
gpiozero 2.0.1 Documentation
Release 2.0.1

Ben Nuttall

Feb 15, 2024

CONTENTS

1 Installing GPIO Zero 1

2 Basic Recipes 3

3 Advanced Recipes 37

4 Configuring Remote GPIO 45

5 Remote GPIO Recipes 53

6 Pi Zero USB OTG 57

7 Source/Values 61

8 Command-line Tools 69

9 Frequently Asked Questions 79

10 Backwards Compatibility 87

11 Migrating from RPi.GPIO 93

12 Contributing 99

13 Development 101

14 API - Input Devices 105

15 API - Output Devices 125

16 API - SPI Devices 147

17 API - Boards and Accessories 157

18 API - Internal Devices 189

19 API - Generic Classes 197

20 API - Device Source Tools 203

21 API - Fonts 211

22 API - Tones 215

23 API - Pi Information 217

24 API - Pins 221

i

25 API - Exceptions 239

26 Changelog 245

27 License 255

Python Module Index 257

Index 259

ii

CHAPTER

ONE

INSTALLING GPIO ZERO

GPIO Zero is installed by default in the Raspberry Pi OS1 desktop image, Raspberry Pi OS2 Lite image, and the
Raspberry Pi Desktop3 image for PC/Mac, all available from raspberrypi.org4. Follow these guides to installing on
other operating systems, including for PCs using the remote GPIO (page 45) feature.

1.1 Raspberry Pi

GPIO Zero is packaged in the apt repositories of Raspberry Pi OS, Debian5 and Ubuntu6. It is also available on
PyPI7.

1.1.1 apt

First, update your repositories list:

pi@raspberrypi:~$ sudo apt update

Then install the package for Python 3:

pi@raspberrypi:~$ sudo apt install python3-gpiozero

or Python 2:

pi@raspberrypi:~$ sudo apt install python-gpiozero

1.1.2 pip

If you’re using another operating system on your Raspberry Pi, you may need to use pip to install GPIO Zero instead.
Install pip using get-pip8 and then type:

pi@raspberrypi:~$ sudo pip3 install gpiozero

or for Python 2:

pi@raspberrypi:~$ sudo pip install gpiozero

To install GPIO Zero in a virtual environment, see the Development (page 101) page.
1 https://www.raspberrypi.org/software/operating-systems/
2 https://www.raspberrypi.org/software/operating-systems/
3 https://www.raspberrypi.org/software/raspberry-pi-desktop/
4 https://www.raspberrypi.org/software/
5 https://packages.debian.org/buster/python3-gpiozero
6 https://packages.ubuntu.com/hirsute/python3-gpiozero
7 https://pypi.org/project/gpiozero/
8 https://pip.pypa.io/en/stable/installing/

1

https://www.raspberrypi.org/software/operating-systems/
https://www.raspberrypi.org/software/operating-systems/
https://www.raspberrypi.org/software/raspberry-pi-desktop/
https://www.raspberrypi.org/software/
https://packages.debian.org/buster/python3-gpiozero
https://packages.ubuntu.com/hirsute/python3-gpiozero
https://pypi.org/project/gpiozero/
https://pip.pypa.io/en/stable/installing/

gpiozero 2.0.1 Documentation, Release 2.0.1

1.2 PC/Mac

In order to use GPIO Zero’s remote GPIO feature from a PC or Mac, you’ll need to install GPIO Zero on that
computer using pip. See the Configuring Remote GPIO (page 45) page for more information.

1.3 Documentation

This documentation is also available for offline installation like so:

pi@raspberrypi:~$ sudo apt install python-gpiozero-doc

This will install the HTML version of the documentation under the /usr/share/doc/
python-gpiozero-doc/html path. To view the offline documentation you have several options:
You can open the documentation directly by visiting file:///usr/share/doc/python-gpiozero-doc/html/index.html in
your browser. However, be aware that using file:// URLs sometimes breaks certain elements. To avoid this, you
can view the docs from an http:// style URL by starting a trivial HTTP server with Python, like so:

$ python3 -m http.server -d /usr/share/doc/python-gpiozero-doc/html

Then visit http://localhost:8000/ in your browser.
Alternatively, the package also integrates into Debian’s doc-base9 system, so you can install one of the doc-base
clients (dochelp, dwww, dhelp, doc-central, etc.) and use its interface to locate this document.
If you want to view the documentation offline on a different device, such as an eReader, there are Epub and PDF
versions of the documentation available for download from the ReadTheDocs site10. Simply click on the “Read the
Docs” box at the bottom-left corner of the page (under the table of contents) and select “PDF” or “Epub” from the
“Downloads” section.

9 https://wiki.debian.org/doc-base
10 https://gpiozero.readthedocs.io/

2 Chapter 1. Installing GPIO Zero

file:///usr/share/doc/python-gpiozero-doc/html/index.html
http://localhost:8000/
https://wiki.debian.org/doc-base
https://gpiozero.readthedocs.io/

CHAPTER

TWO

BASIC RECIPES

The following recipes demonstrate some of the capabilities of the GPIO Zero library. Please note that all recipes are
written assuming Python 3. Recipes may work under Python 2, but no guarantees!

2.1 Importing GPIO Zero

In Python, libraries and functions used in a script must be imported by name at the top of the file, with the exception
of the functions built into Python by default.
For example, to use the Button (page 105) interface from GPIO Zero, it should be explicitly imported:

from gpiozero import Button

Now Button (page 105) is available directly in your script:

button = Button(2)

Alternatively, the whole GPIO Zero library can be imported:

import gpiozero

In this case, all references to items within GPIO Zero must be prefixed:

button = gpiozero.Button(2)

2.2 Pin Numbering

This library uses Broadcom (BCM) pin numbering for the GPIO pins, as opposed to physical (BOARD) numbering.
Unlike in the RPi.GPIO11 library, this is not configurable. However, translation from other schemes can be used by
providing prefixes to pin numbers (see below).
Any pin marked “GPIO” in the diagram below can be used as a pin number. For example, if an LED was attached
to “GPIO17” you would specify the pin number as 17 rather than 11:

11 https://pypi.python.org/pypi/RPi.GPIO

3

https://pypi.python.org/pypi/RPi.GPIO

gpiozero 2.0.1 Documentation, Release 2.0.1

3V3
Power

GPIO2
SDA I²C

GPIO3
SCL I²C

GPIO4

Ground

GPIO17

GPIO27

GPIO22

3V3
Power

GPIO10
SPI MOSI

GPIO9
SPI MISO

GPIO11
SPI SCLK

Ground

ID SD
I²C ID

GPIO5

GPIO6

GPIO13

GPIO19

GPIO26

Ground

5V
Power

5V
Power

Ground

GPIO14
UART0 TXD

GPIO15
UART0 RXD

GPIO18

Ground

GPIO23

GPIO24

Ground

GPIO25

GPIO8
SPI CE0

GPIO7
SPI CE1

ID SC
I²C ID

Ground

GPIO12

Ground

GPIO16

GPIO20

GPIO21

All Models

40-pin
models only

11

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

USB Ports

If you wish to use physical (BOARD) numbering you can specify the pin number as “BOARD11”. If you are familiar
with the wiringPi12 pin numbers (another physical layout) you could use “WPI0” instead. Finally, you can specify
pins as “header:number”, e.g. “J8:11” meaning physical pin 11 on header J8 (the GPIO header on modern Pis).
Hence, the following lines are all equivalent:

>>> led = LED(17)
>>> led = LED("GPIO17")
>>> led = LED("BCM17")
>>> led = LED("BOARD11")
>>> led = LED("WPI0")

(continues on next page)
12 https://projects.drogon.net/raspberry-pi/wiringpi/pins/

4 Chapter 2. Basic Recipes

https://projects.drogon.net/raspberry-pi/wiringpi/pins/

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
>>> led = LED("J8:11")

Note that these alternate schemes are merely translations. If you request the state of a device on the command line,
the associated pin number will always be reported in the Broadcom (BCM) scheme:

>>> led = LED("BOARD11")
>>> led
<gpiozero.LED object on pin GPIO17, active_high=True, is_active=False>

Throughout this manual we will use the default integer pin numbers, in the Broadcom (BCM) layout shown above.

2.3 LED

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io
USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Turn an LED (page 125) on and off repeatedly:

from gpiozero import LED
from time import sleep

red = LED(17)

while True:
red.on()
sleep(1)
red.off()
sleep(1)

Alternatively:

from gpiozero import LED
from signal import pause

red = LED(17)

red.blink()

(continues on next page)

2.3. LED 5

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

pause()

Note: Reaching the end of a Python script will terminate the process and GPIOs may be reset. Keep your script
alive with signal.pause()13. See How do I keep my script running? (page 79) for more information.

2.4 LED with variable brightness

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Any regular LED can have its brightness value set using PWM (pulse-width-modulation). In GPIO Zero, this can be
achieved using PWMLED (page 127) using values between 0 and 1:

from gpiozero import PWMLED
from time import sleep

led = PWMLED(17)

while True:
led.value = 0 # off
sleep(1)
led.value = 0.5 # half brightness
sleep(1)
led.value = 1 # full brightness
sleep(1)

Similarly to blinking on and off continuously, a PWMLED can pulse (fade in and out continuously):

from gpiozero import PWMLED
from signal import pause

led = PWMLED(17)

(continues on next page)
13 https://docs.python.org/3.9/library/signal.html#signal.pause

6 Chapter 2. Basic Recipes

https://docs.python.org/3.9/library/signal.html#signal.pause

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

led.pulse()

pause()

2.5 Button

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Check if a Button (page 105) is pressed:

from gpiozero import Button

button = Button(2)

while True:
if button.is_pressed:

print("Button is pressed")
else:

print("Button is not pressed")

Wait for a button to be pressed before continuing:

from gpiozero import Button

button = Button(2)

button.wait_for_press()
print("Button was pressed")

Run a function every time the button is pressed:

from gpiozero import Button
from signal import pause

def say_hello():
print("Hello!")

(continues on next page)

2.5. Button 7

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

button = Button(2)

button.when_pressed = say_hello

pause()

Note: Note that the line button.when_pressed = say_hello does not run the function say_hello,
rather it creates a reference to the function to be called when the button is pressed. Accidental use of button.
when_pressed = say_hello() would set the when_pressed action to None14 (the return value of this
function) which would mean nothing happens when the button is pressed.

Similarly, functions can be attached to button releases:

from gpiozero import Button
from signal import pause

def say_hello():
print("Hello!")

def say_goodbye():
print("Goodbye!")

button = Button(2)

button.when_pressed = say_hello
button.when_released = say_goodbye

pause()

2.6 Button controlled LED

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

14 https://docs.python.org/3.9/library/constants.html#None

8 Chapter 2. Basic Recipes

https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

Turn on an LED (page 125) when a Button (page 105) is pressed:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

button.when_pressed = led.on
button.when_released = led.off

pause()

Alternatively:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

led.source = button

pause()

2.7 Button controlled camera

Using the button press to trigger PiCamera to take a picture using button.when_pressed = camera.
capture would not work because the capture()method requires an output parameter. However, this can be
achieved using a custom function which requires no parameters:

from gpiozero import Button
from picamera import PiCamera
from datetime import datetime
from signal import pause

button = Button(2)
camera = PiCamera()

def capture():
camera.capture(f'/home/pi/{datetime.now():%Y-%m-%d-%H-%M-%S}.jpg')

button.when_pressed = capture

pause()

Another example could use one button to start and stop the camera preview, and another to capture:

from gpiozero import Button
from picamera import PiCamera
from datetime import datetime
from signal import pause

left_button = Button(2)
right_button = Button(3)
camera = PiCamera()

def capture():
camera.capture(f'/home/pi/{datetime.now():%Y-%m-%d-%H-%M-%S}.jpg')

(continues on next page)

2.7. Button controlled camera 9

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
left_button.when_pressed = camera.start_preview
left_button.when_released = camera.stop_preview
right_button.when_pressed = capture

pause()

2.8 Shutdown button

The Button (page 105) class also provides the ability to run a function when the button has been held for a given
length of time. This example will shut down the Raspberry Pi when the button is held for 2 seconds:

from gpiozero import Button
from subprocess import check_call
from signal import pause

def shutdown():
check_call(['sudo', 'poweroff'])

shutdown_btn = Button(17, hold_time=2)
shutdown_btn.when_held = shutdown

pause()

2.9 LEDBoard

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

A collection of LEDs can be accessed using LEDBoard (page 157):

from gpiozero import LEDBoard
from time import sleep
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26)

(continues on next page)

10 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

leds.on()
sleep(1)
leds.off()
sleep(1)
leds.value = (1, 0, 1, 0, 1)
sleep(1)
leds.blink()

pause()

Using LEDBoard (page 157) with pwm=True allows each LED’s brightness to be controlled:

from gpiozero import LEDBoard
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26, pwm=True)

leds.value = (0.2, 0.4, 0.6, 0.8, 1.0)

pause()

See more LEDBoard (page 157) examples in the advanced LEDBoard recipes (page 37).

2.10 LEDBarGraph

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

A collection of LEDs can be treated like a bar graph using LEDBarGraph (page 160):

from gpiozero import LEDBarGraph
from time import sleep

graph = LEDBarGraph(5, 6, 13, 19, 26, 20)

graph.value = 1 # (1, 1, 1, 1, 1, 1)
sleep(1)

(continues on next page)

2.10. LEDBarGraph 11

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
graph.value = 1/2 # (1, 1, 1, 0, 0, 0)
sleep(1)
graph.value = -1/2 # (0, 0, 0, 1, 1, 1)
sleep(1)
graph.value = 1/4 # (1, 0, 0, 0, 0, 0)
sleep(1)
graph.value = -1 # (1, 1, 1, 1, 1, 1)
sleep(1)

Note values are essentially rounded to account for the fact LEDs can only be on or off when pwm=False (the
default).
However, using LEDBarGraph (page 160) with pwm=True allows more precise values using LED brightness:

from gpiozero import LEDBarGraph
from time import sleep

graph = LEDBarGraph(5, 6, 13, 19, 26, pwm=True)

graph.value = 1/10 # (0.5, 0, 0, 0, 0)
sleep(1)
graph.value = 3/10 # (1, 0.5, 0, 0, 0)
sleep(1)
graph.value = -3/10 # (0, 0, 0, 0.5, 1)
sleep(1)
graph.value = 9/10 # (1, 1, 1, 1, 0.5)
sleep(1)
graph.value = 95/100 # (1, 1, 1, 1, 0.75)
sleep(1)

2.11 LEDCharDisplay

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Acommon 7-segment display15 can be used to represent a variety of characters usingLEDCharDisplay (page 162)
(which actually supports an arbitrary number of segments):

15 https://en.wikipedia.org/wiki/Seven-segment_display

12 Chapter 2. Basic Recipes

https://en.wikipedia.org/wiki/Seven-segment_display

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import LEDCharDisplay
from time import sleep

display = LEDCharDisplay(21, 20, 16, 22, 23, 24, 12, dp=25)

for char in '321GO':
display.value = char
sleep(1)

display.off()

Alternatively:

from gpiozero import LEDCharDisplay
from signal import pause

display = LEDCharDisplay(21, 20, 16, 22, 23, 24, 12, dp=25)
display.source_delay = 1
display.source = '321GO '

pause()

See a multi-character example in the advanced recipes (page 38) chapter.

2.12 Traffic Lights

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

A full traffic lights system.
Using a TrafficLights (page 167) kit like Pi-Stop:

from gpiozero import TrafficLights
from time import sleep

(continues on next page)

2.12. Traffic Lights 13

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

lights = TrafficLights(2, 3, 4)

lights.green.on()

while True:
sleep(10)
lights.green.off()
lights.amber.on()
sleep(1)
lights.amber.off()
lights.red.on()
sleep(10)
lights.amber.on()
sleep(1)
lights.green.on()
lights.amber.off()
lights.red.off()

Alternatively:

from gpiozero import TrafficLights
from time import sleep
from signal import pause

lights = TrafficLights(2, 3, 4)

def traffic_light_sequence():
while True:

yield (0, 0, 1) # green
sleep(10)
yield (0, 1, 0) # amber
sleep(1)
yield (1, 0, 0) # red
sleep(10)
yield (1, 1, 0) # red+amber
sleep(1)

lights.source = traffic_light_sequence()

pause()

Using LED (page 125) components:

from gpiozero import LED
from time import sleep

red = LED(2)
amber = LED(3)
green = LED(4)

green.on()
amber.off()
red.off()

while True:
sleep(10)
green.off()
amber.on()
sleep(1)
amber.off()

(continues on next page)

14 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
red.on()
sleep(10)
amber.on()
sleep(1)
green.on()
amber.off()
red.off()

2.13 Push button stop motion

Capture a picture with the camera module every time a button is pressed:

from gpiozero import Button
from picamera import PiCamera

button = Button(2)
camera = PiCamera()

camera.start_preview()
frame = 1
while True:

button.wait_for_press()
camera.capture(f'/home/pi/frame{frame:03d}.jpg')
frame += 1

See Push Button Stop Motion16 for a full resource.

2.14 Reaction Game

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

When you see the light come on, the first person to press their button wins!
16 https://projects.raspberrypi.org/en/projects/push-button-stop-motion

2.13. Push button stop motion 15

https://projects.raspberrypi.org/en/projects/push-button-stop-motion

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import Button, LED
from time import sleep
import random

led = LED(17)

player_1 = Button(2)
player_2 = Button(3)

time = random.uniform(5, 10)
sleep(time)
led.on()

while True:
if player_1.is_pressed:

print("Player 1 wins!")
break

if player_2.is_pressed:
print("Player 2 wins!")
break

led.off()

See Quick Reaction Game17 for a full resource.

2.15 GPIO Music Box

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Each button plays a different sound!

from gpiozero import Button
import pygame.mixer
from pygame.mixer import Sound
from signal import pause

(continues on next page)
17 https://projects.raspberrypi.org/en/projects/python-quick-reaction-game

16 Chapter 2. Basic Recipes

https://projects.raspberrypi.org/en/projects/python-quick-reaction-game

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
pygame.mixer.init()

button_sounds = {
Button(2): Sound("samples/drum_tom_mid_hard.wav"),
Button(3): Sound("samples/drum_cymbal_open.wav"),

}

for button, sound in button_sounds.items():
button.when_pressed = sound.play

pause()

See GPIO Music Box18 for a full resource.

2.16 All on when pressed

While the button is pressed down, the buzzer and all the lights come on.
FishDish (page 173):

from gpiozero import FishDish
from signal import pause

fish = FishDish()

fish.button.when_pressed = fish.on
fish.button.when_released = fish.off

pause()

Ryanteck TrafficHat (page 173):

from gpiozero import TrafficHat
from signal import pause

th = TrafficHat()

th.button.when_pressed = th.on
th.button.when_released = th.off

pause()

Using LED (page 125), Buzzer (page 131), and Button (page 105) components:

from gpiozero import LED, Buzzer, Button
from signal import pause

button = Button(2)
buzzer = Buzzer(3)
red = LED(4)
amber = LED(5)
green = LED(6)

things = [red, amber, green, buzzer]

def things_on():
for thing in things:

(continues on next page)
18 https://projects.raspberrypi.org/en/projects/gpio-music-box

2.16. All on when pressed 17

https://projects.raspberrypi.org/en/projects/gpio-music-box

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
thing.on()

def things_off():
for thing in things:

thing.off()

button.when_pressed = things_on
button.when_released = things_off

pause()

2.17 Full color LED

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Making colours with an RGBLED (page 128):

from gpiozero import RGBLED
from time import sleep

led = RGBLED(red=9, green=10, blue=11)

led.red = 1 # full red
sleep(1)
led.red = 0.5 # half red
sleep(1)

led.color = (0, 1, 0) # full green
sleep(1)
led.color = (1, 0, 1) # magenta
sleep(1)
led.color = (1, 1, 0) # yellow
sleep(1)
led.color = (0, 1, 1) # cyan
sleep(1)
led.color = (1, 1, 1) # white
sleep(1)

(continues on next page)

18 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

led.color = (0, 0, 0) # off
sleep(1)

slowly increase intensity of blue
for n in range(100):

led.blue = n/100
sleep(0.1)

2.18 Motion sensor

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Light an LED (page 125) when a MotionSensor (page 109) detects motion:

from gpiozero import MotionSensor, LED
from signal import pause

pir = MotionSensor(4)
led = LED(16)

(continues on next page)

2.18. Motion sensor 19

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

pir.when_motion = led.on
pir.when_no_motion = led.off

pause()

2.19 Light sensor

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Have a LightSensor (page 111) detect light and dark:

from gpiozero import LightSensor

sensor = LightSensor(18)

while True:
sensor.wait_for_light()
print("It's light! :)")
sensor.wait_for_dark()
print("It's dark :(")

Run a function when the light changes:

from gpiozero import LightSensor, LED
from signal import pause

sensor = LightSensor(18)
led = LED(16)

sensor.when_dark = led.on
sensor.when_light = led.off

pause()

Or make a PWMLED (page 127) change brightness according to the detected light level:

20 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import LightSensor, PWMLED
from signal import pause

sensor = LightSensor(18)
led = PWMLED(16)

led.source = sensor

pause()

2.20 Distance sensor

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Note: In the diagram above, the wires leading from the sensor to the breadboard can be omitted; simply plug the
sensor directly into the breadboard facing the edge (unfortunately this is difficult to illustrate in the diagram without
the sensor’s diagram obscuring most of the breadboard!)

Have a DistanceSensor (page 113) detect the distance to the nearest object:

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(23, 24)

while True:
print('Distance to nearest object is', sensor.distance, 'm')
sleep(1)

Run a function when something gets near the sensor:

from gpiozero import DistanceSensor, LED
from signal import pause

(continues on next page)

2.20. Distance sensor 21

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
sensor = DistanceSensor(23, 24, max_distance=1, threshold_distance=0.2)
led = LED(16)

sensor.when_in_range = led.on
sensor.when_out_of_range = led.off

pause()

2.21 Rotary encoder

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Note: In this recipe, I’ve used a common anode RGB LED. Often, Pi projects use common cathode RGB LEDs
because they’re slightly easier to think about electrically. However, in this case all three components can be found in
an illuminated rotary encoder which incorporates a common anode RGB LED, and a momentary push button. This
is also the reason for the button being wired active-low, contrary to most other examples in this documentation.
For the sake of clarity, the diagram shows the three separate components, but this same circuit will work equally well
with this commonly available illuminated rotary encoder19 instead.

Have a RotaryEncoder (page 115), an RGBLED (page 128), and Button (page 105) act as a color picker:

from threading import Event
from colorzero import Color
from gpiozero import RotaryEncoder, RGBLED, Button

rotor = RotaryEncoder(16, 20, wrap=True, max_steps=180)
rotor.steps = -180
led = RGBLED(22, 23, 24, active_high=False)
btn = Button(21, pull_up=False)
led.color = Color('#f00')
done = Event()

def change_hue():
(continues on next page)

19 https://shop.pimoroni.com/products/rotary-encoder-illuminated-rgb

22 Chapter 2. Basic Recipes

https://shop.pimoroni.com/products/rotary-encoder-illuminated-rgb

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
Scale the rotor steps (-180..180) to 0..1
hue = (rotor.steps + 180) / 360
led.color = Color(h=hue, s=1, v=1)

def show_color():
print(f'Hue {led.color.hue.deg:.1f}° = {led.color.html}')

def stop_script():
print('Exiting')
done.set()

print('Select a color by turning the knob')
rotor.when_rotated = change_hue
print('Push the button to see the HTML code for the color')
btn.when_released = show_color
print('Hold the button to exit')
btn.when_held = stop_script
done.wait()

2.22 Servo

Control a Servo (page 137) between its minimum, mid-point and maximum positions in sequence:

from gpiozero import Servo
from time import sleep

servo = Servo(17)

while True:
servo.min()
sleep(2)
servo.mid()
sleep(2)
servo.max()
sleep(2)

Use a button to control the Servo (page 137) between its minimum and maximum positions:

from gpiozero import Servo, Button

servo = Servo(17)
btn = Button(14)

while True:
servo.min()
btn.wait_for_press()
servo.max()
btn.wait_for_press()

Automate the Servo (page 137) to continuously slowly sweep:

from gpiozero import Servo
from gpiozero.tools import sin_values
from signal import pause

servo = Servo(17)

servo.source = sin_values()

(continues on next page)

2.22. Servo 23

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
servo.source_delay = 0.1

pause()

Use AngularServo (page 139) so you can specify an angle:

from gpiozero import AngularServo
from time import sleep

servo = AngularServo(17, min_angle=-90, max_angle=90)

while True:
servo.angle = -90
sleep(2)
servo.angle = -45
sleep(2)
servo.angle = 0
sleep(2)
servo.angle = 45
sleep(2)
servo.angle = 90
sleep(2)

2.23 Motors

11

55

1010

1515

2020

2525

3030

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d
io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Spin a Motor (page 134) around forwards and backwards:

from gpiozero import Motor
from time import sleep

motor = Motor(forward=4, backward=14)

while True:
motor.forward()
sleep(5)
motor.backward()
sleep(5)

24 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

2.24 Robot

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Make a Robot (page 176) drive around in (roughly) a square:

from gpiozero import Robot, Motor
from time import sleep

robot = Robot(left=Motor(4, 14), right=Motor(17, 18))

for i in range(4):
robot.forward()
sleep(10)
robot.right()
sleep(1)

Make a Robot (page 176) with a DistanceSensor (page 113) that runs away when things get within 20cm of
it:

from gpiozero import Robot, Motor, DistanceSensor
from signal import pause

(continues on next page)

2.24. Robot 25

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

sensor = DistanceSensor(23, 24, max_distance=1, threshold_distance=0.2)
robot = Robot(left=Motor(4, 14), right=Motor(17, 18))

sensor.when_in_range = robot.backward
sensor.when_out_of_range = robot.stop
pause()

2.25 Button controlled robot

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Use four GPIO buttons as forward/back/left/right controls for a Robot (page 176):

from gpiozero import Robot, Motor, Button
from signal import pause

robot = Robot(left=Motor(4, 14), right=Motor(17, 18))

(continues on next page)

26 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
left = Button(26)
right = Button(16)
fw = Button(21)
bw = Button(20)

fw.when_pressed = robot.forward
fw.when_released = robot.stop

left.when_pressed = robot.left
left.when_released = robot.stop

right.when_pressed = robot.right
right.when_released = robot.stop

bw.when_pressed = robot.backward
bw.when_released = robot.stop

pause()

2.25. Button controlled robot 27

gpiozero 2.0.1 Documentation, Release 2.0.1

2.26 Keyboard controlled robot

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Use up/down/left/right keys to control a Robot (page 176):

import curses
from gpiozero import Robot, Motor

robot = Robot(left=Motor(4, 14), right=Motor(17, 18))

actions = {
curses.KEY_UP: robot.forward,
curses.KEY_DOWN: robot.backward,
curses.KEY_LEFT: robot.left,
curses.KEY_RIGHT: robot.right,

}

def main(window):
next_key = None
while True:

curses.halfdelay(1)
(continues on next page)

28 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
if next_key is None:

key = window.getch()
else:

key = next_key
next_key = None

if key != -1:
KEY PRESSED
curses.halfdelay(3)
action = actions.get(key)
if action is not None:

action()
next_key = key
while next_key == key:

next_key = window.getch()
KEY RELEASED
robot.stop()

curses.wrapper(main)

Note: This recipe uses the standard curses20 module. This module requires that Python is running in a terminal
in order to work correctly, hence this recipe will not work in environments like IDLE.

If you prefer a version that works under IDLE, the following recipe should suffice:

from gpiozero import Robot, Motor
from evdev import InputDevice, list_devices, ecodes

robot = Robot(left=Motor(4, 14), right=Motor(17, 18))

Get the list of available input devices
devices = [InputDevice(device) for device in list_devices()]
Filter out everything that's not a keyboard. Keyboards are defined as any
device which has keys, and which specifically has keys 1..31 (roughly Esc,
the numeric keys, the first row of QWERTY plus a few more) and which does
not have key 0 (reserved)
must_have = {i for i in range(1, 32)}
must_not_have = {0}
devices = [

dev
for dev in devices
for keys in (set(dev.capabilities().get(ecodes.EV_KEY, [])),)
if must_have.issubset(keys)
and must_not_have.isdisjoint(keys)

]
Pick the first keyboard
keyboard = devices[0]

keypress_actions = {
ecodes.KEY_UP: robot.forward,
ecodes.KEY_DOWN: robot.backward,
ecodes.KEY_LEFT: robot.left,
ecodes.KEY_RIGHT: robot.right,

}

for event in keyboard.read_loop():
if event.type == ecodes.EV_KEY and event.code in keypress_actions:

if event.value == 1: # key pressed
keypress_actions[event.code]()

(continues on next page)
20 https://docs.python.org/3.9/library/curses.html#module-curses

2.26. Keyboard controlled robot 29

https://docs.python.org/3.9/library/curses.html#module-curses

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
if event.value == 0: # key released

robot.stop()

Note: This recipe uses the third-party evdev module. Install this library with sudo pip3 install evdev
first. Be aware that evdev will only work with local input devices; this recipe will not work over SSH.

2.27 Motion sensor robot

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

Make a robot drive forward when it detects motion:

30 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import Robot, Motor, MotionSensor
from signal import pause

robot = Robot(left=Motor(4, 14), right=Motor(17, 18))
pir = MotionSensor(5)

pir.when_motion = robot.forward
pir.when_no_motion = robot.stop

pause()

Alternatively:

from gpiozero import Robot, Motor, MotionSensor
from gpiozero.tools import zip_values
from signal import pause

robot = Robot(left=Motor(4, 14), right=Motor(17, 18))
pir = MotionSensor(5)

robot.source = zip_values(pir, pir)

pause()

2.28 Potentiometer

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

MCP3008

Continually print the value of a potentiometer (values between 0 and 1) connected to a MCP3008 (page 149) analog
to digital converter:

2.28. Potentiometer 31

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import MCP3008

pot = MCP3008(channel=0)

while True:
print(pot.value)

Present the value of a potentiometer on an LED bar graph using PWM to represent states that won’t “fill” an LED:

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(5, 6, 13, 19, 26, pwm=True)
pot = MCP3008(channel=0)

graph.source = pot

pause()

2.29 Measure temperature with an ADC

Wire a TMP36 temperature sensor to the first channel of an MCP3008 (page 149) analog to digital converter:

from gpiozero import MCP3008
from time import sleep

def convert_temp(gen):
for value in gen:

yield (value * 3.3 - 0.5) * 100

adc = MCP3008(channel=0)

for temp in convert_temp(adc.values):
print('The temperature is', temp, 'C')
sleep(1)

32 Chapter 2. Basic Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

2.30 Full color LED controlled by 3 potentiometers

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
a
sp

b
e
rry

 Pi M
o
d
e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

MCP3008

Wire up three potentiometers (for red, green and blue) and use each of their values to make up the colour of the
LED:

from gpiozero import RGBLED, MCP3008

led = RGBLED(red=2, green=3, blue=4)
red_pot = MCP3008(channel=0)
green_pot = MCP3008(channel=1)
blue_pot = MCP3008(channel=2)

while True:
led.red = red_pot.value
led.green = green_pot.value
led.blue = blue_pot.value

Alternatively, the following example is identical, but uses the source (page 200) property rather than a while21
loop:

from gpiozero import RGBLED, MCP3008
from gpiozero.tools import zip_values
from signal import pause

led = RGBLED(2, 3, 4)
red_pot = MCP3008(0)
green_pot = MCP3008(1)
blue_pot = MCP3008(2)

(continues on next page)
21 https://docs.python.org/3.9/reference/compound_stmts.html#while

2.30. Full color LED controlled by 3 potentiometers 33

https://docs.python.org/3.9/reference/compound_stmts.html#while

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

led.source = zip_values(red_pot, green_pot, blue_pot)

pause()

2.31 Timed heat lamp

If you have a pet (e.g. a tortoise) which requires a heat lamp to be switched on for a certain amount of time each day,
you can use an Energenie Pi-mote22 to remotely control the lamp, and the TimeOfDay (page 190) class to control
the timing:

from gpiozero import Energenie, TimeOfDay
from datetime import time
from signal import pause

lamp = Energenie(1)
daytime = TimeOfDay(time(8), time(20))

daytime.when_activated = lamp.on
daytime.when_deactivated = lamp.off

pause()

2.32 Internet connection status indicator

You can use a pair of green and red LEDs to indicate whether or not your internet connection is working. Simply use
the PingServer (page 191) class to identify whether a ping to google.com is successful. If successful, the green
LED is lit, and if not, the red LED is lit:

from gpiozero import LED, PingServer
from gpiozero.tools import negated
from signal import pause

green = LED(17)
red = LED(18)

google = PingServer('google.com')

google.when_activated = green.on
google.when_deactivated = green.off
red.source = negated(green)

pause()

22 https://energenie4u.co.uk/catalogue/product/ENER002-2PI

34 Chapter 2. Basic Recipes

https://energenie4u.co.uk/catalogue/product/ENER002-2PI

gpiozero 2.0.1 Documentation, Release 2.0.1

2.33 CPU Temperature Bar Graph

You can read the Raspberry Pi’s own CPU temperature using the built-in CPUTemperature (page 192) class, and
display this on a “bar graph” of LEDs:

from gpiozero import LEDBarGraph, CPUTemperature
from signal import pause

cpu = CPUTemperature(min_temp=50, max_temp=90)
leds = LEDBarGraph(2, 3, 4, 5, 6, 7, 8, pwm=True)

leds.source = cpu

pause()

2.34 More recipes

Continue to:
• Advanced Recipes (page 37)
• Remote GPIO Recipes (page 53)

2.33. CPU Temperature Bar Graph 35

gpiozero 2.0.1 Documentation, Release 2.0.1

36 Chapter 2. Basic Recipes

CHAPTER

THREE

ADVANCED RECIPES

The following recipes demonstrate some of the capabilities of the GPIO Zero library. Please note that all recipes are
written assuming Python 3. Recipes may work under Python 2, but no guarantees!

3.1 LEDBoard

You can iterate over the LEDs in a LEDBoard (page 157) object one-by-one:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(5, 6, 13, 19, 26)

for led in leds:
led.on()
sleep(1)
led.off()

LEDBoard (page 157) also supports indexing. This means you can access the individual LED (page 125) objects
using leds[i] where i is an integer from 0 up to (not including) the number of LEDs:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(2, 3, 4, 5, 6, 7, 8, 9)

leds[0].on() # first led on
sleep(1)
leds[7].on() # last led on
sleep(1)
leds[-1].off() # last led off
sleep(1)

This also means you can use slicing to access a subset of the LEDs:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(2, 3, 4, 5, 6, 7, 8, 9)

for led in leds[3:]: # leds 3 and onward
led.on()

sleep(1)
leds.off()

for led in leds[:2]: # leds 0 and 1
led.on()

(continues on next page)

37

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
sleep(1)
leds.off()

for led in leds[::2]: # even leds (0, 2, 4...)
led.on()

sleep(1)
leds.off()

for led in leds[1::2]: # odd leds (1, 3, 5...)
led.on()

sleep(1)
leds.off()

LEDBoard (page 157) objects can have their LED objects named upon construction. This means the individual
LEDs can be accessed by their name:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(red=2, green=3, blue=4)

leds.red.on()
sleep(1)
leds.green.on()
sleep(1)
leds.blue.on()
sleep(1)

LEDBoard (page 157) objects can also be nested within other LEDBoard (page 157) objects:

from gpiozero import LEDBoard
from time import sleep

leds = LEDBoard(red=LEDBoard(top=2, bottom=3), green=LEDBoard(top=4, bottom=5))

leds.red.on() ## both reds on
sleep(1)
leds.green.on() # both greens on
sleep(1)
leds.off() # all off
sleep(1)
leds.red.top.on() # top red on
sleep(1)
leds.green.bottom.on() # bottom green on
sleep(1)

3.2 Multi-character 7-segment display

The 7-segment display demonstrated in the previous chapter is often available in multi-character variants (typically
4 characters long). Such displays are multiplexed meaning that the LED pins are typically the same as for the single
character display but are shared across all characters. Each character in turn then has its own common line which
can be tied to ground (in the case of a common cathode display) to enable that particular character. By activating
each character in turn very quickly, the eye can be fooled into thinking four different characters are being displayed
simultaneously.
In such circuits you should not attempt to sink all the current from a single character (which may have up to 8 LEDs, in
the case of a decimal-point, active) into a single GPIO. Rather, use some appropriate transistor (or similar component,
e.g. an opto-coupler) to tie the digit’s cathode to ground, and control that component from a GPIO.

38 Chapter 3. Advanced Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

3
5

3
5

4
0

4
0

4
5

4
5

5
0

5
0

5
5

5
5

6
0

6
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

R
a
sp

b
e
rry

 Pi M
o
d

e
l 2

 v
1

.1
©

 R
a
sp

b
e
rry

 Pi 2
0

1
4

h
ttp

://w
w

w
.rasp

b
erryp

i.org

Po
w

e
r

H
D

M
I

A
u
d

io

USB 2x USB 2x

ETHERNET

DSI (DISPLAY)

CSI (CAMERA)

G
P
IO

This circuit demonstrates a 4-character 7-segment (actually 8-segment, with decimal-point) display, controlled by the
Pi’s GPIOs with 4 2N-3904 NPN transistors to control the digits.

Warning: You are strongly advised to check the data-sheet for your particular multi-character 7-segment display.
The pin-outs of these displays vary significantly and are very likely to be different to that shown on the breadboard
above. For this reason, the schematic for this circuit is provided below; adapt it to your particular display.

2 1

2 1

21

21

21

21

7
 S

E
G

M
E
N

T
4

D
IG

IT
YO

U
N

G
S
U

N

A

B

C

D

E

F

G

D
P

A

B

C

D

E

F

G

D
P

A

B

C

D

E

F

G

D
P

A

B

C

D

E

F

G

D
P

C
O

L

A
P
O

S

2
DIG2

6
DIG3

8
DIG4

4
COL-A

10
APOS-A

14
A

16
B

13
C

3
D

5
E

11
F

15
G

7
DP

12
COL-C

9
APOS-C

1
DIG1

21

21

1

2
3

1

2
3

1

2
3

1

2
3

2
1

2
1

2
1

2
1

GPIO14 UART0_TXD

GPIO15 UART0_RXD

GPIO18 PCM_CLK

GPIO23

GPIO24

GPIO25

GPIO8 SPI0_CE0_N

GPIO7 SPI0_CE1_N

ID_SC I2C ID EEPROM

GPIO12

GPIO16

GPIO20

GPIO21GPIO2 SDA1 I2C

GPIO3 SCL1 I2C

GPIO4

GPIO17

GPIO27

GPIO22

GIPO10 SPI0_MOSI

GPIO9 SPI0_MISO

GPIO11 SPI0_SCLK

ID_SD I2C ID EEPROM

GPIO5

GPIO5GPIO6

GPIO13

GPIO19

GPIO26

G
N

D

3
V

3

5
V

RaspberryPi

Model 2 v1.1

R1-R8
330Ω

Q
1

-Q
4

2
N

 3
9

0
4

R
9

-R
1

2
3

3
kΩ

The following code can be used to scroll a message across the display:

from itertools import cycle
from collections import deque
from gpiozero import LEDMultiCharDisplay
from signal import pause

display = LEDMultiCharDisplay(
LEDCharDisplay(22, 23, 24, 25, 21, 20, 16, dp=12), 26, 19, 13, 6)

def scroller(message, chars=4):

(continues on next page)

3.2. Multi-character 7-segment display 39

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
d = deque(maxlen=chars)
for c in cycle(message):

d.append(c)
if len(d) == chars:

yield ''.join(d)

display.source_delay = 0.2
display.source = scroller('GPIO 2ER0 ')
pause()

3.3 Who’s home indicator

Using a number of green-red LED pairs, you can show the status of who’s home, according to which IP addresses
you can ping successfully. Note that this assumes each person’s mobile phone has a reserved IP address on the home
router.

from gpiozero import PingServer, LEDBoard
from gpiozero.tools import negated
from signal import pause

status = LEDBoard(
mum=LEDBoard(red=14, green=15),
dad=LEDBoard(red=17, green=18),
alice=LEDBoard(red=21, green=22)

)

statuses = {
PingServer('192.168.1.5'): status.mum,
PingServer('192.168.1.6'): status.dad,
PingServer('192.168.1.7'): status.alice,

}

for server, leds in statuses.items():
leds.green.source = server
leds.green.source_delay = 60
leds.red.source = negated(leds.green)

pause()

Alternatively, using the STATUS Zero23 board:

from gpiozero import PingServer, StatusZero
from gpiozero.tools import negated
from signal import pause

status = StatusZero('mum', 'dad', 'alice')

statuses = {
PingServer('192.168.1.5'): status.mum,
PingServer('192.168.1.6'): status.dad,
PingServer('192.168.1.7'): status.alice,

}

for server, leds in statuses.items():
leds.green.source = server
leds.green.source_delay = 60
leds.red.source = negated(leds.green)

(continues on next page)
23 https://thepihut.com/status

40 Chapter 3. Advanced Recipes

https://thepihut.com/status

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

pause()

3.4 Travis build LED indicator

Use LEDs to indicate the status of a Travis build. A green light means the tests are passing, a red light means the
build is broken:

from travispy import TravisPy
from gpiozero import LED
from gpiozero.tools import negated
from time import sleep
from signal import pause

def build_passed(repo):
t = TravisPy()
r = t.repo(repo)
while True:

yield r.last_build_state == 'passed'

red = LED(12)
green = LED(16)

green.source = build_passed('gpiozero/gpiozero')
green.source_delay = 60 * 5 # check every 5 minutes
red.source = negated(green)

pause()

Note this recipe requires travispy24. Install with sudo pip3 install travispy.

3.5 Button controlled robot

Alternatively to the examples in the simple recipes, you can use four buttons to program the directions and add a fifth
button to process them in turn, like a Bee-Bot or Turtle robot.

from gpiozero import Button, Robot, Motor
from time import sleep
from signal import pause

robot = Robot(Motor(17, 18), Motor(22, 23))

left = Button(2)
right = Button(3)
forward = Button(4)
backward = Button(5)
go = Button(6)

instructions = []

def add_instruction(btn):
instructions.append({

left: (-1, 1),
right: (1, -1),

(continues on next page)
24 https://travispy.readthedocs.io/

3.4. Travis build LED indicator 41

https://travispy.readthedocs.io/

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
forward: (1, 1),
backward: (-1, -1),

}[btn])

def do_instructions():
instructions.append((0, 0))
robot.source_delay = 0.5
robot.source = instructions
sleep(robot.source_delay * len(instructions))
del instructions[:]

go.when_pressed = do_instructions
for button in (left, right, forward, backward):

button.when_pressed = add_instruction

pause()

3.6 Robot controlled by 2 potentiometers

Use two potentiometers to control the left and right motor speed of a robot:

from gpiozero import Robot, Motor, MCP3008
from gpiozero.tools import zip_values
from signal import pause

robot = Robot(left=Motor(4, 14), right=Motor(17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008(1)

robot.source = zip_values(left_pot, right_pot)

pause()

To include reverse direction, scale the potentiometer values from 0->1 to -1->1:

from gpiozero import Robot, Motor, MCP3008
from gpiozero.tools import scaled
from signal import pause

robot = Robot(left=Motor(4, 14), right=Motor(17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008(1)

robot.source = zip(scaled(left_pot, -1, 1), scaled(right_pot, -1, 1))

pause()

Note: Please note the example above requires Python 3. In Python 2, zip()25 doesn’t support lazy evaluation so
the script will simply hang.

