward and backward
inputs of the right motor’s controller.

backward(speed=1)
Drive the robot backward by running both motors backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

close()
Shut down the device and release all associated resources.

forward(speed=1)
Drive the robot forward by running both motors forward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

left(speed=1)
Make the robot turn left by running the right motor forward and left motor backward.

46 Chapter 6. Table of Contents

http://docs.python.org/3.4/library/stdtypes.html#tuple
http://docs.python.org/3.4/library/stdtypes.html#tuple
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.1.0

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

reverse()
Reverse the robot’s current motor directions. If the robot is currently running full speed forward, it
will run full speed backward. If the robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

right(speed=1)
Make the robot turn right by running the left motor forward and right motor backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

stop()
Stop the robot.

left_motor
Returns the Motor device representing the robot’s left motor.

right_motor
Returns the Motor device representing the robot’s right motor.

source
The iterable to use as a source of values for value.

value
Returns a tuple of two floating point values (-1 to 1) representing the speeds of the robot’s two motors
(left and right). This property can also be set to alter the speed of both motors.

values
An infinite iterator of values read from value.

6.5.11 Ryanteck MCB Robot

class gpiozero.RyanteckRobot
Extends Robot for the Ryanteck MCB robot.

The Ryanteck MCB pins are fixed and therefore there’s no need to specify them when constructing this
class. The following example turns the robot left:

from gpiozero import RyanteckRobot

robot = RyanteckRobot()
robot.left()

backward(speed=1)
Drive the robot backward by running both motors backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

close()
Shut down the device and release all associated resources.

forward(speed=1)
Drive the robot forward by running both motors forward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

left(speed=1)
Make the robot turn left by running the right motor forward and left motor backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

6.5. Boards and Accessories 47

http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.1.0

reverse()
Reverse the robot’s current motor directions. If the robot is currently running full speed forward, it
will run full speed backward. If the robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

right(speed=1)
Make the robot turn right by running the left motor forward and right motor backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

stop()
Stop the robot.

left_motor
Returns the Motor device representing the robot’s left motor.

right_motor
Returns the Motor device representing the robot’s right motor.

source
The iterable to use as a source of values for value.

value
Returns a tuple of two floating point values (-1 to 1) representing the speeds of the robot’s two motors
(left and right). This property can also be set to alter the speed of both motors.

values
An infinite iterator of values read from value.

6.5.12 CamJam #3 Kit Robot

class gpiozero.CamJamKitRobot
Extends Robot for the CamJam #3 EduKit robot controller.

The CamJam robot controller pins are fixed and therefore there’s no need to specify them when constructing
this class. The following example turns the robot left:

from gpiozero import CamJamKitRobot

robot = CamJamKitRobot()
robot.left()

backward(speed=1)
Drive the robot backward by running both motors backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

close()
Shut down the device and release all associated resources.

forward(speed=1)
Drive the robot forward by running both motors forward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

left(speed=1)
Make the robot turn left by running the right motor forward and left motor backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

reverse()
Reverse the robot’s current motor directions. If the robot is currently running full speed forward, it

48 Chapter 6. Table of Contents

http://docs.python.org/3.4/library/functions.html#float
http://camjam.me/?page_id=1035
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.1.0

will run full speed backward. If the robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

right(speed=1)
Make the robot turn right by running the left motor forward and right motor backward.

Parameters speed (float) – Speed at which to drive the motors, as a value between 0
(stopped) and 1 (full speed). The default is 1.

stop()
Stop the robot.

left_motor
Returns the Motor device representing the robot’s left motor.

right_motor
Returns the Motor device representing the robot’s right motor.

source
The iterable to use as a source of values for value.

value
Returns a tuple of two floating point values (-1 to 1) representing the speeds of the robot’s two motors
(left and right). This property can also be set to alter the speed of both motors.

values
An infinite iterator of values read from value.

6.6 Generic Devices

The GPIO Zero class hierarchy is quite extensive. It contains a couple of base classes:

• GPIODevice for individual devices that attach to a single GPIO pin

• CompositeDevice for devices composed of multiple other devices like HATs

There are also a couple of mixin classes:

• ValuesMixin which defines the values properties; there is rarely a need to use this as the base classes
mentioned above both include it (so all classes in GPIO Zero include the values property)

• SourceMixin which defines the source property; this is generally included in novel output device
classes

The current class hierarchies are displayed below. For brevity, the mixin classes are omitted:

6.6. Generic Devices 49

http://docs.python.org/3.4/library/functions.html#float
https://en.wikipedia.org/wiki/Mixin

Gpiozero Documentation, Release 1.1.0

InputDevice

GPIODevice

WaitableInputDevice

DigitalInputDevice SmoothedInputDevice

Button MotionSensor LightSensor

OutputDevice

DigitalOutputDevice

LED Buzzer

PWMOutputDevice

PWMLED

AnalogInputDevice

CompositeDevice

MCP3xxx

MCP33xx MCP3004 MCP3008 MCP3204 MCP3208

MCP3301 MCP3302 MCP3304

RGBLED Motor LEDBoard

PiLiter TrafficLights

PiTraffic

TrafficLightsBuzzer

FishDish TrafficHat

Robot

RyanteckRobot CamJamKitRobot

Finally, for composite devices, the following chart shows which devices are composed of which other devices:

RGBLED

PWMLED

LEDBoard

LED

TrafficLightsBuzzer

TrafficLights Buzzer Button

Robot

Motor

6.6.1 Base Classes

class gpiozero.GPIODevice(pin)
Represents a generic GPIO device.