25 https://docs.python.org/3.9/library/functions.html#zip

42 Chapter 3. Advanced Recipes

https://docs.python.org/3.9/library/functions.html#zip

gpiozero 2.0.1 Documentation, Release 2.0.1

3.7 BlueDot LED

BlueDot is a Python library an Android app which allows you to easily add Bluetooth control to your Raspberry Pi
project. A simple example to control a LED using the BlueDot app:

from bluedot import BlueDot
from gpiozero import LED

bd = BlueDot()
led = LED(17)

while True:
bd.wait_for_press()
led.on()
bd.wait_for_release()
led.off()

Note this recipe requiresbluedot and the associatedAndroid app. See the BlueDot documentation26 for installation
instructions.

3.8 BlueDot robot

You can create a Bluetooth controlled robot whichmoves forward when the dot is pressed and stops when it is released:

from bluedot import BlueDot
from gpiozero import Robot, Motor
from signal import pause

bd = BlueDot()
robot = Robot(left=Motor(4, 14), right=Motor(17, 18))

def move(pos):
if pos.top:

robot.forward(pos.distance)
elif pos.bottom:

robot.backward(pos.distance)
elif pos.left:

robot.left(pos.distance)
elif pos.right:

robot.right(pos.distance)

bd.when_pressed = move
bd.when_moved = move
bd.when_released = robot.stop

pause()

Or a more advanced example including controlling the robot’s speed and precise direction:

from gpiozero import Robot, Motor
from bluedot import BlueDot
from signal import pause

def pos_to_values(x, y):
left = y if x > 0 else y + x
right = y if x < 0 else y - x
return (clamped(left), clamped(right))

(continues on next page)
26 https://bluedot.readthedocs.io/en/latest/index.html

3.7. BlueDot LED 43

https://bluedot.readthedocs.io/en/latest/index.html

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

def clamped(v):
return max(-1, min(1, v))

def drive():
while True:

if bd.is_pressed:
x, y = bd.position.x, bd.position.y
yield pos_to_values(x, y)

else:
yield (0, 0)

robot = Robot(left=Motor(4, 14), right=Motor(17, 18))
bd = BlueDot()

robot.source = drive()

pause()

3.9 Controlling the Pi’s own LEDs

On certain models of Pi (specifically the model A+, B+, and 2B) it’s possible to control the power and activity LEDs.
This can be useful for testing GPIO functionality without the need to wire up your own LEDs (also useful because
the power and activity LEDs are “known good”).
Firstly you need to disable the usual triggers for the built-in LEDs. This can be done from the terminal with the
following commands:

$ echo none | sudo tee /sys/class/leds/led0/trigger
$ echo gpio | sudo tee /sys/class/leds/led1/trigger

Now you can control the LEDs with gpiozero like so:

from gpiozero import LED
from signal import pause

power = LED(35) # /sys/class/leds/led1
activity = LED(47) # /sys/class/leds/led0

activity.blink()
power.blink()
pause()

To revert the LEDs to their usual purpose you can either reboot your Pi or run the following commands:

$ echo mmc0 | sudo tee /sys/class/leds/led0/trigger
$ echo input | sudo tee /sys/class/leds/led1/trigger

Note: On the Pi Zero you can control the activity LEDwith this recipe, but there’s no separate power LED to control
(it’s also worth noting the activity LED is active low, so set active_high=False when constructing your LED
component).
On the original Pi 1 (model A or B), the activity LED can be controlled with GPIO16 (after disabling its trigger as
above) but the power LED is hard-wired on.
On the Pi 3 the LEDs are controlled by a GPIO expander which is not accessible from gpiozero (yet).

44 Chapter 3. Advanced Recipes

CHAPTER

FOUR

CONFIGURING REMOTE GPIO

GPIO Zero supports a number of different pin implementations (low-level pin libraries which deal with the GPIO pins
directly). By default, the RPi.GPIO27 library is used (assuming it is installed on your system), but you can optionally
specify one to use. For more information, see the API - Pins (page 221) documentation page.
One of the pin libraries supported, pigpio28, provides the ability to control GPIO pins remotely over the network,
which means you can use GPIO Zero to control devices connected to a Raspberry Pi on the network. You can do this
from another Raspberry Pi, or even from a PC.
See the Remote GPIO Recipes (page 53) page for examples on how remote pins can be used.

4.1 Preparing the Raspberry Pi

If you’re using Raspberry Pi OS (desktop - not Lite) then you have everything you need to use the remote GPIO
feature. If you’re using Raspberry Pi OS Lite, or another distribution, you’ll need to install pigpio:

$ sudo apt install pigpio

Alternatively, pigpio is available from abyz.me.uk29.
You’ll need to enable remote connections, and launch the pigpio daemon on the Raspberry Pi.

27 https://pypi.python.org/pypi/RPi.GPIO
28 http://abyz.me.uk/rpi/pigpio/python.html
29 http://abyz.me.uk/rpi/pigpio/download.html

45

https://pypi.python.org/pypi/RPi.GPIO
http://abyz.me.uk/rpi/pigpio/python.html
http://abyz.me.uk/rpi/pigpio/download.html

gpiozero 2.0.1 Documentation, Release 2.0.1

4.1.1 Enable remote connections

On the Raspberry Pi OS desktop image, you can enable Remote GPIO in the Raspberry Pi configuration tool:

Alternatively, enter sudo raspi-config on the command line, and enable Remote GPIO. This is functionally
equivalent to the desktop method.
This will allow remote connections (until disabled) when the pigpio daemon is launched using systemctl (see
below). It will also launch the pigpio daemon for the current session. Therefore, nothing further is required for the
current session, but after a reboot, a systemctl command will be required.

4.1.2 Command-line: systemctl

To automate running the daemon at boot time, run:

$ sudo systemctl enable pigpiod

To run the daemon once using systemctl, run:

$ sudo systemctl start pigpiod

46 Chapter 4. Configuring Remote GPIO

gpiozero 2.0.1 Documentation, Release 2.0.1

4.1.3 Command-line: pigpiod

Another option is to launch the pigpio daemon manually:

$ sudo pigpiod

This is for single-session-use andwill not persist after a reboot. However, this method can be used to allow connections
from a specific IP address, using the -n flag. For example:

$ sudo pigpiod -n localhost # allow localhost only
$ sudo pigpiod -n 192.168.1.65 # allow 192.168.1.65 only
$ sudo pigpiod -n localhost -n 192.168.1.65 # allow localhost and 192.168.1.65 only

Note: Note that running sudo pigpiod will not honour the Remote GPIO configuration setting (i.e. without
the -n flag it will allow remote connections even if the remote setting is disabled), but sudo systemctl en-
able pigpiod or sudo systemctl start pigpiod will not allow remote connections unless configured
accordingly.

4.2 Preparing the control computer

If the control computer (the computer you’re running your Python code from) is a Raspberry Pi running Raspberry
Pi OS (or a PC running Raspberry Pi Desktop x8630), then you have everything you need. If you’re using another
Linux distribution, Mac OS or Windows then you’ll need to install the pigpio31 Python library on the PC.

4.2.1 Raspberry Pi

First, update your repositories list:

$ sudo apt update

Then install GPIO Zero and the pigpio library for Python 3:

$ sudo apt install python3-gpiozero python3-pigpio

or Python 2:

$ sudo apt install python-gpiozero python-pigpio

Alternatively, install with pip:

$ sudo pip3 install gpiozero pigpio

or for Python 2:

$ sudo pip install gpiozero pigpio

30 https://www.raspberrypi.org/downloads/raspberry-pi-desktop/
31 http://abyz.me.uk/rpi/pigpio/python.html

4.2. Preparing the control computer 47

https://www.raspberrypi.org/downloads/raspberry-pi-desktop/
http://abyz.me.uk/rpi/pigpio/python.html

gpiozero 2.0.1 Documentation, Release 2.0.1

4.2.2 Linux

First, update your distribution’s repositories list. For example:

$ sudo apt update

Then install pip for Python 3:

$ sudo apt install python3-pip

or Python 2:

$ sudo apt install python-pip

(Alternatively, install pip with get-pip32.)
Next, install GPIO Zero and pigpio for Python 3:

$ sudo pip3 install gpiozero pigpio

or Python 2:

$ sudo pip install gpiozero pigpio

4.2.3 Mac OS

First, install pip. If you installed Python 3 using brew, you will already have pip. If not, install pip with get-pip33.
Next, install GPIO Zero and pigpio with pip:

$ pip3 install gpiozero pigpio

Or for Python 2:

$ pip install gpiozero pigpio

4.2.4 Windows

Modern Python installers for Windows bundle pip with Python. If pip is not installed, you can follow this guide34.
Next, install GPIO Zero and pigpio with pip:

C:\Users\user1> pip install gpiozero pigpio

4.3 Environment variables

The simplest way to use devices with remote pins is to set the PIGPIO_ADDR (page 77) environment variable to the
IP address of the desired Raspberry Pi. You must run your Python script or launch your development environment
with the environment variable set using the command line. For example, one of the following:

$ PIGPIO_ADDR=192.168.1.3 python3 hello.py
$ PIGPIO_ADDR=192.168.1.3 python3
$ PIGPIO_ADDR=192.168.1.3 ipython3
$ PIGPIO_ADDR=192.168.1.3 idle3 &

32 https://pip.pypa.io/en/stable/installing/
33 https://pip.pypa.io/en/stable/installing/
34 https://projects.raspberrypi.org/en/projects/using-pip-on-windows

48 Chapter 4. Configuring Remote GPIO

https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/
https://projects.raspberrypi.org/en/projects/using-pip-on-windows

gpiozero 2.0.1 Documentation, Release 2.0.1

If you are running this from a PC (not a Raspberry Pi) with gpiozero and the pigpio35 Python library installed, this will
work with no further configuration. However, if you are running this from a Raspberry Pi, you will also need to ensure
the default pin factory is set to PiGPIOFactory (page 236). If RPi.GPIO36 is installed, this will be selected as the
default pin factory, so either uninstall it, or use the GPIOZERO_PIN_FACTORY (page 77) environment variable to
override it:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=192.168.1.3 python3 hello.py

This usage will set the pin factory to PiGPIOFactory (page 236) with a default host of 192.168.1.3. The pin
factory can be changed inline in the code, as seen in the following sections.
With this usage, you can write gpiozero code like you would on a Raspberry Pi, with no modifications needed. For
example:

from gpiozero import LED
from time import sleep

red = LED(17)

while True:
red.on()
sleep(1)
red.off()
sleep(1)

When run with:

$ PIGPIO_ADDR=192.168.1.3 python3 led.py

will flash the LED connected to pin 17 of the Raspberry Pi with the IP address 192.168.1.3. And:

$ PIGPIO_ADDR=192.168.1.4 python3 led.py

will flash the LED connected to pin 17 of the Raspberry Pi with the IP address 192.168.1.4, without any code
changes, as long as the Raspberry Pi has the pigpio daemon running.

Note: When running code directly on a Raspberry Pi, any pin factory can be used (assuming the relevant library is
installed), but when a device is used remotely, only PiGPIOFactory (page 236) can be used, as pigpio37 is the
only pin library which supports remote GPIO.

4.4 Pin factories

An alternative (or additional) method of configuring gpiozero objects to use remote pins is to create instances of
PiGPIOFactory (page 236) objects, and use them when instantiating device objects. For example, with no envi-
ronment variables set:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

factory = PiGPIOFactory(host='192.168.1.3')
led = LED(17, pin_factory=factory)

while True:

(continues on next page)

35 http://abyz.me.uk/rpi/pigpio/python.html
36 https://pypi.python.org/pypi/RPi.GPIO
37 http://abyz.me.uk/rpi/pigpio/python.html

4.4. Pin factories 49

http://abyz.me.uk/rpi/pigpio/python.html
https://pypi.python.org/pypi/RPi.GPIO
http://abyz.me.uk/rpi/pigpio/python.html

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
led.on()
sleep(1)
led.off()
sleep(1)

This allows devices on multiple Raspberry Pis to be used in the same script:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

factory3 = PiGPIOFactory(host='192.168.1.3')
factory4 = PiGPIOFactory(host='192.168.1.4')
led_1 = LED(17, pin_factory=factory3)
led_2 = LED(17, pin_factory=factory4)

while True:
led_1.on()
led_2.off()
sleep(1)
led_1.off()
led_2.on()
sleep(1)

You can, of course, continue to create gpiozero device objects as normal, and create others using remote pins. For
example, if run on a Raspberry Pi, the following script will flash an LED on the controller Pi, and also on another Pi
on the network:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

remote_factory = PiGPIOFactory(host='192.168.1.3')
led_1 = LED(17) # local pin
led_2 = LED(17, pin_factory=remote_factory) # remote pin

while True:
led_1.on()
led_2.off()
sleep(1)
led_1.off()
led_2.on()
sleep(1)

Alternatively, when run with the environment variables GPIOZERO_PIN_FACTORY=pigpio
PIGPIO_ADDR=192.168.1.3 set, the following script will behave exactly the same as the previous one:

from gpiozero import LED
from gpiozero.pins.rpigpio import RPiGPIOFactory
from time import sleep

local_factory = RPiGPIOFactory()
led_1 = LED(17, pin_factory=local_factory) # local pin
led_2 = LED(17) # remote pin

while True:
led_1.on()
led_2.off()
sleep(1)
led_1.off()
led_2.on()

(continues on next page)

50 Chapter 4. Configuring Remote GPIO

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
sleep(1)

Of course, multiple IP addresses can be used:

from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

factory3 = PiGPIOFactory(host='192.168.1.3')
factory4 = PiGPIOFactory(host='192.168.1.4')

led_1 = LED(17) # local pin
led_2 = LED(17, pin_factory=factory3) # remote pin on one pi
led_3 = LED(17, pin_factory=factory4) # remote pin on another pi

while True:
led_1.on()
led_2.off()
led_3.on()
sleep(1)
led_1.off()
led_2.on()
led_3.off()
sleep(1)

Note that these examples use the LED (page 125) class, which takes a pin argument to initialise. Some classes,
particularly those representing HATs and other add-on boards, do not require their pin numbers to be specified.
However, it is still possible to use remote pins with these devices, either using environment variables, or the pin_factory
keyword argument:

import gpiozero
from gpiozero import TrafficHat
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

gpiozero.Device.pin_factory = PiGPIOFactory(host='192.168.1.3')
th = TrafficHat() # traffic hat on 192.168.1.3 using remote pins

This also allows you to swap between two IP addresses and create instances of multiple HATs connected to different
Pis:

import gpiozero
from gpiozero import TrafficHat
from gpiozero.pins.pigpio import PiGPIOFactory
from time import sleep

remote_factory = PiGPIOFactory(host='192.168.1.3')

th_1 = TrafficHat() # traffic hat using local pins
th_2 = TrafficHat(pin_factory=remote_factory) # traffic hat on 192.168.1.3 using␣
↪→remote pins

You could even use a HAT which is not supported by GPIO Zero (such as the Sense HAT38) on one Pi, and use
remote pins to control another over the network:

from gpiozero import MotionSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from sense_hat import SenseHat

(continues on next page)
38 https://www.raspberrypi.org/products/sense-hat/

4.4. Pin factories 51

https://www.raspberrypi.org/products/sense-hat/

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
remote_factory = PiGPIOFactory(host='192.198.1.4')
pir = MotionSensor(4, pin_factory=remote_factory) # remote motion sensor
sense = SenseHat() # local sense hat

while True:
pir.wait_for_motion()
sense.show_message(sense.temperature)

Note that in this case, the Sense HAT code must be run locally, and the GPIO remotely.

4.5 Remote GPIO usage

Continue to:
• Remote GPIO Recipes (page 53)
• Pi Zero USB OTG (page 57)

52 Chapter 4. Configuring Remote GPIO

CHAPTER

FIVE

REMOTE GPIO RECIPES

The following recipes demonstrate some of the capabilities of the remote GPIO feature of the GPIO Zero library.
Before you start following these examples, please read up on preparing your Pi and your host PC to work with
Configuring Remote GPIO (page 45).
Please note that all recipes are written assuming Python 3. Recipes may work under Python 2, but no guarantees!

5.1 LED + Button

Let a Button (page 105) on one Raspberry Pi control the LED (page 125) of another:

from gpiozero import Button, LED
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

factory = PiGPIOFactory(host='192.168.1.3')

button = Button(2)
led = LED(17, pin_factory=factory)

led.source = button

pause()

5.2 LED + 2 Buttons

The LED (page 125) will come on when both buttons are pressed:

from gpiozero import Button, LED
from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero.tools import all_values
from signal import pause

factory3 = PiGPIOFactory(host='192.168.1.3')
factory4 = PiGPIOFactory(host='192.168.1.4')

led = LED(17)
button_1 = Button(17, pin_factory=factory3)
button_2 = Button(17, pin_factory=factory4)

led.source = all_values(button_1, button_2)

pause()

53

gpiozero 2.0.1 Documentation, Release 2.0.1

5.3 Multi-room motion alert

Install a Raspberry Pi with a MotionSensor (page 109) in each room of your house, and have an class:LED
indicator showing when there’s motion in each room:

from gpiozero import LEDBoard, MotionSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero.tools import zip_values
from signal import pause

ips = ['192.168.1.3', '192.168.1.4', '192.168.1.5', '192.168.1.6']
remotes = [PiGPIOFactory(host=ip) for ip in ips]

leds = LEDBoard(2, 3, 4, 5) # leds on this pi
sensors = [MotionSensor(17, pin_factory=r) for r in remotes] # remote sensors

leds.source = zip_values(*sensors)

pause()

5.4 Multi-room doorbell

Install a Raspberry Pi with a Buzzer (page 131) attached in each room you want to hear the doorbell, and use a
push Button (page 105) as the doorbell:

from gpiozero import LEDBoard, MotionSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

ips = ['192.168.1.3', '192.168.1.4', '192.168.1.5', '192.168.1.6']
remotes = [PiGPIOFactory(host=ip) for ip in ips]

button = Button(17) # button on this pi
buzzers = [Buzzer(pin, pin_factory=r) for r in remotes] # buzzers on remote pins

for buzzer in buzzers:
buzzer.source = button

pause()

This could also be used as an internal doorbell (tell people it’s time for dinner from the kitchen).

5.5 Remote button robot

Similarly to the simple recipe for the button controlled Robot (page 176), this example uses four buttons to control
the direction of a robot. However, using remote pins for the robot means the control buttons can be separate from
the robot:

from gpiozero import Button, Robot, Motor
from gpiozero.pins.pigpio import PiGPIOFactory
from signal import pause

factory = PiGPIOFactory(host='192.168.1.17')
robot = Robot(left=Motor(4, 14), right=Motor(17, 18),

pin_factory=factory) # remote pins

(continues on next page)

54 Chapter 5. Remote GPIO Recipes

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
local buttons
left = Button(26)
right = Button(16)
fw = Button(21)
bw = Button(20)

fw.when_pressed = robot.forward
fw.when_released = robot.stop

left.when_pressed = robot.left
left.when_released = robot.stop

right.when_pressed = robot.right
right.when_released = robot.stop

bw.when_pressed = robot.backward
bw.when_released = robot.stop

pause()

5.6 Light sensor + Sense HAT

The Sense HAT39 (not supported by GPIO Zero) includes temperature, humidity and pressure sensors, but no light
sensor. Remote GPIO allows an external LightSensor (page 111) to be used as well. The Sense HAT LED
display can be used to show different colours according to the light levels:

from gpiozero import LightSensor
from gpiozero.pins.pigpio import PiGPIOFactory
from sense_hat import SenseHat

remote_factory = PiGPIOFactory(host='192.168.1.4')
light = LightSensor(4, pin_factory=remote_factory) # remote motion sensor
sense = SenseHat() # local sense hat

blue = (0, 0, 255)
yellow = (255, 255, 0)

while True:
if light.value > 0.5:

sense.clear(yellow)
else:

sense.clear(blue)

Note that in this case, the Sense HAT code must be run locally, and the GPIO remotely.

39 https://www.raspberrypi.org/products/sense-hat/

5.6. Light sensor + Sense HAT 55

https://www.raspberrypi.org/products/sense-hat/

gpiozero 2.0.1 Documentation, Release 2.0.1

56 Chapter 5. Remote GPIO Recipes

CHAPTER

SIX

PI ZERO USB OTG

The Raspberry Pi Zero40 and Pi ZeroW41 feature a USBOTG port, allowing users to configure the device as (amongst
other things) an Ethernet device. In this mode, it is possible to control the Pi Zero’s GPIO pins over USB from another
computer using the remote GPIO (page 45) feature.

6.1 GPIO expander method - no SD card required

The GPIO expander method allows you to boot the Pi Zero over USB from the PC, without an SD card. Your PC
sends the required boot firmware to the Pi over the USB cable, launching a mini version of Raspberry Pi OS and
booting it in RAM. The OS then starts the pigpio daemon, allowing “remote” access over the USB cable.
At the time of writing, this is only possible using either the Raspberry Pi Desktop x86 OS, or Ubuntu (or a derivative),
or from another Raspberry Pi. Usage from Windows and Mac OS is not supported at present.

6.1.1 Raspberry Pi Desktop x86 setup

1. Download an ISO of the Raspberry Pi Desktop OS42 from raspberrypi.org
2. Write the image to a USB stick or burn to a DVD.
3. Live boot your PC orMac into the OS (select “Run with persistence” and your computer will be back to normal

afterwards).

6.1.2 Raspberry Pi setup (using Raspberry Pi OS)

1. Update your package list and install the usbbootgui package:

$ sudo apt update
$ sudo apt install usbbootgui

40 https://www.raspberrypi.org/products/raspberry-pi-zero/
41 https://www.raspberrypi.org/products/raspberry-pi-zero-w/
42 https://www.raspberrypi.org/downloads/raspberry-pi-desktop/

57

https://www.raspberrypi.org/products/raspberry-pi-zero/
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/downloads/raspberry-pi-desktop/

gpiozero 2.0.1 Documentation, Release 2.0.1

6.1.3 Ubuntu setup

1. Add the Raspberry Pi PPA to your system:

$ sudo add-apt-repository ppa:rpi-distro/ppa

2. If you have previously installed gpiozero or pigpio with pip, uninstall these first:

$ sudo pip3 uninstall gpiozero pigpio

3. Install the required packages from the PPA:

$ sudo apt install usbbootgui pigpio python3-gpiozero python3-pigpio

6.1.4 Access the GPIOs

Once your PC or Pi has the USB Boot GUI tool installed, connecting a Pi Zero will automatically launch a prompt
to select a role for the device. Select “GPIO expansion board” and continue:

It will take 30 seconds or so to flash it, then the dialogue will disappear.
Raspberry Pi OS will name your Pi Zero connection usb0. On Ubuntu, this will likely be something else. You can
ping it using the address fe80::1% followed by the connection string. You can look this up using ifconfig.
Set the GPIOZERO_PIN_FACTORY (page 77) and PIGPIO_ADDR (page 77) environment variables on your PC
so GPIO Zero connects to the “remote” Pi Zero:

$ export GPIOZERO_PIN_FACTORY=pigpio
$ export PIGPIO_ADDR=fe80::1%usb0

Now any GPIO Zero code you run on the PC will use the GPIOs of the attached Pi Zero:

58 Chapter 6. Pi Zero USB OTG

gpiozero 2.0.1 Documentation, Release 2.0.1

Alternatively, you can set the pin factory in-line, as explained in Configuring Remote GPIO (page 45).
Read more on the GPIO expander in blog posts on raspberrypi.org43 and bennuttall.com44.

6.2 Legacy method - SD card required

The legacy method requires the Pi Zero to have an SD card with Raspberry Pi OS inserted.
Start by creating a Raspberry Pi OS (desktop or lite) SD card, and then configure the boot partition like so:

1. Edit config.txt and add dtoverlay=dwc2 on a new line, then save the file.
2. Create an empty file called ssh (no file extension) and save it in the boot partition.
3. Edit cmdline.txt` and insert modules-load=dwc2,g_ether after rootwait.

(See guides on blog.gbaman.info45 and learn.adafruit.com46 for more detailed instructions)
Then connect the Pi Zero to your computer using a micro USB cable (connecting it to the USB port, not the power
port). You’ll see the indicator LED flashing as the Pi Zero boots. When it’s ready, you will be able to ping and SSH
into it using the hostname raspberrypi.local. SSH into the Pi Zero, install pigpio and run the pigpio daemon.
Then, drop out of the SSH session and you can run Python code on your computer to control devices attached to the
Pi Zero, referencing it by its hostname (or IP address if you know it), for example:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=raspberrypi.local python3 led.py

43 https://www.raspberrypi.org/blog/gpio-expander/
44 http://bennuttall.com/raspberry-pi-zero-gpio-expander/
45 http://blog.gbaman.info/?p=791
46 https://learn.adafruit.com/turning-your-raspberry-pi-zero-into-a-usb-gadget/ethernet-gadget

6.2. Legacy method - SD card required 59

https://www.raspberrypi.org/blog/gpio-expander/
http://bennuttall.com/raspberry-pi-zero-gpio-expander/
http://blog.gbaman.info/?p=791
https://learn.adafruit.com/turning-your-raspberry-pi-zero-into-a-usb-gadget/ethernet-gadget

gpiozero 2.0.1 Documentation, Release 2.0.1

60 Chapter 6. Pi Zero USB OTG

CHAPTER

SEVEN

SOURCE/VALUES

GPIO Zero provides a method of using the declarative programming paradigm to connect devices together: feeding
the values of one device into another, for example the values of a button into an LED:

ButtonLED

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

led.source = button

pause()

which is equivalent to:

from gpiozero import LED, Button
from time import sleep

led = LED(17)
button = Button(2)

while True:
led.value = button.value
sleep(0.01)

except that the former is updated in a background thread, which enables you to do other things at the same time.
Every device has a value (page 199) property (the device’s current value). Input devices (like buttons) can only
have their values read, but output devices (like LEDs) can also have their value set to alter the state of the device:

>>> led = PWMLED(17)
>>> led.value # LED is initially off
0.0
>>> led.on() # LED is now on
>>> led.value
1.0
>>> led.value = 0 # LED is now off

Every device also has a values (page 200) property (a generator47 continuously yielding the device’s current value).
All output devices have a source (page 200) property which can be set to any iterator48. The device will iterate over
the values of the device provided, setting the device’s value to each element at a rate specified in the source_delay
(page 200) property (the default is 0.01 seconds).

47 https://wiki.python.org/moin/Generators
48 https://wiki.python.org/moin/Iterator

61

https://wiki.python.org/moin/Generators
https://wiki.python.org/moin/Iterator

gpiozero 2.0.1 Documentation, Release 2.0.1

Input deviceOutput device

The most common use case for this is to set the source of an output device to match the values of an input device,
like the example above. A more interesting example would be a potentiometer controlling the brightness of an LED:

PWM LED Potentiometer

from gpiozero import PWMLED, MCP3008
from signal import pause

led = PWMLED(17)
pot = MCP3008()

led.source = pot

pause()

The way this works is that the input device’s values (page 200) property is used to feed values into the output
device. Prior to v1.5, the source (page 200) had to be set directly to a device’s values (page 200) property:

from gpiozero import PWMLED, MCP3008
from signal import pause

led = PWMLED(17)
pot = MCP3008()

led.source = pot.values

pause()

Note: Although this method is still supported, the recommended way is now to set the source (page 200) to a
device object.

It is also possible to set an output device’s source (page 200) to another output device, to keep them matching. In
this example, the red LED is set to match the button, and the green LED is set to match the red LED, so both LEDs
will be on when the button is pressed:

Red LEDGreen LED Button

from gpiozero import LED, Button
from signal import pause

red = LED(14)
green = LED(15)
button = Button(17)

red.source = button
green.source = red

pause()

62 Chapter 7. Source/Values

gpiozero 2.0.1 Documentation, Release 2.0.1

7.1 Processing values

The device’s values can also be processed before they are passed to the source (page 200):

Output device Input devicecustom generator

For example, writing a generator function to pass the opposite of the Button value into the LED:

LED Buttonopposite

from gpiozero import Button, LED
from signal import pause

def opposite(device):
for value in device.values:

yield not value

led = LED(4)
btn = Button(17)

led.source = opposite(btn)

pause()

Alternatively, a custom generator can be used to provide values from an artificial source:

Output device custom generator

For example, writing a generator function to randomly yield 0 or 1:

LED rand

from gpiozero import LED
from random import randint
from signal import pause

def rand():
while True:

yield randint(0, 1)

led = LED(17)
led.source = rand()

pause()

If the iterator is infinite (i.e. an infinite generator), the elements will be processed until the source (page 200) is
changed or set to None49.
If the iterator is finite (e.g. a list), this will terminate once all elements are processed (leaving the device’s value at
the final element):

49 https://docs.python.org/3.9/library/constants.html#None

7.1. Processing values 63

https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import LED
from signal import pause

led = LED(17)
led.source_delay = 1
led.source = [1, 0, 1, 1, 1, 0, 0, 1, 0, 1]

pause()

7.2 Source Tools

GPIO Zero provides a set of ready-made functions for dealing with source/values, called source tools. These are
available by importing from gpiozero.tools (page 203).
Some of these source tools are artificial sources which require no input:

Output device source tool

In this example, random values between 0 and 1 are passed to the LED, giving it a flickering candle effect:

PWM LED random_values

from gpiozero import PWMLED
from gpiozero.tools import random_values
from signal import pause

led = PWMLED(4)
led.source = random_values()
led.source_delay = 0.1

pause()

Note that in the above example, source_delay (page 200) is used to make the LED iterate over the random
values slightly slower. source_delay (page 200) can be set to a larger number (e.g. 1 for a one second delay) or
set to 0 to disable any delay.
Some tools take a single source and process its values:

Output device Input devicesource tool

In this example, the LED is lit only when the button is not pressed:

LED Buttonnegated

from gpiozero import Button, LED
from gpiozero.tools import negated
from signal import pause

led = LED(4)

(continues on next page)

64 Chapter 7. Source/Values

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
btn = Button(17)

led.source = negated(btn)

pause()

Note: Note that source tools which take one or more value parameters support passing either ValuesMixin
(page 200) derivatives, or iterators, including a device’s values (page 200) property.

Some tools combine the values of multiple sources:

Output device

Input device 1

source tool

Input device 2

In this example, the LED is lit only if both buttons are pressed (like an AND50 gate):

LED

Button A

all_values

Button B

from gpiozero import Button, LED
from gpiozero.tools import all_values
from signal import pause

button_a = Button(2)
button_b = Button(3)
led = LED(17)

led.source = all_values(button_a, button_b)

pause()

Similarly, any_values() (page 207) with two buttons would simulate an OR51 gate.
While most devices have a value (page 199) range between 0 and 1, some have a range between -1 and 1 (e.g.
Motor (page 134), Servo (page 137) and TonalBuzzer (page 133)). Some source tools output values between
-1 and 1, which are ideal for these devices, for example passing sin_values() (page 209) in:

50 https://en.wikipedia.org/wiki/AND_gate
51 https://en.wikipedia.org/wiki/OR_gate

7.2. Source Tools 65

https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/OR_gate

gpiozero 2.0.1 Documentation, Release 2.0.1

Motor

Servo

Tonal buzzer

sin_values

from gpiozero import Motor, Servo, TonalBuzzer
from gpiozero.tools import sin_values
from signal import pause

motor = Motor(2, 3)
servo = Servo(4)
buzzer = TonalBuzzer(5)

motor.source = sin_values()
servo.source = motor
buzzer.source = motor

pause()

In this example, all three devices are following the sine wave52. The motor value ramps up from 0 (stopped) to 1 (full
speed forwards), then back down to 0 and on to -1 (full speed backwards) in a cycle. Similarly, the servo moves from
its mid point to the right, then towards the left; and the buzzer starts with its mid tone, gradually raises its frequency,
to its highest tone, then down towards its lowest tone. Note that setting source_delay (page 200) will alter the
speed at which the device iterates through the values. Alternatively, the tool cos_values() (page 208) could be
used to start from -1 and go up to 1, and so on.

7.3 Internal devices

GPIO Zero also provides several internal devices (page 189) which represent facilities provided by the operating
system itself. These can be used to react to things like the time of day, or whether a server is available on the
network. These classes include a values (page 200) property which can be used to feed values into a device’s
source (page 200). For example, a lamp connected to an Energenie (page 180) socket can be controlled by a
TimeOfDay (page 190) object so that it is on between the hours of 8am and 8pm:

Lamp Daytime

from gpiozero import Energenie, TimeOfDay
from datetime import time
from signal import pause

lamp = Energenie(1)
daytime = TimeOfDay(time(8), time(20))

daytime.when_activated = lamp.on
daytime.when_deactivated = lamp.off

pause()

Using the DiskUsage (page 195) class with LEDBarGraph (page 160) can show your Pi’s disk usage percentage
on a bar graph:

52 https://en.wikipedia.org/wiki/Sine_wave

66 Chapter 7. Source/Values

https://en.wikipedia.org/wiki/Sine_wave

gpiozero 2.0.1 Documentation, Release 2.0.1

Disk usageLED bar graph

from gpiozero import DiskUsage, LEDBarGraph
from signal import pause

disk = DiskUsage()
graph = LEDBarGraph(2, 3, 4, 5, 6, 7, 8)

graph.source = disk

pause()

Demonstrating a garden light system whereby the light comes on if it’s dark and there’s motion is simple enough, but
it requires using the booleanized() (page 203) source tool to convert the light sensor from a float value into a
boolean:

Garden light

Light sensorbooleanized

Motion sensor

all_values

from gpiozero import LED, MotionSensor, LightSensor
from gpiozero.tools import booleanized, all_values
from signal import pause

garden = LED(2)
motion = MotionSensor(4)
light = LightSensor(5)

garden.source = all_values(booleanized(light, 0, 0.1), motion)

pause()

7.4 Composite devices

The value (page 199) of a composite device made up of the nested values of its devices. For example, the value of
a Robot (page 176) object is a 2-tuple containing its left and right motor values:

>>> from gpiozero import Robot
>>> robot = Robot(left=(14, 15), right=(17, 18))
>>> robot.value
RobotValue(left_motor=0.0, right_motor=0.0)
>>> tuple(robot.value)
(0.0, 0.0)
>>> robot.forward()
>>> tuple(robot.value)
(1.0, 1.0)
>>> robot.backward()
>>> tuple(robot.value)
(-1.0, -1.0)
>>> robot.value = (1, 1) # robot is now driven forwards

Use two potentiometers to control the left and right motor speed of a robot:

7.4. Composite devices 67

gpiozero 2.0.1 Documentation, Release 2.0.1

Robot

Left potentiometer

zip_values

Right potentiometer

from gpiozero import Robot, Motor, MCP3008
from gpiozero.tools import zip_values
from signal import pause

robot = Robot(left=Motor(4, 14), right=Motor(17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008(1)

robot.source = zip_values(left_pot, right_pot)

pause()

To include reverse direction, scale the potentiometer values from 0->1 to -1->1:

Robot

Left potentiometerscaled

Right potentiometerscaled

zip

from gpiozero import Robot, Motor, MCP3008
from gpiozero.tools import scaled
from signal import pause

robot = Robot(left=Motor(4, 14), right=Motor(17, 18))

left_pot = MCP3008(0)
right_pot = MCP3008(1)

robot.source = zip(scaled(left_pot, -1, 1), scaled(right_pot, -1, 1))

pause()

Note that this example uses the built-inzip()53 rather than the toolzip_values() (page 208) as thescaled()
(page 206) tool yields values which do not need converting, just zipping. Also note that this use of zip()54 will not
work in Python 2, instead use izip55.

53 https://docs.python.org/3.9/library/functions.html#zip
54 https://docs.python.org/3.9/library/functions.html#zip
55 https://docs.python.org/2/library/itertools.html#itertools.izip

68 Chapter 7. Source/Values

https://docs.python.org/3.9/library/functions.html#zip
https://docs.python.org/3.9/library/functions.html#zip
https://docs.python.org/2/library/itertools.html#itertools.izip

CHAPTER

EIGHT

COMMAND-LINE TOOLS

The gpiozero package contains a database of information about the various revisions of Raspberry Pi. This is queried
by the pinout command-line tool to output details of the GPIO pins available. The pintest tool is also provided
to test the operation of GPIO pins on the board.

8.1 pinout

A utility for querying GPIO pin-out information.

69

gpiozero 2.0.1 Documentation, Release 2.0.1

70 Chapter 8. Command-line Tools

gpiozero 2.0.1 Documentation, Release 2.0.1

8.1.1 Synopsis

pinout [-h] [-r REVISION] [-c] [-m] [-x]

8.1.2 Description

A utility for querying Raspberry Pi GPIO pin-out information. Running pinout on its own will output a board
diagram, and GPIO header diagram for the current Raspberry Pi. It is also possible to manually specify a revision of
Pi, or (by Configuring Remote GPIO (page 45)) to output information about a remote Pi.

8.1.3 Options

-h, --help

Show a help message and exit
-r REVISION, --revision REVISION

Specifies a particular Raspberry Pi board revision code. The default is to autodetect revision of current device
by reading /proc/cpuinfo

-c, --color

Force colored output (by default, the output will include ANSI color codes if run in a color-capable terminal).
See also pinout --monochrome (page 71)

-m, --monochrome

Force monochrome output. See also pinout --color (page 71)
-x, --xyz

Open pinout.xyz56 in the default web browser

8.1.4 Examples

To output information about the current Raspberry Pi:

$ pinout

For a Raspberry Pi model 3B, this will output something like the following:

Description : Raspberry Pi 3B rev 1.2
Revision : a02082
SoC : BCM2837
RAM : 1GB
Storage : MicroSD
USB ports : 4 (of which 0 USB3)
Ethernet ports : 1 (100Mbps max. speed)
Wi-fi : True
Bluetooth : True
Camera ports (CSI) : 1
Display ports (DSI): 1

,--------------------------------.
| oooooooooooooooooooo J8 +====
| 1ooooooooooooooooooo | USB
| +====
| Pi Model 3B V1.2 |
| |D +---+ +====

(continues on next page)
56 https://pinout.xyz/

8.1. pinout 71

https://pinout.xyz/

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
| |S |SoC| | USB
| |I +---+ +====
| |0 C| |
| S| +======
| I| |A| | Net
| pwr |HDMI| 0| |u| +======
`-| |------| |-----|x|--------'

J8:
3V3 (1) (2) 5V

GPIO2 (3) (4) 5V
GPIO3 (5) (6) GND
GPIO4 (7) (8) GPIO14
GND (9) (10) GPIO15

GPIO17 (11) (12) GPIO18
GPIO27 (13) (14) GND
GPIO22 (15) (16) GPIO23

3V3 (17) (18) GPIO24
GPIO10 (19) (20) GND
GPIO9 (21) (22) GPIO25

GPIO11 (23) (24) GPIO8
GND (25) (26) GPIO7

GPIO0 (27) (28) GPIO1
GPIO5 (29) (30) GND
GPIO6 (31) (32) GPIO12

GPIO13 (33) (34) GND
GPIO19 (35) (36) GPIO16
GPIO26 (37) (38) GPIO20

GND (39) (40) GPIO21

For further information, please refer to https://pinout.xyz/

By default, if stdout is a console that supports color, ANSI codes will be used to produce color output. Output can
be forced to be --monochrome (page 71):

$ pinout --monochrome

Or forced to be --color (page 71), in case you are redirecting to something capable of supporting ANSI codes:

$ pinout --color | less -SR

To manually specify the revision of Pi you want to query, use --revision (page 71). The tool understands both
old-style revision codes57 (such as for the model B):

$ pinout -r 000d

Or new-style revision codes58 (such as for the Pi Zero W):

$ pinout -r 9000c1

57 https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-revision-codes
58 https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-revision-codes

72 Chapter 8. Command-line Tools

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-revision-codes
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-revision-codes

gpiozero 2.0.1 Documentation, Release 2.0.1

You can also use the tool with Configuring Remote GPIO (page 45) to query remote Raspberry Pi’s:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=other_pi pinout

Or run the tool directly on a PC using the mock pin implementation (although in this case you’ll almost certainly want
to specify the Pi revision manually):

8.1. pinout 73

gpiozero 2.0.1 Documentation, Release 2.0.1

$ GPIOZERO_PIN_FACTORY=mock pinout -r a22042

8.2 pintest

A utility for testing the GPIO pins on a Raspberry Pi, inspired by pigpio’s gpiotest example script, and wiringPi’s
pintest utility.
New in version 2.0: The pintest utility.

74 Chapter 8. Command-line Tools

gpiozero 2.0.1 Documentation, Release 2.0.1

8.2. pintest 75

gpiozero 2.0.1 Documentation, Release 2.0.1

8.2.1 Synopsis

pintest [-h] [--version] [-p PINS] [-s SKIP] [-y] [-r REVISION]

8.2.2 Description

A utility for testing the function of GPIOs on a Raspberry Pi. It is possible to damage the GPIOs on a Pi by passing
too much current (or voltage in the case of inputs) through them. The pintest utility can be used to determine if
any of the GPIOs on a Pi are broken.
The utility will test all physically exposed GPIOs (those on the main GPIO header) by default, but you may wish to
only test a subset, or to exclude certain GPIOs which can be accomplished with the pintest --pins (page 76)
or pintest --skip (page 76) options.

Note: You must ensure that nothing is connected to the GPIOs that you intend to test. By default, the utility will
prompt you before proceeding, repeating this warning.

In the event that any GPIO is found to be faulty, it will be reported in the output and the utility will exit with a return
code of 1. If all specified GPIOs test fine, the return code is zero.

8.2.3 Options

-h, --help

show this help message and exit
--version

Show the program’s version number and exit
-p PINS, --pins PINS

The pin(s) to test. Can be specified as a comma-separated list of pins. Pin numbers can be given in any form
accepted by gpiozero, e.g. 14, GPIO14, BOARD8. The default is to test all pins

-s SKIP, --skip SKIP

The pin(s) to skip testing. Can be specified as comma-separated list of pins. Pin numbers can be given in any
form accepted by gpiozero, e.g. 14, GPIO14, BOARD8. The default is to skip no pins

-y, --yes

Proceed without prompting
-r REVISION, --revision REVISION

Force board revision. Default is to autodetect revision of current device. You should avoid this option unless
you are very sure the detection is incorrect

8.2.4 Examples

Test all physically exposed GPIOs on the board:

$ pintest

Test just the I2C GPIOs without prompting:

$ pintest --pins 2,3 --yes

Exclude the SPI GPIOs from testing:

76 Chapter 8. Command-line Tools

gpiozero 2.0.1 Documentation, Release 2.0.1

$ pintest --exclude GPIO7,GPIO8,GPIO9,GPIO10,GPIO11

Note that pin numbers can be given in any form accepted by GPIO Zero, e.g. 14, GPIO14, or BOARD8.