This is the class at the root of the gpiozero class hierarchy. It handles ensuring that two GPIO devices do
not share the same pin, and provides basic services applicable to all devices (specifically the pin property,

50 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.1.0

is_active property, and the close method).

Parameters pin (int) – The GPIO pin (in BCM numbering) that the device is connected to.
If this is None a GPIODeviceError will be raised.

close()
Shut down the device and release all associated resources.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

GPIODevice descendents can also be used as context managers using the with statement. For
example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

is_active
Returns True if the device is currently active and False otherwise.

pin
The Pin that the device is connected to. This will be None if the device has been closed (see the
close() method). When dealing with GPIO pins, query pin.number to discover the GPIO pin
(in BCM numbering) that the device is connected to.

value
Returns True if the device is currently active and False otherwise.

values
An infinite iterator of values read from value.

class gpiozero.CompositeDevice
Represents a device composed of multiple GPIO devices like simple HATs, H-bridge motor controllers,
robots composed of multiple motors, etc.

close()
Shut down the device and release all associated resources.

closed
Returns True if the device is closed (see the close() method). Once a device is closed you can no
longer use any other methods or properties to control or query the device.

values
An infinite iterator of values read from value.

6.6. Generic Devices 51

http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/reference/compound_stmts.html#with

Gpiozero Documentation, Release 1.1.0

6.6.2 Input Devices

class gpiozero.InputDevice(pin, pull_up=False)
Represents a generic GPIO input device.

This class extends GPIODevice to add facilities common to GPIO input devices. The constructor adds
the optional pull_up parameter to specify how the pin should be pulled by the internal resistors. The
is_active property is adjusted accordingly so that True still means active regardless of the pull_up
setting.

Parameters

• pin (int) – The GPIO pin (in Broadcom numbering) that the device is connected to.
If this is None a GPIODeviceError will be raised.

• pull_up (bool) – If True, the pin will be pulled high with an internal resistor. If
False (the default), the pin will be pulled low.

pull_up
If True, the device uses a pull-up resistor to set the GPIO pin “high” by default. Defaults to False.

class gpiozero.WaitableInputDevice(pin=None, pull_up=False)
Represents a generic input device with distinct waitable states.

This class extends InputDevice with methods for waiting on the device’s status
(wait_for_active() and wait_for_inactive()), and properties that hold functions to be
called when the device changes state (when_activated() and when_deactivated()). These are
aliased appropriately in various subclasses.

Note that this class provides no means of actually firing its events; it’s effectively an abstract base class.

wait_for_active(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is active.

wait_for_inactive(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters timeout (float) – Number of seconds to wait before proceeding. If this is
None (the default), then wait indefinitely until the device is inactive.

when_activated
The function to run when the device changes state from inactive to active.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.

Set this property to None (the default) to disable the event.

when_deactivated
The function to run when the device changes state from active to inactive.

This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated will be passed as that parameter.

Set this property to None (the default) to disable the event.

class gpiozero.DigitalInputDevice(pin, pull_up=False, bounce_time=None)
Represents a generic input device with typical on/off behaviour.

This class extends WaitableInputDevice with machinery to fire the active and inactive events for
devices that operate in a typical digital manner: straight forward on / off states with (reasonably) clean
transitions between the two.

52 Chapter 6. Table of Contents

http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float

Gpiozero Documentation, Release 1.1.0

Parameters bouncetime (float) – Specifies the length of time (in seconds) that the com-
ponent will ignore changes in state after an initial change. This defaults to None which
indicates that no bounce compensation will be performed.

class gpiozero.SmoothedInputDevice(pin=None, pull_up=False, threshold=0.5, queue_len=5,
sample_wait=0.0, partial=False)

Represents a generic input device which takes its value from the mean of a queue of historical values.

This class extends WaitableInputDevice with a queue which is filled by a background thread which
continually polls the state of the underlying device. The mean of the values in the queue is compared to a
threshold which is used to determine the state of the is_active property.

This class is intended for use with devices which either exhibit analog behaviour (such as the charging time
of a capacitor with an LDR), or those which exhibit “twitchy” behaviour (such as certain motion sensors).

Parameters

• threshold (float) – The value above which the device will be considered “on”.

• queue_len (int) – The length of the internal queue which is filled by the background
thread.

• sample_wait (float) – The length of time to wait between retrieving the state of
the underlying device. Defaults to 0.0 indicating that values are retrieved as fast as
possible.

• partial (bool) – If False (the default), attempts to read the state of the device
(from the is_active property) will block until the queue has filled. If True, a
value will be returned immediately, but be aware that this value is likely to fluctuate
excessively.

close()
Shut down the device and release all associated resources.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

GPIODevice descendents can also be used as context managers using the with statement. For
example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

is_active
Returns True if the device is currently active and False otherwise.

6.6. Generic Devices 53

http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/reference/compound_stmts.html#with

Gpiozero Documentation, Release 1.1.0

partial
If False (the default), attempts to read the value or is_active properties will block until the
queue has filled.

queue_len
The length of the internal queue of values which is averaged to determine the overall state of the
device. This defaults to 5.

threshold
If value exceeds this amount, then is_active will return True.

value
Returns the mean of the values in the internal queue. This is compared to threshold to determine
whether is_active is True.

class gpiozero.AnalogInputDevice(device=0, bits=None)
Represents an analog input device connected to SPI (serial interface).

Typical analog input devices are analog to digital converters (ADCs). Several classes are provided for
specific ADC chips, including MCP3004, MCP3008, MCP3204, and MCP3208.

The following code demonstrates reading the first channel of an MCP3008 chip attached to the Pi’s SPI
pins:

from gpiozero import MCP3008

pot = MCP3008(0)
print(pot.value)

The value attribute is normalized such that its value is always between 0.0 and 1.0 (or in special cases,
such as differential sampling, -1 to +1). Hence, you can use an analog input to control the brightness of a
PWMLED like so:

from gpiozero import MCP3008, PWMLED

pot = MCP3008(0)
led = PWMLED(17)
led.source = pot.values

close()
Shut down the device and release all associated resources.

bits
The bit-resolution of the device/channel.

bus
The SPI bus that the device is connected to. As the Pi only has a single (user accessible) SPI bus, this
always returns 0.

device
The select pin that the device is connected to. The Pi has two select pins so this will be 0 or 1.

raw_value
The raw value as read from the device.

value
The current value read from the device, scaled to a value between 0 and 1.

6.6.3 Output Devices

class gpiozero.OutputDevice(pin, active_high=True, initial_value=False)
Represents a generic GPIO output device.

This class extends GPIODevice to add facilities common to GPIO output devices: an on() method to
switch the device on, and a corresponding off() method.

54 Chapter 6. Table of Contents

https://en.wikipedia.org/wiki/Analog-to-digital_converter

Gpiozero Documentation, Release 1.1.0

Parameters

• pin (int) – The GPIO pin (in BCM numbering) that the device is connected to. If this
is None a GPIODeviceError will be raised.

• active_high (bool) – If True (the default), the on() method will set the GPIO
to HIGH. If False, the on() method will set the GPIO to LOW (the off() method
always does the opposite).

• initial_value (bool) – If False (the default), the device will be off initially. If
None, the device will be left in whatever state the pin is found in when configured for
output (warning: this can be on). If True, the device will be switched on initially.

off()
Turns the device off.

on()
Turns the device on.

class gpiozero.PWMOutputDevice(pin, active_high=True, initial_value=0, frequency=100)
Generic output device configured for pulse-width modulation (PWM).

Parameters

• pin (int) – The GPIO pin which the device is attached to. See Notes for valid pin
numbers.

• active_high (bool) – If True (the default), the on() method will set the GPIO
to HIGH. If False, the on() method will set the GPIO to LOW (the off() method
always does the opposite).

• initial_value (bool) – If 0 (the default), the device’s duty cycle will be 0 ini-
tially. Other values between 0 and 1 can be specified as an initial duty cycle. Note that
None cannot be specified (unlike the parent class) as there is no way to tell PWM not
to alter the state of the pin.

• frequency (int) – The frequency (in Hz) of pulses emitted to drive the device.
Defaults to 100Hz.

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• fade_in_time (float) – Number of seconds to spend fading in. Defaults to 0.

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 0.

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources.

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

6.6. Generic Devices 55

http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#bool
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.1.0

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

GPIODevice descendents can also be used as context managers using the with statement. For
example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off()
Turns the device off.

on()
Turns the device on.

toggle()
Toggle the state of the device. If the device is currently off (value is 0.0), this changes it to “fully”
on (value is 1.0). If the device has a duty cycle (value) of 0.1, this will toggle it to 0.9, and so on.

frequency
The frequency of the pulses used with the PWM device, in Hz. The default is 100Hz.

is_active
Returns True if the device is currently active (value is non-zero) and False otherwise.

value
The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values in between may be specified for
varying levels of power in the device.

class gpiozero.DigitalOutputDevice(pin, active_high=True, initial_value=False)
Represents a generic output device with typical on/off behaviour.

This class extends OutputDevice with a toggle() method to switch the device between its on and
off states, and a blink() method which uses an optional background thread to handle toggling the device
state without further interaction.

blink(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float) – Number of seconds on. Defaults to 1 second.

• off_time (float) – Number of seconds off. Defaults to 1 second.

• n (int) – Number of times to blink; None (the default) means forever.

• background (bool) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the blink is finished
(warning: the default value of n will result in this method never returning).

close()
Shut down the device and release all associated resources.

56 Chapter 6. Table of Contents

http://docs.python.org/3.4/reference/compound_stmts.html#with
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#float
http://docs.python.org/3.4/library/functions.html#int
http://docs.python.org/3.4/library/functions.html#bool

Gpiozero Documentation, Release 1.1.0

This method is primarily intended for interactive use at the command line. It disables the device and
releases its pin for use by another device.

You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references
to the object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By contrast, the close method provides
a means of ensuring that the object is shut down.

For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an
LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

GPIODevice descendents can also be used as context managers using the with statement. For
example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

off()
Turns the device off.

on()
Turns the device on.

toggle()
Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.

6.6.4 Mixin Classes

class gpiozero.ValuesMixin(...)

values
An infinite iterator of values read from value.

class gpiozero.SourceMixin(...)

source
The iterable to use as a source of values for value.

6.7 Pins

As of release 1.1, the GPIO Zero library can be roughly divided into two things: pins and the devices that are
connected to them. The majority of the documentation focuses on devices as pins are below the level that most
users are concerned with. However, some users may wish to take advantage of the capabilities of alternative GPIO
implementations or (in future) use GPIO extender chips. This is the purpose of the pins portion of the library.