8.3 Environment Variables

All utilities provided by GPIO Zero accept the following environment variables:
GPIOZERO_PIN_FACTORY

The library to use when communicating with the GPIO pins. Defaults to attempting to load lgpio, then
RPi.GPIO, then pigpio, and finally uses a native Python implementation. Valid values include “lgpio”, “rpig-
pio”, “pigpio”, “native”, and “mock”. The latter is most useful on non-Pi platforms as it emulates a Raspberry
Pi model 3B (by default).

PIGPIO_ADDR

The hostname of the Raspberry Pi the pigpio library should attempt to connect to (if the pigpio pin factory is
being used). Defaults to localhost.

PIGPIO_PORT

The port number the pigpio library should attempt to connect to (if the pigpio pin factory is being used).
Defaults to 8888.

8.3. Environment Variables 77

gpiozero 2.0.1 Documentation, Release 2.0.1

78 Chapter 8. Command-line Tools

CHAPTER

NINE

FREQUENTLY ASKED QUESTIONS

9.1 How do I keep my script running?

The following script looks like it should turn an LED (page 125) on:

from gpiozero import LED

led = LED(17)
led.on()

And it does, if you’re using the Python or IPython shell, or the IDLE, Thonny or Mu editors. However, if you saved
this script as a Python file and ran it, it would flash on briefly, then the script would end and it would turn off.
The following file includes an intentional pause()59 to keep the script alive:

from gpiozero import LED
from signal import pause

led = LED(17)
led.on()

pause()

Now the script will stay running, leaving the LED on, until it is terminated manually (e.g. by pressing Ctrl+C).
Similarly, when setting up callbacks on button presses or other input devices, the script needs to be running for the
events to be detected:

from gpiozero import Button
from signal import pause

def hello():
print("Hello")

button = Button(2)
button.when_pressed = hello

pause()

59 https://docs.python.org/3.9/library/signal.html#signal.pause

79

https://docs.python.org/3.9/library/signal.html#signal.pause

gpiozero 2.0.1 Documentation, Release 2.0.1

9.2 What’s the difference between when_pressed, is_pressed and
wait_for_press?

gpiozero provides a range of different approaches to reading input devices. Sometimes you want to ask if a button’s
pressed, sometimes you want to do something until it’s pressed, and sometimes you want something to happen when
it’s been pressed, regardless of what else is going on.
In a simple example where the button is the only device in play, all of the options would be equally effective. But
as soon as you introduce an extra element, like another GPIO device, you might need to choose the right approach
depending on your use case.

• is_pressed (page 106) is an attribute which reveals whether the button is currently pressed by returning
True or False:

while True:
if btn.is_pressed:

print("Pressed")
else:

print("Not pressed")

• wait_for_press() (page 106) is a method which blocks the code from continuing until the button is
pressed. Also see wait_for_release() (page 106):

while True:
print("Released. Waiting for press..")
btn.wait_for_press()
print("Pressed. Waiting for release...")
btn.wait_for_release()

• when_pressed (page 107) is an attribute which assigns a callback function to the event of the button being
pressed. Every time the button is pressed, the callback function is executed in a separate thread. Also see
when_released (page 107):

def pressed():
print("Pressed")

def released():
print("Released")

btn.when_pressed = pressed
btn.when_released = released

This pattern of options is common among many devices. All input devices (page 105) and internal de-
vices (page 189) have is_active, when_activated, when_deactivated, wait_for_active and
wait_for_inactive, and many provide aliases (such as “pressed” for “activated”).
Also see a more advanced approach in the Source/Values (page 61) page.

9.3 My event handler isn’t being called

When assigning event handlers, don’t call the function you’re assigning. For example:

from gpiozero import Button

def pushed():
print("Don't push the button!")

b = Button(17)
b.when_pressed = pushed()

80 Chapter 9. Frequently Asked Questions

gpiozero 2.0.1 Documentation, Release 2.0.1

In the case above, when assigning to when_pressed (page 107), the thing that is assigned is the result of calling the
pushed function. Because pushed doesn’t explicitly return anything, the result is None60. Hence this is equivalent
to doing:

b.when_pressed = None

This doesn’t raise an error because it’s perfectly valid: it’s what you assign when you don’t want the event handler to
do anything. Instead, you want to do the following:

b.when_pressed = pushed

This will assign the function to the event handler without calling it. This is the crucial difference between
my_function (a reference to a function) and my_function() (the result of calling a function).

Note: Note that as of v1.5, setting a callback to None61 when it was previously None62 will raise a Callback-
SetToNone (page 244) warning, with the intention of alerting users when callbacks are set to None63 accidentally.
However, if this is intentional, the warning can be suppressed. See the warnings64 module for reference.

9.4 Why do I get PinFactoryFallback warnings when I import gpi-
ozero?

You are most likely working in a virtual Python environment and have forgotten to install a pin driver library like
RPi.GPIO. GPIO Zero relies upon lower level pin drivers to handle interfacing to the GPIO pins on the Raspberry
Pi, so you can eliminate the warning simply by installing GPIO Zero’s first preference:

$ pip install rpi.gpio

When GPIO Zero is imported it attempts to find a pin driver by importing them in a preferred order (detailed in API
- Pins (page 221)). If it fails to load its first preference (RPi.GPIO) it notifies you with a warning, then falls back to
trying its second preference and so on. Eventually it will fall back all the way to the native implementation. This is
a pure Python implementation built into GPIO Zero itself. While this will work for most things it’s almost certainly
not what you want (it doesn’t support PWM, and it’s quite slow at certain things).
If you want to use a pin driver other than the default, and you want to suppress the warnings you’ve got a couple of
options:

1. Explicitly specify what pin driver you want via the GPIOZERO_PIN_FACTORY (page 77) environment vari-
able. For example:

$ GPIOZERO_PIN_FACTORY=pigpio python3

In this case no warning is issued because there’s no fallback; either the specified factory loads or it fails in which
case an ImportError65 will be raised.

2. Suppress the warnings and let the fallback mechanism work:

>>> import warnings
>>> warnings.simplefilter('ignore')
>>> import gpiozero

Refer to the warnings66 module documentation for more refined ways to filter out specific warning classes.
60 https://docs.python.org/3.9/library/constants.html#None
61 https://docs.python.org/3.9/library/constants.html#None
62 https://docs.python.org/3.9/library/constants.html#None
63 https://docs.python.org/3.9/library/constants.html#None
64 https://docs.python.org/3.9/library/warnings.html#module-warnings
65 https://docs.python.org/3.9/library/exceptions.html#ImportError
66 https://docs.python.org/3.9/library/warnings.html#module-warnings

9.4. Why do I get PinFactoryFallback warnings when I import gpiozero? 81

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/warnings.html#module-warnings
https://docs.python.org/3.9/library/exceptions.html#ImportError
https://docs.python.org/3.9/library/warnings.html#module-warnings

gpiozero 2.0.1 Documentation, Release 2.0.1

9.5 How can I tell what version of gpiozero I have installed?

The gpiozero library relies on the setuptools package for installation services. You can use the setuptools
pkg_resources API to query which version of gpiozero is available in your Python environment like so:

>>> from pkg_resources import require
>>> require('gpiozero')
[gpiozero 1.6.2 (/usr/lib/python3/dist-packages)]
>>> require('gpiozero')[0].version
'1.6.2'

If you have multiple versions installed (e.g. from pip and apt) they will not show up in the list returned by the
pkg_resources.require() method. However, the first entry in the list will be the version that import
gpiozero will import.
If you receive the error “No module named pkg_resources”, you need to install pip. This can be done with the
following command in Raspberry Pi OS:

$ sudo apt install python3-pip

Alternatively, install pip with get-pip67.

9.6 Why do I get “command not found” when running pinout?

The gpiozero library is available as a Debian package for Python 2 and Python 3, but the pinout (page 69) tool cannot
be made available by both packages, so it’s only included with the Python 3 version of the package. To make sure
the pinout (page 69) tool is available, the “python3-gpiozero” package must be installed:

$ sudo apt install python3-gpiozero

Alternatively, installing gpiozero using pip will install the command line tool, regardless of Python version:

$ sudo pip3 install gpiozero

or:

$ sudo pip install gpiozero

9.7 The pinout command line tool incorrectly identifies my Rasp-
berry Pi model

If your Raspberry Pi model is new, it’s possible it wasn’t known about at the time of the gpiozero release you are using.
Ensure you have the latest version installed (remember, the pinout (page 69) tool usually comes from the Python 3
version of the package as noted in the previous FAQ).
If the Pi model you are using isn’t known to gpiozero, it may have been added since the last release. You can check
the GitHub issues68 to see if it’s been reported before, or check the commits69 on GitHub since the last release to see
if it’s been added. The model determination can be found in gpiozero/pins/data.py.

67 https://pip.pypa.io/en/stable/installing/
68 https://github.com/gpiozero/gpiozero/issues
69 https://github.com/gpiozero/gpiozero/commits/master

82 Chapter 9. Frequently Asked Questions

https://pip.pypa.io/en/stable/installing/
https://github.com/gpiozero/gpiozero/issues
https://github.com/gpiozero/gpiozero/commits/master

gpiozero 2.0.1 Documentation, Release 2.0.1

9.8 What’s the gpiozero equivalent of GPIO.cleanup()?

Many people ask how to do the equivalent of the cleanup function from RPi.GPIO. In gpiozero, at the end of
your script, cleanup is run automatically, restoring your GPIO pins to the state they were found.
To explicitly close a connection to a pin, you can manually call the close() (page 199) method on a device object:

>>> led = LED(2)
>>> led.on()
>>> led
<gpiozero.LED object on pin GPIO2, active_high=True, is_active=True>
>>> led.close()
>>> led
<gpiozero.LED object closed>

This means that you can reuse the pin for another device, and that despite turning the LED on (and hence, the pin
high), after calling close() (page 199) it is restored to its previous state (LED off, pin low).
Read more about Migrating from RPi.GPIO (page 93).

9.9 How do I use button.when_pressed and button.when_held to-
gether?

The Button (page 105) class provides a when_held (page 106) property which is used to set a callback for when
the button is held down for a set amount of time (as determined by the hold_time (page 106) property). If you
want to set when_held (page 106) as well as when_pressed (page 107), you’ll notice that both callbacks will
fire. Sometimes, this is acceptable, but often you’ll want to only fire the when_pressed (page 107) callback when
the button has not been held, only pressed.
The way to achieve this is to not set a callback on when_pressed (page 107), and instead use when_released
(page 107) to work out whether it had been held or just pressed:

from gpiozero import Button

Button.was_held = False

def held(btn):
btn.was_held = True
print("button was held not just pressed")

def released(btn):
if not btn.was_held:

pressed()
btn.was_held = False

def pressed():
print("button was pressed not held")

btn = Button(2)

btn.when_held = held
btn.when_released = released

9.8. What’s the gpiozero equivalent of GPIO.cleanup()? 83

gpiozero 2.0.1 Documentation, Release 2.0.1

9.10 Why do I get “ImportError: cannot import name” when trying
to import from gpiozero?

It’s common to see people name their first gpiozero script gpiozero.py. Unfortunately, this will cause your script
to try to import itself, rather than the gpiozero library from the libraries path. You’ll see an error like this:

Traceback (most recent call last):
File "gpiozero.py", line 1, in <module>
from gpiozero import LED

File "/home/pi/gpiozero.py", line 1, in <module>
from gpiozero import LED

ImportError: cannot import name 'LED'

Simply rename your script to something else, and run it again. Be sure not to name any of your scripts the same name
as a Python module you may be importing, such as picamera.py.

9.11 Why do I get an AttributeError trying to set attributes on a
device object?

If you try to add an attribute to a gpiozero device object after its initialization, you’ll find you can’t:

>>> from gpiozero import Button
>>> btn = Button(2)
>>> btn.label = 'alarm'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/usr/lib/python3/dist-packages/gpiozero/devices.py", line 118, in __

↪→setattr__
self.__class__.__name__, name))

AttributeError: 'Button' object has no attribute 'label'

This is in order to prevent users accidentally setting new attributes bymistake. Because gpiozero provides functionality
through setting attributes via properties, such as callbacks on buttons (and often there is no immediate feedback when
setting a property), this could lead to bugs very difficult to find. Consider the following example:

from gpiozero import Button

def hello():
print("hello")

btn = Button(2)

btn.pressed = hello

This is perfectly valid Python code, and no errors would occur, but the program would not behave as expected:
pressing the button would do nothing, because the property for setting a callback is when_pressed not pressed.
But without gpiozero preventing this non-existent attribute from being set, the user would likely struggle to see the
mistake.
If you really want to set a new attribute on a device object, you need to create it in the class before initializing your
object:

>>> from gpiozero import Button
>>> Button.label = ''
>>> btn = Button(2)
>>> btn.label = 'alarm'
>>> def press(btn):

(continues on next page)

84 Chapter 9. Frequently Asked Questions

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
...: print(btn.label, "was pressed")
>>> btn.when_pressed = press

9.12 Why is it called GPIO Zero? Does it only work on Pi Zero?

gpiozero works on all Raspberry Pi models, not just the Pi Zero.
The “zero” is part of a naming convention for “zero-boilerplate” education friendly libraries, which started with
Pygame Zero70, and has been followed by NetworkZero71, guizero72 and more.
These libraries aim to remove barrier to entry and provide a smooth learning curve for beginners by making it easy
to get started and easy to build up to more advanced projects.

70 https://pygame-zero.readthedocs.io/en/stable/
71 https://networkzero.readthedocs.io/en/latest/
72 https://lawsie.github.io/guizero/

9.12. Why is it called GPIO Zero? Does it only work on Pi Zero? 85

https://pygame-zero.readthedocs.io/en/stable/
https://networkzero.readthedocs.io/en/latest/
https://lawsie.github.io/guizero/

gpiozero 2.0.1 Documentation, Release 2.0.1

86 Chapter 9. Frequently Asked Questions

CHAPTER

TEN

BACKWARDS COMPATIBILITY

GPIO Zero 2.x is a newmajor version and thus backwards incompatible changes can be expected. We have attempted
to keep these as minimal as reasonably possible while taking advantage of the opportunity to clean up things. This
chapter documents breaking changes from version 1.x of the library to 2.x, and all deprecated functionality which
will still work in release 2.0 but is scheduled for removal in a future 2.x release.

10.1 Finding and fixing deprecated usage

As of release 2.0, all deprecated functionality will raise DeprecationWarning73 when used. By default, the
Python interpreter suppresses these warnings (as they’re only of interest to developers, not users) but you can easily
configure different behaviour.
The following example script uses a number of deprecated functions:

import gpiozero

board = gpiozero.pi_info()
for header in board.headers.values():

for pin in header.pins.values():
if pin.pull_up:

print(pin.function, 'is pulled up')

Despite using deprecated functionality the script runs happily (and silently) with gpiozero 2.0. To discover what
deprecated functions are being used, we add a couple of lines to tell the warnings module that we want “default”
handling of DeprecationWarning74; “default” handling means that the first time an attempt is made to raise
this warning at a particular location, the warning’s details will be printed to the console. All future invocations from
the same location will be ignored. This saves flooding the console with warning details from tight loops. With this
change, the script looks like this:

import gpiozero

import warnings
warnings.filterwarnings('default', category=DeprecationWarning)

board = gpiozero.pi_info()
for header in board.headers.values():

for pin in header.pins.values():
if pin.pull_up:

print(pin.function, 'is pulled up')

And produces the following output on the console when run:

73 https://docs.python.org/3.9/library/exceptions.html#DeprecationWarning
74 https://docs.python.org/3.9/library/exceptions.html#DeprecationWarning

87

https://docs.python.org/3.9/library/exceptions.html#DeprecationWarning
https://docs.python.org/3.9/library/exceptions.html#DeprecationWarning

gpiozero 2.0.1 Documentation, Release 2.0.1

/home/dave/projects/home/gpiozero/gpio-zero/gpiozero/pins/__init__.py:899:
DeprecationWarning: PinInfo.pull_up is deprecated; please use PinInfo.pull

warnings.warn(
/home/dave/projects/home/gpiozero/gpio-zero/gpiozero/pins/__init__.py:889:
DeprecationWarning: PinInfo.function is deprecated; please use PinInfo.name

warnings.warn(
GPIO2 is pulled up
GPIO3 is pulled up

This tells us which pieces of deprecated functionality are being used in our script, but it doesn’t tell us where in
the script they were used. For this, it is more useful to have warnings converted into full blown exceptions. With
this change, each time a DeprecationWarning75 would have been printed, it will instead cause the script to
terminate with an unhandled exception and a full stack trace:

import gpiozero

import warnings
warnings.filterwarnings('error', category=DeprecationWarning)

board = gpiozero.pi_info()
for header in board.headers.values():

for pin in header.pins.values():
if pin.pull_up:

print(pin.function, 'is pulled up')

Now when we run the script it produces the following:

Traceback (most recent call last):
File "/home/dave/projects/home/gpiozero/gpio-zero/foo.py", line 9, in <module>
if pin.pull_up:

File "/home/dave/projects/home/gpiozero/gpio-zero/gpiozero/pins/__init__.py",␣
↪→line 899, in pull_up

warnings.warn(
DeprecationWarning: PinInfo.pull_up is deprecated; please use PinInfo.pull

This tells us that line 9 of our script is using deprecated functionality, and provides a hint of how to fix it. We change
line 9 to use the “pull” attribute instead. Now we run again, and this time get the following:

Traceback (most recent call last):
File "/home/dave/projects/home/gpiozero/gpio-zero/foo.py", line 10, in <module>
print(pin.function, 'is pulled up')

File "/home/dave/projects/home/gpiozero/gpio-zero/gpiozero/pins/__init__.py",␣
↪→line 889, in function

warnings.warn(
DeprecationWarning: PinInfo.function is deprecated; please use PinInfo.name

Now we can tell line 10 has a problem, and once again the exception tells us how to fix it. We continue in this fashion
until the script looks like this:

import gpiozero

import warnings
warnings.filterwarnings('error', category=DeprecationWarning)

board = gpiozero.pi_info()
for header in board.headers.values():

for pin in header.pins.values():
if pin.pull == 'up':

print(pin.name, 'is pulled up')

75 https://docs.python.org/3.9/library/exceptions.html#DeprecationWarning

88 Chapter 10. Backwards Compatibility

https://docs.python.org/3.9/library/exceptions.html#DeprecationWarning

gpiozero 2.0.1 Documentation, Release 2.0.1

The script now runs to completion, so we can be confident it’s no longer using any deprecated functionality and will
run happily even when this functionality is removed in a future 2.x release. At this point, you may wish to remove
the filterwarnings line as well (or at least comment it out).

10.2 Python 2.x support dropped

By far the biggest and most important change is that the Python 2.x series is no longer supported (in practice, this
means Python 2.7 is no longer supported). If your code is not compatible with Python 3, you should follow the porting
guide76 in the Python documentation77.
As of GPIO Zero 2.0, the lowest supported Python version will be 3.5. This base version may advance with minor
releases, but we will make a reasonable best effort not to break compatibility with old Python 3.x versions, and to
ensure that GPIO Zero can run on the version of Python in Debian oldstable at the time of its release.

10.3 RPIO pin factory removed

The RPIO pin implementation is unsupported on the Raspberry Pi 2 onwards and hence of little practical use these
days. Anybody still relying on RPIO’s stable PWM implementation is advised to try the pigpio pin implementation
instead (also supported by GPIO Zero).

10.4 Deprecated pin-factory aliases removed

Several deprecated aliases for pin factories, which could be specified by the GPIOZERO_PIN_FACTORY (page 77)
environment variable, have been removed:

• “PiGPIOPin” is removed in favour of “pigpio”
• “RPiGPIOPin” is removed in favour of “rpigpio”
• “NativePin” is removed in favour of “native”

In other words, you can no longer use the following when invoking your script:

$ GPIOZERO_PIN_FACTORY=PiGPIOPin python3 my_script.py

Instead, you should use the following:

$ GPIOZERO_PIN_FACTORY=pigpio python3 my_script.py

10.5 Keyword arguments

Many classes in GPIO Zero 1.x were documented as having keyword-only arguments in their constructors and
methods. For example, the PiLiter (page 170) was documented as having the constructor: PiLiter(*,
pwm=False, initial_value=False, pin_factory=None) implying that all its arguments were key-
word only.
However, despite being documented in this manner, this was rarely enforced as it was extremely difficult to do so
under Python 2.x without complicating the code-base considerably (Python 2.x lacked the “*” syntax to declare
keyword-only arguments; they could only be implemented via “**kwargs” arguments and dictionary manipulation).
In GPIO Zero 2.0, all such arguments are now actually keyword arguments. If your code complied with the 1.x
documentation you shouldn’t notice any difference. In other words, the following is still fine:

76 https://docs.python.org/3/howto/pyporting.html
77 https://docs.python.org/3/

10.2. Python 2.x support dropped 89

https://docs.python.org/3/howto/pyporting.html
https://docs.python.org/3/howto/pyporting.html
https://docs.python.org/3/

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import PiLiter

l = PiLiter(pwm=True)

However, if you had omitted the keyword you will need to modify your code:

from gpiozero import PiLiter

l = PiLiter(True) # this will no longer work

10.6 Robots take Motors, and PhaseEnableRobot is deprecated

The GPIO Zero 1.x API specified that a Robot (page 176) was constructed with two tuples that were in turn used to
construct two Motor (page 134) instances. The 2.x API replaces this with simply passing in the Motor (page 134),
or PhaseEnableMotor() (page 136) instances you wish to use as the left and right wheels.
If your current code uses pins 4 and 14 for the left wheel, and 17 and 18 for the right wheel, it may look like this:

from gpiozero import Robot

r = Robot(left=(4, 14), right=(17, 18))

This should be changed to the following:

from gpiozero import Robot, Motor

r = Robot(left=Motor(4, 14), right=Motor(17, 18))

Likewise, if you are currently using PhaseEnableRobot() (page 178) your code may look like this:

from gpiozero import PhaseEnableRobot

r = PhaseEnableRobot(left=(4, 14), right=(17, 18))

This should be changed to the following:

from gpiozero import Robot, PhaseEnableMotor

r = Robot(left=PhaseEnableMotor(4, 14),
right=PhaseEnableMotor(17, 18))

This change came about because the Motor (page 134) class was also documented as having two mandatory param-
eters (forward and backward) and several keyword-only parameters, including the enable pin. However, enable was
treated as a positional argument for the sake of constructing Robot (page 176) which was inconsistent. Furthermore,
PhaseEnableRobot() (page 178) was more or less a redundant duplicate of Robot (page 176) but was lacking
a couple of features added to Robot (page 176) later (notable “curved” turning).
Although the new API requires a little more typing, it does mean that phase enable robot boards now inherit all the
functionality of Robot (page 176) because that’s all they use. Theoretically you could also mix and match regular
motors and phase-enable motors although there’s little sense in doing so.
The former functionality (passing tuples to the Robot (page 176) constructor) will remain as deprecated functionality
for gpiozero 2.0, but will be removed in a future 2.x release. PhaseEnableRobot() (page 178) remains as a
stub function which simply returns a Robot (page 176) instance, but this will be removed in a future 2.x release.

90 Chapter 10. Backwards Compatibility

gpiozero 2.0.1 Documentation, Release 2.0.1

10.7 PiBoardInfo, HeaderInfo, PinInfo

The PiBoardInfo (page 217) class, and the associated HeaderInfo (page 218) and PinInfo (page 219)
classes have undergone a major re-structuring. This is partly because some of the prior terminology was confusing
(e.g. the meaning of PinInfo.function (page 219) and Pin.function (page 229) clashed), and partly
because with the addition of the “lgpio” factory it’s entirely possible to use gpiozero on non-Pi boards (although at
present the pins.lgpio.LGPIOFactory (page 235) is still written assuming it is only ever used on a Pi).
As a result the following classes, methods, and attributes are deprecated (not yet removed, but will be in a future
release within the 2.x series):

• Factory.pi_info is deprecated in favour of Factory.board_info (page 227) which returns a
BoardInfo instead of PiBoardInfo (page 217) (which is now a subclass of the former).

• PinInfo.pull_up (page 219) is deprecated in favour of PinInfo.pull (page 219).
• PinInfo.function (page 219) is deprecated in favour of PinInfo.name (page 219).
• BoardInfo.physical_pins(), BoardInfo.physical_pin(), and BoardInfo.
pulled_up(), are all deprecated in favour of a combination of the new BoardInfo.find_pin() and
the attributes mentioned above.

• PiPin.number is deprecated in favour of Pin.info.name.

10.7. PiBoardInfo, HeaderInfo, PinInfo 91

gpiozero 2.0.1 Documentation, Release 2.0.1

92 Chapter 10. Backwards Compatibility

CHAPTER

ELEVEN

MIGRATING FROM RPI.GPIO

If you are familiar with the RPi.GPIO78 library, you will be used to writing code which deals with pins and the state
of pins. You will see from the examples in this documentation that we generally refer to things like LEDs and Buttons
rather than input pins and output pins.
GPIO Zero provides classes which represent devices, so instead of having a pin number and telling it to go high, you
have an LED and you tell it to turn on, and instead of having a pin number and asking if it’s high or low, you have a
button and ask if it’s pressed. There is also no boilerplate code to get started — you just import the parts you need.
GPIO Zero provides many device classes, each with specific methods and properties bespoke to that device. For
example, the functionality for an HC-SR04 Distance Sensor can be found in the DistanceSensor (page 113)
class.
As well as specific device classes, we provide base classes InputDevice (page 121) and OutputDevice
(page 144). One main difference between these and the equivalents in RPi.GPIO is that they are classes, not func-
tions, which means that you initialize one to begin, and provide its pin number, but then you never need to use the
pin number again, as it’s stored by the object.
GPIO Zero was originally just a layer on top of RPi.GPIO, but we later added support for various other underlying
pin libraries. RPi.GPIO is currently the default pin library used. Read more about this in Changing the pin factory
(page 223).

11.1 Output devices

Turning an LED on in RPi.GPIO79:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(2, GPIO.OUT)

GPIO.output(2, GPIO.HIGH)

Turning an LED on in GPIO Zero:

from gpiozero import LED

led = LED(2)

led.on()

The LED (page 125) class also supports threaded blinking through the blink() (page 126) method.
78 https://pypi.org/project/RPi.GPIO/
79 https://pypi.org/project/RPi.GPIO/

93

https://pypi.org/project/RPi.GPIO/
https://pypi.org/project/RPi.GPIO/

gpiozero 2.0.1 Documentation, Release 2.0.1

OutputDevice (page 144) is the base class for output devices, and can be used in a similar way to output devices
in RPi.GPIO.
See a full list of supported output devices (page 125). Other output devices have similar property and method names.
There is commonality in naming at base level, such as OutputDevice.is_active, which is aliased in a device
class, such as LED.is_lit (page 126).

11.2 Input devices

Reading a button press in RPi.GPIO80:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(4, GPIO.IN, GPIO.PUD_UP)

if not GPIO.input(4):
print("button is pressed")

Reading a button press in GPIO Zero:

from gpiozero import Button

btn = Button(4)

if btn.is_pressed:
print("button is pressed")

Note that in the RPi.GPIO example, the button is set up with the option GPIO.PUD_UP which means “pull-up”,
and therefore when the button is not pressed, the pin is high. When the button is pressed, the pin goes low, so the
condition requires negation (if not). If the button was configured as pull-down, the logic is reversed and the
condition would become if GPIO.input(4):

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(4, GPIO.IN, GPIO.PUD_DOWN)

if GPIO.input(4):
print("button is pressed")

In GPIO Zero, the default configuration for a button is pull-up, but this can be configured at initialization, and the
rest of the code stays the same:

from gpiozero import Button

btn = Button(4, pull_up=False)

if btn.is_pressed:
print("button is pressed")

RPi.GPIO also supports blocking edge detection.
Wait for a pull-up button to be pressed in RPi.GPIO:

80 https://pypi.org/project/RPi.GPIO/

94 Chapter 11. Migrating from RPi.GPIO

https://pypi.org/project/RPi.GPIO/

gpiozero 2.0.1 Documentation, Release 2.0.1

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(4, GPIO.IN, GPIO.PUD_UP)

GPIO.wait_for_edge(4, GPIO.FALLING):
print("button was pressed")

The equivalent in GPIO Zero:

from gpiozero import Button

btn = Button(4)

btn.wait_for_press()
print("button was pressed")

Again, if the button is pulled down, the logic is reversed. Instead of waiting for a falling edge, we’re waiting for a
rising edge:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(4, GPIO.IN, GPIO.PUD_UP)

GPIO.wait_for_edge(4, GPIO.FALLING):
print("button was pressed")

Again, in GPIO Zero, the only difference is in the initialization:

from gpiozero import Button

btn = Button(4, pull_up=False)

btn.wait_for_press()
print("button was pressed")

RPi.GPIO has threaded callbacks. You create a function (which must take one argument), and pass it in to
add_event_detect, along with the pin number and the edge direction:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

def pressed(pin):
print("button was pressed")

def released(pin):
print("button was released")

GPIO.setup(4, GPIO.IN, GPIO.PUD_UP)

GPIO.add_event_detect(4, GPIO.FALLING, pressed)
GPIO.add_event_detect(4, GPIO.RISING, released)

In GPIO Zero, you assign the when_pressed (page 107) and when_released (page 107) properties to set up
callbacks on those actions:

11.2. Input devices 95

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import Button

def pressed():
print("button was pressed")

def released():
print("button was released")

btn = Button(4)

btn.when_pressed = pressed
btn.when_released = released

when_held (page 106) is also provided, where the length of time considered a “hold” is configurable.
The callback functions don’t have to take any arguments, but if they take one, the button object is passed in, allowing
you to determine which button called the function.
InputDevice (page 121) is the base class for input devices, and can be used in a similar way to input devices in
RPi.GPIO.
See a full list of input devices (page 105). Other input devices have similar property and method names. There is
commonality in naming at base level, such as InputDevice.is_active (page 122), which is aliased in a device
class, such as Button.is_pressed (page 106) and LightSensor.light_detected (page 112).

11.3 Composite devices, boards and accessories

Some devices require connections to multiple pins, for example a distance sensor, a combination of LEDs or a HAT.
Some GPIO Zero devices comprise multiple device connections within one object, such as RGBLED (page 128),
LEDBoard (page 157), DistanceSensor (page 113), Motor (page 134) and Robot (page 176).
With RPi.GPIO, you would have one output pin for the trigger, and one input pin for the echo. You would time
the echo and calculate the distance. With GPIO Zero, you create a single DistanceSensor (page 113) object,
specifying the trigger and echo pins, and you would read the DistanceSensor.distance (page 114) property
which automatically calculates the distance within the implementation of the class.
The Motor (page 134) class controls two output pins to drive the motor forwards or backwards. The Robot
(page 176) class controls four output pins (two motors) in the right combination to drive a robot forwards or back-
wards, and turn left and right.
The LEDBoard (page 157) class takes an arbitrary number of pins, each controlling a single LED. The resulting
LEDBoard (page 157) object can be used to control all LEDs together (all on / all off), or individually by index.
Also the object can be iterated over to turn LEDs on in order. See examples of this (including slicing) in the advanced
recipes (page 37).

11.4 PWM (Pulse-width modulation)

Both libraries support software PWM control on any pin. Depending on the pin library used, GPIO Zero can also
support hardware PWM (using RPIOPin or PiGPIOPin).
A simple example of using PWM is to control the brightness of an LED.
In RPi.GPIO81:

import RPi.GPIO as GPIO
from time import sleep

(continues on next page)
81 https://pypi.org/project/RPi.GPIO/

96 Chapter 11. Migrating from RPi.GPIO

https://pypi.org/project/RPi.GPIO/

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)

GPIO.setup(2, GPIO.OUT)
pwm = GPIO.PWM(2, 100)
pwm.start(0)

for dc in range(101):
pwm.changeDutyCycle(dc)
sleep(0.01)

In GPIO Zero:

from gpiozero import PWMLED
from time import sleep

led = PWMLED(2)

for b in range(101):
led.value = b / 100.0
sleep(0.01)

PWMLED (page 127) has a blink() (page 127) method which can be used the same was as LED (page 125)’s
blink() (page 126) method, but its PWM capabilities allow for fade_in and fade_out options to be provided.
There is also the pulse() (page 127) method which provides a neat way to have an LED fade in and out repeatedly.
Other devices can make use of PWM, such as motors (for variable speed) and servos. See the Motor (page 134),
Servo (page 137) and AngularServo (page 139) classes for information on those. Motor (page 134) and
Robot (page 176) default to using PWM, but it can be disabled with pwm=False at initialization. Servos cannot
be used without PWM. Devices containing LEDs default to not using PWM, but pwm=True can be specified and
any LED objects within the device will be initialized as PWMLED (page 127) objects.

11.5 Cleanup

Pin state cleanup is explicit in RPi.GPIO, and is done manually with GPIO.cleanup() but in GPIO Zero, cleanup
is automatically performed on every pin used, at the end of the script. Manual cleanup is possible by use of the
close() (page 199) method on the device.
Note that cleanup only occurs at the point of normal termination of the script. If the script exits due to a program
error, cleanup will not be performed. To ensure that cleanup is performed after an exception is raised, the exception
must be handled, for example:

from gpiozero import Button

btn = Button(4)

while True:
try:

if btn.is_pressed:
print("Pressed")

except KeyboardInterrupt:
print("Ending program")

Read more in the relevant FAQ:What’s the gpiozero equivalent of GPIO.cleanup()? (page 83)

11.5. Cleanup 97

gpiozero 2.0.1 Documentation, Release 2.0.1

11.6 Pi Information

RPi.GPIO provides information about the Pi you’re using. The equivalent in GPIO Zero is the function pi_info()
(page 217):

>>> from gpiozero import pi_info
>>> pi = pi_info()
>>> pi
PiBoardInfo(revision='a02082', model='3B', pcb_revision='1.2', released='2016Q1',␣
↪→soc='BCM2837', manufacturer='Sony', memory=1024, storage='MicroSD', usb=4,␣
↪→ethernet=1, wifi=True, bluetooth=True, csi=1, dsi=1, headers=..., board=...)
>>> pi.soc
'BCM2837'
>>> pi.wifi
True

Read more about what PiBoardInfo (page 217) provides.

11.7 More

GPIOZero providesmore than just GPIO device support, it includes some support for SPI devices (page 147) including
a range of analog to digital converters.
Device classes which are compatible with other GPIO devices, but have no relation to GPIO pins, such as CPUTem-
perature (page 192), TimeOfDay (page 190), PingServer (page 191) and LoadAverage (page 193) are
also provided.
GPIO Zero features support for multiple pin libraries. The default is to use RPi.GPIO to control the pins, but you
can choose to use another library, such as pigpio, which supports network controlled GPIO. See Changing the pin
factory (page 223) and Configuring Remote GPIO (page 45) for more information.
It is possible to run GPIO Zero on your PC, both for remote GPIO and for testing purposes, using Mock pins
(page 225).
Another feature of this library is configuring devices to be connected together in a logical way, for example in one
line you can say that an LED and button are “paired”, i.e. the button being pressed turns the LED on. Read about
this in Source/Values (page 61).

11.8 FAQs

Note the following FAQs which may catch out users too familiar with RPi.GPIO:
• How do I keep my script running? (page 79)
• Why do I get PinFactoryFallback warnings when I import gpiozero? (page 81)
• What’s the gpiozero equivalent of GPIO.cleanup()? (page 83)

98 Chapter 11. Migrating from RPi.GPIO

CHAPTER

TWELVE

CONTRIBUTING

Contributions to the library are welcome! Here are some guidelines to follow.

12.1 Suggestions

Please make suggestions for additional components or enhancements to the codebase by opening an issue82 explaining
your reasoning clearly.

12.2 Bugs

Please submit bug reports by opening an issue83 explaining the problem clearly using code examples.

12.3 Documentation

The documentation source lives in the docs84 folder. Contributions to the documentation are welcome but should be
easy to read and understand.

12.4 Commit messages and pull requests

Commit messages should be concise but descriptive, and in the form of a patch description, i.e. instructional not past
tense (“Add LED example” not “Added LED example”).
Commits which close (or intend to close) an issue should include the phrase “fix #123” or “close #123” where #123
is the issue number, as well as include a short description, for example: “Add LED example, close #123”, and pull
requests should aim to match or closely match the corresponding issue title.
Copyrights on submissions are owned by their authors (we don’t bother with copyright assignments), and we assume
that authors are happy for their code to be released under the project’s license (page 255). Do feel free to add your
name to the list of contributors in README.rst at the top level of the project in your pull request! Don’t worry
about adding your name to the copyright headers in whatever files you touch; these are updated automatically from
the git metadata before each release.

82 https://github.com/gpiozero/gpiozero/issues/new
83 https://github.com/gpiozero/gpiozero/issues/new
84 https://github.com/gpiozero/gpiozero/tree/master/docs

99

https://github.com/gpiozero/gpiozero/issues/new
https://github.com/gpiozero/gpiozero/issues/new
https://github.com/gpiozero/gpiozero/tree/master/docs

gpiozero 2.0.1 Documentation, Release 2.0.1

12.5 Backwards compatibility

Since this library reached v1.0 we aim to maintain backwards-compatibility thereafter. Changes which break
backwards-compatibility will not be accepted.

12.6 Python 2/3

The library is 100% compatible with both Python 2.7 and Python 3 from version 3.2 onwards. Since Python 2 is now
past its end-of-life85, the 1.6.2 release (2021-03-18) is the last to support Python 2.

85 http://legacy.python.org/dev/peps/pep-0373/

100 Chapter 12. Contributing

http://legacy.python.org/dev/peps/pep-0373/

CHAPTER

THIRTEEN

DEVELOPMENT

The main GitHub repository for the project can be found at:
https://github.com/gpiozero/gpiozero

For anybody wishing to hack on the project, we recommend starting off by getting to grips with some simple de-
vice classes. Pick something like LED (page 125) and follow its heritage backward to DigitalOutputDevice
(page 141). Follow that back to OutputDevice (page 144) and you should have a good understanding of simple
output devices along with a grasp of how GPIO Zero relies fairly heavily upon inheritance to refine the functionality
of devices. The same can be done for input devices, and eventually more complex devices (composites and SPI
based).

13.1 Development installation

If you wish to develop GPIO Zero itself, we recommend obtaining the source by cloning the GitHub repository and
then use the “develop” target of the Makefile which will install the package as a link to the cloned repository allowing
in-place development (it also builds a tags file for use with vim/emacs with Exuberant’s ctags utility). The following
example demonstrates this method within a virtual Python environment:

$ sudo apt install lsb-release build-essential git exuberant-ctags \
virtualenvwrapper python-virtualenv python3-virtualenv \
python-dev python3-dev

After installing virtualenvwrapper you’ll need to restart your shell before commands like mkvirtualenv
will operate correctly. Once you’ve restarted your shell, continue:

$ cd
$ mkvirtualenv -p /usr/bin/python3 gpiozero
$ workon gpiozero
(gpiozero) $ git clone https://github.com/gpiozero/gpiozero.git
(gpiozero) $ cd gpiozero
(gpiozero) $ make develop

You will likely wish to install one or more pin implementations within the virtual environment (if you don’t, GPIO
Zero will use the “native” pin implementation which is usable at this stage, but doesn’t support facilities like PWM):

(gpiozero) $ pip install rpi.gpio pigpio

If you are working on SPI devices you may also wish to install the spidev package to provide hardware SPI capa-
bilities (again, GPIO Zero will work without this, but a big-banging software SPI implementation will be used instead
which limits bandwidth):

(gpiozero) $ pip install spidev

To pull the latest changes from git into your clone and update your installation:

101

https://github.com/gpiozero/gpiozero

gpiozero 2.0.1 Documentation, Release 2.0.1

$ workon gpiozero
(gpiozero) $ cd ~/gpiozero
(gpiozero) $ git pull
(gpiozero) $ make develop

To remove your installation, destroy the sandbox and the clone:

(gpiozero) $ deactivate
$ rmvirtualenv gpiozero
$ rm -rf ~/gpiozero

13.2 Building the docs

If you wish to build the docs, you’ll need a few more dependencies. Inkscape is used for conversion of SVGs to
other formats, Graphviz is used for rendering certain charts, and TeX Live is required for building PDF output. The
following command should install all required dependencies:

$ sudo apt install texlive-latex-recommended texlive-latex-extra \
texlive-fonts-recommended texlive-xetex graphviz inkscape \
python3-sphinx python3-sphinx-rtd-theme latexmk xindy

Once these are installed, you can use the “doc” target to build the documentation:

$ workon gpiozero
(gpiozero) $ cd ~/gpiozero
(gpiozero) $ make doc

The HTML output is written to build/html while the PDF output goes to build/latex.

13.3 Test suite

If you wish to run the GPIO Zero test suite, follow the instructions in Development installation (page 101) above and
then make the “test” target within the sandbox. You’ll also need to install some pip packages:

$ workon gpiozero
(gpiozero) $ pip install coverage mock pytest
(gpiozero) $ cd ~/gpiozero
(gpiozero) $ make test

The test suite expects pins 22 and 27 (by default) to be wired together in order to run the “real” pin tests. The pins
used by the test suite can be overridden with the environment variables GPIOZERO_TEST_PIN (defaults to 22) and
GPIOZERO_TEST_INPUT_PIN (defaults to 27).

Warning: When wiring GPIOs together, ensure a load (like a 1KΩ resistor) is placed between them. Failure to
do so may lead to blown GPIO pins (your humble author has a fried GPIO27 as a result of such laziness, although
it did take many runs of the test suite before this occurred!).

The test suite is also setup for usage with the tox utility, in which case it will attempt to execute the test suite with
all supported versions of Python. If you are developing under Ubuntu you may wish to look into the Dead Snakes
PPA86 in order to install old/new versions of Python; the tox setup should work with the version of tox shipped with
Ubuntu Xenial, but more features (like parallel test execution) are available with later versions.
On the subject of parallel test execution, this is also supported in the tox setup, including the “real” pin tests (a
file-system level lock is used to ensure different interpreters don’t try to access the physical pins simultaneously).

86 https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa

102 Chapter 13. Development

https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa
https://launchpad.net/~deadsnakes/%2Barchive/ubuntu/ppa

gpiozero 2.0.1 Documentation, Release 2.0.1

For example, to execute the test suite under tox, skipping interpreter versions which are not installed:

$ tox -s

To execute the test suite under all installed interpreter versions in parallel, using as many parallel tasks as there are
CPUs, then displaying a combined report of coverage from all environments:

$ tox -p auto -s
$ coverage combine --rcfile coverage.cfg
$ coverage report --rcfile coverage.cfg

13.4 Mock pins

The test suite largely depends on the existence of the mock pin factory MockFactory (page 237), which is also
useful for manual testing, for example in the Python shell or another REPL. See the section onMock pins (page 225)
in the API - Pins (page 221) chapter for more information.