6.7. Pins 57

http://docs.python.org/3.4/reference/compound_stmts.html#with

Gpiozero Documentation, Release 1.1.0

When you construct a device, you pass in a GPIO pin number. However, what the library actually expects is a
Pin implementation. If it finds a simple integer number instead, it uses one of the following classes to provide
the Pin implementation (classes are listed in favoured order):

1. gpiozero.pins.rpigpio.RPiGPIOPin

2. gpiozero.pins.rpio.RPIOPin

3. gpiozero.pins.native.NativePin

You can change the default pin implementation by over-writing the DefaultPin global in devices like so:

from gpiozero.pins.native import NativePin
import gpiozero.devices
Force the default pin implementation to be NativePin
gpiozero.devices.DefaultPin = NativePin

from gpiozero import LED

This will now use NativePin instead of RPiGPIOPin
led = LED(16)

In future, this separation should allow the library to utilize pins that are part of IO extender chips. For example:

from gpiozero import IOExtender, LED

ext = IOExtender()
led = LED(ext.pins[0])
led.on()

Warning: While the devices API is now considered stable and won’t change in backwards incompatible
ways, the pins API is not yet considered stable. It is potentially subject to change in future versions. We
welcome any comments from testers!

6.7.1 Abstract Pin

class gpiozero.Pin
Abstract base class representing a GPIO pin or a pin from an IO extender.

Descendents should override property getters and setters to accurately represent the capabilities of pins. The
following functions must be overridden:

•_get_function()

•_get_state()

The following functions may be overridden if applicable:

•close()

•_set_function()

•_set_state()

•_get_frequency()

•_set_frequency()

•_get_pull()

•_set_pull()

•_get_bounce()

•_set_bounce()

•_get_edges()

58 Chapter 6. Table of Contents

Gpiozero Documentation, Release 1.1.0

•_set_edges()

•_get_when_changed()

•_set_when_changed()

•output_with_state()

•input_with_pull()

Warning: Descendents must ensure that pin instances representing the same physical hardware are
identical, right down to object identity. The framework relies on this to correctly clean up resources at
interpreter shutdown.

close()
Cleans up the resources allocated to the pin. After this method is called, this Pin instance may no
longer be used to query or control the pin’s state.

input_with_pull(pull)
Sets the pin’s function to “input” and specifies an initial pull-up for the pin. By default this is equivalent
to performing:

pin.function = 'input'
pin.pull = pull

However, descendents may override this order to provide the smallest possible delay between config-
uring the pin for input and pulling the pin up/down (which can be important for avoiding “blips” in
some configurations).

output_with_state(state)
Sets the pin’s function to “output” and specifies an initial state for the pin. By default this is equivalent
to performing:

pin.function = 'output'
pin.state = state

However, descendents may override this in order to provide the smallest possible delay between con-
figuring the pin for output and specifying an initial value (which can be important for avoiding “blips”
in active-low configurations).

bounce
The amount of bounce detection (elimination) currently in use by edge detection, measured in seconds.
If bounce detection is not currently in use, this is None.

If the pin does not support edge detection, attempts to set this property will raise
PinEdgeDetectUnsupported. If the pin supports edge detection, the class must implement
bounce detection, even if only in software.

edges
The edge that will trigger execution of the function or bound method assigned to when_changed.
This can be one of the strings “both” (the default), “rising”, “falling”, or “none”.

If the pin does not support edge detection, attempts to set this property will raise
PinEdgeDetectUnsupported.

frequency
The frequency (in Hz) for the pin’s PWM implementation, or None if PWM is not currently in use.
This value always defaults to None and may be changed with certain pin types to activate or deactivate
PWM.

If the pin does not support PWM, PinPWMUnsupported will be raised when attempting to set this
to a value other than None.

function
The function of the pin. This property is a string indicating the current function or purpose of the pin.

6.7. Pins 59

Gpiozero Documentation, Release 1.1.0

Typically this is the string “input” or “output”. However, in some circumstances it can be other strings
indicating non-GPIO related functionality.

With certain pin types (e.g. GPIO pins), this attribute can be changed to configure the function of a
pin. If an invalid function is specified, for this attribute, PinInvalidFunction will be raised. If
this pin is fixed function and an attempt is made to set this attribute, PinFixedFunction will be
raised.

pull
The pull-up state of the pin represented as a string. This is typically one of the strings “up”, “down”,
or “floating” but additional values may be supported by the underlying hardware.

If the pin does not support changing pull-up state (for example because of a fixed pull-up resistor),
attempts to set this property will raise PinFixedPull. If the specified value is not supported by the
underlying hardware, PinInvalidPull is raised.

state
The state of the pin. This is 0 for low, and 1 for high. As a low level view of the pin, no swapping is
performed in the case of pull ups (see pull for more information).

If PWM is currently active (when frequency is not None), this represents the PWM duty cycle as
a value between 0.0 and 1.0.

If a pin is currently configured for input, and an attempt is made to set this attribute, PinSetInput
will be raised. If an invalid value is specified for this attribute, PinInvalidState will be raised.

when_changed
A function or bound method to be called when the pin’s state changes (more specifically when the edge
specified by edges is detected on the pin). The function or bound method must take no parameters.

If the pin does not support edge detection, attempts to set this property will raise
PinEdgeDetectUnsupported.

6.7.2 RPiGPIOPin

class gpiozero.pins.rpigpio.RPiGPIOPin
Uses the RPi.GPIO library to interface to the Pi’s GPIO pins. This is the default pin implementation if the
RPi.GPIO library is installed. Supports all features including PWM (via software).

6.7.3 RPIOPin

class gpiozero.pins.rpio.RPIOPin
Uses the RPIO library to interface to the Pi’s GPIO pins. This is the default pin implementation if the
RPi.GPIO library is not installed, but RPIO is. Supports all features including PWM (hardware via DMA).

Note: Please note that at the time of writing, RPIO is only compatible with Pi 1’s; the Raspberry Pi 2
Model B is not supported. Also note that root access is required so scripts must typically be run with sudo.

6.7.4 NativePin

class gpiozero.pins.native.NativePin
Uses a built-in pure Python implementation to interface to the Pi’s GPIO pins. This is the default pin
implementation if no third-party libraries are discovered.

Warning: This implementation does not currently support PWM. Attempting to use any class which
requests PWM will raise an exception. This implementation is also experimental; we make no guarantees
it will not eat your Pi for breakfast!

60 Chapter 6. Table of Contents

https://pypi.python.org/pypi/RPi.GPIO
https://pythonhosted.org/RPIO/

Gpiozero Documentation, Release 1.1.0

6.8 Changelog

6.8.1 Release 1.1.0 (2016-02-08)

• Documentation converted to reST and expanded to include generic classes and several more recipes (#80,
#82, #101, #119, #135, #168)

• New LEDBarGraph class (many thanks to Martin O’Hanlon!) (#126, #176)

• New Pin implementation abstracts out the concept of a GPIO pin paving the way for alternate library
support and IO extenders in future (#141)

• New LEDBoard.blink() method which works properly even when background is set to False (#94,
#161)

• New RGBLED.blink() method which implements (rudimentary) color fading too! (#135, #174)

• New initial_value attribute on OutputDevice ensures consistent behaviour on construction (#118)

• New active_high attribute on PWMOutputDevice and RGBLED allows use of common anode devices
(#143, #154)

• Loads of new ADC chips supported (many thanks to GitHub user pcopa!) (#150)

6.8.2 Release 1.0.0 (2015-11-16)

• Debian packaging added (#44)

• PWMLED class added (#58)

• TemperatureSensor removed pending further work (#93)

• Buzzer.beep() alias method added (#75)

• Motor PWM devices exposed, and Robot motor devices exposed (#107)

6.8.3 Release 0.9.0 (2015-10-25)

Fourth public beta

• Added source and values properties to all relevant classes (#76)

• Fix names of parameters in Motor constructor (#79)

• Added wrappers for LED groups on add-on boards (#81)

6.8.4 Release 0.8.0 (2015-10-16)

Third public beta

• Added generic AnalogInputDevice class along with specific classes for the MCP3008 and MCP3004
(#41)

• Fixed DigitalOutputDevice.blink() (#57)

6.8.5 Release 0.7.0 (2015-10-09)

Second public beta

6.8. Changelog 61

https://github.com/RPi-Distro/python-gpiozero/issues/80
https://github.com/RPi-Distro/python-gpiozero/issues/82
https://github.com/RPi-Distro/python-gpiozero/issues/101
https://github.com/RPi-Distro/python-gpiozero/issues/119
https://github.com/RPi-Distro/python-gpiozero/issues/135
https://github.com/RPi-Distro/python-gpiozero/issues/168
https://github.com/RPi-Distro/python-gpiozero/issues/126
https://github.com/RPi-Distro/python-gpiozero/issues/176
https://github.com/RPi-Distro/python-gpiozero/issues/141
https://github.com/RPi-Distro/python-gpiozero/issues/94
https://github.com/RPi-Distro/python-gpiozero/issues/161
https://github.com/RPi-Distro/python-gpiozero/issues/135
https://github.com/RPi-Distro/python-gpiozero/issues/174
https://github.com/RPi-Distro/python-gpiozero/issues/118
https://github.com/RPi-Distro/python-gpiozero/issues/143
https://github.com/RPi-Distro/python-gpiozero/issues/154
https://github.com/RPi-Distro/python-gpiozero/issues/150
https://github.com/RPi-Distro/python-gpiozero/issues/44
https://github.com/RPi-Distro/python-gpiozero/issues/58
https://github.com/RPi-Distro/python-gpiozero/issues/93
https://github.com/RPi-Distro/python-gpiozero/issues/75
https://github.com/RPi-Distro/python-gpiozero/issues/107
https://github.com/RPi-Distro/python-gpiozero/issues/76
https://github.com/RPi-Distro/python-gpiozero/issues/79
https://github.com/RPi-Distro/python-gpiozero/issues/81
https://github.com/RPi-Distro/python-gpiozero/issues/41
https://github.com/RPi-Distro/python-gpiozero/issues/57

Gpiozero Documentation, Release 1.1.0

6.8.6 Release 0.6.0 (2015-09-28)

First public beta

6.8.7 Release 0.5.0 (2015-09-24)

6.8.8 Release 0.4.0 (2015-09-23)

6.8.9 Release 0.3.0 (2015-09-22)

6.8.10 Release 0.2.0 (2015-09-21)

Initial release

6.9 License

Copyright 2015 Raspberry Pi Foundation.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

62 Chapter 6. Table of Contents

http://raspberrypi.org/

Index

A
all (gpiozero.FishDish attribute), 45
all (gpiozero.TrafficHat attribute), 46
all (gpiozero.TrafficLightsBuzzer attribute), 44
amber (gpiozero.PiTraffic attribute), 43
amber (gpiozero.TrafficLights attribute), 40
AnalogInputDevice (class in gpiozero), 54