13.4. Mock pins 103

gpiozero 2.0.1 Documentation, Release 2.0.1

104 Chapter 13. Development

CHAPTER

FOURTEEN

API - INPUT DEVICES

These input device component interfaces have been provided for simple use of everyday components. Components
must be wired up correctly before use in code.

Note: All GPIO pin numbers use Broadcom (BCM) numbering by default. See the Pin Numbering (page 3) section
for more information.

14.1 Regular Classes

The following classes are intended for general use with the devices they represent. All classes in this section are
concrete (not abstract).

14.1.1 Button

class gpiozero.Button(*args, **kwargs)
Extends DigitalInputDevice (page 119) and represents a simple push button or switch.
Connect one side of the button to a ground pin, and the other to any GPIO pin. Alternatively, connect one
side of the button to the 3V3 pin, and the other to any GPIO pin, then set pull_up to False87 in the Button
(page 105) constructor.
The following example will print a line of text when the button is pushed:

from gpiozero import Button

button = Button(4)
button.wait_for_press()
print("The button was pressed!")

Parameters
• pin (int88 or str89) – The GPIO pin which the button is connected to. See Pin

Numbering (page 3) for valid pin numbers. If this is None90 a GPIODeviceError
(page 241) will be raised.

• pull_up (bool91 or None) – If True92 (the default), the GPIO pin will be pulled
high by default. In this case, connect the other side of the button to ground. If False93,
the GPIO pin will be pulled low by default. In this case, connect the other side of the
button to 3V3. If None94, the pin will be floating, so it must be externally pulled up or
down and the active_state parameter must be set accordingly.

• active_state (bool95 or None) – See description under InputDevice
(page 121) for more information.

105

https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool

gpiozero 2.0.1 Documentation, Release 2.0.1

• bounce_time (float96 or None) – If None97 (the default), no software bounce
compensation will be performed. Otherwise, this is the length of time (in seconds) that
the component will ignore changes in state after an initial change.

• hold_time (float98) – The length of time (in seconds) to wait after the button is
pushed, until executing the when_held (page 106) handler. Defaults to 1.

• hold_repeat (bool99) – If True100, the when_held (page 106) handler will be
repeatedly executed as long as the device remains active, every hold_time seconds. If
False101 (the default) the when_held (page 106) handler will be only be executed
once per hold.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

wait_for_press(timeout=None)

Pause the script until the device is activated, or the timeout is reached.
Parameters

timeout (float102 or None) – Number of seconds to wait before proceeding. If
this is None103 (the default), then wait indefinitely until the device is active.

wait_for_release(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters
timeout (float104 or None) – Number of seconds to wait before proceeding. If
this is None105 (the default), then wait indefinitely until the device is inactive.

property held_time

The length of time (in seconds) that the device has been held for. This is counted from the first exe-
cution of the when_held (page 106) event rather than when the device activated, in contrast to ac-
tive_time (page 201). If the device is not currently held, this is None106.

property hold_repeat

If True107, when_held (page 106) will be executed repeatedly with hold_time (page 106) seconds
between each invocation.

property hold_time

The length of time (in seconds) to wait after the device is activated, until executing the when_held
(page 106) handler. If hold_repeat (page 106) is True, this is also the length of time between
invocations of when_held (page 106).

property is_held

When True108, the device has been active for at least hold_time (page 106) seconds.
property is_pressed

Returns True109 if the device is currently active and False110 otherwise. This property is usually
derived from value (page 106). Unlike value (page 106), this is always a boolean.

property pin

The Pin (page 227) that the device is connected to. This will be None111 if the device has been closed
(see the close() (page 199) method). When dealing with GPIO pins, query pin.number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property pull_up

If True112, the device uses a pull-up resistor to set the GPIO pin “high” by default.
property value

Returns 1 if the button is currently pressed, and 0 if it is not.

106 Chapter 14. API - Input Devices

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

when_held

The function to run when the device has remained active for hold_time (page 106) seconds.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.
Set this property to None113 (the default) to disable the event.

when_pressed

The function to run when the device changes state from inactive to active.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None114 (the default) to disable the event.

when_released

The function to run when the device changes state from active to inactive.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated it will be passed as that parameter.
Set this property to None115 (the default) to disable the event.

87 https://docs.python.org/3.9/library/constants.html#False
88 https://docs.python.org/3.9/library/functions.html#int
89 https://docs.python.org/3.9/library/stdtypes.html#str
90 https://docs.python.org/3.9/library/constants.html#None
91 https://docs.python.org/3.9/library/functions.html#bool
92 https://docs.python.org/3.9/library/constants.html#True
93 https://docs.python.org/3.9/library/constants.html#False
94 https://docs.python.org/3.9/library/constants.html#None
95 https://docs.python.org/3.9/library/functions.html#bool
96 https://docs.python.org/3.9/library/functions.html#float
97 https://docs.python.org/3.9/library/constants.html#None
98 https://docs.python.org/3.9/library/functions.html#float
99 https://docs.python.org/3.9/library/functions.html#bool
100 https://docs.python.org/3.9/library/constants.html#True
101 https://docs.python.org/3.9/library/constants.html#False
102 https://docs.python.org/3.9/library/functions.html#float
103 https://docs.python.org/3.9/library/constants.html#None
104 https://docs.python.org/3.9/library/functions.html#float
105 https://docs.python.org/3.9/library/constants.html#None
106 https://docs.python.org/3.9/library/constants.html#None
107 https://docs.python.org/3.9/library/constants.html#True
108 https://docs.python.org/3.9/library/constants.html#True
109 https://docs.python.org/3.9/library/constants.html#True
110 https://docs.python.org/3.9/library/constants.html#False
111 https://docs.python.org/3.9/library/constants.html#None
112 https://docs.python.org/3.9/library/constants.html#True
113 https://docs.python.org/3.9/library/constants.html#None
114 https://docs.python.org/3.9/library/constants.html#None
115 https://docs.python.org/3.9/library/constants.html#None

14.1. Regular Classes 107

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

14.1.2 LineSensor (TRCT5000)

class gpiozero.LineSensor(*args, **kwargs)

Extends SmoothedInputDevice (page 120) and represents a single pin line sensor like the TCRT5000
infra-red proximity sensor found in the CamJam #3 EduKit116.
A typical line sensor has a small circuit board with three pins: VCC, GND, andOUT. VCC should be connected
to a 3V3 pin, GND to one of the ground pins, and finally OUT to the GPIO specified as the value of the pin
parameter in the constructor.
The following code will print a line of text indicating when the sensor detects a line, or stops detecting a line:

from gpiozero import LineSensor
from signal import pause

sensor = LineSensor(4)
sensor.when_line = lambda: print('Line detected')
sensor.when_no_line = lambda: print('No line detected')
pause()

Parameters
• pin (int117 or str118) – The GPIO pin which the sensor is connected to. See Pin

Numbering (page 3) for valid pin numbers. If this is None119 a GPIODeviceError
(page 241) will be raised.

• pull_up (bool120 or None) – See description under InputDevice (page 121)
for more information.

• active_state (bool121 or None) – See description under InputDevice
(page 121) for more information.

• queue_len (int122) – The length of the queue used to store values read from the sensor.
This defaults to 5.

• sample_rate (float123) – The number of values to read from the device (and append
to the internal queue) per second. Defaults to 100.

• threshold (float124) – Defaults to 0.5. When the average of all values in the internal
queue rises above this value, the sensor will be considered “active” by the is_active
(page 121) property, and all appropriate events will be fired.

• partial (bool125) – When False126 (the default), the object will not return a value
for is_active (page 121) until the internal queue has filled with values. Only set this
to True127 if you require values immediately after object construction.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

wait_for_line(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters
timeout (float128 or None) – Number of seconds to wait before proceeding. If
this is None129 (the default), then wait indefinitely until the device is inactive.

wait_for_no_line(timeout=None)

Pause the script until the device is activated, or the timeout is reached.
Parameters

timeout (float130 or None) – Number of seconds to wait before proceeding. If
this is None131 (the default), then wait indefinitely until the device is active.

108 Chapter 14. API - Input Devices

http://camjam.me/?page_id=1035
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

property pin

The Pin (page 227) that the device is connected to. This will be None132 if the device has been closed
(see the close() (page 199) method). When dealing with GPIO pins, query pin.number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property value

Returns a value representing the average of the queued values. This is nearer 0 for black under the sensor,
and nearer 1 for white under the sensor.

when_line

The function to run when the device changes state from active to inactive.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated it will be passed as that parameter.
Set this property to None133 (the default) to disable the event.

when_no_line

The function to run when the device changes state from inactive to active.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None134 (the default) to disable the event.

14.1.3 MotionSensor (D-SUN PIR)

class gpiozero.MotionSensor(*args, **kwargs)
Extends SmoothedInputDevice (page 120) and represents a passive infra-red (PIR) motion sensor like
the sort found in the CamJam #2 EduKit135.
A typical PIR device has a small circuit board with three pins: VCC,OUT, andGND.VCC should be connected
to a 5V pin, GND to one of the ground pins, and finally OUT to the GPIO specified as the value of the pin
parameter in the constructor.
The following code will print a line of text when motion is detected:

from gpiozero import MotionSensor

pir = MotionSensor(4)
pir.wait_for_motion()
print("Motion detected!")

116 http://camjam.me/?page_id=1035
117 https://docs.python.org/3.9/library/functions.html#int
118 https://docs.python.org/3.9/library/stdtypes.html#str
119 https://docs.python.org/3.9/library/constants.html#None
120 https://docs.python.org/3.9/library/functions.html#bool
121 https://docs.python.org/3.9/library/functions.html#bool
122 https://docs.python.org/3.9/library/functions.html#int
123 https://docs.python.org/3.9/library/functions.html#float
124 https://docs.python.org/3.9/library/functions.html#float
125 https://docs.python.org/3.9/library/functions.html#bool
126 https://docs.python.org/3.9/library/constants.html#False
127 https://docs.python.org/3.9/library/constants.html#True
128 https://docs.python.org/3.9/library/functions.html#float
129 https://docs.python.org/3.9/library/constants.html#None
130 https://docs.python.org/3.9/library/functions.html#float
131 https://docs.python.org/3.9/library/constants.html#None
132 https://docs.python.org/3.9/library/constants.html#None
133 https://docs.python.org/3.9/library/constants.html#None
134 https://docs.python.org/3.9/library/constants.html#None

14.1. Regular Classes 109

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
http://camjam.me/?page_id=623

gpiozero 2.0.1 Documentation, Release 2.0.1

Parameters

• pin (int136 or str137) – The GPIO pin which the sensor is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None138 a GPIODeviceError
(page 241) will be raised.

• pull_up (bool139 or None) – See description under InputDevice (page 121)
for more information.

• active_state (bool140 or None) – See description under InputDevice
(page 121) for more information.

• queue_len (int141) – The length of the queue used to store values read from the sensor.
This defaults to 1 which effectively disables the queue. If your motion sensor is particularly
“twitchy” you may wish to increase this value.

• sample_rate (float142) – The number of values to read from the device (and append
to the internal queue) per second. Defaults to 10.

• threshold (float143) – Defaults to 0.5. When the average of all values in the internal
queue rises above this value, the sensor will be considered “active” by the is_active
(page 121) property, and all appropriate events will be fired.

• partial (bool144) – When False145 (the default), the object will not return a value
for is_active (page 121) until the internal queue has filled with values. Only set this
to True146 if you require values immediately after object construction.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

wait_for_motion(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters
timeout (float147 or None) – Number of seconds to wait before proceeding. If
this is None148 (the default), then wait indefinitely until the device is active.

wait_for_no_motion(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters
timeout (float149 or None) – Number of seconds to wait before proceeding. If
this is None150 (the default), then wait indefinitely until the device is inactive.

property motion_detected

Returns True151 if the value (page 121) currently exceeds threshold (page 121) and False152
otherwise.

property pin

The Pin (page 227) that the device is connected to. This will be None153 if the device has been closed
(see the close() (page 199) method). When dealing with GPIO pins, query pin.number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property value

With the default queue_len of 1, this is effectively boolean where 0 means no motion detected and 1
means motion detected. If you specify a queue_len greater than 1, this will be an averaged value where
values closer to 1 imply motion detection.

when_motion

The function to run when the device changes state from inactive to active.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.

110 Chapter 14. API - Input Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

Set this property to None154 (the default) to disable the event.
when_no_motion

The function to run when the device changes state from active to inactive.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated it will be passed as that parameter.
Set this property to None155 (the default) to disable the event.

14.1.4 LightSensor (LDR)

class gpiozero.LightSensor(*args, **kwargs)

Extends SmoothedInputDevice (page 120) and represents a light dependent resistor (LDR).
Connect one leg of the LDR to the 3V3 pin; connect one leg of a 1µF capacitor to a ground pin; connect the
other leg of the LDR and the other leg of the capacitor to the same GPIO pin. This class repeatedly discharges
the capacitor, then times the duration it takes to charge (which will vary according to the light falling on the
LDR).
The following code will print a line of text when light is detected:

from gpiozero import LightSensor

ldr = LightSensor(18)
ldr.wait_for_light()
print("Light detected!")

Parameters

• pin (int156 or str157) – The GPIO pin which the sensor is attached to. See Pin
Numbering (page 3) for valid pin numbers. If this is None158 a GPIODeviceError
(page 241) will be raised.

• queue_len (int159) – The length of the queue used to store values read from the circuit.
This defaults to 5.

• charge_time_limit (float160) – If the capacitor in the circuit takes longer than
this length of time to charge, it is assumed to be dark. The default (0.01 seconds) is
appropriate for a 1µF capacitor coupled with the LDR from the CamJam #2 EduKit161.
You may need to adjust this value for different valued capacitors or LDRs.

135 http://camjam.me/?page_id=623
136 https://docs.python.org/3.9/library/functions.html#int
137 https://docs.python.org/3.9/library/stdtypes.html#str
138 https://docs.python.org/3.9/library/constants.html#None
139 https://docs.python.org/3.9/library/functions.html#bool
140 https://docs.python.org/3.9/library/functions.html#bool
141 https://docs.python.org/3.9/library/functions.html#int
142 https://docs.python.org/3.9/library/functions.html#float
143 https://docs.python.org/3.9/library/functions.html#float
144 https://docs.python.org/3.9/library/functions.html#bool
145 https://docs.python.org/3.9/library/constants.html#False
146 https://docs.python.org/3.9/library/constants.html#True
147 https://docs.python.org/3.9/library/functions.html#float
148 https://docs.python.org/3.9/library/constants.html#None
149 https://docs.python.org/3.9/library/functions.html#float
150 https://docs.python.org/3.9/library/constants.html#None
151 https://docs.python.org/3.9/library/constants.html#True
152 https://docs.python.org/3.9/library/constants.html#False
153 https://docs.python.org/3.9/library/constants.html#None
154 https://docs.python.org/3.9/library/constants.html#None
155 https://docs.python.org/3.9/library/constants.html#None

14.1. Regular Classes 111

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
http://camjam.me/?page_id=623

gpiozero 2.0.1 Documentation, Release 2.0.1

• threshold (float162) – Defaults to 0.1. When the average of all values in the internal
queue rises above this value, the area will be considered “light”, and all appropriate events
will be fired.

• partial (bool163) – When False164 (the default), the object will not return a value
for is_active (page 121) until the internal queue has filled with values. Only set this
to True165 if you require values immediately after object construction.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

wait_for_dark(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters
timeout (float166 or None) – Number of seconds to wait before proceeding. If
this is None167 (the default), then wait indefinitely until the device is inactive.

wait_for_light(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters
timeout (float168 or None) – Number of seconds to wait before proceeding. If
this is None169 (the default), then wait indefinitely until the device is active.

property light_detected

Returns True170 if the value (page 121) currently exceeds threshold (page 121) and False171
otherwise.

property pin

The Pin (page 227) that the device is connected to. This will be None172 if the device has been closed
(see the close() (page 199) method). When dealing with GPIO pins, query pin.number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property value

Returns a value between 0 (dark) and 1 (light).
when_dark

The function to run when the device changes state from active to inactive.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated it will be passed as that parameter.
Set this property to None173 (the default) to disable the event.

when_light

The function to run when the device changes state from inactive to active.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None174 (the default) to disable the event.

112 Chapter 14. API - Input Devices

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

14.1.5 DistanceSensor (HC-SR04)

class gpiozero.DistanceSensor(*args, **kwargs)

Extends SmoothedInputDevice (page 120) and represents an HC-SR04 ultrasonic distance sensor, as
found in the CamJam #3 EduKit175.
The distance sensor requires two GPIO pins: one for the trigger (marked TRIG on the sensor) and another
for the echo (marked ECHO on the sensor). However, a voltage divider is required to ensure the 5V from the
ECHO pin doesn’t damage the Pi. Wire your sensor according to the following instructions:
1. Connect the GND pin of the sensor to a ground pin on the Pi.
2. Connect the TRIG pin of the sensor a GPIO pin.
3. Connect one end of a 330Ω resistor to the ECHO pin of the sensor.
4. Connect one end of a 470Ω resistor to the GND pin of the sensor.
5. Connect the free ends of both resistors to another GPIO pin. This forms the required voltage divider176.
6. Finally, connect the VCC pin of the sensor to a 5V pin on the Pi.

Alternatively, the 3V3 tolerant HC-SR04P sensor (which does not require a voltage divider) will work with
this class.

Note: If you do not have the precise values of resistor specified above, don’t worry! What matters is the ratio
of the resistors to each other.
You also don’t need to be absolutely precise; the voltage divider177 given above will actually output ~3V (rather
than 3.3V). A simple 2:3 ratio will give 3.333V which implies you can take three resistors of equal value, use
one of them instead of the 330Ω resistor, and two of them in series instead of the 470Ω resistor.

The following code will periodically report the distance measured by the sensor in cm assuming the TRIG pin
is connected to GPIO17, and the ECHO pin to GPIO18:

from gpiozero import DistanceSensor
from time import sleep

sensor = DistanceSensor(echo=18, trigger=17)
while True:

print('Distance: ', sensor.distance * 100)
sleep(1)

Note: For improved accuracy, use the pigpio pin driver rather than the default RPi.GPIO driver (pigpio uses
DMA sampling for much more precise edge timing). This is particularly relevant if you’re using Pi 1 or Pi

156 https://docs.python.org/3.9/library/functions.html#int
157 https://docs.python.org/3.9/library/stdtypes.html#str
158 https://docs.python.org/3.9/library/constants.html#None
159 https://docs.python.org/3.9/library/functions.html#int
160 https://docs.python.org/3.9/library/functions.html#float
161 http://camjam.me/?page_id=623
162 https://docs.python.org/3.9/library/functions.html#float
163 https://docs.python.org/3.9/library/functions.html#bool
164 https://docs.python.org/3.9/library/constants.html#False
165 https://docs.python.org/3.9/library/constants.html#True
166 https://docs.python.org/3.9/library/functions.html#float
167 https://docs.python.org/3.9/library/constants.html#None
168 https://docs.python.org/3.9/library/functions.html#float
169 https://docs.python.org/3.9/library/constants.html#None
170 https://docs.python.org/3.9/library/constants.html#True
171 https://docs.python.org/3.9/library/constants.html#False
172 https://docs.python.org/3.9/library/constants.html#None
173 https://docs.python.org/3.9/library/constants.html#None
174 https://docs.python.org/3.9/library/constants.html#None

14.1. Regular Classes 113

http://camjam.me/?page_id=1035
https://en.wikipedia.org/wiki/Voltage_divider
https://en.wikipedia.org/wiki/Voltage_divider

gpiozero 2.0.1 Documentation, Release 2.0.1

Zero. See Changing the pin factory (page 223) for further information.

Parameters
• echo (int178 or str179) – The GPIO pin which the ECHO pin is connected to. See

Pin Numbering (page 3) for valid pin numbers. If this is None180 a GPIODeviceError
(page 241) will be raised.

• trigger (int181 or str182) – The GPIO pin which the TRIG pin is connected
to. See Pin Numbering (page 3) for valid pin numbers. If this is None183 a GPIODe-
viceError (page 241) will be raised.

• queue_len (int184) – The length of the queue used to store values read from the sensor.
This defaults to 9.

• max_distance (float185) – The value (page 115) attribute reports a normalized
value between 0 (too close to measure) and 1 (maximum distance). This parameter spec-
ifies the maximum distance expected in meters. This defaults to 1.

• threshold_distance (float186) – Defaults to 0.3. This is the distance (in meters)
that will trigger the in_range and out_of_range events when crossed.

• partial (bool187) – When False188 (the default), the object will not return a value
for is_active (page 121) until the internal queue has filled with values. Only set this
to True189 if you require values immediately after object construction.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

wait_for_in_range(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters
timeout (float190 or None) – Number of seconds to wait before proceeding. If
this is None191 (the default), then wait indefinitely until the device is inactive.

wait_for_out_of_range(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters
timeout (float192 or None) – Number of seconds to wait before proceeding. If
this is None193 (the default), then wait indefinitely until the device is active.

property distance

Returns the current distance measured by the sensor in meters. Note that this property will have a value
between 0 and max_distance (page 114).

property echo

Returns the Pin (page 227) that the sensor’s echo is connected to. This is simply an alias for the usual
pin (page 123) attribute.

property max_distance

The maximum distance that the sensor will measure in meters. This value is specified in the constructor
and is used to provide the scaling for the value (page 121) attribute. When distance (page 114) is
equal to max_distance (page 114), value (page 121) will be 1.

property threshold_distance

The distance, measured in meters, that will trigger the when_in_range (page 115) and
when_out_of_range (page 115) events when crossed. This is simply a meter-scaled variant of
the usual threshold (page 121) attribute.

114 Chapter 14. API - Input Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

property trigger

Returns the Pin (page 227) that the sensor’s trigger is connected to.
property value

Returns a value between 0, indicating the reflector is either touching the sensor or is sufficiently near
that the sensor can’t tell the difference, and 1, indicating the reflector is at or beyond the specified
max_distance.

when_in_range

The function to run when the device changes state from active to inactive.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated it will be passed as that parameter.
Set this property to None194 (the default) to disable the event.

when_out_of_range

The function to run when the device changes state from inactive to active.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None195 (the default) to disable the event.

14.1.6 RotaryEncoder

class gpiozero.RotaryEncoder(*args, **kwargs)

Represents a simple two-pin incremental rotary encoder196 device.
These devices typically have three pins labelled “A”, “B”, and “C”. Connect A and B directly to two GPIO
pins, and C (“common”) to one of the ground pins on your Pi. Then simply specify the A and B pins as the
arguments when constructing this classs.
For example, if your encoder’s A pin is connected to GPIO 21, and the B pin to GPIO 20 (and presumably
the C pin to a suitable GND pin), while an LED (with a suitable 300Ω resistor) is connected to GPIO 5, the
following session will result in the brightness of the LED being controlled by dialling the rotary encoder back
and forth:

175 http://camjam.me/?page_id=1035
176 https://en.wikipedia.org/wiki/Voltage_divider
177 https://en.wikipedia.org/wiki/Voltage_divider
178 https://docs.python.org/3.9/library/functions.html#int
179 https://docs.python.org/3.9/library/stdtypes.html#str
180 https://docs.python.org/3.9/library/constants.html#None
181 https://docs.python.org/3.9/library/functions.html#int
182 https://docs.python.org/3.9/library/stdtypes.html#str
183 https://docs.python.org/3.9/library/constants.html#None
184 https://docs.python.org/3.9/library/functions.html#int
185 https://docs.python.org/3.9/library/functions.html#float
186 https://docs.python.org/3.9/library/functions.html#float
187 https://docs.python.org/3.9/library/functions.html#bool
188 https://docs.python.org/3.9/library/constants.html#False
189 https://docs.python.org/3.9/library/constants.html#True
190 https://docs.python.org/3.9/library/functions.html#float
191 https://docs.python.org/3.9/library/constants.html#None
192 https://docs.python.org/3.9/library/functions.html#float
193 https://docs.python.org/3.9/library/constants.html#None
194 https://docs.python.org/3.9/library/constants.html#None
195 https://docs.python.org/3.9/library/constants.html#None

14.1. Regular Classes 115

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://en.wikipedia.org/wiki/Rotary_encoder

gpiozero 2.0.1 Documentation, Release 2.0.1

>>> from gpiozero import RotaryEncoder
>>> from gpiozero.tools import scaled_half
>>> rotor = RotaryEncoder(21, 20)
>>> led = PWMLED(5)
>>> led.source = scaled_half(rotor.values)

Parameters
• a (int197 or str198) – The GPIO pin connected to the “A” output of the rotary
encoder.

• b (int199 or str200) – The GPIO pin connected to the “B” output of the rotary
encoder.

• bounce_time (float201 or None) – If None202 (the default), no software bounce
compensation will be performed. Otherwise, this is the length of time (in seconds) that
the component will ignore changes in state after an initial change.

• max_steps (int203) – The number of steps clockwise the encoder takes to change the
value (page 117) from 0 to 1, or counter-clockwise from 0 to -1. If this is 0, then the
encoder’s value (page 117) never changes, but you can still read steps (page 116)
to determine the integer number of steps the encoder has moved clockwise or counter
clockwise.

• threshold_steps (tuple204 of int205) – A (min, max) tuple of steps between
which the device will be considered “active”, inclusive. In other words, when steps
(page 116) is greater than or equal to the min value, and less than or equal the max value,
the active property will be True206 and the appropriate events (when_activated,
when_deactivated) will be fired. Defaults to (0, 0).

• wrap (bool207) – If True208 and max_steps is non-zero, when the steps (page 116)
reaches positive or negativemax_steps it wraps around by negation. Defaults to False209.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

wait_for_rotate(timeout=None)
Pause the script until the encoder is rotated at least one step in either direction, or the timeout is reached.

Parameters
timeout (float210 or None) – Number of seconds to wait before proceeding. If
this is None211 (the default), then wait indefinitely until the encoder is rotated.

wait_for_rotate_clockwise(timeout=None)

Pause the script until the encoder is rotated at least one step clockwise, or the timeout is reached.
Parameters

timeout (float212 or None) – Number of seconds to wait before proceeding. If
this is None213 (the default), then wait indefinitely until the encoder is rotated clockwise.

wait_for_rotate_counter_clockwise(timeout=None)
Pause the script until the encoder is rotated at least one step counter-clockwise, or the timeout is reached.

Parameters
timeout (float214 or None) – Number of seconds to wait before proceeding. If
this is None215 (the default), then wait indefinitely until the encoder is rotated counter-
clockwise.

property max_steps

The number of discrete steps the rotary encoder takes to move value (page 117) from 0 to 1 clockwise,
or 0 to -1 counter-clockwise. In another sense, this is also the total number of discrete states this input
can represent.

116 Chapter 14. API - Input Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

property steps

The “steps” value of the encoder starts at 0. It increments by one for every step the encoder is rotated
clockwise, and decrements by one for every step it is rotated counter-clockwise. The steps value is limited
by max_steps (page 116). It will not advance beyond positive or negative max_steps (page 116),
unless wrap (page 117) is True216 in which case it will roll around by negation. If max_steps
(page 116) is zero then steps are not limited at all, and will increase infinitely in either direction, but
value (page 117) will return a constant zero.
Note that, in contrast to most other input devices, because the rotary encoder has no absolute position
the steps (page 116) attribute (and value (page 117) by corollary) is writable.

property threshold_steps

Themininum andmaximum number of steps between whichis_activewill returnTrue217. Defaults
to (0, 0).

property value

Represents the value of the rotary encoder as a value between -1 and 1. The value is calculated by
dividing the value of steps (page 116) into the range from negative max_steps (page 116) to positive
max_steps (page 116).
Note that, in contrast to most other input devices, because the rotary encoder has no absolute position
the value (page 117) attribute is writable.

when_rotated

The function to be run when the encoder is rotated in either direction.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.
Set this property to None218 (the default) to disable the event.

when_rotated_clockwise

The function to be run when the encoder is rotated clockwise.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.
Set this property to None219 (the default) to disable the event.

when_rotated_counter_clockwise

The function to be run when the encoder is rotated counter-clockwise.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.
Set this property to None220 (the default) to disable the event.

property wrap

If True221, when value (page 117) reaches its limit (-1 or 1), it “wraps around” to the opposite limit.
When False222, the value (and the corresponding steps (page 116) attribute) simply don’t advance
beyond their limits.

14.1. Regular Classes 117

https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

14.2 Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract. The
classes form the (partial) hierarchy displayed in the graph below (abstract classes are shaded lighter than concrete
classes):

GPIODevice

SmoothedInputDevice

InputDevice

Button

DigitalInputDevice

DistanceSensor

LightSensor

LineSensor

MotionSensor

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.
196 https://en.wikipedia.org/wiki/Rotary_encoder
197 https://docs.python.org/3.9/library/functions.html#int
198 https://docs.python.org/3.9/library/stdtypes.html#str
199 https://docs.python.org/3.9/library/functions.html#int
200 https://docs.python.org/3.9/library/stdtypes.html#str
201 https://docs.python.org/3.9/library/functions.html#float
202 https://docs.python.org/3.9/library/constants.html#None
203 https://docs.python.org/3.9/library/functions.html#int
204 https://docs.python.org/3.9/library/stdtypes.html#tuple
205 https://docs.python.org/3.9/library/functions.html#int
206 https://docs.python.org/3.9/library/constants.html#True
207 https://docs.python.org/3.9/library/functions.html#bool
208 https://docs.python.org/3.9/library/constants.html#True
209 https://docs.python.org/3.9/library/constants.html#False
210 https://docs.python.org/3.9/library/functions.html#float
211 https://docs.python.org/3.9/library/constants.html#None
212 https://docs.python.org/3.9/library/functions.html#float
213 https://docs.python.org/3.9/library/constants.html#None
214 https://docs.python.org/3.9/library/functions.html#float
215 https://docs.python.org/3.9/library/constants.html#None
216 https://docs.python.org/3.9/library/constants.html#True
217 https://docs.python.org/3.9/library/constants.html#True
218 https://docs.python.org/3.9/library/constants.html#None
219 https://docs.python.org/3.9/library/constants.html#None
220 https://docs.python.org/3.9/library/constants.html#None
221 https://docs.python.org/3.9/library/constants.html#True
222 https://docs.python.org/3.9/library/constants.html#False

118 Chapter 14. API - Input Devices

gpiozero 2.0.1 Documentation, Release 2.0.1

14.2.1 DigitalInputDevice

class gpiozero.DigitalInputDevice(*args, **kwargs)

Represents a generic input device with typical on/off behaviour.
This class extends InputDevice (page 121) with machinery to fire the active and inactive events for devices
that operate in a typical digital manner: straight forward on / off states with (reasonably) clean transitions
between the two.

Parameters
• pin (int223 or str224) – The GPIO pin that the device is connected to. See Pin

Numbering (page 3) for valid pin numbers. If this is None225 a GPIODeviceError
(page 241) will be raised.

• pull_up (bool226 or None) – See description under InputDevice (page 121)
for more information.

• active_state (bool227 or None) – See description under InputDevice
(page 121) for more information.

• bounce_time (float228 or None) – Specifies the length of time (in seconds) that
the component will ignore changes in state after an initial change. This defaults to None229
which indicates that no bounce compensation will be performed.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

wait_for_active(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters
timeout (float230 or None) – Number of seconds to wait before proceeding. If
this is None231 (the default), then wait indefinitely until the device is active.

wait_for_inactive(timeout=None)
Pause the script until the device is deactivated, or the timeout is reached.

Parameters
timeout (float232 or None) – Number of seconds to wait before proceeding. If
this is None233 (the default), then wait indefinitely until the device is inactive.

property active_time

The length of time (in seconds) that the device has been active for. When the device is inactive, this is
None234.

property inactive_time

The length of time (in seconds) that the device has been inactive for. When the device is active, this is
None235.

property value

Returns a value representing the device’s state. Frequently, this is a boolean value, or a number between
0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite devices usually use tuples to
return the states of all their subordinate components.

when_activated

The function to run when the device changes state from inactive to active.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None236 (the default) to disable the event.

14.2. Base Classes 119

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

when_deactivated

The function to run when the device changes state from active to inactive.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated it will be passed as that parameter.
Set this property to None237 (the default) to disable the event.

14.2.2 SmoothedInputDevice

class gpiozero.SmoothedInputDevice(*args, **kwargs)

Represents a generic input device which takes its value from the average of a queue of historical values.
This class extends InputDevice (page 121) with a queue which is filled by a background thread which
continually polls the state of the underlying device. The average (a configurable function) of the values in the
queue is compared to a threshold which is used to determine the state of the is_active (page 121) property.

Note: The background queue is not automatically started upon construction. This is to allow descendents to
set up additional components before the queue starts reading values. Effectively this is an abstract base class.

This class is intended for use with devices which either exhibit analog behaviour (such as the charging time of
a capacitor with an LDR), or those which exhibit “twitchy” behaviour (such as certain motion sensors).

Parameters
• pin (int238 or str239) – The GPIO pin that the device is connected to. See Pin

Numbering (page 3) for valid pin numbers. If this is None240 a GPIODeviceError
(page 241) will be raised.

• pull_up (bool241 or None) – See description under InputDevice (page 121)
for more information.

• active_state (bool242 or None) – See description under InputDevice
(page 121) for more information.

• threshold (float243) – The value above which the device will be considered “on”.
• queue_len (int244) – The length of the internal queue which is filled by the back-
ground thread.

• sample_wait (float245) – The length of time to wait between retrieving the state
of the underlying device. Defaults to 0.0 indicating that values are retrieved as fast as
possible.

• partial (bool246) – If False247 (the default), attempts to read the state of the device
(from the is_active (page 121) property) will block until the queue has filled. If

223 https://docs.python.org/3.9/library/functions.html#int
224 https://docs.python.org/3.9/library/stdtypes.html#str
225 https://docs.python.org/3.9/library/constants.html#None
226 https://docs.python.org/3.9/library/functions.html#bool
227 https://docs.python.org/3.9/library/functions.html#bool
228 https://docs.python.org/3.9/library/functions.html#float
229 https://docs.python.org/3.9/library/constants.html#None
230 https://docs.python.org/3.9/library/functions.html#float
231 https://docs.python.org/3.9/library/constants.html#None
232 https://docs.python.org/3.9/library/functions.html#float
233 https://docs.python.org/3.9/library/constants.html#None
234 https://docs.python.org/3.9/library/constants.html#None
235 https://docs.python.org/3.9/library/constants.html#None
236 https://docs.python.org/3.9/library/constants.html#None
237 https://docs.python.org/3.9/library/constants.html#None

120 Chapter 14. API - Input Devices

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

True248, a value will be returned immediately, but be aware that this value is likely to
fluctuate excessively.

• average – The function used to average the values in the internal queue. This defaults
to statistics.median()249 which is a good selection for discarding outliers from
jittery sensors. The function specified must accept a sequence of numbers and return a
single number.

• ignore (frozenset250 or None) – The set of values which the queue should ignore,
if returned from querying the device’s value.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

property is_active

Returns True251 if the value (page 121) currently exceeds threshold (page 121) and False252
otherwise.

property partial

If False253 (the default), attempts to read the value (page 121) or is_active (page 121) properties
will block until the queue has filled.

property queue_len

The length of the internal queue of values which is averaged to determine the overall state of the device.
This defaults to 5.

property threshold

If value (page 121) exceeds this amount, then is_active (page 121) will return True254.
property value

Returns the average of the values in the internal queue. This is compared to threshold (page 121) to
determine whether is_active (page 121) is True255.

14.2.3 InputDevice

class gpiozero.InputDevice(*args, **kwargs)
Represents a generic GPIO input device.
This class extends GPIODevice (page 122) to add facilities common to GPIO input devices. The constructor
adds the optional pull_up parameter to specify how the pin should be pulled by the internal resistors. The
is_active (page 122) property is adjusted accordingly so that True256 still means active regardless of the
pull_up setting.

Parameters
238 https://docs.python.org/3.9/library/functions.html#int
239 https://docs.python.org/3.9/library/stdtypes.html#str
240 https://docs.python.org/3.9/library/constants.html#None
241 https://docs.python.org/3.9/library/functions.html#bool
242 https://docs.python.org/3.9/library/functions.html#bool
243 https://docs.python.org/3.9/library/functions.html#float
244 https://docs.python.org/3.9/library/functions.html#int
245 https://docs.python.org/3.9/library/functions.html#float
246 https://docs.python.org/3.9/library/functions.html#bool
247 https://docs.python.org/3.9/library/constants.html#False
248 https://docs.python.org/3.9/library/constants.html#True
249 https://docs.python.org/3.9/library/statistics.html#statistics.median
250 https://docs.python.org/3.9/library/stdtypes.html#frozenset
251 https://docs.python.org/3.9/library/constants.html#True
252 https://docs.python.org/3.9/library/constants.html#False
253 https://docs.python.org/3.9/library/constants.html#False
254 https://docs.python.org/3.9/library/constants.html#True
255 https://docs.python.org/3.9/library/constants.html#True

14.2. Base Classes 121

https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/statistics.html#statistics.median
https://docs.python.org/3.9/library/stdtypes.html#frozenset
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

• pin (int257 or str258) – The GPIO pin that the device is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None259 a GPIODeviceError
(page 241) will be raised.

• pull_up (bool260 or None) – If True261, the pin will be pulled high with an internal
resistor. If False262 (the default), the pin will be pulled low. If None263, the pin will be
floating. As gpiozero cannot automatically guess the active state when not pulling the pin,
the active_state parameter must be passed.

• active_state (bool264 or None) – If True265, when the hardware pin state
is HIGH, the software pin is HIGH. If False266, the input polarity is reversed: when
the hardware pin state is HIGH, the software pin state is LOW. Use this parameter to set
the active state of the underlying pin when configuring it as not pulled (when pull_up is
None267). When pull_up is True268 or False269, the active state is automatically set to
the proper value.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

property is_active

Returns True270 if the device is currently active and False271 otherwise. This property is usually
derived from value (page 122). Unlike value (page 122), this is always a boolean.

property pull_up

If True272, the device uses a pull-up resistor to set the GPIO pin “high” by default.
property value

Returns a value representing the device’s state. Frequently, this is a boolean value, or a number between
0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite devices usually use tuples to
return the states of all their subordinate components.

14.2.4 GPIODevice

class gpiozero.GPIODevice(*args, **kwargs)
Extends Device (page 199). Represents a generic GPIO device and provides the services common to all
single-pin GPIO devices (like ensuring two GPIO devices do no share a pin (page 123)).

Parameters
pin (int273 or str274) – TheGPIO pin that the device is connected to. See Pin Numbering
(page 3) for valid pin numbers. If this is None275 a GPIODeviceError (page 241) will
be raised. If the pin is already in use by another device, GPIOPinInUse (page 241) will be
raised.

close()

Shut down the device and release all associated resources (such as GPIO pins).
256 https://docs.python.org/3.9/library/constants.html#True
257 https://docs.python.org/3.9/library/functions.html#int
258 https://docs.python.org/3.9/library/stdtypes.html#str
259 https://docs.python.org/3.9/library/constants.html#None
260 https://docs.python.org/3.9/library/functions.html#bool
261 https://docs.python.org/3.9/library/constants.html#True
262 https://docs.python.org/3.9/library/constants.html#False
263 https://docs.python.org/3.9/library/constants.html#None
264 https://docs.python.org/3.9/library/functions.html#bool
265 https://docs.python.org/3.9/library/constants.html#True
266 https://docs.python.org/3.9/library/constants.html#False
267 https://docs.python.org/3.9/library/constants.html#None
268 https://docs.python.org/3.9/library/constants.html#True
269 https://docs.python.org/3.9/library/constants.html#False
270 https://docs.python.org/3.9/library/constants.html#True
271 https://docs.python.org/3.9/library/constants.html#False
272 https://docs.python.org/3.9/library/constants.html#True

122 Chapter 14. API - Input Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

This method is idempotent (can be called on an already closed device without any side-effects). It is
primarily intended for interactive use at the command line. It disables the device and releases its pin(s)
for use by another device.
You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references to the
object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the garbage
collector will actually delete the object at that point). By contrast, the close method provides a means of
ensuring that the object is shut down.
For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an LED
instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 199) descendents can also be used as context managers using the with276 statement. For
example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

property closed

Returns True277 if the device is closed (see the close() (page 122) method). Once a device is closed
you can no longer use any other methods or properties to control or query the device.

property pin

The Pin (page 227) that the device is connected to. This will be None278 if the device has been closed
(see the close() (page 199) method). When dealing with GPIO pins, query pin.number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property value

Returns a value representing the device’s state. Frequently, this is a boolean value, or a number between
0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite devices usually use tuples to
return the states of all their subordinate components.

273 https://docs.python.org/3.9/library/functions.html#int
274 https://docs.python.org/3.9/library/stdtypes.html#str
275 https://docs.python.org/3.9/library/constants.html#None
276 https://docs.python.org/3.9/reference/compound_stmts.html#with
277 https://docs.python.org/3.9/library/constants.html#True
278 https://docs.python.org/3.9/library/constants.html#None

14.2. Base Classes 123

https://docs.python.org/3.9/reference/compound_stmts.html#with
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

124 Chapter 14. API - Input Devices

CHAPTER

FIFTEEN

API - OUTPUT DEVICES

These output device component interfaces have been provided for simple use of everyday components. Components
must be wired up correctly before use in code.

Note: All GPIO pin numbers use Broadcom (BCM) numbering by default. See the Pin Numbering (page 3) section
for more information.

15.1 Regular Classes

The following classes are intended for general use with the devices they represent. All classes in this section are
concrete (not abstract).

15.1.1 LED

class gpiozero.LED(*args, **kwargs)
Extends DigitalOutputDevice (page 141) and represents a light emitting diode (LED).
Connect the cathode (short leg, flat side) of the LED to a ground pin; connect the anode (longer leg) to a limiting
resistor; connect the other side of the limiting resistor to a GPIO pin (the limiting resistor can be placed either
side of the LED).
The following example will light the LED:

from gpiozero import LED

led = LED(17)
led.on()

Parameters
• pin (int279 or str280) – The GPIO pin which the LED is connected to. See Pin

Numbering (page 3) for valid pin numbers. If this is None281 a GPIODeviceError
(page 241) will be raised.

• active_high (bool282) – If True283 (the default), the LED will operate normally
with the circuit described above. If False284 you should wire the cathode to the GPIO
pin, and the anode to a 3V3 pin (via a limiting resistor).