B
backward() (gpiozero.CamJamKitRobot method), 48
backward() (gpiozero.Motor method), 36
backward() (gpiozero.Robot method), 46
backward() (gpiozero.RyanteckRobot method), 47
beep() (gpiozero.Buzzer method), 36
bits (gpiozero.AnalogInputDevice attribute), 54
blink() (gpiozero.DigitalOutputDevice method), 56
blink() (gpiozero.FishDish method), 44
blink() (gpiozero.LED method), 33
blink() (gpiozero.LEDBoard method), 37
blink() (gpiozero.PiLiter method), 41
blink() (gpiozero.PiTraffic method), 42
blink() (gpiozero.PWMLED method), 33
blink() (gpiozero.PWMOutputDevice method), 55
blink() (gpiozero.RGBLED method), 34
blink() (gpiozero.TrafficHat method), 45
blink() (gpiozero.TrafficLights method), 39
blink() (gpiozero.TrafficLightsBuzzer method), 43
bounce (gpiozero.Pin attribute), 59
bus (gpiozero.AnalogInputDevice attribute), 54
bus (gpiozero.MCP3004 attribute), 30
bus (gpiozero.MCP3008 attribute), 30
bus (gpiozero.MCP3204 attribute), 30
bus (gpiozero.MCP3208 attribute), 31
bus (gpiozero.MCP3301 attribute), 31
bus (gpiozero.MCP3302 attribute), 31
bus (gpiozero.MCP3304 attribute), 32
Button (class in gpiozero), 26
Buzzer (class in gpiozero), 35

C
CamJamKitRobot (class in gpiozero), 48
channel (gpiozero.MCP3004 attribute), 30
channel (gpiozero.MCP3008 attribute), 30
channel (gpiozero.MCP3204 attribute), 30

channel (gpiozero.MCP3208 attribute), 31
channel (gpiozero.MCP3302 attribute), 31
channel (gpiozero.MCP3304 attribute), 32
close() (gpiozero.AnalogInputDevice method), 54
close() (gpiozero.CamJamKitRobot method), 48
close() (gpiozero.CompositeDevice method), 51
close() (gpiozero.DigitalOutputDevice method), 56
close() (gpiozero.FishDish method), 45
close() (gpiozero.GPIODevice method), 51
close() (gpiozero.LEDBarGraph method), 38
close() (gpiozero.LEDBoard method), 38
close() (gpiozero.PiLiter method), 41
close() (gpiozero.PiLiterBarGraph method), 42
close() (gpiozero.Pin method), 59
close() (gpiozero.PiTraffic method), 43
close() (gpiozero.PWMOutputDevice method), 55
close() (gpiozero.Robot method), 46
close() (gpiozero.RyanteckRobot method), 47
close() (gpiozero.SmoothedInputDevice method), 53
close() (gpiozero.TrafficHat method), 45
close() (gpiozero.TrafficLights method), 40
close() (gpiozero.TrafficLightsBuzzer method), 44
closed (gpiozero.CompositeDevice attribute), 51
color (gpiozero.RGBLED attribute), 35
CompositeDevice (class in gpiozero), 51

D
device (gpiozero.AnalogInputDevice attribute), 54
device (gpiozero.MCP3004 attribute), 30
device (gpiozero.MCP3008 attribute), 30
device (gpiozero.MCP3204 attribute), 30
device (gpiozero.MCP3208 attribute), 31
device (gpiozero.MCP3301 attribute), 31
device (gpiozero.MCP3302 attribute), 31
device (gpiozero.MCP3304 attribute), 32
differential (gpiozero.MCP3004 attribute), 30
differential (gpiozero.MCP3008 attribute), 30
differential (gpiozero.MCP3204 attribute), 30
differential (gpiozero.MCP3208 attribute), 31
differential (gpiozero.MCP3302 attribute), 31
differential (gpiozero.MCP3304 attribute), 32
DigitalInputDevice (class in gpiozero), 52
DigitalOutputDevice (class in gpiozero), 56

63

Gpiozero Documentation, Release 1.1.0

E
edges (gpiozero.Pin attribute), 59

F
FishDish (class in gpiozero), 44
forward() (gpiozero.CamJamKitRobot method), 48
forward() (gpiozero.Motor method), 37
forward() (gpiozero.Robot method), 46
forward() (gpiozero.RyanteckRobot method), 47
frequency (gpiozero.Pin attribute), 59
frequency (gpiozero.PWMOutputDevice attribute), 56
function (gpiozero.Pin attribute), 59

G
GPIODevice (class in gpiozero), 50
green (gpiozero.PiTraffic attribute), 43
green (gpiozero.TrafficLights attribute), 40

I
input_with_pull() (gpiozero.Pin method), 59
InputDevice (class in gpiozero), 52
is_active (gpiozero.Buzzer attribute), 36
is_active (gpiozero.GPIODevice attribute), 51
is_active (gpiozero.PWMOutputDevice attribute), 56
is_active (gpiozero.SmoothedInputDevice attribute), 53
is_lit (gpiozero.LED attribute), 33
is_lit (gpiozero.PWMLED attribute), 34
is_lit (gpiozero.RGBLED attribute), 35
is_pressed (gpiozero.Button attribute), 27