• initial_value (bool285 or None) – If False286 (the default), the LED will be
off initially. If None287, the LED will be left in whatever state the pin is found in when
configured for output (warning: this can be on). If True288, the LED will be switched on
initially.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

125

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

blink(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters
• on_time (float289) – Number of seconds on. Defaults to 1 second.
• off_time (float290) – Number of seconds off. Defaults to 1 second.
• n (int291 or None) – Number of times to blink; None292 (the default) means forever.
• background (bool293) – If True294 (the default), start a background thread to con-
tinue blinking and return immediately. If False295, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

off()

Turns the device off.
on()

Turns the device on.
toggle()

Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.
property is_lit

Returns True296 if the device is currently active and False297 otherwise. This property is usually
derived from value (page 126). Unlike value (page 126), this is always a boolean.

property pin

The Pin (page 227) that the device is connected to. This will be None298 if the device has been closed
(see the close() (page 199) method). When dealing with GPIO pins, query pin.number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property value

Returns 1 if the device is currently active and 0 otherwise. Setting this property changes the state of the
device.

279 https://docs.python.org/3.9/library/functions.html#int
280 https://docs.python.org/3.9/library/stdtypes.html#str
281 https://docs.python.org/3.9/library/constants.html#None
282 https://docs.python.org/3.9/library/functions.html#bool
283 https://docs.python.org/3.9/library/constants.html#True
284 https://docs.python.org/3.9/library/constants.html#False
285 https://docs.python.org/3.9/library/functions.html#bool
286 https://docs.python.org/3.9/library/constants.html#False
287 https://docs.python.org/3.9/library/constants.html#None
288 https://docs.python.org/3.9/library/constants.html#True
289 https://docs.python.org/3.9/library/functions.html#float
290 https://docs.python.org/3.9/library/functions.html#float
291 https://docs.python.org/3.9/library/functions.html#int
292 https://docs.python.org/3.9/library/constants.html#None
293 https://docs.python.org/3.9/library/functions.html#bool
294 https://docs.python.org/3.9/library/constants.html#True
295 https://docs.python.org/3.9/library/constants.html#False
296 https://docs.python.org/3.9/library/constants.html#True
297 https://docs.python.org/3.9/library/constants.html#False
298 https://docs.python.org/3.9/library/constants.html#None

126 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

15.1.2 PWMLED

class gpiozero.PWMLED(*args, **kwargs)

Extends PWMOutputDevice (page 142) and represents a light emitting diode (LED) with variable bright-
ness.
A typical configuration of such a device is to connect a GPIO pin to the anode (long leg) of the LED, and the
cathode (short leg) to ground, with an optional resistor to prevent the LED from burning out.

Parameters
• pin (int299 or str300) – The GPIO pin which the LED is connected to. See Pin

Numbering (page 3) for valid pin numbers. If this is None301 a GPIODeviceError
(page 241) will be raised.

• active_high (bool302) – If True303 (the default), the on() (page 127) method will
set the GPIO to HIGH. If False304, the on() (page 127) method will set the GPIO to
LOW (the off() (page 127) method always does the opposite).

• initial_value (float305) – If 0 (the default), the LED will be off initially. Other
values between 0 and 1 can be specified as an initial brightness for the LED. Note that
None306 cannot be specified (unlike the parent class) as there is no way to tell PWM not
to alter the state of the pin.

• frequency (int307) – The frequency (in Hz) of pulses emitted to drive the LED. De-
faults to 100Hz.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters
• on_time (float308) – Number of seconds on. Defaults to 1 second.
• off_time (float309) – Number of seconds off. Defaults to 1 second.
• fade_in_time (float310) – Number of seconds to spend fading in. Defaults to 0.
• fade_out_time (float311) – Number of seconds to spend fading out. Defaults to
0.

• n (int312 or None) – Number of times to blink; None313 (the default) means forever.
• background (bool314) – If True315 (the default), start a background thread to con-
tinue blinking and return immediately. If False316, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

off()

Turns the device off.
on()

Turns the device on.
pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)

Make the device fade in and out repeatedly.
Parameters

• fade_in_time (float317) – Number of seconds to spend fading in. Defaults to 1.
• fade_out_time (float318) – Number of seconds to spend fading out. Defaults to
1.

• n (int319 or None) – Number of times to pulse; None320 (the default) means forever.

15.1. Regular Classes 127

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

• background (bool321) – If True322 (the default), start a background thread to con-
tinue pulsing and return immediately. IfFalse323, only return when the pulse is finished
(warning: the default value of n will result in this method never returning).

toggle()

Toggle the state of the device. If the device is currently off (value (page 128) is 0.0), this changes it
to “fully” on (value (page 128) is 1.0). If the device has a duty cycle (value (page 128)) of 0.1, this
will toggle it to 0.9, and so on.

property is_lit

Returns True324 if the device is currently active (value (page 128) is non-zero) and False325 other-
wise.

property pin

The Pin (page 227) that the device is connected to. This will be None326 if the device has been closed
(see the close() (page 199) method). When dealing with GPIO pins, query pin.number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property value

The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values in between may be specified for
varying levels of power in the device.

15.1.3 RGBLED

class gpiozero.RGBLED(*args, **kwargs)
Extends Device (page 199) and represents a full color LED component (composed of red, green, and blue
LEDs).
Connect the common cathode (longest leg) to a ground pin; connect each of the other legs (representing the
red, green, and blue anodes) to any GPIO pins. You should use three limiting resistors (one per anode).
The following code will make the LED yellow:

299 https://docs.python.org/3.9/library/functions.html#int
300 https://docs.python.org/3.9/library/stdtypes.html#str
301 https://docs.python.org/3.9/library/constants.html#None
302 https://docs.python.org/3.9/library/functions.html#bool
303 https://docs.python.org/3.9/library/constants.html#True
304 https://docs.python.org/3.9/library/constants.html#False
305 https://docs.python.org/3.9/library/functions.html#float
306 https://docs.python.org/3.9/library/constants.html#None
307 https://docs.python.org/3.9/library/functions.html#int
308 https://docs.python.org/3.9/library/functions.html#float
309 https://docs.python.org/3.9/library/functions.html#float
310 https://docs.python.org/3.9/library/functions.html#float
311 https://docs.python.org/3.9/library/functions.html#float
312 https://docs.python.org/3.9/library/functions.html#int
313 https://docs.python.org/3.9/library/constants.html#None
314 https://docs.python.org/3.9/library/functions.html#bool
315 https://docs.python.org/3.9/library/constants.html#True
316 https://docs.python.org/3.9/library/constants.html#False
317 https://docs.python.org/3.9/library/functions.html#float
318 https://docs.python.org/3.9/library/functions.html#float
319 https://docs.python.org/3.9/library/functions.html#int
320 https://docs.python.org/3.9/library/constants.html#None
321 https://docs.python.org/3.9/library/functions.html#bool
322 https://docs.python.org/3.9/library/constants.html#True
323 https://docs.python.org/3.9/library/constants.html#False
324 https://docs.python.org/3.9/library/constants.html#True
325 https://docs.python.org/3.9/library/constants.html#False
326 https://docs.python.org/3.9/library/constants.html#None

128 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import RGBLED

led = RGBLED(2, 3, 4)
led.color = (1, 1, 0)

The colorzero327 library is also supported:

from gpiozero import RGBLED
from colorzero import Color

led = RGBLED(2, 3, 4)
led.color = Color('yellow')

Parameters
• red (int328 or str329) – The GPIO pin that controls the red component of the RGB
LED. See Pin Numbering (page 3) for valid pin numbers. If this is None330 a GPIODe-
viceError (page 241) will be raised.

• green (int331 or str332) – The GPIO pin that controls the green component of the
RGB LED.

• blue (int333 or str334) – The GPIO pin that controls the blue component of the
RGB LED.

• active_high (bool335) – Set to True336 (the default) for common cathode RGB
LEDs. If you are using a common anode RGB LED, set this to False337.

• initial_value (Color338 or tuple339) – The initial color for the RGB LED.
Defaults to black (0, 0, 0).

• pwm (bool340) – If True341 (the default), construct PWMLED (page 127) instances for
each component of the RGBLED. If False342, construct regular LED (page 125) in-
stances, which prevents smooth color graduations.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, on_color=(1, 1, 1), off_color=(0, 0, 0),
n=None, background=True)

Make the device turn on and off repeatedly.
Parameters

• on_time (float343) – Number of seconds on. Defaults to 1 second.
• off_time (float344) – Number of seconds off. Defaults to 1 second.
• fade_in_time (float345) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwmwas False346 when the class was constructed (ValueError347 will
be raised if not).

• fade_out_time (float348) – Number of seconds to spend fading out. Defaults to
0. Must be 0 if pwm was False349 when the class was constructed (ValueError350
will be raised if not).

• on_color (Color351 or tuple352) – The color to use when the LED is “on”.
Defaults to white.

• off_color (Color353 or tuple354) – The color to use when the LED is “off”.
Defaults to black.

• n (int355 or None) – Number of times to blink; None356 (the default) means forever.

15.1. Regular Classes 129

https://colorzero.readthedocs.io/
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

• background (bool357) – If True358 (the default), start a background thread to con-
tinue blinking and return immediately. If False359, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

off()

Turn the LED off. This is equivalent to setting the LED color to black (0, 0, 0).
on()

Turn the LED on. This equivalent to setting the LED color to white (1, 1, 1).
pulse(fade_in_time=1, fade_out_time=1, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None,

background=True)

Make the device fade in and out repeatedly.
Parameters

• fade_in_time (float360) – Number of seconds to spend fading in. Defaults to 1.
• fade_out_time (float361) – Number of seconds to spend fading out. Defaults to
1.

• on_color (Color362 or tuple363) – The color to use when the LED is “on”.
Defaults to white.

• off_color (Color364 or tuple365) – The color to use when the LED is “off”.
Defaults to black.

• n (int366 or None) – Number of times to pulse; None367 (the default) means forever.
• background (bool368) – If True369 (the default), start a background thread to con-
tinue pulsing and return immediately. IfFalse370, only return when the pulse is finished
(warning: the default value of n will result in this method never returning).

toggle()

Toggle the state of the device. If the device is currently off (value (page 130) is (0, 0, 0)), this
changes it to “fully” on (value (page 130) is (1, 1, 1)). If the device has a specific color, this
method inverts the color.

property blue

Represents the blue element of the LED as a Blue371 object.
property color

Represents the color of the LED as a Color372 object.
property green

Represents the green element of the LED as a Green373 object.
property is_lit

Returns True374 if the LED is currently active (not black) and False375 otherwise.
property red

Represents the red element of the LED as a Red376 object.
property value

Represents the color of the LED as an RGB 3-tuple of (red, green, blue) where each value is
between 0 and 1 if pwm was True377 when the class was constructed (and only 0 or 1 if not).
For example, red would be (1, 0, 0) and yellow would be (1, 1, 0), while orange would be
(1, 0.5, 0).

130 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Blue
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Green
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Red
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

15.1.4 Buzzer

class gpiozero.Buzzer(*args, **kwargs)

Extends DigitalOutputDevice (page 141) and represents a digital buzzer component.

Note: This interface is only capable of simple on/off commands, and is not capable of playing a variety of
tones (see TonalBuzzer (page 133)).

Connect the cathode (negative pin) of the buzzer to a ground pin; connect the other side to any GPIO pin.
The following example will sound the buzzer:

from gpiozero import Buzzer

(continues on next page)
327 https://colorzero.readthedocs.io/
328 https://docs.python.org/3.9/library/functions.html#int
329 https://docs.python.org/3.9/library/stdtypes.html#str
330 https://docs.python.org/3.9/library/constants.html#None
331 https://docs.python.org/3.9/library/functions.html#int
332 https://docs.python.org/3.9/library/stdtypes.html#str
333 https://docs.python.org/3.9/library/functions.html#int
334 https://docs.python.org/3.9/library/stdtypes.html#str
335 https://docs.python.org/3.9/library/functions.html#bool
336 https://docs.python.org/3.9/library/constants.html#True
337 https://docs.python.org/3.9/library/constants.html#False
338 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
339 https://docs.python.org/3.9/library/stdtypes.html#tuple
340 https://docs.python.org/3.9/library/functions.html#bool
341 https://docs.python.org/3.9/library/constants.html#True
342 https://docs.python.org/3.9/library/constants.html#False
343 https://docs.python.org/3.9/library/functions.html#float
344 https://docs.python.org/3.9/library/functions.html#float
345 https://docs.python.org/3.9/library/functions.html#float
346 https://docs.python.org/3.9/library/constants.html#False
347 https://docs.python.org/3.9/library/exceptions.html#ValueError
348 https://docs.python.org/3.9/library/functions.html#float
349 https://docs.python.org/3.9/library/constants.html#False
350 https://docs.python.org/3.9/library/exceptions.html#ValueError
351 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
352 https://docs.python.org/3.9/library/stdtypes.html#tuple
353 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
354 https://docs.python.org/3.9/library/stdtypes.html#tuple
355 https://docs.python.org/3.9/library/functions.html#int
356 https://docs.python.org/3.9/library/constants.html#None
357 https://docs.python.org/3.9/library/functions.html#bool
358 https://docs.python.org/3.9/library/constants.html#True
359 https://docs.python.org/3.9/library/constants.html#False
360 https://docs.python.org/3.9/library/functions.html#float
361 https://docs.python.org/3.9/library/functions.html#float
362 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
363 https://docs.python.org/3.9/library/stdtypes.html#tuple
364 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
365 https://docs.python.org/3.9/library/stdtypes.html#tuple
366 https://docs.python.org/3.9/library/functions.html#int
367 https://docs.python.org/3.9/library/constants.html#None
368 https://docs.python.org/3.9/library/functions.html#bool
369 https://docs.python.org/3.9/library/constants.html#True
370 https://docs.python.org/3.9/library/constants.html#False
371 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Blue
372 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
373 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Green
374 https://docs.python.org/3.9/library/constants.html#True
375 https://docs.python.org/3.9/library/constants.html#False
376 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Red
377 https://docs.python.org/3.9/library/constants.html#True

15.1. Regular Classes 131

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
bz = Buzzer(3)
bz.on()

Parameters
• pin (int378 or str379) – The GPIO pin which the buzzer is connected to. See Pin

Numbering (page 3) for valid pin numbers. If this is None380 a GPIODeviceError
(page 241) will be raised.

• active_high (bool381) – If True382 (the default), the buzzer will operate normally
with the circuit described above. If False383 you should wire the cathode to the GPIO
pin, and the anode to a 3V3 pin.

• initial_value (bool384 or None) – If False385 (the default), the buzzer will
be silent initially. If None386, the buzzer will be left in whatever state the pin is found
in when configured for output (warning: this can be on). If True387, the buzzer will be
switched on initially.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

beep(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters
• on_time (float388) – Number of seconds on. Defaults to 1 second.
• off_time (float389) – Number of seconds off. Defaults to 1 second.
• n (int390 or None) – Number of times to blink; None391 (the default) means forever.
• background (bool392) – If True393 (the default), start a background thread to con-
tinue blinking and return immediately. If False394, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

off()

Turns the device off.
on()

Turns the device on.
toggle()

Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.
property is_active

Returns True395 if the device is currently active and False396 otherwise. This property is usually
derived from value (page 132). Unlike value (page 132), this is always a boolean.

property pin

The Pin (page 227) that the device is connected to. This will be None397 if the device has been closed
(see the close() (page 199) method). When dealing with GPIO pins, query pin.number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property value

Returns 1 if the device is currently active and 0 otherwise. Setting this property changes the state of the
device.

132 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

15.1.5 TonalBuzzer

class gpiozero.TonalBuzzer(*args, **kwargs)

Extends CompositeDevice (page 187) and represents a tonal buzzer.
Parameters

• pin (int398 or str399) – The GPIO pin which the buzzer is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None400 a GPIODeviceError
(page 241) will be raised.

• initial_value (float401) – If None402 (the default), the buzzer will be off initially.
Values between -1 and 1 can be specified as an initial value for the buzzer.

• mid_tone (int403 or str404) – The tone which is represented the device’s middle
value (0). The default is “A4” (MIDI note 69).

• octaves (int405) – The number of octaves to allow away from the base note. The
default is 1, meaning a value of -1 goes one octave below the base note, and one above,
i.e. from A3 to A5 with the default base note of A4.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

Note: Note that this class does not currently work with PiGPIOFactory (page 236).

play(tone)
Play the given tone. This can either be an instance of Tone (page 215) or can be anything that could be
used to construct an instance of Tone (page 215).
For example:

>>> from gpiozero import TonalBuzzer
>>> from gpiozero.tones import Tone
>>> b = TonalBuzzer(17)
>>> b.play(Tone("A4"))
>>> b.play(Tone(220.0)) # Hz
>>> b.play(Tone(60)) # middle C in MIDI notation
>>> b.play("A4")
>>> b.play(220.0)
>>> b.play(60)

stop()

Turn the buzzer off. This is equivalent to setting value (page 134) to None406.
378 https://docs.python.org/3.9/library/functions.html#int
379 https://docs.python.org/3.9/library/stdtypes.html#str
380 https://docs.python.org/3.9/library/constants.html#None
381 https://docs.python.org/3.9/library/functions.html#bool
382 https://docs.python.org/3.9/library/constants.html#True
383 https://docs.python.org/3.9/library/constants.html#False
384 https://docs.python.org/3.9/library/functions.html#bool
385 https://docs.python.org/3.9/library/constants.html#False
386 https://docs.python.org/3.9/library/constants.html#None
387 https://docs.python.org/3.9/library/constants.html#True
388 https://docs.python.org/3.9/library/functions.html#float
389 https://docs.python.org/3.9/library/functions.html#float
390 https://docs.python.org/3.9/library/functions.html#int
391 https://docs.python.org/3.9/library/constants.html#None
392 https://docs.python.org/3.9/library/functions.html#bool
393 https://docs.python.org/3.9/library/constants.html#True
394 https://docs.python.org/3.9/library/constants.html#False
395 https://docs.python.org/3.9/library/constants.html#True
396 https://docs.python.org/3.9/library/constants.html#False
397 https://docs.python.org/3.9/library/constants.html#None

15.1. Regular Classes 133

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

property is_active

Returns True407 if the buzzer is currently playing, otherwise False408.
property max_tone

The highest tone that the buzzer can play, i.e. the tone played when value (page 134) is 1.
property mid_tone

The middle tone available, i.e. the tone played when value (page 134) is 0.
property min_tone

The lowest tone that the buzzer can play, i.e. the tone played when value (page 134) is -1.
property octaves

The number of octaves available (above and below mid_tone).
property tone

Returns the Tone (page 215) that the buzzer is currently playing, or None409 if the buzzer is silent. This
property can also be set to play the specified tone.

property value

Represents the state of the buzzer as a value between -1 (representing the minimum tone) and 1 (rep-
resenting the maximum tone). This can also be the special value None410 indicating that the buzzer is
currently silent.

15.1.6 Motor

class gpiozero.Motor(*args, **kwargs)
Extends CompositeDevice (page 187) and represents a generic motor connected to a bi-directional motor
driver circuit (i.e. an H-bridge411).
Attach an H-bridge412 motor controller to your Pi; connect a power source (e.g. a battery pack or the 5V pin)
to the controller; connect the outputs of the controller board to the two terminals of the motor; connect the
inputs of the controller board to two GPIO pins.
The following code will make the motor turn “forwards”:

from gpiozero import Motor

motor = Motor(17, 18)
motor.forward()

Parameters
• forward (int413 or str414) – The GPIO pin that the forward input of the motor
driver chip is connected to. See Pin Numbering (page 3) for valid pin numbers. If this is
None415 a GPIODeviceError (page 241) will be raised.

398 https://docs.python.org/3.9/library/functions.html#int
399 https://docs.python.org/3.9/library/stdtypes.html#str
400 https://docs.python.org/3.9/library/constants.html#None
401 https://docs.python.org/3.9/library/functions.html#float
402 https://docs.python.org/3.9/library/constants.html#None
403 https://docs.python.org/3.9/library/functions.html#int
404 https://docs.python.org/3.9/library/stdtypes.html#str
405 https://docs.python.org/3.9/library/functions.html#int
406 https://docs.python.org/3.9/library/constants.html#None
407 https://docs.python.org/3.9/library/constants.html#True
408 https://docs.python.org/3.9/library/constants.html#False
409 https://docs.python.org/3.9/library/constants.html#None
410 https://docs.python.org/3.9/library/constants.html#None

134 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://en.wikipedia.org/wiki/H_bridge
https://en.wikipedia.org/wiki/H_bridge
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

• backward (int416 or str417) – The GPIO pin that the backward input of the motor
driver chip is connected to. See Pin Numbering (page 3) for valid pin numbers. If this is
None418 a GPIODeviceError (page 241) will be raised.

• enable (int419 or str420 or None) – The GPIO pin that enables the motor.
Required for some motor controller boards. See Pin Numbering (page 3) for valid pin
numbers.

• pwm (bool421) – If True422 (the default), construct PWMOutputDevice (page 142)
instances for the motor controller pins, allowing both direction and variable speed control.
If False423, construct DigitalOutputDevice (page 141) instances, allowing only
direction control.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

backward(speed=1)

Drive the motor backwards.
Parameters

speed (float424) – The speed at which themotor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed) if pwm was True425 when the class was
constructed (and only 0 or 1 if not).

forward(speed=1)
Drive the motor forwards.

Parameters
speed (float426) – The speed at which themotor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed) if pwm was True427 when the class was
constructed (and only 0 or 1 if not).

reverse()

Reverse the current direction of the motor. If the motor is currently idle this does nothing. Otherwise,
the motor’s direction will be reversed at the current speed.

stop()

Stop the motor.
property is_active

Returns True428 if the motor is currently running and False429 otherwise.
property value

Represents the speed of the motor as a floating point value between -1 (full speed backward) and 1 (full
speed forward), with 0 representing stopped.

411 https://en.wikipedia.org/wiki/H_bridge
412 https://en.wikipedia.org/wiki/H_bridge
413 https://docs.python.org/3.9/library/functions.html#int
414 https://docs.python.org/3.9/library/stdtypes.html#str
415 https://docs.python.org/3.9/library/constants.html#None
416 https://docs.python.org/3.9/library/functions.html#int
417 https://docs.python.org/3.9/library/stdtypes.html#str
418 https://docs.python.org/3.9/library/constants.html#None
419 https://docs.python.org/3.9/library/functions.html#int
420 https://docs.python.org/3.9/library/stdtypes.html#str
421 https://docs.python.org/3.9/library/functions.html#bool
422 https://docs.python.org/3.9/library/constants.html#True
423 https://docs.python.org/3.9/library/constants.html#False
424 https://docs.python.org/3.9/library/functions.html#float
425 https://docs.python.org/3.9/library/constants.html#True
426 https://docs.python.org/3.9/library/functions.html#float
427 https://docs.python.org/3.9/library/constants.html#True
428 https://docs.python.org/3.9/library/constants.html#True
429 https://docs.python.org/3.9/library/constants.html#False

15.1. Regular Classes 135

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

15.1.7 PhaseEnableMotor

class gpiozero.PhaseEnableMotor(*args, **kwargs)

Extends CompositeDevice (page 187) and represents a generic motor connected to a Phase/Enable motor
driver circuit; the phase of the driver controls whether the motor turns forwards or backwards, while enable
controls the speed with PWM.
The following code will make the motor turn “forwards”:

from gpiozero import PhaseEnableMotor
motor = PhaseEnableMotor(12, 5)
motor.forward()

Parameters
• phase (int430 or str431) – The GPIO pin that the phase (direction) input of the
motor driver chip is connected to. See Pin Numbering (page 3) for valid pin numbers. If
this is None432 a GPIODeviceError (page 241) will be raised.

• enable (int433 or str434) – The GPIO pin that the enable (speed) input of the
motor driver chip is connected to. See Pin Numbering (page 3) for valid pin numbers. If
this is None435 a GPIODeviceError (page 241) will be raised.

• pwm (bool436) – If True437 (the default), construct PWMOutputDevice (page 142)
instances for the motor controller pins, allowing both direction and variable speed control.
If False438, construct DigitalOutputDevice (page 141) instances, allowing only
direction control.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

backward(speed=1)
Drive the motor backwards.

Parameters
speed (float439) – The speed at which themotor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed).

forward(speed=1)
Drive the motor forwards.

Parameters
speed (float440) – The speed at which themotor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed).

reverse()

Reverse the current direction of the motor. If the motor is currently idle this does nothing. Otherwise,
the motor’s direction will be reversed at the current speed.

stop()

Stop the motor.
property is_active

Returns True441 if the motor is currently running and False442 otherwise.
property value

Represents the speed of the motor as a floating point value between -1 (full speed backward) and 1 (full
speed forward).

136 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

15.1.8 Servo

class gpiozero.Servo(*args, **kwargs)

ExtendsCompositeDevice (page 187) and represents a PWM-controlled servomotor connected to aGPIO
pin.
Connect a power source (e.g. a battery pack or the 5V pin) to the power cable of the servo (this is typically
colored red); connect the ground cable of the servo (typically colored black or brown) to the negative of your
battery pack, or a GND pin; connect the final cable (typically colored white or orange) to the GPIO pin you
wish to use for controlling the servo.
The following code will make the servo move between its minimum, maximum, and mid-point positions with
a pause between each:

from gpiozero import Servo
from time import sleep

servo = Servo(17)

while True:
servo.min()
sleep(1)
servo.mid()
sleep(1)
servo.max()
sleep(1)

You can also use the value (page 138) property to move the servo to a particular position, on a scale from -1
(min) to 1 (max) where 0 is the mid-point:

from gpiozero import Servo

servo = Servo(17)

servo.value = 0.5

Note: To reduce servo jitter, use the pigpio pin driver rather than the default RPi.GPIO driver (pigpio uses
DMA sampling for much more precise edge timing). See Changing the pin factory (page 223) for further
information.

Parameters
• pin (int443 or str444) – The GPIO pin that the servo is connected to. See Pin

Numbering (page 3) for valid pin numbers. If this is None445 a GPIODeviceError
(page 241) will be raised.

• initial_value (float446) – If 0 (the default), the device’s mid-point will be set
initially. Other values between -1 and +1 can be specified as an initial position. None447

430 https://docs.python.org/3.9/library/functions.html#int
431 https://docs.python.org/3.9/library/stdtypes.html#str
432 https://docs.python.org/3.9/library/constants.html#None
433 https://docs.python.org/3.9/library/functions.html#int
434 https://docs.python.org/3.9/library/stdtypes.html#str
435 https://docs.python.org/3.9/library/constants.html#None
436 https://docs.python.org/3.9/library/functions.html#bool
437 https://docs.python.org/3.9/library/constants.html#True
438 https://docs.python.org/3.9/library/constants.html#False
439 https://docs.python.org/3.9/library/functions.html#float
440 https://docs.python.org/3.9/library/functions.html#float
441 https://docs.python.org/3.9/library/constants.html#True
442 https://docs.python.org/3.9/library/constants.html#False

15.1. Regular Classes 137

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

means to start the servo un-controlled (see value (page 138)).
• min_pulse_width (float448) – The pulse width corresponding to the servo’s mini-
mum position. This defaults to 1ms.

• max_pulse_width (float449) – The pulse width corresponding to the servo’s max-
imum position. This defaults to 2ms.

• frame_width (float450) – The length of time between servo control pulses measured
in seconds. This defaults to 20ms which is a common value for servos.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

detach()

Temporarily disable control of the servo. This is equivalent to setting value (page 138) to None451.
max()

Set the servo to its maximum position.
mid()

Set the servo to its mid-point position.
min()

Set the servo to its minimum position.
property frame_width

The time between control pulses, measured in seconds.
property is_active

Composite devices are considered “active” if any of their constituent devices have a “truthy” value.
property max_pulse_width

The control pulse width corresponding to the servo’s maximum position, measured in seconds.
property min_pulse_width

The control pulse width corresponding to the servo’s minimum position, measured in seconds.
property pulse_width

Returns the current pulse width controlling the servo.
property value

Represents the position of the servo as a value between -1 (the minimum position) and +1 (the maximum
position). This can also be the special value None452 indicating that the servo is currently “uncontrolled”,
i.e. that no control signal is being sent. Typically this means the servo’s position remains unchanged, but
that it can be moved by hand.

443 https://docs.python.org/3.9/library/functions.html#int
444 https://docs.python.org/3.9/library/stdtypes.html#str
445 https://docs.python.org/3.9/library/constants.html#None
446 https://docs.python.org/3.9/library/functions.html#float
447 https://docs.python.org/3.9/library/constants.html#None
448 https://docs.python.org/3.9/library/functions.html#float
449 https://docs.python.org/3.9/library/functions.html#float
450 https://docs.python.org/3.9/library/functions.html#float
451 https://docs.python.org/3.9/library/constants.html#None
452 https://docs.python.org/3.9/library/constants.html#None

138 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

15.1.9 AngularServo

class gpiozero.AngularServo(*args, **kwargs)

Extends Servo (page 137) and represents a rotational PWM-controlled servo motor which can be set to
particular angles (assuming valid minimum and maximum angles are provided to the constructor).
Connect a power source (e.g. a battery pack or the 5V pin) to the power cable of the servo (this is typically
colored red); connect the ground cable of the servo (typically colored black or brown) to the negative of your
battery pack, or a GND pin; connect the final cable (typically colored white or orange) to the GPIO pin you
wish to use for controlling the servo.
Next, calibrate the angles that the servo can rotate to. In an interactive Python session, construct a Servo
(page 137) instance. The servo should move to its mid-point by default. Set the servo to its minimum value,
and measure the angle from the mid-point. Set the servo to its maximum value, and again measure the angle:

>>> from gpiozero import Servo
>>> s = Servo(17)
>>> s.min() # measure the angle
>>> s.max() # measure the angle

You should now be able to construct an AngularServo (page 139) instance with the correct bounds:

>>> from gpiozero import AngularServo
>>> s = AngularServo(17, min_angle=-42, max_angle=44)
>>> s.angle = 0.0
>>> s.angle
0.0
>>> s.angle = 15
>>> s.angle
15.0

Note: You can set min_angle greater than max_angle if you wish to reverse the sense of the angles (e.g.
min_angle=45, max_angle=-45). This can be useful with servos that rotate in the opposite direction
to your expectations of minimum and maximum.

Parameters

• pin (int453 or str454) – The GPIO pin that the servo is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None455 a GPIODeviceError
(page 241) will be raised.

• initial_angle (float456) – Sets the servo’s initial angle to the specified value. The
default is 0. The value specified must be between min_angle and max_angle inclusive.
None457 means to start the servo un-controlled (see value (page 140)).

• min_angle (float458) – Sets the minimum angle that the servo can rotate to. This
defaults to -90, but should be set to whatever you measure from your servo during calibra-
tion.

• max_angle (float459) – Sets the maximum angle that the servo can rotate to. This
defaults to 90, but should be set to whatever you measure from your servo during calibra-
tion.

• min_pulse_width (float460) – The pulse width corresponding to the servo’s mini-
mum position. This defaults to 1ms.

• max_pulse_width (float461) – The pulse width corresponding to the servo’s max-
imum position. This defaults to 2ms.

• frame_width (float462) – The length of time between servo control pulses measured
in seconds. This defaults to 20ms which is a common value for servos.

15.1. Regular Classes 139

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

gpiozero 2.0.1 Documentation, Release 2.0.1

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

max()

Set the servo to its maximum position.
mid()

Set the servo to its mid-point position.
min()

Set the servo to its minimum position.
property angle

The position of the servo as an angle measured in degrees. This will only be accurate if min_angle
(page 140) and max_angle (page 140) have been set appropriately in the constructor.
This can also be the special value None463 indicating that the servo is currently “uncontrolled”, i.e. that
no control signal is being sent. Typically this means the servo’s position remains unchanged, but that it
can be moved by hand.

property is_active

Composite devices are considered “active” if any of their constituent devices have a “truthy” value.
property max_angle

The maximum angle that the servo will rotate to when max() (page 140) is called.
property min_angle

The minimum angle that the servo will rotate to when min() (page 140) is called.
property value

Represents the position of the servo as a value between -1 (the minimum position) and +1 (the maximum
position). This can also be the special value None464 indicating that the servo is currently “uncontrolled”,
i.e. that no control signal is being sent. Typically this means the servo’s position remains unchanged, but
that it can be moved by hand.

15.2 Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract. The
classes form the (partial) hierarchy displayed in the graph below (abstract classes are shaded lighter than concrete
classes):
453 https://docs.python.org/3.9/library/functions.html#int
454 https://docs.python.org/3.9/library/stdtypes.html#str
455 https://docs.python.org/3.9/library/constants.html#None
456 https://docs.python.org/3.9/library/functions.html#float
457 https://docs.python.org/3.9/library/constants.html#None
458 https://docs.python.org/3.9/library/functions.html#float
459 https://docs.python.org/3.9/library/functions.html#float
460 https://docs.python.org/3.9/library/functions.html#float
461 https://docs.python.org/3.9/library/functions.html#float
462 https://docs.python.org/3.9/library/functions.html#float
463 https://docs.python.org/3.9/library/constants.html#None
464 https://docs.python.org/3.9/library/constants.html#None

140 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

CompositeDevice

Device

GPIODevice

AngularServoServo

Buzzer

DigitalOutputDevice

OutputDevice

LED

Motor

PWMLEDPWMOutputDevice

PhaseEnableMotor

RGBLED

TonalBuzzer

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

15.2.1 DigitalOutputDevice

class gpiozero.DigitalOutputDevice(*args, **kwargs)
Represents a generic output device with typical on/off behaviour.
This class extends OutputDevice (page 144) with a blink() (page 141) method which uses an optional
background thread to handle toggling the device state without further interaction.

Parameters

• pin (int465 or str466) – The GPIO pin that the device is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None467 a GPIODeviceError
(page 241) will be raised.

• active_high (bool468) – If True469 (the default), the on() (page 142) method will
set the GPIO to HIGH. If False470, the on() (page 142) method will set the GPIO to
LOW (the off() (page 142) method always does the opposite).

• initial_value (bool471 or None) – If False472 (the default), the device will be
off initially. If None473, the device will be left in whatever state the pin is found in when
configured for output (warning: this can be on). If True474, the device will be switched
on initially.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters

• on_time (float475) – Number of seconds on. Defaults to 1 second.
• off_time (float476) – Number of seconds off. Defaults to 1 second.

15.2. Base Classes 141

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

gpiozero 2.0.1 Documentation, Release 2.0.1

• n (int477 or None) – Number of times to blink; None478 (the default) means forever.
• background (bool479) – If True480 (the default), start a background thread to con-
tinue blinking and return immediately. If False481, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

off()

Turns the device off.
on()

Turns the device on.
property value

Returns 1 if the device is currently active and 0 otherwise. Setting this property changes the state of the
device.

15.2.2 PWMOutputDevice

class gpiozero.PWMOutputDevice(*args, **kwargs)

Generic output device configured for pulse-width modulation (PWM).
Parameters

• pin (int482 or str483) – The GPIO pin that the device is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None484 a GPIODeviceError
(page 241) will be raised.

• active_high (bool485) – If True486 (the default), the on() (page 143) method will
set the GPIO to HIGH. If False487, the on() (page 143) method will set the GPIO to
LOW (the off() (page 143) method always does the opposite).

• initial_value (float488) – If 0 (the default), the device’s duty cycle will be 0
initially. Other values between 0 and 1 can be specified as an initial duty cycle. Note that
None489 cannot be specified (unlike the parent class) as there is no way to tell PWM not
to alter the state of the pin.

• frequency (int490) – The frequency (in Hz) of pulses emitted to drive the device.
Defaults to 100Hz.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make the device turn on and off repeatedly.

Parameters
• on_time (float491) – Number of seconds on. Defaults to 1 second.

465 https://docs.python.org/3.9/library/functions.html#int
466 https://docs.python.org/3.9/library/stdtypes.html#str
467 https://docs.python.org/3.9/library/constants.html#None
468 https://docs.python.org/3.9/library/functions.html#bool
469 https://docs.python.org/3.9/library/constants.html#True
470 https://docs.python.org/3.9/library/constants.html#False
471 https://docs.python.org/3.9/library/functions.html#bool
472 https://docs.python.org/3.9/library/constants.html#False
473 https://docs.python.org/3.9/library/constants.html#None
474 https://docs.python.org/3.9/library/constants.html#True
475 https://docs.python.org/3.9/library/functions.html#float
476 https://docs.python.org/3.9/library/functions.html#float
477 https://docs.python.org/3.9/library/functions.html#int
478 https://docs.python.org/3.9/library/constants.html#None
479 https://docs.python.org/3.9/library/functions.html#bool
480 https://docs.python.org/3.9/library/constants.html#True
481 https://docs.python.org/3.9/library/constants.html#False

142 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float

gpiozero 2.0.1 Documentation, Release 2.0.1

• off_time (float492) – Number of seconds off. Defaults to 1 second.
• fade_in_time (float493) – Number of seconds to spend fading in. Defaults to 0.
• fade_out_time (float494) – Number of seconds to spend fading out. Defaults to
0.

• n (int495 or None) – Number of times to blink; None496 (the default) means forever.
• background (bool497) – If True498 (the default), start a background thread to con-
tinue blinking and return immediately. If False499, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

off()

Turns the device off.
on()

Turns the device on.
pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)

Make the device fade in and out repeatedly.
Parameters

• fade_in_time (float500) – Number of seconds to spend fading in. Defaults to 1.
• fade_out_time (float501) – Number of seconds to spend fading out. Defaults to
1.

• n (int502 or None) – Number of times to pulse; None503 (the default) means forever.
• background (bool504) – If True505 (the default), start a background thread to con-
tinue pulsing and return immediately. IfFalse506, only return when the pulse is finished
(warning: the default value of n will result in this method never returning).

toggle()

Toggle the state of the device. If the device is currently off (value (page 143) is 0.0), this changes it
to “fully” on (value (page 143) is 1.0). If the device has a duty cycle (value (page 143)) of 0.1, this
will toggle it to 0.9, and so on.

property frequency

The frequency of the pulses used with the PWM device, in Hz. The default is 100Hz.
property is_active

Returns True507 if the device is currently active (value (page 143) is non-zero) and False508 other-
wise.

property value

The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values in between may be specified for
varying levels of power in the device.

15.2. Base Classes 143

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

15.2.3 OutputDevice

class gpiozero.OutputDevice(*args, **kwargs)

Represents a generic GPIO output device.
This class extends GPIODevice (page 122) to add facilities common to GPIO output devices: an on()
(page 144) method to switch the device on, a corresponding off() (page 144) method, and a toggle()
(page 144) method.

Parameters

• pin (int509 or str510) – The GPIO pin that the device is connected to. See Pin
Numbering (page 3) for valid pin numbers. If this is None511 a GPIODeviceError
(page 241) will be raised.

• active_high (bool512) – If True513 (the default), the on() (page 144) method will
set the GPIO to HIGH. If False514, the on() (page 144) method will set the GPIO to
LOW (the off() (page 144) method always does the opposite).

• initial_value (bool515 or None) – If False516 (the default), the device will be
off initially. If None517, the device will be left in whatever state the pin is found in when
configured for output (warning: this can be on). If True518, the device will be switched
on initially.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

off()

Turns the device off.
on()

Turns the device on.
toggle()

Reverse the state of the device. If it’s on, turn it off; if it’s off, turn it on.
property active_high

When True519, the value (page 145) property is True520 when the device’s pin (page 123) is high.
482 https://docs.python.org/3.9/library/functions.html#int
483 https://docs.python.org/3.9/library/stdtypes.html#str
484 https://docs.python.org/3.9/library/constants.html#None
485 https://docs.python.org/3.9/library/functions.html#bool
486 https://docs.python.org/3.9/library/constants.html#True
487 https://docs.python.org/3.9/library/constants.html#False
488 https://docs.python.org/3.9/library/functions.html#float
489 https://docs.python.org/3.9/library/constants.html#None
490 https://docs.python.org/3.9/library/functions.html#int
491 https://docs.python.org/3.9/library/functions.html#float
492 https://docs.python.org/3.9/library/functions.html#float
493 https://docs.python.org/3.9/library/functions.html#float
494 https://docs.python.org/3.9/library/functions.html#float
495 https://docs.python.org/3.9/library/functions.html#int
496 https://docs.python.org/3.9/library/constants.html#None
497 https://docs.python.org/3.9/library/functions.html#bool
498 https://docs.python.org/3.9/library/constants.html#True
499 https://docs.python.org/3.9/library/constants.html#False
500 https://docs.python.org/3.9/library/functions.html#float
501 https://docs.python.org/3.9/library/functions.html#float
502 https://docs.python.org/3.9/library/functions.html#int
503 https://docs.python.org/3.9/library/constants.html#None
504 https://docs.python.org/3.9/library/functions.html#bool
505 https://docs.python.org/3.9/library/constants.html#True
506 https://docs.python.org/3.9/library/constants.html#False
507 https://docs.python.org/3.9/library/constants.html#True
508 https://docs.python.org/3.9/library/constants.html#False

144 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

When False521 the value (page 145) property is True522 when the device’s pin is low (i.e. the value
is inverted).
This property can be set after construction; be warned that changing it will invert value (page 145) (i.e.
changing this property doesn’t change the device’s pin state - it just changes how that state is interpreted).

property value

Returns 1 if the device is currently active and 0 otherwise. Setting this property changes the state of the
device.

15.2.4 GPIODevice

class gpiozero.GPIODevice(*args, **kwargs)
Extends Device (page 199). Represents a generic GPIO device and provides the services common to all
single-pin GPIO devices (like ensuring two GPIO devices do no share a pin (page 123)).

Parameters
pin (int523 or str524) – TheGPIO pin that the device is connected to. See Pin Numbering
(page 3) for valid pin numbers. If this is None525 a GPIODeviceError (page 241) will
be raised. If the pin is already in use by another device, GPIOPinInUse (page 241) will be
raised.

close()

Shut down the device and release all associated resources (such as GPIO pins).
This method is idempotent (can be called on an already closed device without any side-effects). It is
primarily intended for interactive use at the command line. It disables the device and releases its pin(s)
for use by another device.
You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references to the
object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the garbage
collector will actually delete the object at that point). By contrast, the close method provides a means of
ensuring that the object is shut down.
For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an LED
instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 199) descendents can also be used as context managers using the with526 statement. For
example:

509 https://docs.python.org/3.9/library/functions.html#int
510 https://docs.python.org/3.9/library/stdtypes.html#str
511 https://docs.python.org/3.9/library/constants.html#None
512 https://docs.python.org/3.9/library/functions.html#bool
513 https://docs.python.org/3.9/library/constants.html#True
514 https://docs.python.org/3.9/library/constants.html#False
515 https://docs.python.org/3.9/library/functions.html#bool
516 https://docs.python.org/3.9/library/constants.html#False
517 https://docs.python.org/3.9/library/constants.html#None
518 https://docs.python.org/3.9/library/constants.html#True
519 https://docs.python.org/3.9/library/constants.html#True
520 https://docs.python.org/3.9/library/constants.html#True
521 https://docs.python.org/3.9/library/constants.html#False
522 https://docs.python.org/3.9/library/constants.html#True

15.2. Base Classes 145

https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/reference/compound_stmts.html#with

gpiozero 2.0.1 Documentation, Release 2.0.1

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

property closed

Returns True527 if the device is closed (see the close() (page 122) method). Once a device is closed
you can no longer use any other methods or properties to control or query the device.

property pin

The Pin (page 227) that the device is connected to. This will be None528 if the device has been closed
(see the close() (page 199) method). When dealing with GPIO pins, query pin.number to discover
the GPIO pin (in BCM numbering) that the device is connected to.

property value

Returns a value representing the device’s state. Frequently, this is a boolean value, or a number between
0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite devices usually use tuples to
return the states of all their subordinate components.

523 https://docs.python.org/3.9/library/functions.html#int
524 https://docs.python.org/3.9/library/stdtypes.html#str
525 https://docs.python.org/3.9/library/constants.html#None
526 https://docs.python.org/3.9/reference/compound_stmts.html#with
527 https://docs.python.org/3.9/library/constants.html#True
528 https://docs.python.org/3.9/library/constants.html#None

146 Chapter 15. API - Output Devices

https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#None

CHAPTER

SIXTEEN

API - SPI DEVICES

SPI stands for Serial Peripheral Interface529 and is a mechanism allowing compatible devices to communicate with
the Pi. SPI is a four-wire protocol meaning it usually requires four pins to operate:

• A “clock” pin which provides timing information.
• A “MOSI” pin (Master Out, Slave In) which the Pi uses to send information to the device.
• A “MISO” pin (Master In, Slave Out) which the Pi uses to receive information from the device.
• A “select” pin which the Pi uses to indicate which device it’s talking to. This last pin is necessary because
multiple devices can share the clock, MOSI, and MISO pins, but only one device can be connected to each
select pin.

The gpiozero library provides two SPI implementations:
• A software based implementation. This is always available, can use any four GPIO pins for SPI communication,
but is rather slow and won’t work with all devices.

• A hardware based implementation. This is only available when the SPI kernel module is loaded, and the
Python spidev library is available. It can only use specific pins for SPI communication (GPIO11=clock,
GPIO10=MOSI, GPIO9=MISO, while GPIO8 is select for device 0 and GPIO7 is select for device 1). How-
ever, it is extremely fast and works with all devices.

16.1 SPI keyword args

When constructing an SPI device there are two schemes for specifying which pins it is connected to:
• You can specify port and device keyword arguments. The port parameter must be 0 (there is only one user-
accessible hardware SPI interface on the Pi using GPIO11 as the clock pin, GPIO10 as the MOSI pin, and
GPIO9 as the MISO pin), while the device parameter must be 0 or 1. If device is 0, the select pin will be
GPIO8. If device is 1, the select pin will be GPIO7.

• Alternatively you can specify clock_pin, mosi_pin, miso_pin, and select_pin keyword arguments. In this case
the pins can be any 4 GPIO pins (remember that SPI devices can share clock, MOSI, and MISO pins, but not
select pins - the gpiozero library will enforce this restriction).

You cannot mix these two schemes, i.e. attempting to specify port and clock_pin will result in SPIBadArgs
(page 240) being raised. However, you can omit any arguments from either scheme. The defaults are:

• port and device both default to 0.
• clock_pin defaults to 11, mosi_pin defaults to 10, miso_pin defaults to 9, and select_pin defaults to 8.
• As with other GPIO based devices you can optionally specify a pin_factory argument overriding the default
pin factory (see API - Pins (page 221) for more information).

Hence the following constructors are all equivalent:
529 https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

147

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import MCP3008

MCP3008(channel=0)
MCP3008(channel=0, device=0)
MCP3008(channel=0, port=0, device=0)
MCP3008(channel=0, select_pin=8)
MCP3008(channel=0, clock_pin=11, mosi_pin=10, miso_pin=9, select_pin=8)

Note that the defaults describe equivalent sets of pins and that these pins are compatible with the hardware imple-
mentation. Regardless of which scheme you use, gpiozero will attempt to use the hardware implementation if it is
available and if the selected pins are compatible, falling back to the software implementation if not.

16.2 Analog to Digital Converters (ADC)

The following classes are intended for general use with the integrated circuits they are named after. All classes in this
section are concrete (not abstract).

16.2.1 MCP3001

class gpiozero.MCP3001(*args, **kwargs)

The MCP3001530 is a 10-bit analog to digital converter with 1 channel. Please note that the MCP3001 always
operates in differential mode, measuring the value of IN+ relative to IN-.
property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices
operating in differential mode).

16.2.2 MCP3002

class gpiozero.MCP3002(*args, **kwargs)

The MCP3002531 is a 10-bit analog to digital converter with 2 channels (0-1).
property channel

The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

property differential

If True, the device is operated in differential mode. In this mode one channel (specified by the channel
attribute) is read relative to the value of a second channel (implied by the chip’s design).
Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 (page 149) in differential mode, channel 0 is read relative to channel
1).

property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices
operating in differential mode).

530 http://www.farnell.com/datasheets/630400.pdf
531 http://www.farnell.com/datasheets/1599363.pdf

148 Chapter 16. API - SPI Devices

http://www.farnell.com/datasheets/630400.pdf
http://www.farnell.com/datasheets/1599363.pdf

gpiozero 2.0.1 Documentation, Release 2.0.1

16.2.3 MCP3004

class gpiozero.MCP3004(*args, **kwargs)

The MCP3004532 is a 10-bit analog to digital converter with 4 channels (0-3).
property channel

The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

property differential

If True, the device is operated in differential mode. In this mode one channel (specified by the channel
attribute) is read relative to the value of a second channel (implied by the chip’s design).
Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 (page 149) in differential mode, channel 0 is read relative to channel
1).

property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices
operating in differential mode).

16.2.4 MCP3008

class gpiozero.MCP3008(*args, **kwargs)

The MCP3008533 is a 10-bit analog to digital converter with 8 channels (0-7).
property channel

The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

property differential

If True, the device is operated in differential mode. In this mode one channel (specified by the channel
attribute) is read relative to the value of a second channel (implied by the chip’s design).
Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 (page 149) in differential mode, channel 0 is read relative to channel
1).

property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices
operating in differential mode).

16.2.5 MCP3201

class gpiozero.MCP3201(*args, **kwargs)

The MCP3201534 is a 12-bit analog to digital converter with 1 channel. Please note that the MCP3201 always
operates in differential mode, measuring the value of IN+ relative to IN-.
property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices
operating in differential mode).

532 http://www.farnell.com/datasheets/808965.pdf
533 http://www.farnell.com/datasheets/808965.pdf
534 http://www.farnell.com/datasheets/1669366.pdf

16.2. Analog to Digital Converters (ADC) 149

http://www.farnell.com/datasheets/808965.pdf
http://www.farnell.com/datasheets/808965.pdf
http://www.farnell.com/datasheets/1669366.pdf

gpiozero 2.0.1 Documentation, Release 2.0.1

16.2.6 MCP3202

class gpiozero.MCP3202(*args, **kwargs)

The MCP3202535 is a 12-bit analog to digital converter with 2 channels (0-1).
property channel

The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

property differential

If True, the device is operated in differential mode. In this mode one channel (specified by the channel
attribute) is read relative to the value of a second channel (implied by the chip’s design).
Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 (page 149) in differential mode, channel 0 is read relative to channel
1).

property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices
operating in differential mode).

16.2.7 MCP3204

class gpiozero.MCP3204(*args, **kwargs)

The MCP3204536 is a 12-bit analog to digital converter with 4 channels (0-3).
property channel

The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

property differential

If True, the device is operated in differential mode. In this mode one channel (specified by the channel
attribute) is read relative to the value of a second channel (implied by the chip’s design).
Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 (page 149) in differential mode, channel 0 is read relative to channel
1).

property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices
operating in differential mode).

16.2.8 MCP3208

class gpiozero.MCP3208(*args, **kwargs)

The MCP3208537 is a 12-bit analog to digital converter with 8 channels (0-7).
property channel

The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

535 http://www.farnell.com/datasheets/1669376.pdf
536 http://www.farnell.com/datasheets/808967.pdf

150 Chapter 16. API - SPI Devices

http://www.farnell.com/datasheets/1669376.pdf
http://www.farnell.com/datasheets/808967.pdf
http://www.farnell.com/datasheets/808967.pdf

gpiozero 2.0.1 Documentation, Release 2.0.1

property differential

If True, the device is operated in differential mode. In this mode one channel (specified by the channel
attribute) is read relative to the value of a second channel (implied by the chip’s design).
Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3008 (page 149) in differential mode, channel 0 is read relative to channel
1).

property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices
operating in differential mode).

16.2.9 MCP3301

class gpiozero.MCP3301(*args, **kwargs)

The MCP3301538 is a signed 13-bit analog to digital converter. Please note that the MCP3301 always operates
in differential mode measuring the difference between IN+ and IN-. Its output value is scaled from -1 to +1.
property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices operating
in differential mode).

16.2.10 MCP3302

class gpiozero.MCP3302(*args, **kwargs)

TheMCP3302539 is a 12/13-bit analog to digital converter with 4 channels (0-3). When operated in differential
mode, the device outputs a signed 13-bit value which is scaled from -1 to +1. When operated in single-ended
mode (the default), the device outputs an unsigned 12-bit value scaled from 0 to 1.
property channel

The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

property differential

If True, the device is operated in differential mode. In this mode one channel (specified by the channel
attribute) is read relative to the value of a second channel (implied by the chip’s design).
Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3304 (page 152) in differential mode, channel 0 is read relative to channel
1).

property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices operating
in differential mode).

537 http://www.farnell.com/datasheets/808967.pdf
538 http://www.farnell.com/datasheets/1669397.pdf
539 http://www.farnell.com/datasheets/1486116.pdf

16.2. Analog to Digital Converters (ADC) 151

http://www.farnell.com/datasheets/1669397.pdf
http://www.farnell.com/datasheets/1486116.pdf

gpiozero 2.0.1 Documentation, Release 2.0.1

16.2.11 MCP3304

class gpiozero.MCP3304(*args, **kwargs)

TheMCP3304540 is a 12/13-bit analog to digital converter with 8 channels (0-7). When operated in differential
mode, the device outputs a signed 13-bit value which is scaled from -1 to +1. When operated in single-ended
mode (the default), the device outputs an unsigned 12-bit value scaled from 0 to 1.
property channel

The channel to read data from. The MCP3008/3208/3304 have 8 channels (0-7), while the
MCP3004/3204/3302 have 4 channels (0-3), the MCP3002/3202 have 2 channels (0-1), and the
MCP3001/3201/3301 only have 1 channel.

property differential

If True, the device is operated in differential mode. In this mode one channel (specified by the channel
attribute) is read relative to the value of a second channel (implied by the chip’s design).
Please refer to the device data-sheet to determine which channel is used as the relative base value (for
example, when using an MCP3304 (page 152) in differential mode, channel 0 is read relative to channel
1).

property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for devices operating
in differential mode).

16.3 Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract. The
classes form the (partial) hierarchy displayed in the graph below (abstract classes are shaded lighter than concrete
classes):
540 http://www.farnell.com/datasheets/1486116.pdf

152 Chapter 16. API - SPI Devices

http://www.farnell.com/datasheets/1486116.pdf

gpiozero 2.0.1 Documentation, Release 2.0.1

AnalogInputDeviceSPIDeviceDevice

MCP30xx

MCP3xxx

MCP32xx

MCP33xx

MCP3xx2

MCP3001

MCP3002

MCP3004

MCP3008

MCP3201

MCP3202

MCP3204

MCP3208

MCP3301

MCP3302

MCP3304

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

16.3.1 AnalogInputDevice

class gpiozero.AnalogInputDevice(*args, **kwargs)

Represents an analog input device connected to SPI (serial interface).
Typical analog input devices are analog to digital converters541 (ADCs). Several classes are provided for specific
ADC chips, including MCP3004 (page 149), MCP3008 (page 149), MCP3204 (page 150), and MCP3208
(page 150).
The following code demonstrates reading the first channel of an MCP3008 chip attached to the Pi’s SPI pins:

from gpiozero import MCP3008

pot = MCP3008(0)
print(pot.value)

The value (page 154) attribute is normalized such that its value is always between 0.0 and 1.0 (or in special
cases, such as differential sampling, -1 to +1). Hence, you can use an analog input to control the brightness of

16.3. Base Classes 153

https://en.wikipedia.org/wiki/Analog-to-digital_converter

gpiozero 2.0.1 Documentation, Release 2.0.1

a PWMLED (page 127) like so:

from gpiozero import MCP3008, PWMLED

pot = MCP3008(0)
led = PWMLED(17)
led.source = pot

The voltage (page 154) attribute reports values between 0.0 and max_voltage (which defaults to 3.3, the
logic level of the GPIO pins).
property bits

The bit-resolution of the device/channel.
property max_voltage

The voltage required to set the device’s value to 1.
property raw_value

The raw value as read from the device.
property value

The current value read from the device, scaled to a value between 0 and 1 (or -1 to +1 for certain devices
operating in differential mode).

property voltage

The current voltage read from the device. This will be a value between 0 and the max_voltage parameter
specified in the constructor.

16.3.2 SPIDevice

class gpiozero.SPIDevice(*args, **kwargs)
Extends Device (page 199). Represents a device that communicates via the SPI protocol.
See SPI keyword args (page 147) for information on the keyword arguments that can be specified with the
constructor.
close()

Shut down the device and release all associated resources (such as GPIO pins).
This method is idempotent (can be called on an already closed device without any side-effects). It is
primarily intended for interactive use at the command line. It disables the device and releases its pin(s)
for use by another device.
You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references to the
object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the garbage
collector will actually delete the object at that point). By contrast, the close method provides a means of
ensuring that the object is shut down.
For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an LED
instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 199) descendents can also be used as context managers using the with542 statement. For
example:

541 https://en.wikipedia.org/wiki/Analog-to-digital_converter

154 Chapter 16. API - SPI Devices

https://docs.python.org/3.9/reference/compound_stmts.html#with

gpiozero 2.0.1 Documentation, Release 2.0.1

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

property closed

Returns True543 if the device is closed (see the close() (page 154) method). Once a device is closed
you can no longer use any other methods or properties to control or query the device.

542 https://docs.python.org/3.9/reference/compound_stmts.html#with
543 https://docs.python.org/3.9/library/constants.html#True

16.3. Base Classes 155

https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

156 Chapter 16. API - SPI Devices

CHAPTER

SEVENTEEN

API - BOARDS AND ACCESSORIES

These additional interfaces are provided to group collections of components together for ease of use, and as examples.
They are composites made up of components from the variousAPI - Input Devices (page 105) andAPI - Output Devices
(page 125) provided by GPIO Zero. See those pages for more information on using components individually.

Note: All GPIO pin numbers use Broadcom (BCM) numbering by default. See the Pin Numbering (page 3) section
for more information.

17.1 Regular Classes

The following classes are intended for general use with the devices they are named after. All classes in this section
are concrete (not abstract).

17.1.1 LEDBoard

class gpiozero.LEDBoard(*args, **kwargs)
Extends LEDCollection (page 186) and represents a generic LED board or collection of LEDs.
The following example turns on all the LEDs on a board containing 5 LEDs attached to GPIO pins 2 through
6:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5, 6)
leds.on()

Parameters
• *pins – Specify the GPIO pins that the LEDs of the board are attached to. See Pin

Numbering (page 3) for valid pin numbers. You can designate as many pins as necessary.
You can also specify LEDBoard (page 157) instances to create trees of LEDs.

• pwm (bool544) – If True545, construct PWMLED (page 127) instances for each pin. If
False546 (the default), construct regular LED (page 125) instances.

• active_high (bool547) – If True548 (the default), the on() (page 158) method will
set all the associated pins to HIGH. If False549, the on() (page 158) method will set
all pins to LOW (the off() (page 158) method always does the opposite).

• initial_value (bool550 or None) – If False551 (the default), all LEDs will be
off initially. If None552, each device will be left in whatever state the pin is found in when
configured for output (warning: this can be on). If True553, the device will be switched
on initially.

157

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

• _order (list554 or None) – If specified, this is the order of named items specified by
keyword arguments (to ensure that the value tuple is constructed with a specific order).
All keyword arguments must be included in the collection. If omitted, an alphabetically
sorted order will be selected for keyword arguments.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

• **named_pins – Specify GPIO pins that LEDs of the board are attached to, associating
each LED with a property name. You can designate as many pins as necessary and use
any names, provided they’re not already in use by something else. You can also specify
LEDBoard (page 157) instances to create trees of LEDs.

blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)
Make all the LEDs turn on and off repeatedly.

Parameters

• on_time (float555) – Number of seconds on. Defaults to 1 second.
• off_time (float556) – Number of seconds off. Defaults to 1 second.
• fade_in_time (float557) – Number of seconds to spend fading in. Defaults to 0.
Must be 0 if pwmwas False558 when the class was constructed (ValueError559 will
be raised if not).

• fade_out_time (float560) – Number of seconds to spend fading out. Defaults to
0. Must be 0 if pwm was False561 when the class was constructed (ValueError562
will be raised if not).

• n (int563 or None) – Number of times to blink; None564 (the default) means forever.
• background (bool565) – If True566, start a background thread to continue blinking
and return immediately. If False567, only return when the blink is finished (warning:
the default value of n will result in this method never returning).

off(*args)
If no arguments are specified, turn all the LEDs off. If arguments are specified, they must be the indexes
of the LEDs you wish to turn off. For example:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5)
leds.on() # turn on all LEDs
leds.off(0) # turn off the first LED (pin 2)
leds.off(-1) # turn off the last LED (pin 5)
leds.off(1, 2) # turn off the middle LEDs (pins 3 and 4)
leds.on() # turn on all LEDs

If blink() (page 158) is currently active, it will be stopped first.
Parameters

args (int568) – The index(es) of the LED(s) to turn off. If no indexes are specified turn
off all LEDs.

on(*args)
If no arguments are specified, turn all the LEDs on. If arguments are specified, they must be the indexes
of the LEDs you wish to turn on. For example:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5)
leds.on(0) # turn on the first LED (pin 2)
leds.on(-1) # turn on the last LED (pin 5)

(continues on next page)

158 Chapter 17. API - Boards and Accessories

https://docs.python.org/3.9/library/stdtypes.html#list
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#int

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
leds.on(1, 2) # turn on the middle LEDs (pins 3 and 4)
leds.off() # turn off all LEDs
leds.on() # turn on all LEDs

If blink() (page 158) is currently active, it will be stopped first.
Parameters

args (int569) – The index(es) of the LED(s) to turn on. If no indexes are specified turn
on all LEDs.

pulse(fade_in_time=1, fade_out_time=1, n=None, background=True)
Make all LEDs fade in and out repeatedly. Note that this method will only work if the pwm parameter
was True570 at construction time.

Parameters

• fade_in_time (float571) – Number of seconds to spend fading in. Defaults to 1.
• fade_out_time (float572) – Number of seconds to spend fading out. Defaults to
1.

• n (int573 or None) – Number of times to blink; None574 (the default) means forever.
• background (bool575) – If True576 (the default), start a background thread to con-
tinue blinking and return immediately. If False577, only return when the blink is fin-
ished (warning: the default value of n will result in this method never returning).

toggle(*args)
If no arguments are specified, toggle the state of all LEDs. If arguments are specified, they must be the
indexes of the LEDs you wish to toggle. For example:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5)
leds.toggle(0) # turn on the first LED (pin 2)
leds.toggle(-1) # turn on the last LED (pin 5)
leds.toggle() # turn the first and last LED off, and the

middle pair on

If blink() (page 158) is currently active, it will be stopped first.
Parameters

args (int578) – The index(es) of the LED(s) to toggle. If no indexes are specified toggle
the state of all LEDs.

17.1. Regular Classes 159

https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#int

gpiozero 2.0.1 Documentation, Release 2.0.1

17.1.2 LEDBarGraph

class gpiozero.LEDBarGraph(*args, **kwargs)

Extends LEDCollection (page 186) to control a line of LEDs representing a bar graph. Positive values (0
to 1) light the LEDs from first to last. Negative values (-1 to 0) light the LEDs from last to first.
The following example demonstrates turning on the first two and last two LEDs in a board containing five LEDs
attached to GPIOs 2 through 6:

from gpiozero import LEDBarGraph
from time import sleep

graph = LEDBarGraph(2, 3, 4, 5, 6)
graph.value = 2/5 # Light the first two LEDs only
sleep(1)
graph.value = -2/5 # Light the last two LEDs only
sleep(1)
graph.off()

As with all other output devices, source (page 161) and values (page 161) are supported:

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(2, 3, 4, 5, 6, pwm=True)
pot = MCP3008(channel=0)

graph.source = pot

pause()

544 https://docs.python.org/3.9/library/functions.html#bool
545 https://docs.python.org/3.9/library/constants.html#True
546 https://docs.python.org/3.9/library/constants.html#False
547 https://docs.python.org/3.9/library/functions.html#bool
548 https://docs.python.org/3.9/library/constants.html#True
549 https://docs.python.org/3.9/library/constants.html#False
550 https://docs.python.org/3.9/library/functions.html#bool
551 https://docs.python.org/3.9/library/constants.html#False
552 https://docs.python.org/3.9/library/constants.html#None
553 https://docs.python.org/3.9/library/constants.html#True
554 https://docs.python.org/3.9/library/stdtypes.html#list
555 https://docs.python.org/3.9/library/functions.html#float
556 https://docs.python.org/3.9/library/functions.html#float
557 https://docs.python.org/3.9/library/functions.html#float
558 https://docs.python.org/3.9/library/constants.html#False
559 https://docs.python.org/3.9/library/exceptions.html#ValueError
560 https://docs.python.org/3.9/library/functions.html#float
561 https://docs.python.org/3.9/library/constants.html#False
562 https://docs.python.org/3.9/library/exceptions.html#ValueError
563 https://docs.python.org/3.9/library/functions.html#int
564 https://docs.python.org/3.9/library/constants.html#None
565 https://docs.python.org/3.9/library/functions.html#bool
566 https://docs.python.org/3.9/library/constants.html#True
567 https://docs.python.org/3.9/library/constants.html#False
568 https://docs.python.org/3.9/library/functions.html#int
569 https://docs.python.org/3.9/library/functions.html#int
570 https://docs.python.org/3.9/library/constants.html#True
571 https://docs.python.org/3.9/library/functions.html#float
572 https://docs.python.org/3.9/library/functions.html#float
573 https://docs.python.org/3.9/library/functions.html#int
574 https://docs.python.org/3.9/library/constants.html#None
575 https://docs.python.org/3.9/library/functions.html#bool
576 https://docs.python.org/3.9/library/constants.html#True
577 https://docs.python.org/3.9/library/constants.html#False
578 https://docs.python.org/3.9/library/functions.html#int

160 Chapter 17. API - Boards and Accessories

gpiozero 2.0.1 Documentation, Release 2.0.1

Parameters
• *pins – Specify the GPIO pins that the LEDs of the bar graph are attached to. See Pin

Numbering (page 3) for valid pin numbers. You can designate as many pins as necessary.
• pwm (bool579) – If True580, construct PWMLED (page 127) instances for each pin. If
False581 (the default), construct regular LED (page 125) instances. This parameter can
only be specified as a keyword parameter.

• active_high (bool582) – If True583 (the default), the on() method will set all the
associated pins to HIGH. If False584, the on() method will set all pins to LOW (the
off() method always does the opposite). This parameter can only be specified as a
keyword parameter.

• initial_value (float585) – The initial value (page 161) of the graph given as
a float between -1 and +1. Defaults to 0.0. This parameter can only be specified as a
keyword parameter.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

property lit_count

The number of LEDs on the bar graph actually lit up. Note that just like value (page 161), this can be
negative if the LEDs are lit from last to first.

property source

The iterable to use as a source of values for value (page 161).
property value

The value of the LED bar graph. When no LEDs are lit, the value is 0. When all LEDs are lit, the value
is 1. Values between 0 and 1 light LEDs linearly from first to last. Values between 0 and -1 light LEDs
linearly from last to first.
To light a particular number of LEDs, simply divide that number by the number of LEDs. For example,
if your graph contains 3 LEDs, the following will light the first:

from gpiozero import LEDBarGraph

graph = LEDBarGraph(12, 16, 19)
graph.value = 1/3

Note: Setting value to -1 will light all LEDs. However, querying it subsequently will return 1 as both
representations are the same in hardware. The readable range of value (page 161) is effectively -1 <
value <= 1.

property values

An infinite iterator of values read from value (page 161).
579 https://docs.python.org/3.9/library/functions.html#bool
580 https://docs.python.org/3.9/library/constants.html#True
581 https://docs.python.org/3.9/library/constants.html#False
582 https://docs.python.org/3.9/library/functions.html#bool
583 https://docs.python.org/3.9/library/constants.html#True
584 https://docs.python.org/3.9/library/constants.html#False
585 https://docs.python.org/3.9/library/functions.html#float

17.1. Regular Classes 161

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float

gpiozero 2.0.1 Documentation, Release 2.0.1

17.1.3 LEDCharDisplay

class gpiozero.LEDCharDisplay(*args, **kwargs)

Extends LEDCollection (page 186) for a multi-segment LED display.
Multi-segment LED displays586 typically have 7 pins (labelled “a” through “g”) representing 7 LEDs layed out
in a figure-of-8 fashion. Frequently, an eigth pin labelled “dp” is included for a trailing decimal-point:

a
━━━━━

f ┃ ┃ b
┃ g ┃
━━━━━

e ┃ ┃ c
┃ ┃
━━━━━ • dp

d

Other common layouts are 9, 14, and 16 segment displays which include additional segments permitting more
accurate renditions of alphanumerics. For example:

a
━━━━━

f ┃╲i┃j╱┃ b
┃ ╲┃╱k┃
g━━ ━━h

e ┃ ╱┃╲n┃ c
┃╱l┃m╲┃
━━━━━ • dp

d

Such displays have either a common anode, or common cathode pin. This class defaults to the latter; when
using a common anode display active_high should be set to False587.
Instances of this class can be used to display characters or control individual LEDs on the display. For example:

from gpiozero import LEDCharDisplay

char = LEDCharDisplay(4, 5, 6, 7, 8, 9, 10, active_high=False)
char.value = 'C'

If the class is constructed with 7 or 14 segments, a default font (page 163) will be loaded, mapping some
ASCII characters to typical layouts. In other cases, the default mapping will simply assign “ “ (space) to all
LEDs off. You can assign your own mapping at construction time or after instantiation.
While the example above shows the display with a str588 value, theoretically the font can map any value that
can be the key in a dict589, so the value of the display can be likewise be any valid key value (e.g. you could
map integer digits to LED patterns). That said, there is one exception to this: when dp is specified to enable
the decimal-point, the value (page 163) must be a str590 as the presence or absence of a “.” suffix indicates
whether the dp LED is lit.

Parameters
• *pins – Specify the GPIO pins that the multi-segment display is attached to. Pins should
be in the LED segment order A, B, C, D, E, F, G, and will be named automatically by the
class. If a decimal-point pin is present, specify it separately as the dp parameter.

• dp (int591 or str592) – If a decimal-point segment is present, specify it as this named
parameter.

• font (dict593 or None) – A mapping of values (typically characters, but may also
be numbers) to tuples of LED states. A default mapping for ASCII characters is provided
for 7 and 14 segment displays.

162 Chapter 17. API - Boards and Accessories

https://en.wikipedia.org/wiki/Seven-segment_display
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#dict

gpiozero 2.0.1 Documentation, Release 2.0.1

• pwm (bool594) – If True595, construct PWMLED (page 127) instances for each pin. If
False596 (the default), construct regular LED (page 125) instances.

• active_high (bool597) – If True598 (the default), the on() method will set all the
associated pins to HIGH. If False599, the on() method will set all pins to LOW (the
off() method always does the opposite).

• initial_value – The initial value to display. Defaults to space (” “) which typically
maps to all LEDs being inactive. If None600, each device will be left in whatever state the
pin is found in when configured for output (warning: this can be on).

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

property font

An LEDCharFont (page 165) mapping characters to tuples of LED states. The font is mutable after
construction. You can assign a tuple of LED states to a character to modify the font, delete an existing
character in the font, or assign a mapping of characters to tuples to replace the entire font.
Note that modifying the font (page 163) never alters the underlying LED states. Only assignment to
value (page 163), or calling the inherited LEDCollection (page 186) methods (on(), off(),
etc.) modifies LED states. However, modifying the font may alter the character returned by querying
value (page 163).

property value

The character the display should show. This is mapped by the current font (page 163) to a tuple of
LED states which is applied to the underlying LED objects when this attribute is set.
When queried, the current LED states are looked up in the font to determine the character shown. If the
current LED states do not correspond to any character in the font (page 163), the value is None601.
It is possible for multiple characters in the font to map to the same LED states (e.g. S and 5). In this
case, if the font was constructed from an ordered mapping (which is the default), then the first matching
mapping will always be returned. This also implies that the value queried need not match the value set.

17.1.4 LEDMultiCharDisplay

class gpiozero.LEDMultiCharDisplay(*args, **kwargs)

Wraps LEDCharDisplay (page 162) for multi-character multiplexed602 LED character displays.
The class is constructed with a char which is an instance of the LEDCharDisplay (page 162) class, capable
of controlling the LEDs in one character of the display, and an additional set of pins that represent the common
cathode (or anode) of each character.

586 https://en.wikipedia.org/wiki/Seven-segment_display
587 https://docs.python.org/3.9/library/constants.html#False
588 https://docs.python.org/3.9/library/stdtypes.html#str
589 https://docs.python.org/3.9/library/stdtypes.html#dict
590 https://docs.python.org/3.9/library/stdtypes.html#str
591 https://docs.python.org/3.9/library/functions.html#int
592 https://docs.python.org/3.9/library/stdtypes.html#str
593 https://docs.python.org/3.9/library/stdtypes.html#dict
594 https://docs.python.org/3.9/library/functions.html#bool
595 https://docs.python.org/3.9/library/constants.html#True
596 https://docs.python.org/3.9/library/constants.html#False
597 https://docs.python.org/3.9/library/functions.html#bool
598 https://docs.python.org/3.9/library/constants.html#True
599 https://docs.python.org/3.9/library/constants.html#False
600 https://docs.python.org/3.9/library/constants.html#None
601 https://docs.python.org/3.9/library/constants.html#None

17.1. Regular Classes 163

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://en.wikipedia.org/wiki/Multiplexed_display

gpiozero 2.0.1 Documentation, Release 2.0.1

Warning: You should not attempt to connect the common cathode (or anode) off each character directly to
a GPIO. Rather, use a set of transistors (or some other suitable component capable of handling the current
of all the segment LEDs simultaneously) to connect the common cathode to ground (or the common anode
to the supply) and control those transistors from the GPIOs specified under pins.

The active_high parameter defaults to True603. Note that it only applies to the specified pins, which are
assumed to be controlling a set of transistors (hence the default). The specified char will use its own active_high
parameter. Finally, initial_value defaults to a tuple of value (page 163) attribute of the specified display
multiplied by the number of pins provided.
When the value (page 164) is set such that one or more characters in the display differ in value, a background
thread is implicitly started to rotate the active character, relying on persistence of vision604 to display the
complete value.
property plex_delay

The delay (measured in seconds) in the loop used to switch each character in the multiplexed display on.
Defaults to 0.005 seconds which is generally sufficient to provide a “stable” (non-flickery) display.

property value

The sequence of values to display.
This can be any sequence containing keys from the font (page 163) of the associated character display.
For example, if the value consists only of single-character strings, it’s valid to assign a string to this
property (as a string is simply a sequence of individual character keys):

from gpiozero import LEDCharDisplay, LEDMultiCharDisplay

c = LEDCharDisplay(4, 5, 6, 7, 8, 9, 10)
d = LEDMultiCharDisplay(c, 19, 20, 21, 22)
d.value = 'LEDS'

However, things get more complicated if a decimal point is in use as then this class needs to know
explicitly where to break the value for use on each character of the display. This can be handled by
simply assigning a sequence of strings thus:

from gpiozero import LEDCharDisplay, LEDMultiCharDisplay

c = LEDCharDisplay(4, 5, 6, 7, 8, 9, 10)
d = LEDMultiCharDisplay(c, 19, 20, 21, 22)
d.value = ('L.', 'E', 'D', 'S')

This is how the value will always be represented when queried (as a tuple of individual values) as it neatly
handles dealing with heterogeneous types and the aforementioned decimal point issue.

Note: The value also controls whether a background thread is in use to multiplex the display. When all
positions in the value are equal the background thread is disabled and all characters are simultaneously
enabled.

602 https://en.wikipedia.org/wiki/Multiplexed_display
603 https://docs.python.org/3.9/library/constants.html#True
604 https://en.wikipedia.org/wiki/Persistence_of_vision

164 Chapter 17. API - Boards and Accessories

https://docs.python.org/3.9/library/constants.html#True
https://en.wikipedia.org/wiki/Persistence_of_vision

gpiozero 2.0.1 Documentation, Release 2.0.1

17.1.5 LEDCharFont

class gpiozero.LEDCharFont(font)

Contains a mapping of values to tuples of LED states.
This effectively acts as a “font” for LEDCharDisplay (page 162), and two default fonts (for 7-segment and
14-segment displays) are shipped with GPIO Zero by default. You can construct your own font instance from
a dict605 which maps values (usually single-character strings) to a tuple of LED states:

from gpiozero import LEDCharDisplay, LEDCharFont

my_font = LEDCharFont({
' ': (0, 0, 0, 0, 0, 0, 0),
'D': (1, 1, 1, 1, 1, 1, 0),
'A': (1, 1, 1, 0, 1, 1, 1),
'd': (0, 1, 1, 1, 1, 0, 1),
'a': (1, 1, 1, 1, 1, 0, 1),

})
display = LEDCharDisplay(26, 13, 12, 22, 17, 19, 6, dp=5, font=my_font)
display.value = 'D'

Font instances are mutable and can be changed while actively in use by an instance of LEDCharDisplay
(page 162). However, changing the font will not change the state of the LEDs in the display (though it may
change the value (page 163) of the display when next queried).

Note: Your custom mapping should always include a value (typically space) which represents all the LEDs
off. This will usually be the default value for an instance of LEDCharDisplay (page 162).

You may also wish to load fonts from a friendly text-based format. A simple parser for such formats (sup-
porting an arbitrary number of segments) is provided by gpiozero.fonts.load_segment_font()
(page 212).

17.1.6 ButtonBoard

class gpiozero.ButtonBoard(*args, **kwargs)
Extends CompositeDevice (page 187) and represents a generic button board or collection of buttons. The
value (page 166) of the button board is a tuple of all the buttons states. This can be used to control all the
LEDs in a LEDBoard (page 157) with a ButtonBoard (page 165):

from gpiozero import LEDBoard, ButtonBoard
from signal import pause

leds = LEDBoard(2, 3, 4, 5)
btns = ButtonBoard(6, 7, 8, 9)
leds.source = btns

pause()

Alternatively you could represent the number of pressed buttons with an LEDBarGraph (page 160):

from gpiozero import LEDBarGraph, ButtonBoard
from statistics import mean
from signal import pause

graph = LEDBarGraph(2, 3, 4, 5)
bb = ButtonBoard(6, 7, 8, 9)

(continues on next page)

605 https://docs.python.org/3.9/library/stdtypes.html#dict

17.1. Regular Classes 165

https://docs.python.org/3.9/library/stdtypes.html#dict

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
graph.source = (mean(values) for values in bb.values)

pause()

Parameters
• *pins – Specify the GPIO pins that the buttons of the board are attached to. See Pin

Numbering (page 3) for valid pin numbers. You can designate as many pins as necessary.
• pull_up (bool606 or None) – If True607 (the default), the GPIO pins will be pulled
high by default. In this case, connect the other side of the buttons to ground. If False608,
the GPIO pins will be pulled low by default. In this case, connect the other side of the
buttons to 3V3. If None609, the pin will be floating, so it must be externally pulled up or
down and the active_state parameter must be set accordingly.

• active_state (bool610 or None) – See description under InputDevice
(page 121) for more information.

• bounce_time (float611) – If None612 (the default), no software bounce compensa-
tion will be performed. Otherwise, this is the length of time (in seconds) that the buttons
will ignore changes in state after an initial change.

• hold_time (float613) – The length of time (in seconds) to wait after any button is
pushed, until executing the when_held handler. Defaults to 1.

• hold_repeat (bool614) – If True615, the when_held handler will be repeatedly
executed as long as any buttons remain held, every hold_time seconds. If False616 (the
default) the when_held handler will be only be executed once per hold.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

• **named_pins – Specify GPIO pins that buttons of the board are attached to, associ-
ating each button with a property name. You can designate as many pins as necessary and
use any names, provided they’re not already in use by something else.

wait_for_press(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters
timeout (float617 or None) – Number of seconds to wait before proceeding. If
this is None618 (the default), then wait indefinitely until the device is active.

wait_for_release(timeout=None)

Pause the script until the device is deactivated, or the timeout is reached.
Parameters

timeout (float619 or None) – Number of seconds to wait before proceeding. If
this is None620 (the default), then wait indefinitely until the device is inactive.

property is_pressed

Composite devices are considered “active” if any of their constituent devices have a “truthy” value.
property pressed_time

The length of time (in seconds) that the device has been active for. When the device is inactive, this is
None621.

property value

A namedtuple()622 containing a value for each subordinate device. Devices with names will be
represented as named elements. Unnamed devices will have a unique name generated for them, and they
will appear in the position they appeared in the constructor.

166 Chapter 17. API - Boards and Accessories

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/collections.html#collections.namedtuple

gpiozero 2.0.1 Documentation, Release 2.0.1

when_pressed

The function to run when the device changes state from inactive to active.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None623 (the default) to disable the event.

when_released

The function to run when the device changes state from active to inactive.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated it will be passed as that parameter.
Set this property to None624 (the default) to disable the event.

17.1.7 TrafficLights

class gpiozero.TrafficLights(*args, **kwargs)
Extends LEDBoard (page 157) for devices containing red, yellow, and green LEDs.
The following example initializes a device connected to GPIO pins 2, 3, and 4, then lights the amber (yellow)
LED attached to GPIO 3:

from gpiozero import TrafficLights

traffic = TrafficLights(2, 3, 4)
traffic.amber.on()

Parameters

• red (int625 or str626) – The GPIO pin that the red LED is attached to. See Pin
Numbering (page 3) for valid pin numbers.

• amber (int627 or str628 or None) – The GPIO pin that the amber LED is attached
to. See Pin Numbering (page 3) for valid pin numbers.

• yellow (int629 or str630 or None) – The GPIO pin that the yellow LED is
attached to. This is merely an alias for the amber parameter; you can’t specify both
amber and yellow. See Pin Numbering (page 3) for valid pin numbers.

• green (int631 or str632) – The GPIO pin that the green LED is attached to. See
Pin Numbering (page 3) for valid pin numbers.

606 https://docs.python.org/3.9/library/functions.html#bool
607 https://docs.python.org/3.9/library/constants.html#True
608 https://docs.python.org/3.9/library/constants.html#False
609 https://docs.python.org/3.9/library/constants.html#None
610 https://docs.python.org/3.9/library/functions.html#bool
611 https://docs.python.org/3.9/library/functions.html#float
612 https://docs.python.org/3.9/library/constants.html#None
613 https://docs.python.org/3.9/library/functions.html#float
614 https://docs.python.org/3.9/library/functions.html#bool
615 https://docs.python.org/3.9/library/constants.html#True
616 https://docs.python.org/3.9/library/constants.html#False
617 https://docs.python.org/3.9/library/functions.html#float
618 https://docs.python.org/3.9/library/constants.html#None
619 https://docs.python.org/3.9/library/functions.html#float
620 https://docs.python.org/3.9/library/constants.html#None
621 https://docs.python.org/3.9/library/constants.html#None
622 https://docs.python.org/3.9/library/collections.html#collections.namedtuple
623 https://docs.python.org/3.9/library/constants.html#None
624 https://docs.python.org/3.9/library/constants.html#None

17.1. Regular Classes 167

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/stdtypes.html#str

gpiozero 2.0.1 Documentation, Release 2.0.1

• pwm (bool633) – If True634, construct PWMLED (page 127) instances to represent each
LED. If False635 (the default), construct regular LED (page 125) instances.

• initial_value (bool636 or None) – If False637 (the default), all LEDs will be
off initially. If None638, each device will be left in whatever state the pin is found in when
configured for output (warning: this can be on). If True639, the device will be switched
on initially.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

red

The red LED (page 125) or PWMLED (page 127).
amber

The amber LED (page 125) or PWMLED (page 127). Note that this attribute will not be present when the
instance is constructed with the yellow keyword parameter.

yellow

The yellow LED (page 125) or PWMLED (page 127). Note that this attribute will only be present when
the instance is constructed with the yellow keyword parameter.

green

The green LED (page 125) or PWMLED (page 127).

17.1.8 TrafficLightsBuzzer

class gpiozero.TrafficLightsBuzzer(*args, **kwargs)
Extends CompositeOutputDevice (page 186) and is a generic class for HATs with traffic lights, a button
and a buzzer.

Parameters
• lights (TrafficLights (page 167)) – An instance of TrafficLights
(page 167) representing the traffic lights of the HAT.

• buzzer (Buzzer (page 131)) – An instance of Buzzer (page 131) representing the
buzzer on the HAT.

• button (Button (page 105)) – An instance of Button (page 105) representing the
button on the HAT.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

lights

The TrafficLights (page 167) instance passed as the lights parameter.

625 https://docs.python.org/3.9/library/functions.html#int
626 https://docs.python.org/3.9/library/stdtypes.html#str
627 https://docs.python.org/3.9/library/functions.html#int
628 https://docs.python.org/3.9/library/stdtypes.html#str
629 https://docs.python.org/3.9/library/functions.html#int
630 https://docs.python.org/3.9/library/stdtypes.html#str
631 https://docs.python.org/3.9/library/functions.html#int
632 https://docs.python.org/3.9/library/stdtypes.html#str
633 https://docs.python.org/3.9/library/functions.html#bool
634 https://docs.python.org/3.9/library/constants.html#True
635 https://docs.python.org/3.9/library/constants.html#False
636 https://docs.python.org/3.9/library/functions.html#bool
637 https://docs.python.org/3.9/library/constants.html#False
638 https://docs.python.org/3.9/library/constants.html#None
639 https://docs.python.org/3.9/library/constants.html#True

168 Chapter 17. API - Boards and Accessories

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

buzzer

The Buzzer (page 131) instance passed as the buzzer parameter.
button

The Button (page 105) instance passed as the button parameter.