L
LED (class in gpiozero), 32
LEDBarGraph (class in gpiozero), 38
LEDBoard (class in gpiozero), 37
leds (gpiozero.LEDBarGraph attribute), 39
leds (gpiozero.LEDBoard attribute), 38
leds (gpiozero.PiLiter attribute), 41
leds (gpiozero.PiLiterBarGraph attribute), 42
leds (gpiozero.PiTraffic attribute), 43
leds (gpiozero.TrafficLights attribute), 40
left() (gpiozero.CamJamKitRobot method), 48
left() (gpiozero.Robot method), 46
left() (gpiozero.RyanteckRobot method), 47
left_motor (gpiozero.CamJamKitRobot attribute), 49
left_motor (gpiozero.Robot attribute), 47
left_motor (gpiozero.RyanteckRobot attribute), 48
light_detected (gpiozero.LightSensor attribute), 29
LightSensor (class in gpiozero), 28

M
MCP3004 (class in gpiozero), 30
MCP3008 (class in gpiozero), 30
MCP3204 (class in gpiozero), 30
MCP3208 (class in gpiozero), 31
MCP3301 (class in gpiozero), 31
MCP3302 (class in gpiozero), 31
MCP3304 (class in gpiozero), 32

motion_detected (gpiozero.MotionSensor attribute), 28
MotionSensor (class in gpiozero), 27
Motor (class in gpiozero), 36

N
NativePin (class in gpiozero.pins.native), 60

O
off() (gpiozero.Buzzer method), 36
off() (gpiozero.DigitalOutputDevice method), 57
off() (gpiozero.FishDish method), 45
off() (gpiozero.LED method), 33
off() (gpiozero.LEDBarGraph method), 39
off() (gpiozero.LEDBoard method), 38
off() (gpiozero.OutputDevice method), 55
off() (gpiozero.PiLiter method), 41
off() (gpiozero.PiLiterBarGraph method), 42
off() (gpiozero.PiTraffic method), 43
off() (gpiozero.PWMLED method), 34
off() (gpiozero.PWMOutputDevice method), 56
off() (gpiozero.RGBLED method), 35
off() (gpiozero.TrafficHat method), 45
off() (gpiozero.TrafficLights method), 40
off() (gpiozero.TrafficLightsBuzzer method), 44
on() (gpiozero.Buzzer method), 36
on() (gpiozero.DigitalOutputDevice method), 57
on() (gpiozero.FishDish method), 45
on() (gpiozero.LED method), 33
on() (gpiozero.LEDBarGraph method), 39
on() (gpiozero.LEDBoard method), 38
on() (gpiozero.OutputDevice method), 55
on() (gpiozero.PiLiter method), 41
on() (gpiozero.PiLiterBarGraph method), 42
on() (gpiozero.PiTraffic method), 43
on() (gpiozero.PWMLED method), 34
on() (gpiozero.PWMOutputDevice method), 56
on() (gpiozero.RGBLED method), 35
on() (gpiozero.TrafficHat method), 46
on() (gpiozero.TrafficLights method), 40
on() (gpiozero.TrafficLightsBuzzer method), 44
output_with_state() (gpiozero.Pin method), 59
OutputDevice (class in gpiozero), 54

P
partial (gpiozero.SmoothedInputDevice attribute), 53
PiLiter (class in gpiozero), 40
PiLiterBarGraph (class in gpiozero), 41
Pin (class in gpiozero), 58
pin (gpiozero.Button attribute), 27
pin (gpiozero.Buzzer attribute), 36
pin (gpiozero.GPIODevice attribute), 51
pin (gpiozero.LED attribute), 33
pin (gpiozero.LightSensor attribute), 29
pin (gpiozero.MotionSensor attribute), 28
pin (gpiozero.PWMLED attribute), 34
PiTraffic (class in gpiozero), 42
pull (gpiozero.Pin attribute), 60
pull_up (gpiozero.Button attribute), 27

64 Index

Gpiozero Documentation, Release 1.1.0

pull_up (gpiozero.InputDevice attribute), 52
PWMLED (class in gpiozero), 33
PWMOutputDevice (class in gpiozero), 55

Q
queue_len (gpiozero.SmoothedInputDevice attribute),

54

R
raw_value (gpiozero.AnalogInputDevice attribute), 54
red (gpiozero.PiTraffic attribute), 43
red (gpiozero.TrafficLights attribute), 40
reverse() (gpiozero.CamJamKitRobot method), 48
reverse() (gpiozero.Robot method), 47
reverse() (gpiozero.RyanteckRobot method), 47
RGBLED (class in gpiozero), 34
right() (gpiozero.CamJamKitRobot method), 49
right() (gpiozero.Robot method), 47
right() (gpiozero.RyanteckRobot method), 48
right_motor (gpiozero.CamJamKitRobot attribute), 49
right_motor (gpiozero.Robot attribute), 47
right_motor (gpiozero.RyanteckRobot attribute), 48
Robot (class in gpiozero), 46
RPiGPIOPin (class in gpiozero.pins.rpigpio), 60
RPIOPin (class in gpiozero.pins.rpio), 60
RyanteckRobot (class in gpiozero), 47