17.1.9 PiHutXmasTree

class gpiozero.PiHutXmasTree(*args, **kwargs)

Extends LEDBoard (page 157) for The Pi Hut’s Xmas board640: a 3D Christmas tree board with 24 red LEDs
and a white LED as a star on top.
The 24 red LEDs can be accessed through the attributes led0, led1, led2, and so on. The white star LED
is accessed through the star (page 169) attribute. Alternatively, as with all descendents of LEDBoard
(page 157), you can treat the instance as a sequence of LEDs (the first element is the star (page 169)).
The Xmas Tree board pins are fixed and therefore there’s no need to specify them when constructing this class.
The following example turns all the LEDs on one at a time:

from gpiozero import PiHutXmasTree
from time import sleep

tree = PiHutXmasTree()

for light in tree:
light.on()
sleep(1)

The following example turns the star LED on and sets all the red LEDs to flicker randomly:

from gpiozero import PiHutXmasTree
from gpiozero.tools import random_values
from signal import pause

tree = PiHutXmasTree(pwm=True)

tree.star.on()

for led in tree[1:]:
led.source_delay = 0.1
led.source = random_values()

pause()

Parameters

• pwm (bool641) – If True642, construct PWMLED (page 127) instances for each pin. If
False643 (the default), construct regular LED (page 125) instances.

• initial_value (bool644 or None) – If False645 (the default), all LEDs will be
off initially. If None646, each device will be left in whatever state the pin is found in when
configured for output (warning: this can be on). If True647, the device will be switched
on initially.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

star

Returns the LED (page 125) or PWMLED (page 127) representing the white star on top of the tree.

17.1. Regular Classes 169

https://thepihut.com/xmas
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

led0, led1, led2, ...

Returns the LED (page 125) or PWMLED (page 127) representing one of the red LEDs. There are actually
24 of these properties named led0, led1, and so on but for the sake of brevity we represent all 24 under
this section.

17.1.10 LedBorg

class gpiozero.LedBorg(*args, **kwargs)

Extends RGBLED (page 128) for the PiBorg LedBorg648: an add-on board containing a very bright RGB LED.
The LedBorg pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example turns the LedBorg purple:

from gpiozero import LedBorg

led = LedBorg()
led.color = (1, 0, 1)

Parameters

• initial_value (Color649 or tuple650) – The initial color for the LedBorg.
Defaults to black (0, 0, 0).

• pwm (bool651) – If True652 (the default), construct PWMLED (page 127) instances for
each component of the LedBorg. If False653, construct regular LED (page 125) in-
stances, which prevents smooth color graduations.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

17.1.11 PiLiter

class gpiozero.PiLiter(*args, **kwargs)

Extends LEDBoard (page 157) for the Ciseco Pi-LITEr654: a strip of 8 very bright LEDs.
The Pi-LITEr pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example turns on all the LEDs of the Pi-LITEr:

from gpiozero import PiLiter

lite = PiLiter()
lite.on()

Parameters
640 https://thepihut.com/xmas
641 https://docs.python.org/3.9/library/functions.html#bool
642 https://docs.python.org/3.9/library/constants.html#True
643 https://docs.python.org/3.9/library/constants.html#False
644 https://docs.python.org/3.9/library/functions.html#bool
645 https://docs.python.org/3.9/library/constants.html#False
646 https://docs.python.org/3.9/library/constants.html#None
647 https://docs.python.org/3.9/library/constants.html#True
648 https://www.piborg.org/ledborg
649 https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
650 https://docs.python.org/3.9/library/stdtypes.html#tuple
651 https://docs.python.org/3.9/library/functions.html#bool
652 https://docs.python.org/3.9/library/constants.html#True
653 https://docs.python.org/3.9/library/constants.html#False

170 Chapter 17. API - Boards and Accessories

https://www.piborg.org/ledborg
https://colorzero.readthedocs.io/en/latest/api_color.html#colorzero.Color
https://docs.python.org/3.9/library/stdtypes.html#tuple
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/

gpiozero 2.0.1 Documentation, Release 2.0.1

• pwm (bool655) – If True656, construct PWMLED (page 127) instances for each pin. If
False657 (the default), construct regular LED (page 125) instances.

• initial_value (bool658 or None) – If False659 (the default), all LEDs will
be off initially. If None660, each LED will be left in whatever state the pin is found in
when configured for output (warning: this can be on). If True661, the each LED will be
switched on initially.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

17.1.12 PiLiterBarGraph

class gpiozero.PiLiterBarGraph(*args, **kwargs)

Extends LEDBarGraph (page 160) to treat the Ciseco Pi-LITEr662 as an 8-segment bar graph.
The Pi-LITEr pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example sets the graph value to 0.5:

from gpiozero import PiLiterBarGraph

graph = PiLiterBarGraph()
graph.value = 0.5

Parameters

• pwm (bool663) – If True664, construct PWMLED (page 127) instances for each pin. If
False665 (the default), construct regular LED (page 125) instances.

• initial_value (float666) – The initial value of the graph given as a float between
-1 and +1. Defaults to 0.0.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

17.1.13 PiTraffic

class gpiozero.PiTraffic(*args, **kwargs)

Extends TrafficLights (page 167) for the Low Voltage Labs PI-TRAFFIC667 vertical traffic lights board
when attached to GPIO pins 9, 10, and 11.
There’s no need to specify the pins if the PI-TRAFFIC is connected to the default pins (9, 10, 11). The
following example turns on the amber LED on the PI-TRAFFIC:

654 http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/
655 https://docs.python.org/3.9/library/functions.html#bool
656 https://docs.python.org/3.9/library/constants.html#True
657 https://docs.python.org/3.9/library/constants.html#False
658 https://docs.python.org/3.9/library/functions.html#bool
659 https://docs.python.org/3.9/library/constants.html#False
660 https://docs.python.org/3.9/library/constants.html#None
661 https://docs.python.org/3.9/library/constants.html#True
662 http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/
663 https://docs.python.org/3.9/library/functions.html#bool
664 https://docs.python.org/3.9/library/constants.html#True
665 https://docs.python.org/3.9/library/constants.html#False
666 https://docs.python.org/3.9/library/functions.html#float

17.1. Regular Classes 171

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#float
http://lowvoltagelabs.com/products/pi-traffic/

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import PiTraffic

traffic = PiTraffic()
traffic.amber.on()

To use the PI-TRAFFIC board when attached to a non-standard set of pins, simply use the parent class, Traf-
ficLights (page 167).

Parameters

• pwm (bool668) – If True669, construct PWMLED (page 127) instances to represent each
LED. If False670 (the default), construct regular LED (page 125) instances.

• initial_value (bool671) – If False672 (the default), all LEDs will be off initially.
If None673, each device will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True674, the device will be switched on initially.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

17.1.14 PiStop

class gpiozero.PiStop(*args, **kwargs)

Extends TrafficLights (page 167) for the PiHardware Pi-Stop675: a vertical traffic lights board.
The following example turns on the amber LED on a Pi-Stop connected to location A+:

from gpiozero import PiStop

traffic = PiStop('A+')
traffic.amber.on()

Parameters

• location (str676) – The location677 on the GPIO header to which the Pi-Stop is con-
nected. Must be one of: A, A+, B, B+, C, D.

• pwm (bool678) – If True679, construct PWMLED (page 127) instances to represent each
LED. If False680 (the default), construct regular LED (page 125) instances.

• initial_value (bool681) – If False682 (the default), all LEDs will be off initially.
If None683, each device will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True684, the device will be switched on initially.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

667 http://lowvoltagelabs.com/products/pi-traffic/
668 https://docs.python.org/3.9/library/functions.html#bool
669 https://docs.python.org/3.9/library/constants.html#True
670 https://docs.python.org/3.9/library/constants.html#False
671 https://docs.python.org/3.9/library/functions.html#bool
672 https://docs.python.org/3.9/library/constants.html#False
673 https://docs.python.org/3.9/library/constants.html#None
674 https://docs.python.org/3.9/library/constants.html#True

172 Chapter 17. API - Boards and Accessories

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://pihw.wordpress.com/meltwaters-pi-hardware-kits/pi-stop/
https://docs.python.org/3.9/library/stdtypes.html#str
https://github.com/PiHw/Pi-Stop/blob/master/markdown_source/markdown/Discover-PiStop.md
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

17.1.15 FishDish

class gpiozero.FishDish(*args, **kwargs)

Extends CompositeOutputDevice (page 186) for the Pi Supply FishDish685: traffic light LEDs, a button
and a buzzer.
The FishDish pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example waits for the button to be pressed on the FishDish, then turns on all the LEDs:

from gpiozero import FishDish

fish = FishDish()
fish.button.wait_for_press()
fish.lights.on()

Parameters

• pwm (bool686) – If True687, construct PWMLED (page 127) instances to represent each
LED. If False688 (the default), construct regular LED (page 125) instances.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

17.1.16 TrafficHat

class gpiozero.TrafficHat(*args, **kwargs)

Extends CompositeOutputDevice (page 186) for the Pi Supply Traffic HAT689: a board with traffic light
LEDs, a button and a buzzer.
The Traffic HAT pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example waits for the button to be pressed on the Traffic HAT, then turns on all the LEDs:

from gpiozero import TrafficHat

hat = TrafficHat()
hat.button.wait_for_press()
hat.lights.on()

Parameters

• pwm (bool690) – If True691, construct PWMLED (page 127) instances to represent each
LED. If False692 (the default), construct regular LED (page 125) instances.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

675 https://pihw.wordpress.com/meltwaters-pi-hardware-kits/pi-stop/
676 https://docs.python.org/3.9/library/stdtypes.html#str
677 https://github.com/PiHw/Pi-Stop/blob/master/markdown_source/markdown/Discover-PiStop.md
678 https://docs.python.org/3.9/library/functions.html#bool
679 https://docs.python.org/3.9/library/constants.html#True
680 https://docs.python.org/3.9/library/constants.html#False
681 https://docs.python.org/3.9/library/functions.html#bool
682 https://docs.python.org/3.9/library/constants.html#False
683 https://docs.python.org/3.9/library/constants.html#None
684 https://docs.python.org/3.9/library/constants.html#True
685 https://www.pi-supply.com/product/fish-dish-raspberry-pi-led-buzzer-board/
686 https://docs.python.org/3.9/library/functions.html#bool
687 https://docs.python.org/3.9/library/constants.html#True
688 https://docs.python.org/3.9/library/constants.html#False

17.1. Regular Classes 173

https://www.pi-supply.com/product/fish-dish-raspberry-pi-led-buzzer-board/
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://uk.pi-supply.com/products/traffic-hat-for-raspberry-pi
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

17.1.17 TrafficpHat

class gpiozero.TrafficpHat(*args, **kwargs)

Extends TrafficLights (page 167) for the Pi Supply Traffic pHAT693: a small board with traffic light
LEDs.
The Traffic pHAT pins are fixed and therefore there’s no need to specify them when constructing this class.
The following example then turns on all the LEDs:

from gpiozero import TrafficpHat
phat = TrafficpHat()
phat.red.on()
phat.blink()

Parameters

• pwm (bool694) – If True695, construct PWMLED (page 127) instances to represent each
LED. If False696 (the default), construct regular LED (page 125) instances.

• initial_value (bool697 or None) – If False698 (the default), all LEDs will be
off initially. If None699, each device will be left in whatever state the pin is found in when
configured for output (warning: this can be on). If True700, the device will be switched
on initially.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

17.1.18 JamHat

class gpiozero.JamHat(*args, **kwargs)
Extends CompositeOutputDevice (page 186) for the ModMyPi JamHat701 board.
There are 6 LEDs, two buttons and a tonal buzzer. The pins are fixed. Usage:

from gpiozero import JamHat

hat = JamHat()

hat.button_1.wait_for_press()
hat.lights_1.on()
hat.buzzer.play('C4')
hat.button_2.wait_for_press()
hat.off()

Parameters
• pwm (bool702) – If True703, construct PWMLED (page 127) instances to represent each
LED on the board. If False704 (the default), construct regular LED (page 125) instances.

689 https://uk.pi-supply.com/products/traffic-hat-for-raspberry-pi
690 https://docs.python.org/3.9/library/functions.html#bool
691 https://docs.python.org/3.9/library/constants.html#True
692 https://docs.python.org/3.9/library/constants.html#False
693 http://pisupp.ly/trafficphat
694 https://docs.python.org/3.9/library/functions.html#bool
695 https://docs.python.org/3.9/library/constants.html#True
696 https://docs.python.org/3.9/library/constants.html#False
697 https://docs.python.org/3.9/library/functions.html#bool
698 https://docs.python.org/3.9/library/constants.html#False
699 https://docs.python.org/3.9/library/constants.html#None
700 https://docs.python.org/3.9/library/constants.html#True

174 Chapter 17. API - Boards and Accessories

http://pisupp.ly/trafficphat
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://thepihut.com/products/jam-hat
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

lights_1, lights_2

Two LEDBoard (page 157) instances representing the top (lights_1) and bottom (lights_2) rows of
LEDs on the JamHat.
red, yellow, green

LED (page 125) or PWMLED (page 127) instances representing the red, yellow, and green LEDs
along the top row.

button_1, button_2

The left (button_1) and right (button_2) Button (page 105) objects on the JamHat.
buzzer

The TonalBuzzer (page 133) at the bottom right of the JamHat.
off()

Turns all the LEDs off and stops the buzzer.
on()

Turns all the LEDs on and makes the buzzer play its mid tone.

17.1.19 Pibrella

class gpiozero.Pibrella(*args, **kwargs)

Extends CompositeOutputDevice (page 186) for the Cyntech/Pimoroni Pibrella705 board.
The Pibrella board comprises 3 LEDs, a button, a tonal buzzer, four general purpose input channels, and four
general purpose output channels (with LEDs).
This class exposes the LEDs, button and buzzer.
Usage:

from gpiozero import Pibrella

pb = Pibrella()

pb.button.wait_for_press()
pb.lights.on()
pb.buzzer.play('A4')
pb.off()

The four input and output channels are exposed so you can create GPIO Zero devices using these pins without
looking up their respective pin numbers:

from gpiozero import Pibrella, LED, Button

pb = Pibrella()
btn = Button(pb.inputs.a, pull_up=False)
led = LED(pb.outputs.e)

btn.when_pressed = led.on

Parameters
701 https://thepihut.com/products/jam-hat
702 https://docs.python.org/3.9/library/functions.html#bool
703 https://docs.python.org/3.9/library/constants.html#True
704 https://docs.python.org/3.9/library/constants.html#False

17.1. Regular Classes 175

http://www.pibrella.com/

gpiozero 2.0.1 Documentation, Release 2.0.1

• pwm (bool706) – If True707, construct PWMLED (page 127) instances to represent each
LED on the board, otherwise if False708 (the default), construct regular LED (page 125)
instances.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

lights

TrafficLights (page 167) instance representing the three LEDs
red, amber, green

LED (page 125) or PWMLED (page 127) instances representing the red, amber, and green LEDs
button

The red Button (page 105) object on the Pibrella
buzzer

A TonalBuzzer (page 133) object representing the buzzer
inputs

A namedtuple()709 of the input pin numbers
a, b, c, d

outputs

A namedtuple()710 of the output pin numbers
e, f, g, h

off()

Turns all the LEDs off and stops the buzzer.
on()

Turns all the LEDs on and makes the buzzer play its mid tone.

17.1.20 Robot

class gpiozero.Robot(*args, **kwargs)
Extends CompositeDevice (page 187) to represent a generic dual-motor robot.
This class is constructed with two motor instances representing the left and right wheels of the robot respec-
tively. For example, if the left motor’s controller is connected to GPIOs 4 and 14, while the right motor’s
controller is connected to GPIOs 17 and 18 then the following example will drive the robot forward:

from gpiozero import Robot

robot = Robot(left=Motor(4, 14), right=Motor(17, 18))
robot.forward()

Parameters
• left (Motor (page 134) or PhaseEnableMotor (page 136)) – A Motor
(page 134) or a PhaseEnableMotor (page 136) for the left wheel of the robot.

• right (Motor (page 134) or PhaseEnableMotor (page 136)) – A Motor
(page 134) or a PhaseEnableMotor (page 136) for the right wheel of the robot.

705 http://www.pibrella.com/
706 https://docs.python.org/3.9/library/functions.html#bool
707 https://docs.python.org/3.9/library/constants.html#True
708 https://docs.python.org/3.9/library/constants.html#False
709 https://docs.python.org/3.9/library/collections.html#collections.namedtuple
710 https://docs.python.org/3.9/library/collections.html#collections.namedtuple

176 Chapter 17. API - Boards and Accessories

https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/collections.html#collections.namedtuple
https://docs.python.org/3.9/library/collections.html#collections.namedtuple

gpiozero 2.0.1 Documentation, Release 2.0.1

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

left_motor

The Motor (page 134) on the left of the robot.
right_motor

The Motor (page 134) on the right of the robot.
backward(speed=1, *, curve_left=0, curve_right=0)

Drive the robot backward by running both motors backward.
Parameters

• speed (float711) – Speed at which to drive themotors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

• curve_left (float712) – The amount to curve left while moving backwards, by
driving the left motor at a slower speed. Maximum curve_left is 1, the default is 0 (no
curve). This parameter can only be specified as a keyword parameter, and is mutually
exclusive with curve_right.

• curve_right (float713) – The amount to curve right while moving backwards, by
driving the right motor at a slower speed. Maximum curve_right is 1, the default is 0 (no
curve). This parameter can only be specified as a keyword parameter, and is mutually
exclusive with curve_left.

forward(speed=1, *, curve_left=0, curve_right=0)
Drive the robot forward by running both motors forward.

Parameters
• speed (float714) – Speed at which to drive themotors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

• curve_left (float715) – The amount to curve left while moving forwards, by driv-
ing the left motor at a slower speed. Maximum curve_left is 1, the default is 0 (no curve).
This parameter can only be specified as a keyword parameter, and is mutually exclusive
with curve_right.

• curve_right (float716) – The amount to curve right while moving forwards, by
driving the right motor at a slower speed. Maximum curve_right is 1, the default is 0 (no
curve). This parameter can only be specified as a keyword parameter, and is mutually
exclusive with curve_left.

left(speed=1)

Make the robot turn left by running the right motor forward and left motor backward.
Parameters

speed (float717) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

reverse()

Reverse the robot’s current motor directions. If the robot is currently running full speed forward, it will
run full speed backward. If the robot is turning left at half-speed, it will turn right at half-speed. If the
robot is currently stopped it will remain stopped.

right(speed=1)
Make the robot turn right by running the left motor forward and right motor backward.

Parameters
speed (float718) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

17.1. Regular Classes 177

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

gpiozero 2.0.1 Documentation, Release 2.0.1

stop()

Stop the robot.
property value

Represents the motion of the robot as a tuple of (left_motor_speed, right_motor_speed) with (-1, -1)
representing full speed backwards, (1, 1) representing full speed forwards, and (0, 0) representing
stopped.

17.1.21 PhaseEnableRobot

class gpiozero.PhaseEnableRobot(left=None, right=None, pwm=True, pin_factory=None, *args)
Deprecated alias of Robot (page 176). The Robot (page 176) class can now be constructed directly with
Motor (page 134) or PhaseEnableMotor (page 136) classes.

17.1.22 RyanteckRobot

class gpiozero.RyanteckRobot(*args, **kwargs)
Extends Robot (page 176) for the Ryanteck motor controller board719.
The Ryanteck MCB pins are fixed and therefore there’s no need to specify them when constructing this class.
The following example drives the robot forward:

from gpiozero import RyanteckRobot

robot = RyanteckRobot()
robot.forward()

Parameters
• pwm (bool720) – If True721 (the default), construct PWMOutputDevice (page 142)
instances for the motor controller pins, allowing both direction and variable speed control.
If False722, construct DigitalOutputDevice (page 141) instances, allowing only
direction control.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

711 https://docs.python.org/3.9/library/functions.html#float
712 https://docs.python.org/3.9/library/functions.html#float
713 https://docs.python.org/3.9/library/functions.html#float
714 https://docs.python.org/3.9/library/functions.html#float
715 https://docs.python.org/3.9/library/functions.html#float
716 https://docs.python.org/3.9/library/functions.html#float
717 https://docs.python.org/3.9/library/functions.html#float
718 https://docs.python.org/3.9/library/functions.html#float
719 https://uk.pi-supply.com/products/ryanteck-rtk-000-001-motor-controller-board-kit-raspberry-pi
720 https://docs.python.org/3.9/library/functions.html#bool
721 https://docs.python.org/3.9/library/constants.html#True
722 https://docs.python.org/3.9/library/constants.html#False

178 Chapter 17. API - Boards and Accessories

https://uk.pi-supply.com/products/ryanteck-rtk-000-001-motor-controller-board-kit-raspberry-pi
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

17.1.23 CamJamKitRobot

class gpiozero.CamJamKitRobot(*args, **kwargs)

Extends Robot (page 176) for the CamJam #3 EduKit723 motor controller board.
The CamJam robot controller pins are fixed and therefore there’s no need to specify them when constructing
this class. The following example drives the robot forward:

from gpiozero import CamJamKitRobot

robot = CamJamKitRobot()
robot.forward()

Parameters

• pwm (bool724) – If True725 (the default), construct PWMOutputDevice (page 142)
instances for the motor controller pins, allowing both direction and variable speed control.
If False726, construct DigitalOutputDevice (page 141) instances, allowing only
direction control.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

17.1.24 PololuDRV8835Robot

class gpiozero.PololuDRV8835Robot(*args, **kwargs)
Extends Robot (page 176) for the Pololu DRV8835 Dual Motor Driver Kit727.
The Pololu DRV8835 pins are fixed and therefore there’s no need to specify them when constructing this class.
The following example drives the robot forward:

from gpiozero import PololuDRV8835Robot

robot = PololuDRV8835Robot()
robot.forward()

Parameters
• pwm (bool728) – If True729 (the default), construct PWMOutputDevice (page 142)
instances for the motor controller’s enable pins, allowing both direction and variable speed
control. If False730, construct DigitalOutputDevice (page 141) instances, allow-
ing only direction control.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

723 http://camjam.me/?page_id=1035
724 https://docs.python.org/3.9/library/functions.html#bool
725 https://docs.python.org/3.9/library/constants.html#True
726 https://docs.python.org/3.9/library/constants.html#False
727 https://www.pololu.com/product/2753
728 https://docs.python.org/3.9/library/functions.html#bool
729 https://docs.python.org/3.9/library/constants.html#True
730 https://docs.python.org/3.9/library/constants.html#False

17.1. Regular Classes 179

http://camjam.me/?page_id=1035
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://www.pololu.com/product/2753
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

17.1.25 Energenie

class gpiozero.Energenie(*args, **kwargs)

Extends Device (page 199) to represent an Energenie socket731 controller.
This class is constructed with a socket number and an optional initial state (defaults to False732, meaning
off). Instances of this class can be used to switch peripherals on and off. For example:

from gpiozero import Energenie

lamp = Energenie(1)
lamp.on()

Parameters
• socket (int733) – Which socket this instance should control. This is an integer number
between 1 and 4.

• initial_value (bool734 or None) – The initial state of the socket. As Energenie
sockets provide no means of reading their state, you may provide an initial state for the
socket, which will be set upon construction. This defaults to False735 which will switch
the socket off. Specifying None736 will not set any initial state nor transmit any control
signal to the device.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

off()

Turns the socket off.
on()

Turns the socket on.
property socket

Returns the socket number.
property value

Returns True737 if the socket is on and False738 if the socket is off. Setting this property changes the
state of the socket. Returns None739 only when constructed with initial_value set to None740
and neither on() (page 180) nor off() (page 180) have been called since construction.

731 https://energenie4u.co.uk/index.php/catalogue/product/ENER002-2PI
732 https://docs.python.org/3.9/library/constants.html#False
733 https://docs.python.org/3.9/library/functions.html#int
734 https://docs.python.org/3.9/library/functions.html#bool
735 https://docs.python.org/3.9/library/constants.html#False
736 https://docs.python.org/3.9/library/constants.html#None
737 https://docs.python.org/3.9/library/constants.html#True
738 https://docs.python.org/3.9/library/constants.html#False
739 https://docs.python.org/3.9/library/constants.html#None
740 https://docs.python.org/3.9/library/constants.html#None

180 Chapter 17. API - Boards and Accessories

https://energenie4u.co.uk/index.php/catalogue/product/ENER002-2PI
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

17.1.26 StatusZero

class gpiozero.StatusZero(*args, **kwargs)

Extends LEDBoard (page 157) for The Pi Hut’s STATUS Zero741: a Pi Zero sized add-on board with three
sets of red/green LEDs to provide a status indicator.
The following example designates the first strip the label “wifi” and the second “raining”, and turns them green
and red respectfully:

from gpiozero import StatusZero

status = StatusZero('wifi', 'raining')
status.wifi.green.on()
status.raining.red.on()

Each designated label will contain two LED (page 125) objects named “red” and “green”.
Parameters

• *labels (str742) – Specify the names of the labels you wish to designate the strips to.
You can list up to three labels. If no labels are given, three strips will be initialised with
names ‘one’, ‘two’, and ‘three’. If some, but not all strips are given labels, any remaining
strips will not be initialised.

• pwm (bool743) – If True744, construct PWMLED (page 127) instances to represent each
LED. If False745 (the default), construct regular LED (page 125) instances.

• initial_value (bool746) – If False747 (the default), all LEDs will be off initially.
If None748, each device will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True749, the device will be switched on initially.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

your-label-here, your-label-here, ...

This entry represents one of the three labelled attributes supported on the STATUS Zero board. It is an
LEDBoard (page 157) which contains:
red

The LED (page 125) or PWMLED (page 127) representing the red LED next to the label.
green

The LED (page 125) or PWMLED (page 127) representing the green LED next to the label.
741 https://thepihut.com/statuszero
742 https://docs.python.org/3.9/library/stdtypes.html#str
743 https://docs.python.org/3.9/library/functions.html#bool
744 https://docs.python.org/3.9/library/constants.html#True
745 https://docs.python.org/3.9/library/constants.html#False
746 https://docs.python.org/3.9/library/functions.html#bool
747 https://docs.python.org/3.9/library/constants.html#False
748 https://docs.python.org/3.9/library/constants.html#None
749 https://docs.python.org/3.9/library/constants.html#True

17.1. Regular Classes 181

https://thepihut.com/statuszero
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

17.1.27 StatusBoard

class gpiozero.StatusBoard(*args, **kwargs)

Extends CompositeOutputDevice (page 186) for The Pi Hut’s STATUS750 board: a HAT sized add-on
board with five sets of red/green LEDs and buttons to provide a status indicator with additional input.
The following example designates the first strip the label “wifi” and the second “raining”, turns the wifi green
and then activates the button to toggle its lights when pressed:

from gpiozero import StatusBoard

status = StatusBoard('wifi', 'raining')
status.wifi.lights.green.on()
status.wifi.button.when_pressed = status.wifi.lights.toggle

Each designated label will contain a “lights” LEDBoard (page 157) containing two LED (page 125) objects
named “red” and “green”, and a Button (page 105) object named “button”.

Parameters

• *labels (str751) – Specify the names of the labels you wish to designate the strips to.
You can list up to five labels. If no labels are given, five strips will be initialised with names
‘one’ to ‘five’. If some, but not all strips are given labels, any remaining strips will not be
initialised.

• pwm (bool752) – If True753, construct PWMLED (page 127) instances to represent each
LED. If False754 (the default), construct regular LED (page 125) instances.

• initial_value (bool755) – If False756 (the default), all LEDs will be off initially.
If None757, each device will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True758, the device will be switched on initially.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

your-label-here, your-label-here, ...

This entry represents one of the five labelled attributes supported on the STATUS board. It is an Com-
positeOutputDevice (page 186) which contains:
lights

A LEDBoard (page 157) representing the lights next to the label. It contains:
red

The LED (page 125) or PWMLED (page 127) representing the red LED next to the label.
green

The LED (page 125) or PWMLED (page 127) representing the green LED next to the label.
button

A Button (page 105) representing the button next to the label.
750 https://thepihut.com/status
751 https://docs.python.org/3.9/library/stdtypes.html#str
752 https://docs.python.org/3.9/library/functions.html#bool
753 https://docs.python.org/3.9/library/constants.html#True
754 https://docs.python.org/3.9/library/constants.html#False
755 https://docs.python.org/3.9/library/functions.html#bool
756 https://docs.python.org/3.9/library/constants.html#False
757 https://docs.python.org/3.9/library/constants.html#None
758 https://docs.python.org/3.9/library/constants.html#True

182 Chapter 17. API - Boards and Accessories

https://thepihut.com/status
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

17.1.28 SnowPi

class gpiozero.SnowPi(*args, **kwargs)

Extends LEDBoard (page 157) for the Ryanteck SnowPi759 board.
The SnowPi pins are fixed and therefore there’s no need to specify them when constructing this class. The
following example turns on the eyes, sets the nose pulsing, and the arms blinking:

from gpiozero import SnowPi

snowman = SnowPi(pwm=True)
snowman.eyes.on()
snowman.nose.pulse()
snowman.arms.blink()

Parameters

• pwm (bool760) – If True761, construct PWMLED (page 127) instances to represent each
LED. If False762 (the default), construct regular LED (page 125) instances.

• initial_value (bool763) – If False764 (the default), all LEDs will be off initially.
If None765, each device will be left in whatever state the pin is found in when configured
for output (warning: this can be on). If True766, the device will be switched on initially.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

arms

A LEDBoard (page 157) representing the arms of the snow man. It contains the following attributes:
left, right

Two LEDBoard (page 157) objects representing the left and right arms of the snow-man. They
contain:
top, middle, bottom

The LED (page 125) or PWMLED (page 127) down the snow-man’s arms.
eyes

A LEDBoard (page 157) representing the eyes of the snow-man. It contains:
left, right

The LED (page 125) or PWMLED (page 127) for the snow-man’s eyes.
nose

The LED (page 125) or PWMLED (page 127) for the snow-man’s nose.
759 https://ryanteck.uk/raspberry-pi/114-snowpi-the-gpio-snowman-for-raspberry-pi-0635648608303.html
760 https://docs.python.org/3.9/library/functions.html#bool
761 https://docs.python.org/3.9/library/constants.html#True
762 https://docs.python.org/3.9/library/constants.html#False
763 https://docs.python.org/3.9/library/functions.html#bool
764 https://docs.python.org/3.9/library/constants.html#False
765 https://docs.python.org/3.9/library/constants.html#None
766 https://docs.python.org/3.9/library/constants.html#True

17.1. Regular Classes 183

https://ryanteck.uk/raspberry-pi/114-snowpi-the-gpio-snowman-for-raspberry-pi-0635648608303.html
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

17.1.29 PumpkinPi

class gpiozero.PumpkinPi(*args, **kwargs)

Extends LEDBoard (page 157) for the ModMyPi PumpkinPi767 board.
There are twelve LEDs connected up to individual pins, so for the PumpkinPi the pins are fixed. For example:

from gpiozero import PumpkinPi

pumpkin = PumpkinPi(pwm=True)
pumpkin.sides.pulse()
pumpkin.off()

Parameters

• pwm (bool768) – If True769, construct PWMLED (page 127) instances to represent each
LED. If False770 (the default), construct regular LED (page 125) instances

• initial_value (bool771 or None) – If False772 (the default), all LEDs will be
off initially. If None773, each device will be left in whatever state the pin is found in when
configured for output (warning: this can be on). If True774, the device will be switched
on initially.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

sides

A LEDBoard (page 157) representing the LEDs around the edge of the pumpkin. It contains:
left, right

Two LEDBoard (page 157) instances representing the LEDs on the left and right sides of the
pumpkin. They each contain:
top, midtop, middle, midbottom, bottom

Each LED (page 125) or PWMLED (page 127) around the specified side of the pumpkin.
eyes

A LEDBoard (page 157) representing the eyes of the pumpkin. It contains:
left, right

The LED (page 125) or PWMLED (page 127) for each of the pumpkin’s eyes.

17.2 Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract.
The classes form the (partial) hierarchy displayed in the graph below:
767 https://www.modmypi.com/halloween-pumpkin-programmable-kit
768 https://docs.python.org/3.9/library/functions.html#bool
769 https://docs.python.org/3.9/library/constants.html#True
770 https://docs.python.org/3.9/library/constants.html#False
771 https://docs.python.org/3.9/library/functions.html#bool
772 https://docs.python.org/3.9/library/constants.html#False
773 https://docs.python.org/3.9/library/constants.html#None
774 https://docs.python.org/3.9/library/constants.html#True

184 Chapter 17. API - Boards and Accessories

https://www.modmypi.com/halloween-pumpkin-programmable-kit
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

EventsMixin

HoldMixin

CompositeDevice

Device

CompositeOutputDevice

LEDCollection

ButtonBoard

CamJamKitRobot

RobotEnergenie

FishDish

JamHat

LEDBarGraph

LEDBoard

LEDCharDisplay

LEDMultiCharDisplay

PhaseEnableRobot

PiHutXmasTree

PiLiter

PiLiterBarGraph

PiStop

TrafficLights PiTraffic

Pibrella

PololuDRV8835Robot

PumpkinPi

RotaryEncoder

RyanteckRobot

SnowPi

StatusBoard

StatusZero

TonalBuzzer

TrafficHat

TrafficLightsBuzzer

TrafficpHat

For composite devices, the following chart shows which devices are composed of which other devices:

RGBLED

LEDPWMLED

LEDBoardLEDBarGraphLEDCharDisplay

LEDMultiCharDisplay

DigitalOutputDevice

ButtonBoard

Button

TrafficLightsBuzzer

TrafficLights Buzzer

StatusBoardJamHat

TonalBuzzer

Robot

Motor

PWMOutputDevice

PhaseEnableRobot

PhaseEnableMotorServo

RotaryEncoder

InputDevice

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

17.2. Base Classes 185

gpiozero 2.0.1 Documentation, Release 2.0.1

17.2.1 LEDCollection

class gpiozero.LEDCollection(*args, **kwargs)

Extends CompositeOutputDevice (page 186). Abstract base class for LEDBoard (page 157) and
LEDBarGraph (page 160).
property is_lit

Composite devices are considered “active” if any of their constituent devices have a “truthy” value.
property leds

A flat tuple of all LEDs contained in this collection (and all sub-collections).

17.2.2 CompositeOutputDevice

class gpiozero.CompositeOutputDevice(*args, **kwargs)
Extends CompositeDevice (page 187) with on() (page 186), off() (page 186), and toggle()
(page 186) methods for controlling subordinate output devices. Also extends value (page 186) to be write-
able.

Parameters
• *args (Device (page 199)) – The un-named devices that belong to the composite de-
vice. The value (page 199) attributes of these devices will be represented within the
composite device’s tuple value (page 186) in the order specified here.

• _order (list775 or None) – If specified, this is the order of named items specified
by keyword arguments (to ensure that the value (page 186) tuple is constructed with a
specific order). All keyword arguments must be included in the collection. If omitted, an
alphabetically sorted order will be selected for keyword arguments.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

• **kwargs (Device (page 199)) – The named devices that belong to the composite
device. These devices will be accessible as named attributes on the resulting device, and
their value (page 186) attributes will be accessible as named elements of the composite
device’s tuple value (page 186).

off()

Turn all the output devices off.
on()

Turn all the output devices on.
toggle()

Toggle all the output devices. For each device, if it’s on, turn it off; if it’s off, turn it on.
property value

A tuple containing a value for each subordinate device. This property can also be set to update the state
of all subordinate output devices.

775 https://docs.python.org/3.9/library/stdtypes.html#list

186 Chapter 17. API - Boards and Accessories

https://docs.python.org/3.9/library/stdtypes.html#list

gpiozero 2.0.1 Documentation, Release 2.0.1

17.2.3 CompositeDevice

class gpiozero.CompositeDevice(*args, **kwargs)

Extends Device (page 199). Represents a device composed of multiple devices like simple HATs, H-bridge
motor controllers, robots composed of multiple motors, etc.
The constructor accepts subordinate devices as positional or keyword arguments. Positional arguments form
unnamed devices accessed by treating the composite device as a container, while keyword arguments are added
to the device as named (read-only) attributes.
For example:

>>> from gpiozero import *
>>> d = CompositeDevice(LED(2), LED(3), LED(4), btn=Button(17))
>>> d[0]
<gpiozero.LED object on pin GPIO2, active_high=True, is_active=False>
>>> d[1]
<gpiozero.LED object on pin GPIO3, active_high=True, is_active=False>
>>> d[2]
<gpiozero.LED object on pin GPIO4, active_high=True, is_active=False>
>>> d.btn
<gpiozero.Button object on pin GPIO17, pull_up=True, is_active=False>
>>> d.value
CompositeDeviceValue(device_0=False, device_1=False, device_2=False, btn=False)

Parameters
• *args (Device (page 199)) – The un-named devices that belong to the composite de-
vice. The value (page 188) attributes of these devices will be represented within the
composite device’s tuple value (page 188) in the order specified here.

• _order (list776 or None) – If specified, this is the order of named items specified
by keyword arguments (to ensure that the value (page 188) tuple is constructed with a
specific order). All keyword arguments must be included in the collection. If omitted, an
alphabetically sorted order will be selected for keyword arguments.

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

• **kwargs (Device (page 199)) – The named devices that belong to the composite
device. These devices will be accessible as named attributes on the resulting device, and
their value (page 188) attributes will be accessible as named elements of the composite
device’s tuple value (page 188).

close()

Shut down the device and release all associated resources (such as GPIO pins).
This method is idempotent (can be called on an already closed device without any side-effects). It is
primarily intended for interactive use at the command line. It disables the device and releases its pin(s)
for use by another device.
You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references to the
object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the garbage
collector will actually delete the object at that point). By contrast, the close method provides a means of
ensuring that the object is shut down.
For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an LED
instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()

(continues on next page)

17.2. Base Classes 187

https://docs.python.org/3.9/library/stdtypes.html#list

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 199) descendents can also be used as context managers using the with777 statement. For
example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

property closed

Returns True778 if the device is closed (see the close() (page 187) method). Once a device is closed
you can no longer use any other methods or properties to control or query the device.

property is_active

Composite devices are considered “active” if any of their constituent devices have a “truthy” value.
property namedtuple

The namedtuple()779 type constructed to represent the value of the composite device. The value
(page 188) attribute returns values of this type.

property value

A namedtuple()780 containing a value for each subordinate device. Devices with names will be
represented as named elements. Unnamed devices will have a unique name generated for them, and they
will appear in the position they appeared in the constructor.

776 https://docs.python.org/3.9/library/stdtypes.html#list
777 https://docs.python.org/3.9/reference/compound_stmts.html#with
778 https://docs.python.org/3.9/library/constants.html#True
779 https://docs.python.org/3.9/library/collections.html#collections.namedtuple
780 https://docs.python.org/3.9/library/collections.html#collections.namedtuple

188 Chapter 17. API - Boards and Accessories

https://docs.python.org/3.9/reference/compound_stmts.html#with
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/collections.html#collections.namedtuple
https://docs.python.org/3.9/library/collections.html#collections.namedtuple

CHAPTER

EIGHTEEN

API - INTERNAL DEVICES

GPIO Zero also provides several “internal” devices which represent facilities provided by the operating system itself.
These can be used to react to things like the time of day, or whether a server is available on the network.
These devices provide an API similar to and compatible with GPIO devices so that internal device events can trigger
changes to GPIO output devices the way input devices can. In the same way a Button (page 105) object is active
when it’s pressed, and can be used to trigger other devices when its state changes, a TimeOfDay (page 190) object
is active during a particular time period.
Consider the following code in which a Button (page 105) object is used to control an LED (page 125) object:

from gpiozero import LED, Button
from signal import pause

led = LED(2)
btn = Button(3)

btn.when_pressed = led.on
btn.when_released = led.off

pause()

Now consider the following example in which a TimeOfDay (page 190) object is used to control an LED (page 125)
using the same method:

from gpiozero import LED, TimeOfDay
from datetime import time
from signal import pause

led = LED(2)
tod = TimeOfDay(time(9), time(10))

tod.when_activated = led.on
tod.when_deactivated = led.off

pause()

Here, rather than the LED being controlled by the press of a button, it’s controlled by the time. When the time reaches
09:00AM, the LED comes on, and at 10:00AM it goes off.
Like the Button (page 105) object, internal devices like the TimeOfDay (page 190) object has value (page 190),
values, is_active (page 190), when_activated (page 190) and when_deactivated (page 191) at-
tributes, so alternative methods using the other paradigms would also work.

Note: Note that although the constructor parameter pin_factory is available for internal devices, and is required
to be valid, the pin factory chosen will not make any practical difference. Reading a remote Pi’s CPU temperature,
for example, is not currently possible.

189

gpiozero 2.0.1 Documentation, Release 2.0.1

18.1 Regular Classes

The following classes are intended for general use with the devices they are named after. All classes in this section
are concrete (not abstract).

18.1.1 TimeOfDay

class gpiozero.TimeOfDay(*args, **kwargs)
Extends PolledInternalDevice (page 196) to provide a device which is active when the computer’s
clock indicates that the current time is between start_time and end_time (inclusive) which are time781 in-
stances.
The following example turns on a lamp attached to an Energenie (page 180) plug between 07:00AM and
08:00AM:

from gpiozero import TimeOfDay, Energenie
from datetime import time
from signal import pause

lamp = Energenie(1)
morning = TimeOfDay(time(7), time(8))

morning.when_activated = lamp.on
morning.when_deactivated = lamp.off

pause()

Note that start_time may be greater than end_time, indicating a time period which crosses midnight.
Parameters

• start_time (time782) – The time from which the device will be considered active.
• end_time (time783) – The time after which the device will be considered inactive.
• utc (bool784) – If True785 (the default), a naive UTC time will be used for the com-
parison rather than a local time-zone reading.

• event_delay (float786) – The number of seconds between file reads (defaults to 10
seconds).

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

property end_time

The time of day after which the device will be considered inactive.
property is_active

Returns True787 if the device is currently active and False788 otherwise. This property is usually
derived from value (page 190). Unlike value (page 190), this is always a boolean.

property start_time

The time of day after which the device will be considered active.
property utc

If True789, use a naive UTC time reading for comparison instead of a local timezone reading.
property value

Returns 1 when the system clock reads between start_time (page 190) and end_time (page 190),
and 0 otherwise. If start_time (page 190) is greater than end_time (page 190) (indicating a
period that crosses midnight), then this returns 1 when the current time is greater than start_time
(page 190) or less than end_time (page 190).

190 Chapter 18. API - Internal Devices

https://docs.python.org/3.9/library/datetime.html#datetime.time
https://docs.python.org/3.9/library/datetime.html#datetime.time
https://docs.python.org/3.9/library/datetime.html#datetime.time
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

when_activated

The function to run when the device changes state from inactive to active (time reaches start_time).
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None (the default) to disable the event.

when_deactivated

The function to run when the device changes state from active to inactive (time reaches end_time).
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None (the default) to disable the event.