S
SmoothedInputDevice (class in gpiozero), 53
source (gpiozero.CamJamKitRobot attribute), 49
source (gpiozero.FishDish attribute), 45
source (gpiozero.LEDBarGraph attribute), 39
source (gpiozero.LEDBoard attribute), 38
source (gpiozero.PiLiter attribute), 41
source (gpiozero.PiLiterBarGraph attribute), 42
source (gpiozero.PiTraffic attribute), 43
source (gpiozero.Robot attribute), 47
source (gpiozero.RyanteckRobot attribute), 48
source (gpiozero.SourceMixin attribute), 57
source (gpiozero.TrafficHat attribute), 46
source (gpiozero.TrafficLights attribute), 40
source (gpiozero.TrafficLightsBuzzer attribute), 44
SourceMixin (class in gpiozero), 57
state (gpiozero.Pin attribute), 60
stop() (gpiozero.CamJamKitRobot method), 49
stop() (gpiozero.Motor method), 37
stop() (gpiozero.Robot method), 47
stop() (gpiozero.RyanteckRobot method), 48

T
threshold (gpiozero.SmoothedInputDevice attribute),

54
toggle() (gpiozero.Buzzer method), 36
toggle() (gpiozero.DigitalOutputDevice method), 57
toggle() (gpiozero.FishDish method), 45
toggle() (gpiozero.LED method), 33
toggle() (gpiozero.LEDBarGraph method), 39
toggle() (gpiozero.LEDBoard method), 38

toggle() (gpiozero.PiLiter method), 41
toggle() (gpiozero.PiLiterBarGraph method), 42
toggle() (gpiozero.PiTraffic method), 43
toggle() (gpiozero.PWMLED method), 34
toggle() (gpiozero.PWMOutputDevice method), 56
toggle() (gpiozero.RGBLED method), 35
toggle() (gpiozero.TrafficHat method), 46
toggle() (gpiozero.TrafficLights method), 40
toggle() (gpiozero.TrafficLightsBuzzer method), 44
TrafficHat (class in gpiozero), 45
TrafficLights (class in gpiozero), 39
TrafficLightsBuzzer (class in gpiozero), 43

V
value (gpiozero.AnalogInputDevice attribute), 54
value (gpiozero.CamJamKitRobot attribute), 49
value (gpiozero.FishDish attribute), 45
value (gpiozero.GPIODevice attribute), 51
value (gpiozero.LEDBarGraph attribute), 39
value (gpiozero.LEDBoard attribute), 38
value (gpiozero.MCP3004 attribute), 30
value (gpiozero.MCP3008 attribute), 30
value (gpiozero.MCP3204 attribute), 31
value (gpiozero.MCP3208 attribute), 31
value (gpiozero.MCP3301 attribute), 31
value (gpiozero.MCP3302 attribute), 31
value (gpiozero.MCP3304 attribute), 32
value (gpiozero.PiLiter attribute), 41
value (gpiozero.PiLiterBarGraph attribute), 42
value (gpiozero.PiTraffic attribute), 43
value (gpiozero.PWMLED attribute), 34
value (gpiozero.PWMOutputDevice attribute), 56
value (gpiozero.Robot attribute), 47
value (gpiozero.RyanteckRobot attribute), 48
value (gpiozero.SmoothedInputDevice attribute), 54
value (gpiozero.TrafficHat attribute), 46
value (gpiozero.TrafficLights attribute), 40
value (gpiozero.TrafficLightsBuzzer attribute), 44
values (gpiozero.CamJamKitRobot attribute), 49
values (gpiozero.CompositeDevice attribute), 51
values (gpiozero.FishDish attribute), 45
values (gpiozero.GPIODevice attribute), 51
values (gpiozero.LEDBarGraph attribute), 39
values (gpiozero.LEDBoard attribute), 38
values (gpiozero.PiLiter attribute), 41
values (gpiozero.PiLiterBarGraph attribute), 42
values (gpiozero.PiTraffic attribute), 43
values (gpiozero.Robot attribute), 47
values (gpiozero.RyanteckRobot attribute), 48
values (gpiozero.TrafficHat attribute), 46
values (gpiozero.TrafficLights attribute), 40
values (gpiozero.TrafficLightsBuzzer attribute), 44
values (gpiozero.ValuesMixin attribute), 57
ValuesMixin (class in gpiozero), 57

W
wait_for_active() (gpiozero.WaitableInputDevice

method), 52

Index 65

Gpiozero Documentation, Release 1.1.0

wait_for_dark() (gpiozero.LightSensor method), 29
wait_for_inactive() (gpiozero.WaitableInputDevice

method), 52
wait_for_light() (gpiozero.LightSensor method), 29
wait_for_motion() (gpiozero.MotionSensor method),

28
wait_for_no_motion() (gpiozero.MotionSensor

method), 28
wait_for_press() (gpiozero.Button method), 26
wait_for_release() (gpiozero.Button method), 27
WaitableInputDevice (class in gpiozero), 52
when_activated (gpiozero.WaitableInputDevice at-

tribute), 52
when_changed (gpiozero.Pin attribute), 60
when_dark (gpiozero.LightSensor attribute), 29
when_deactivated (gpiozero.WaitableInputDevice at-

tribute), 52
when_light (gpiozero.LightSensor attribute), 29
when_motion (gpiozero.MotionSensor attribute), 28
when_no_motion (gpiozero.MotionSensor attribute),

28
when_pressed (gpiozero.Button attribute), 27
when_released (gpiozero.Button attribute), 27

66 Index

	About
	Install
	Documentation
	Development
	Contributors
	Table of Contents
	Recipes
	Notes
	Input Devices
	Output Devices
	Boards and Accessories
	Generic Devices
	Pins
	Changelog
	License