18.1.2 PingServer

class gpiozero.PingServer(*args, **kwargs)
Extends PolledInternalDevice (page 196) to provide a device which is active when a host (domain
name or IP address) can be pinged.
The following example lights an LED while google.com is reachable:

from gpiozero import PingServer, LED
from signal import pause

google = PingServer('google.com')
led = LED(4)

google.when_activated = led.on
google.when_deactivated = led.off

pause()

Parameters
• host (str790) – The hostname or IP address to attempt to ping.
• event_delay (float791) – The number of seconds between pings (defaults to 10
seconds).

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

property host

The hostname or IP address to test whenever value (page 191) is queried.
property is_active

Returns True792 if the device is currently active and False793 otherwise. This property is usually
derived from value (page 191). Unlike value (page 191), this is always a boolean.

781 https://docs.python.org/3.9/library/datetime.html#datetime.time
782 https://docs.python.org/3.9/library/datetime.html#datetime.time
783 https://docs.python.org/3.9/library/datetime.html#datetime.time
784 https://docs.python.org/3.9/library/functions.html#bool
785 https://docs.python.org/3.9/library/constants.html#True
786 https://docs.python.org/3.9/library/functions.html#float
787 https://docs.python.org/3.9/library/constants.html#True
788 https://docs.python.org/3.9/library/constants.html#False
789 https://docs.python.org/3.9/library/constants.html#True

18.1. Regular Classes 191

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

property value

Returns 1 if the host returned a single ping, and 0 otherwise.
when_activated

The function to run when the device changes state from inactive (host unresponsive) to active (host re-
sponsive).
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None (the default) to disable the event.

when_deactivated

The function to run when the device changes state from inactive (host responsive) to active (host unre-
sponsive).
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None (the default) to disable the event.

18.1.3 CPUTemperature

class gpiozero.CPUTemperature(*args, **kwargs)
Extends PolledInternalDevice (page 196) to provide a device which is active when the CPU temper-
ature exceeds the threshold value.
The following example plots the CPU’s temperature on an LED bar graph:

from gpiozero import LEDBarGraph, CPUTemperature
from signal import pause

Use minimums and maximums that are closer to "normal" usage so the
bar graph is a bit more "lively"
cpu = CPUTemperature(min_temp=50, max_temp=90)

print(f'Initial temperature: {cpu.temperature}C')

graph = LEDBarGraph(5, 6, 13, 19, 25, pwm=True)
graph.source = cpu

pause()

Parameters
• sensor_file (str794) – The file from which to read the temperature. This defaults
to the sysfs file /sys/class/thermal/thermal_zone0/temp. Whatever file is
specified is expected to contain a single line containing the temperature in milli-degrees
celsius.

• min_temp (float795) – The temperature at which value (page 193) will read 0.0.
This defaults to 0.0.

• max_temp (float796) – The temperature at which value (page 193) will read 1.0.
This defaults to 100.0.

790 https://docs.python.org/3.9/library/stdtypes.html#str
791 https://docs.python.org/3.9/library/functions.html#float
792 https://docs.python.org/3.9/library/constants.html#True
793 https://docs.python.org/3.9/library/constants.html#False

192 Chapter 18. API - Internal Devices

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float

gpiozero 2.0.1 Documentation, Release 2.0.1

• threshold (float797) – The temperature above which the device will be considered
“active”. (see is_active (page 193)). This defaults to 80.0.

• event_delay (float798) – The number of seconds between file reads (defaults to 5
seconds).

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

property is_active

Returns True799 when the CPU temperature (page 193) exceeds the threshold.
property temperature

Returns the current CPU temperature in degrees celsius.
property value

Returns the current CPU temperature as a value between 0.0 (representing the min_temp value) and 1.0
(representing themax_temp value). These default to 0.0 and 100.0 respectively, hence value (page 193)
is temperature (page 193) divided by 100 by default.

when_activated

The function to run when the device changes state from inactive to active (temperature reaches threshold).
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None (the default) to disable the event.

when_deactivated

The function to run when the device changes state from active to inactive (temperature drops below
threshold).
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None (the default) to disable the event.

18.1.4 LoadAverage

class gpiozero.LoadAverage(*args, **kwargs)
Extends PolledInternalDevice (page 196) to provide a device which is active when the CPU load
average exceeds the threshold value.
The following example plots the load average on an LED bar graph:

from gpiozero import LEDBarGraph, LoadAverage
from signal import pause

la = LoadAverage(min_load_average=0, max_load_average=2)
graph = LEDBarGraph(5, 6, 13, 19, 25, pwm=True)

graph.source = la

pause()

794 https://docs.python.org/3.9/library/stdtypes.html#str
795 https://docs.python.org/3.9/library/functions.html#float
796 https://docs.python.org/3.9/library/functions.html#float
797 https://docs.python.org/3.9/library/functions.html#float
798 https://docs.python.org/3.9/library/functions.html#float
799 https://docs.python.org/3.9/library/constants.html#True

18.1. Regular Classes 193

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

Parameters
• load_average_file (str800) – The file from which to read the load average. This
defaults to the proc file /proc/loadavg. Whatever file is specified is expected to
contain three space-separated load averages at the beginning of the file, representing 1
minute, 5 minute and 15 minute averages respectively.

• min_load_average (float801) – The load average at which value (page 194) will
read 0.0. This defaults to 0.0.

• max_load_average (float802) – The load average at which value (page 194) will
read 1.0. This defaults to 1.0.

• threshold (float803) – The load average above which the device will be considered
“active”. (see is_active (page 194)). This defaults to 0.8.

• minutes (int804) – The number of minutes over which to average the load. Must be 1,
5 or 15. This defaults to 5.

• event_delay (float805) – The number of seconds between file reads (defaults to 10
seconds).

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

property is_active

Returns True806 when the load_average (page 194) exceeds the threshold.
property load_average

Returns the current load average.
property value

Returns the current load average as a value between 0.0 (representing the min_load_average value) and
1.0 (representing the max_load_average value). These default to 0.0 and 1.0 respectively.

when_activated

The function to run when the device changes state from inactive to active (load average reaches threshold).
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None (the default) to disable the event.

when_deactivated

The function to run when the device changes state from active to inactive (load average drops below
threshold).
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None (the default) to disable the event.

800 https://docs.python.org/3.9/library/stdtypes.html#str
801 https://docs.python.org/3.9/library/functions.html#float
802 https://docs.python.org/3.9/library/functions.html#float
803 https://docs.python.org/3.9/library/functions.html#float
804 https://docs.python.org/3.9/library/functions.html#int
805 https://docs.python.org/3.9/library/functions.html#float
806 https://docs.python.org/3.9/library/constants.html#True

194 Chapter 18. API - Internal Devices

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#int
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

18.1.5 DiskUsage

class gpiozero.DiskUsage(*args, **kwargs)

Extends PolledInternalDevice (page 196) to provide a device which is active when the disk space
used exceeds the threshold value.
The following example plots the disk usage on an LED bar graph:

from gpiozero import LEDBarGraph, DiskUsage
from signal import pause

disk = DiskUsage()

print(f'Current disk usage: {disk.usage}%')

graph = LEDBarGraph(5, 6, 13, 19, 25, pwm=True)
graph.source = disk

pause()

Parameters
• filesystem (str807) – A path within the filesystem for which the disk usage needs to
be computed. This defaults to /, which is the root filesystem.

• threshold (float808) – The disk usage percentage above which the device will be
considered “active” (see is_active (page 195)). This defaults to 90.0.

• event_delay (float809) – The number of seconds between file reads (defaults to 30
seconds).

• pin_factory (Factory (page 226) or None) – See API - Pins (page 221) for
more information (this is an advanced feature which most users can ignore).

property is_active

Returns True810 when the disk usage (page 195) exceeds the threshold.
property usage

Returns the current disk usage in percentage.
property value

Returns the current disk usage as a value between 0.0 and 1.0 by dividing usage (page 195) by 100.
when_activated

The function to run when the device changes state from inactive to active (disk usage reaches threshold).
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None (the default) to disable the event.

when_deactivated

The function to run when the device changes state from active to inactive (disk usage drops below thresh-
old).
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None (the default) to disable the event.

18.1. Regular Classes 195

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

18.2 Base Classes

The classes in the sections above are derived from a series of base classes, some of which are effectively abstract. The
classes form the (partial) hierarchy displayed in the graph below (abstract classes are shaded lighter than concrete
classes):

Device InternalDevice

CPUTemperature

PolledInternalDevice

DiskUsage

LoadAverage

PingServer

TimeOfDay

The following sections document these base classes for advanced users that wish to construct classes for their own
devices.

18.2.1 PolledInternalDevice

class gpiozero.PolledInternalDevice(*args, **kwargs)
Extends InternalDevice (page 196) to provide a background thread to poll internal devices that lack any
other mechanism to inform the instance of changes.

18.2.2 InternalDevice

class gpiozero.InternalDevice(*args, **kwargs)

Extends Device (page 199) to provide a basis for devices which have no specific hardware representation.
These are effectively pseudo-devices and usually represent operating system services like the internal clock, file
systems or network facilities.

807 https://docs.python.org/3.9/library/stdtypes.html#str
808 https://docs.python.org/3.9/library/functions.html#float
809 https://docs.python.org/3.9/library/functions.html#float
810 https://docs.python.org/3.9/library/constants.html#True

196 Chapter 18. API - Internal Devices

CHAPTER

NINETEEN

API - GENERIC CLASSES

The GPIO Zero class hierarchy is quite extensive. It contains several base classes (most of which are documented in
their corresponding chapters):

• Device (page 199) is the root of the hierarchy, implementing base functionality like close() (page 199)
and context manager handlers.

• GPIODevice (page 122) represents individual devices that attach to a single GPIO pin
• SPIDevice (page 154) represents devices that communicate over an SPI interface (implemented as four
GPIO pins)

• InternalDevice (page 196) represents devices that are entirely internal to the Pi (usually operating system
related services)

• CompositeDevice (page 187) represents devices composed of multiple other devices like HATs
There are also several mixin classes811 for adding important functionality at numerous points in the hierarchy, which
is illustrated below (mixin classes are represented in purple, while abstract classes are shaded lighter):
811 https://en.wikipedia.org/wiki/Mixin

197

https://en.wikipedia.org/wiki/Mixin

gpiozero 2.0.1 Documentation, Release 2.0.1

EventsMixin HoldMixin

SharedMixin

SourceMixin

ValuesMixin

AnalogInputDevice

SPIDevice

CompositeDevice

Device

CompositeOutputDevice

GPIODevice

InternalDevice

LEDCollection

MCP30xx

MCP3xxx

MCP32xx

MCP33xx

MCP3xx2

SmoothedInputDevice

InputDevice

AngularServo

Servo

Button

DigitalInputDevice

ButtonBoard

Buzzer

DigitalOutputDevice

OutputDevice

CPUTemperaturePolledInternalDevice

CamJamKitRobot

Robot

DiskUsage

DistanceSensor

Energenie

FishDish

JamHat

LED

LEDBarGraph

LEDBoard

LEDCharDisplay

LEDMultiCharDisplay

LedBorg

RGBLED

LightSensor

LineSensor

LoadAverage

MCP3001

MCP3002

MCP3004

MCP3008

MCP3201

MCP3202

MCP3204

MCP3208

MCP3301

MCP3302

MCP3304

MotionSensor

Motor

PWMLED

PWMOutputDevice

PhaseEnableMotor

PhaseEnableRobot

PiHutXmasTree

PiLiter

PiLiterBarGraph

PiStop

TrafficLights PiTraffic

Pibrella

PingServer

PololuDRV8835Robot

PumpkinPi

RotaryEncoder

RyanteckRobot SnowPi

StatusBoard

StatusZero

TimeOfDay

TonalBuzzer

TrafficHat

TrafficLightsBuzzer

TrafficpHat

198 Chapter 19. API - Generic Classes

gpiozero 2.0.1 Documentation, Release 2.0.1

19.1 Device

class gpiozero.Device(*args, **kwargs)
Represents a single device of any type; GPIO-based, SPI-based, I2C-based, etc. This is the base class of the
device hierarchy. It defines the basic services applicable to all devices (specifically the is_active (page 199)
property, the value (page 199) property, and the close() (page 199) method).
pin_factory

This attribute exists at both a class level (representing the default pin factory used to construct devices
when no pin_factory parameter is specified), and at an instance level (representing the pin factory that
the device was constructed with).
The pin factory provides various facilities to the device including allocating pins, providing low level
interfaces (e.g. SPI), and clock facilities (querying and calculating elapsed times).

close()

Shut down the device and release all associated resources (such as GPIO pins).
This method is idempotent (can be called on an already closed device without any side-effects). It is
primarily intended for interactive use at the command line. It disables the device and releases its pin(s)
for use by another device.
You can attempt to do this simply by deleting an object, but unless you’ve cleaned up all references to the
object this may not work (even if you’ve cleaned up all references, there’s still no guarantee the garbage
collector will actually delete the object at that point). By contrast, the close method provides a means of
ensuring that the object is shut down.
For example, if you have a breadboard with a buzzer connected to pin 16, but then wish to attach an LED
instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

Device (page 199) descendents can also be used as context managers using the with812 statement. For
example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

property closed

Returns True813 if the device is closed (see the close() (page 199) method). Once a device is closed
you can no longer use any other methods or properties to control or query the device.

property is_active

Returns True814 if the device is currently active and False815 otherwise. This property is usually
derived from value (page 199). Unlike value (page 199), this is always a boolean.

property value

Returns a value representing the device’s state. Frequently, this is a boolean value, or a number between
0 and 1 but some devices use larger ranges (e.g. -1 to +1) and composite devices usually use tuples to
return the states of all their subordinate components.

19.1. Device 199

https://docs.python.org/3.9/reference/compound_stmts.html#with
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

19.2 ValuesMixin

class gpiozero.ValuesMixin(...)
Adds a values (page 200) property to the class which returns an infinite generator of readings from the
value (page 199) property. There is rarely a need to use this mixin directly as all base classes in GPIO Zero
include it.

Note: Use this mixin first in the parent class list.

property values

An infinite iterator of values read from value.

19.3 SourceMixin

class gpiozero.SourceMixin(...)
Adds a source (page 200) property to the class which, given an iterable or a ValuesMixin (page 200)
descendent, sets value (page 199) to eachmember of that iterable until it is exhausted. This mixin is generally
included in novel output devices to allow their state to be driven from another device.

Note: Use this mixin first in the parent class list.

property source

The iterable to use as a source of values for value.
property source_delay

The delay (measured in seconds) in the loop used to read values from source (page 200). Defaults to
0.01 seconds which is generally sufficient to keep CPU usage to a minimum while providing adequate
responsiveness.

19.4 SharedMixin

class gpiozero.SharedMixin(...)
This mixin marks a class as “shared”. In this case, the meta-class (GPIOMeta) will use _shared_key()
(page 200) to convert the constructor arguments to an immutable key, and will check whether any existing
instances match that key. If they do, they will be returned by the constructor instead of a new instance. An
internal reference counter is used to determine how many times an instance has been “constructed” in this way.
When close() (page 199) is called, an internal reference counter will be decremented and the instance will
only close when it reaches zero.
classmethod _shared_key(*args, **kwargs)

This is called with the constructor arguments to generate a unique key (which must be storable in a
dict816 and, thus, immutable and hashable) representing the instance that can be shared. This must be
overridden by descendents.

812 https://docs.python.org/3.9/reference/compound_stmts.html#with
813 https://docs.python.org/3.9/library/constants.html#True
814 https://docs.python.org/3.9/library/constants.html#True
815 https://docs.python.org/3.9/library/constants.html#False
816 https://docs.python.org/3.9/library/stdtypes.html#dict

200 Chapter 19. API - Generic Classes

https://docs.python.org/3.9/library/stdtypes.html#dict

gpiozero 2.0.1 Documentation, Release 2.0.1

19.5 EventsMixin

class gpiozero.EventsMixin(...)
Adds edge-detected when_activated() (page 201) and when_deactivated() (page 201) events
to a device based on changes to the is_active (page 199) property common to all devices. Also adds
wait_for_active() (page 201) and wait_for_inactive() (page 201) methods for level-waiting.

Note: Note that this mixin provides no means of actually firing its events; call _fire_events() in sub-
classes when device state changes to trigger the events. This should also be called once at the end of initialization
to set initial states.

wait_for_active(timeout=None)
Pause the script until the device is activated, or the timeout is reached.

Parameters
timeout (float817 or None) – Number of seconds to wait before proceeding. If
this is None818 (the default), then wait indefinitely until the device is active.

wait_for_inactive(timeout=None)

Pause the script until the device is deactivated, or the timeout is reached.
Parameters

timeout (float819 or None) – Number of seconds to wait before proceeding. If
this is None820 (the default), then wait indefinitely until the device is inactive.

property active_time

The length of time (in seconds) that the device has been active for. When the device is inactive, this is
None821.

property inactive_time

The length of time (in seconds) that the device has been inactive for. When the device is active, this is
None822.

when_activated

The function to run when the device changes state from inactive to active.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated it will be passed as that parameter.
Set this property to None823 (the default) to disable the event.

when_deactivated

The function to run when the device changes state from active to inactive.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that deactivated it will be passed as that parameter.
Set this property to None824 (the default) to disable the event.

817 https://docs.python.org/3.9/library/functions.html#float
818 https://docs.python.org/3.9/library/constants.html#None
819 https://docs.python.org/3.9/library/functions.html#float
820 https://docs.python.org/3.9/library/constants.html#None
821 https://docs.python.org/3.9/library/constants.html#None
822 https://docs.python.org/3.9/library/constants.html#None
823 https://docs.python.org/3.9/library/constants.html#None
824 https://docs.python.org/3.9/library/constants.html#None

19.5. EventsMixin 201

https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

19.6 HoldMixin

class gpiozero.HoldMixin(...)
Extends EventsMixin (page 201) to add the when_held (page 202) event and the machinery to fire
that event repeatedly (when hold_repeat (page 202) is True825) at internals defined by hold_time
(page 202).
property held_time

The length of time (in seconds) that the device has been held for. This is counted from the first exe-
cution of the when_held (page 202) event rather than when the device activated, in contrast to ac-
tive_time (page 201). If the device is not currently held, this is None826.

property hold_repeat

If True827, when_held (page 202) will be executed repeatedly with hold_time (page 202) seconds
between each invocation.

property hold_time

The length of time (in seconds) to wait after the device is activated, until executing the when_held
(page 202) handler. If hold_repeat (page 202) is True, this is also the length of time between
invocations of when_held (page 202).

property is_held

When True828, the device has been active for at least hold_time (page 202) seconds.
when_held

The function to run when the device has remained active for hold_time (page 202) seconds.
This can be set to a function which accepts no (mandatory) parameters, or a Python function which
accepts a single mandatory parameter (with as many optional parameters as you like). If the function
accepts a single mandatory parameter, the device that activated will be passed as that parameter.
Set this property to None829 (the default) to disable the event.

825 https://docs.python.org/3.9/library/constants.html#True
826 https://docs.python.org/3.9/library/constants.html#None
827 https://docs.python.org/3.9/library/constants.html#True
828 https://docs.python.org/3.9/library/constants.html#True
829 https://docs.python.org/3.9/library/constants.html#None

202 Chapter 19. API - Generic Classes

https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#None

CHAPTER

TWENTY

API - DEVICE SOURCE TOOLS

GPIO Zero includes several utility routines which are intended to be used with the Source/Values (page 61) attributes
common to most devices in the library. These utility routines are in the tools module of GPIO Zero and are
typically imported as follows:

from gpiozero.tools import scaled, negated, all_values

Given that source (page 200) and values (page 200) deal with infinite iterators, another excellent source of
utilities is the itertools830 module in the standard library.

20.1 Single source conversions

gpiozero.tools.absoluted(values)
Returns values with all negative elements negated (so that they’re positive). For example:

from gpiozero import PWMLED, Motor, MCP3008
from gpiozero.tools import absoluted, scaled
from signal import pause

led = PWMLED(4)
motor = Motor(22, 27)
pot = MCP3008(channel=0)

motor.source = scaled(pot, -1, 1)
led.source = absoluted(motor)

pause()

gpiozero.tools.booleanized(values, min_value, max_value, hysteresis=0)
Returns True for each item in values between min_value and max_value, and False otherwise. hysteresis can
optionally be used to add hysteresis831 which prevents the output value rapidly flipping when the input value
is fluctuating near the min_value or max_value thresholds. For example, to light an LED only when a poten-
tiometer is between ¼ and ¾ of its full range:

from gpiozero import LED, MCP3008
from gpiozero.tools import booleanized
from signal import pause

led = LED(4)
pot = MCP3008(channel=0)

led.source = booleanized(pot, 0.25, 0.75)

pause()

830 https://docs.python.org/3.9/library/itertools.html#module-itertools

203

https://docs.python.org/3.9/library/itertools.html#module-itertools
https://en.wikipedia.org/wiki/Hysteresis

gpiozero 2.0.1 Documentation, Release 2.0.1

gpiozero.tools.clamped(values, output_min=0, output_max=1)
Returns values clamped from output_min to output_max, i.e. any items less than output_min will be returned
as output_min and any items larger than output_max will be returned as output_max (these default to 0 and 1
respectively). For example:

from gpiozero import PWMLED, MCP3008
from gpiozero.tools import clamped
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)

led.source = clamped(pot, 0.5, 1.0)

pause()

gpiozero.tools.inverted(values, input_min=0, input_max=1)
Returns the inversion of the supplied values (input_min becomes input_max, input_max becomes input_min,
input_min + 0.1 becomes input_max - 0.1, etc.). All items in values are assumed to be between input_min and
input_max (which default to 0 and 1 respectively), and the output will be in the same range. For example:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import inverted
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)

led.source = inverted(pot)

pause()

gpiozero.tools.negated(values)

Returns the negation of the supplied values (True832 becomes False833, and False834 becomes True835).
For example:

from gpiozero import Button, LED
from gpiozero.tools import negated
from signal import pause

led = LED(4)
btn = Button(17)

led.source = negated(btn)

pause()

gpiozero.tools.post_delayed(values, delay)
Waits for delay seconds after returning each item from values.

gpiozero.tools.post_periodic_filtered(values, repeat_after, block)
After every repeat_after items, blocks the next block items from values. Note that unlike
pre_periodic_filtered() (page 205), repeat_after can’t be 0. For example, to block every tenth
item read from an ADC:

831 https://en.wikipedia.org/wiki/Hysteresis
832 https://docs.python.org/3.9/library/constants.html#True
833 https://docs.python.org/3.9/library/constants.html#False
834 https://docs.python.org/3.9/library/constants.html#False
835 https://docs.python.org/3.9/library/constants.html#True

204 Chapter 20. API - Device Source Tools

https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

from gpiozero import MCP3008
from gpiozero.tools import post_periodic_filtered

adc = MCP3008(channel=0)

for value in post_periodic_filtered(adc, 9, 1):
print(value)

gpiozero.tools.pre_delayed(values, delay)
Waits for delay seconds before returning each item from values.

gpiozero.tools.pre_periodic_filtered(values, block, repeat_after)
Blocks the first block items from values, repeating the block after every repeat_after items, if repeat_after is
non-zero. For example, to discard the first 50 values read from an ADC:

from gpiozero import MCP3008
from gpiozero.tools import pre_periodic_filtered

adc = MCP3008(channel=0)

for value in pre_periodic_filtered(adc, 50, 0):
print(value)

Or to only display every even item read from an ADC:

from gpiozero import MCP3008
from gpiozero.tools import pre_periodic_filtered

adc = MCP3008(channel=0)

for value in pre_periodic_filtered(adc, 1, 1):
print(value)

gpiozero.tools.quantized(values, steps, input_min=0, input_max=1)
Returns values quantized to steps increments. All items in values are assumed to be between input_min and
input_max (which default to 0 and 1 respectively), and the output will be in the same range.
For example, to quantize values between 0 and 1 to 5 “steps” (0.0, 0.25, 0.5, 0.75, 1.0):

from gpiozero import PWMLED, MCP3008
from gpiozero.tools import quantized
from signal import pause

led = PWMLED(4)
pot = MCP3008(channel=0)

led.source = quantized(pot, 4)

pause()

gpiozero.tools.queued(values, qsize)
Queues up readings from values (the number of readings queued is determined by qsize) and begins yielding
values only when the queue is full. For example, to “cascade” values along a sequence of LEDs:

from gpiozero import LEDBoard, Button
from gpiozero.tools import queued
from signal import pause

leds = LEDBoard(5, 6, 13, 19, 26)
btn = Button(17)

(continues on next page)

20.1. Single source conversions 205

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
for i in range(4):

leds[i].source = queued(leds[i + 1], 5)
leds[i].source_delay = 0.01

leds[4].source = btn

pause()

gpiozero.tools.smoothed(values, qsize, average=<function mean>)
Queues up readings from values (the number of readings queued is determined by qsize) and begins yielding the
average of the last qsize values when the queue is full. The larger the qsize, the more the values are smoothed.
For example, to smooth the analog values read from an ADC:

from gpiozero import MCP3008
from gpiozero.tools import smoothed

adc = MCP3008(channel=0)

for value in smoothed(adc, 5):
print(value)

gpiozero.tools.scaled(values, output_min, output_max, input_min=0, input_max=1)
Returns values scaled from output_min to output_max, assuming that all items in values lie between input_min
and input_max (which default to 0 and 1 respectively). For example, to control the direction of a motor (which
is represented as a value between -1 and 1) using a potentiometer (which typically provides values between 0
and 1):

from gpiozero import Motor, MCP3008
from gpiozero.tools import scaled
from signal import pause

motor = Motor(20, 21)
pot = MCP3008(channel=0)

motor.source = scaled(pot, -1, 1)

pause()

Warning: If values contains elements that lie outside input_min to input_max (inclusive) then the function
will not produce values that lie within output_min to output_max (inclusive).

20.2 Combining sources

gpiozero.tools.all_values(*values)

Returns the logical conjunction836 of all supplied values (the result is only True837 if and only if all input values
are simultaneously True838). One or more values can be specified. For example, to light an LED (page 125)
only when both buttons are pressed:

from gpiozero import LED, Button
from gpiozero.tools import all_values
from signal import pause

led = LED(4)
btn1 = Button(20)
btn2 = Button(21)

(continues on next page)

206 Chapter 20. API - Device Source Tools

https://en.wikipedia.org/wiki/Logical_conjunction
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

led.source = all_values(btn1, btn2)

pause()

gpiozero.tools.any_values(*values)
Returns the logical disjunction839 of all supplied values (the result is True840 if any of the input values are
currently True841). One or more values can be specified. For example, to light an LED (page 125) when any
button is pressed:

from gpiozero import LED, Button
from gpiozero.tools import any_values
from signal import pause

led = LED(4)
btn1 = Button(20)
btn2 = Button(21)

led.source = any_values(btn1, btn2)

pause()

gpiozero.tools.averaged(*values)
Returns the mean of all supplied values. One or more values can be specified. For example, to light a PWMLED
(page 127) as the average of several potentiometers connected to an MCP3008 (page 149) ADC:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import averaged
from signal import pause

pot1 = MCP3008(channel=0)
pot2 = MCP3008(channel=1)
pot3 = MCP3008(channel=2)
led = PWMLED(4)

led.source = averaged(pot1, pot2, pot3)

pause()

gpiozero.tools.multiplied(*values)
Returns the product of all supplied values. One or more values can be specified. For example, to light a
PWMLED (page 127) as the product (i.e. multiplication) of several potentiometers connected to an MCP3008
(page 149) ADC:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import multiplied
from signal import pause

pot1 = MCP3008(channel=0)
pot2 = MCP3008(channel=1)
pot3 = MCP3008(channel=2)
led = PWMLED(4)

led.source = multiplied(pot1, pot2, pot3)

(continues on next page)
836 https://en.wikipedia.org/wiki/Logical_conjunction
837 https://docs.python.org/3.9/library/constants.html#True
838 https://docs.python.org/3.9/library/constants.html#True
839 https://en.wikipedia.org/wiki/Logical_disjunction
840 https://docs.python.org/3.9/library/constants.html#True
841 https://docs.python.org/3.9/library/constants.html#True

20.2. Combining sources 207

https://en.wikipedia.org/wiki/Logical_disjunction
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)

pause()

gpiozero.tools.summed(*values)

Returns the sum of all supplied values. One or more values can be specified. For example, to light a PWMLED
(page 127) as the (scaled) sum of several potentiometers connected to an MCP3008 (page 149) ADC:

from gpiozero import MCP3008, PWMLED
from gpiozero.tools import summed, scaled
from signal import pause

pot1 = MCP3008(channel=0)
pot2 = MCP3008(channel=1)
pot3 = MCP3008(channel=2)
led = PWMLED(4)

led.source = scaled(summed(pot1, pot2, pot3), 0, 1, 0, 3)

pause()

gpiozero.tools.zip_values(*devices)
Provides a source constructed from the values of each item, for example:

from gpiozero import MCP3008, Robot
from gpiozero.tools import zip_values
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))

left = MCP3008(0)
right = MCP3008(1)

robot.source = zip_values(left, right)

pause()

zip_values(left, right) is equivalent to zip(left.values, right.values).

20.3 Artificial sources

gpiozero.tools.alternating_values(initial_value=False)
Provides an infinite source of values alternating between True842 and False843, starting wth initial_value
(which defaults to False844). For example, to produce a flashing LED:

from gpiozero import LED
from gpiozero.tools import alternating_values
from signal import pause

red = LED(2)

red.source_delay = 0.5
red.source = alternating_values()

pause()

842 https://docs.python.org/3.9/library/constants.html#True
843 https://docs.python.org/3.9/library/constants.html#False
844 https://docs.python.org/3.9/library/constants.html#False

208 Chapter 20. API - Device Source Tools

https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

gpiozero.tools.cos_values(period=360)
Provides an infinite source of values representing a cosine wave (from -1 to +1) which repeats every period
values. For example, to produce a “siren” effect with a couple of LEDs that repeats once a second:

from gpiozero import PWMLED
from gpiozero.tools import cos_values, scaled_half, inverted
from signal import pause

red = PWMLED(2)
blue = PWMLED(3)

red.source_delay = 0.01
blue.source_delay = red.source_delay
red.source = scaled_half(cos_values(100))
blue.source = inverted(red)

pause()

If you require a different range than -1 to +1, see scaled() (page 206).
gpiozero.tools.ramping_values(period=360)

Provides an infinite source of values representing a triangle wave (from 0 to 1 and back again) which repeats
every period values. For example, to pulse an LED once a second:

from gpiozero import PWMLED
from gpiozero.tools import ramping_values
from signal import pause

red = PWMLED(2)

red.source_delay = 0.01
red.source = ramping_values(100)

pause()

If you require a wider range than 0 to 1, see scaled() (page 206).
gpiozero.tools.random_values()

Provides an infinite source of random values between 0 and 1. For example, to produce a “flickering candle”
effect with an LED:

from gpiozero import PWMLED
from gpiozero.tools import random_values
from signal import pause

led = PWMLED(4)

led.source = random_values()

pause()

If you require a wider range than 0 to 1, see scaled() (page 206).
gpiozero.tools.sin_values(period=360)

Provides an infinite source of values representing a sine wave (from -1 to +1) which repeats every period values.
For example, to produce a “siren” effect with a couple of LEDs that repeats once a second:

from gpiozero import PWMLED
from gpiozero.tools import sin_values, scaled_half, inverted
from signal import pause

red = PWMLED(2)

(continues on next page)

20.3. Artificial sources 209

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
blue = PWMLED(3)

red.source_delay = 0.01
blue.source_delay = red.source_delay
red.source = scaled_half(sin_values(100))
blue.source = inverted(red)

pause()

If you require a different range than -1 to +1, see scaled() (page 206).

210 Chapter 20. API - Device Source Tools

CHAPTER

TWENTYONE

API - FONTS

GPIO Zero includes a concept of “fonts” which is somewhat different to that you may be familiar with. While a
typical printing font determines how a particular character is rendered on a page, a GPIO Zero font determines how a
particular character is rendered by a series of lights, like LED segments (e.g. with LEDCharDisplay (page 162)
or LEDMultiCharDisplay (page 163)).
As a result, GPIO Zero’s fonts are quite crude affairs, being little more than mappings of characters to tuples of LED
states. Still, it helps to have a “friendly” format for creating such fonts, and in this module the library provides several
routines for this purpose.
The module itself is typically imported as follows:

from gpiozero import fonts

21.1 Font Parsing

gpiozero.fonts.load_font_7seg(filename_or_obj)

Given a filename or a file-like object, parse it as an font definition for a 7-segment display845, returning a
dict846 suitable for use with LEDCharDisplay (page 162).
The file-format is a simple text-based format in which blank and #-prefixed lines are ignored. All other lines
are assumed to be groups of character definitions which are cells of 3x3 characters laid out as follows:

Ca
fgb
edc

Where C is the character being defined, and a-g define the states of the LEDs for that position. a, d, and g are
on if they are “_”. b, c, e, and f are on if they are “|”. Any other character in these positions is considered off.
For example, you might define the following characters:

. 0_ 1. 2_ 3_ 4. 5_ 6_ 7_ 8_ 9_
... |.| ..| ._| ._| |_| |_. |_. ..| |_| |_|
... |_| ..| |_. ._| ..| ._| |_| ..| |_| ._|

In the example above, empty locations are marked with “.” but could mostly be left as spaces. However, the
first item defines the space (” “) character and needs some non-space characters in its definition as the parser
also strips empty columns (as typically occur between character definitions). This is also why the definition for
“1” must include something to fill the middle column.

gpiozero.fonts.load_font_14seg(filename_or_obj)
Given a filename or a file-like object, parse it as a font definition for a 14-segment display847, returning a
dict848 suitable for use with LEDCharDisplay (page 162).

845 https://en.wikipedia.org/wiki/Seven-segment_display
846 https://docs.python.org/3.9/library/stdtypes.html#dict

211

https://en.wikipedia.org/wiki/Seven-segment_display
https://docs.python.org/3.9/library/stdtypes.html#dict
https://en.wikipedia.org/wiki/Fourteen-segment_display
https://docs.python.org/3.9/library/stdtypes.html#dict

gpiozero 2.0.1 Documentation, Release 2.0.1

The file-format is a simple text-based format in which blank and #-prefixed lines are ignored. All other lines
are assumed to be groups of character definitions which are cells of 5x5 characters laid out as follows:

X.a..
fijkb
.g.h.
elmnc
..d..

Where X is the character being defined, and a-n define the states of the LEDs for that position. a, d, g, and h
are on if they are “-”. b, c, e, f, j, and m are on if they are “|”. i and n are on if they are “". Finally, k and l are
on if they are “/”. Any other character in these positions is considered off. For example, you might define the
following characters:

.... 0--- 1.. 2--- 3--- 4 5--- 6--- 7---. 8--- 9---
..... | /| /| | | | | | | / | | | |
..... | / | | --- -- ---| --- |--- | --- ---|
..... |/ | | | | | | | | | | | |
..... --- --- --- --- --- ---

In the example above, several locations have extraneous characters. For example, the “/” in the center of the
“0” definition, or the “-” in the middle of the “8”. These locations are ignored, but filled in nonetheless to make
the shape more obvious.
These extraneous locations could equally well be left as spaces. However, the first item defines the space (”
“) character and needs some non-space characters in its definition as the parser also strips empty columns (as
typically occur between character definitions) and verifies that definitions are 5 columns wide and 5 rows high.
This also explains why place-holder characters (“.”) have been inserted at the top of the definition of the “1”
character. Otherwise the parser will strip these empty columns and decide the definition is invalid (as the result
is only 3 columns wide).

gpiozero.fonts.load_segment_font(filename_or_obj, width, height, pins)
A generic function for parsing segment font definition files.
If you’re working with “standard” 7-segment849 or 14-segment850 displays you don’t want this function; see
load_font_7seg() (page 211) or load_font_14seg() (page 211) instead. However, if you are
working with another style of segmented display and wish to construct a parser for a custom format, this is the
function you want.
The filename_or_obj parameter is simply the file-like object or filename to load. This is typically passed in
from the calling function.
The width and height parameters give the width and height in characters of each character definition. For
example, these are 3 and 3 for 7-segment displays. Finally, pins is a list of tuples that defines the position of
each pin definition in the character array, and the character that marks that position “active”.
For example, for 7-segment displays this function is called as follows:

load_segment_font(filename_or_obj, width=3, height=3, pins=[
(1, '_'), (5, '|'), (8, '|'), (7, '_'),
(6, '|'), (3, '|'), (4, '_')])

This dictates that each character will be defined by a 3x3 character grid which will be converted into a nine-
character string like so:

012
345 ==> '012345678'
678

847 https://en.wikipedia.org/wiki/Fourteen-segment_display
848 https://docs.python.org/3.9/library/stdtypes.html#dict

212 Chapter 21. API - Fonts

https://en.wikipedia.org/wiki/Seven-segment_display
https://en.wikipedia.org/wiki/Fourteen-segment_display

gpiozero 2.0.1 Documentation, Release 2.0.1

Position 0 is always assumed to be the character being defined. The pins list then specifies: the first pin is the
character at position 1 which will be “on” when that character is “_”. The second pin is the character at position
5 which will be “on” when that character is “|”, and so on.

849 https://en.wikipedia.org/wiki/Seven-segment_display
850 https://en.wikipedia.org/wiki/Fourteen-segment_display

21.1. Font Parsing 213

gpiozero 2.0.1 Documentation, Release 2.0.1

214 Chapter 21. API - Fonts

CHAPTER

TWENTYTWO

API - TONES

GPIO Zero includes a Tone (page 215) class intended for use with the TonalBuzzer (page 133). This class is in
the tones module of GPIO Zero and is typically imported as follows:

from gpiozero.tones import Tone

22.1 Tone

class gpiozero.tones.Tone(value=None, *, frequency=None, midi=None, note=None)
Represents a frequency of sound in a variety of musical notations.
Tone (page 215) class can be used with the TonalBuzzer (page 133) class to easily represent musical tones.
The class can be constructed in a variety of ways. For example as a straight frequency in Hz851 (which is the
internal storage format), as an integer MIDI note, or as a string representation of a musical note.
All the following constructors are equivalent ways to construct the typical tuning note, concert A852 at 440Hz,
which is MIDI note #69:

>>> from gpiozero.tones import Tone
>>> Tone(440.0)
>>> Tone(69)
>>> Tone('A4')

If you do not want the constructor to guess which format you are using (there is some ambiguity between
frequencies and MIDI notes at the bottom end of the frequencies, from 128Hz down), you can use one of the
explicit constructors, from_frequency() (page 216), from_midi() (page 216), or from_note()
(page 216), or you can specify a keyword argument when constructing:

>>> Tone.from_frequency(440)
>>> Tone.from_midi(69)
>>> Tone.from_note('A4')
>>> Tone(frequency=440)
>>> Tone(midi=69)
>>> Tone(note='A4')

Several attributes are provided to permit conversion to any of the supported construction formats: frequency
(page 216), midi (page 216), and note (page 216). Methods are provided to step up() (page 216) or
down() (page 215) to adjacent MIDI notes.

Warning: Currently Tone (page 215) derives from float853 and can be used as a floating point number
in most circumstances (addition, subtraction, etc). This part of the API is not yet considered “stable”; i.e.
we may decide to enhance / change this behaviour in future versions.

215

https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Concert_pitch
https://docs.python.org/3.9/library/functions.html#float

gpiozero 2.0.1 Documentation, Release 2.0.1

down(n=1)
Return the Tone (page 215) n semi-tones below this frequency (n defaults to 1).

classmethod from_frequency(freq)

Construct a Tone (page 215) from a frequency specified in Hz854 which must be a positive floating-point
value in the range 0 < freq <= 20000.

classmethod from_midi(midi_note)

Construct a Tone (page 215) from a MIDI note, which must be an integer in the range 0 to 127. For
reference, A4 (concert A855 typically used for tuning) is MIDI note #69.

classmethod from_note(note)

Construct a Tone (page 215) from a musical note which must consist of a capital letter A through G,
followed by an optional semi-tone modifier (“b” for flat, “#” for sharp, or their Unicode equivalents),
followed by an octave number (0 through 9).
For example concert A856, the typical tuning note at 440Hz, would be represented as “A4”. One semi-
tone above this would be “A#4” or alternatively “Bb4”. Unicode representations of sharp and flat are also
accepted.

up(n=1)
Return the Tone (page 215) n semi-tones above this frequency (n defaults to 1).

property frequency

Return the frequency of the tone in Hz857.
property midi

Return the (nearest) MIDI note to the tone’s frequency. This will be an integer number in the range 0
to 127. If the frequency is outside the range represented by MIDI notes (which is approximately 8Hz to
12.5KHz) ValueError858 exception will be raised.

property note

Return the (nearest) note to the tone’s frequency. This will be a string in the form accepted by
from_note() (page 216). If the frequency is outside the range represented by this format (“A0”
is approximately 27.5Hz, and “G9” is approximately 12.5Khz) a ValueError859 exception will be
raised.

851 https://en.wikipedia.org/wiki/Hertz
852 https://en.wikipedia.org/wiki/Concert_pitch
853 https://docs.python.org/3.9/library/functions.html#float
854 https://en.wikipedia.org/wiki/Hertz
855 https://en.wikipedia.org/wiki/Concert_pitch
856 https://en.wikipedia.org/wiki/Concert_pitch
857 https://en.wikipedia.org/wiki/Hertz
858 https://docs.python.org/3.9/library/exceptions.html#ValueError
859 https://docs.python.org/3.9/library/exceptions.html#ValueError

216 Chapter 22. API - Tones

https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Concert_pitch
https://en.wikipedia.org/wiki/Concert_pitch
https://en.wikipedia.org/wiki/Hertz
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError

CHAPTER

TWENTYTHREE

API - PI INFORMATION

The GPIO Zero library also contains a database of information about the various revisions of the Raspberry Pi
computer. This is used internally to raise warnings when non-physical pins are used, or to raise exceptions when
pull-downs are requested on pins with physical pull-up resistors attached. The following functions and classes can be
used to query this database:

23.1 pi_info

gpiozero.pi_info(revision=None)
Deprecated function for retrieving information about a revision of the Raspberry Pi. If you wish to re-
trieve information about the board that your script is running on, please query the Factory.board_info
(page 227) property like so:

>>> from gpiozero import Device
>>> Device.ensure_pin_factory()
>>> Device.pin_factory.board_info
PiBoardInfo(revision='a02082', model='3B', pcb_revision='1.2',
released='2016Q1', soc='BCM2837', manufacturer='Sony', memory=1024,
storage='MicroSD', usb=4, usb3=0, ethernet=1, eth_speed=100, wifi=True,
bluetooth=True, csi=1, dsi=1, headers=..., board=...)

To obtain information for a specific Raspberry Pi board revision, use the PiBoardInfo.
from_revision() constructor.

Parameters
revision (str860) – The revision of the Pi to return information about. If this is omitted or
None861 (the default), then the library will attempt to determine the model of Pi it is running
on and return information about that.

23.2 PiBoardInfo

class gpiozero.PiBoardInfo(revision, model, pcb_revision, released, soc, manufacturer, memory,
storage, usb, usb3, ethernet, eth_speed, wifi, bluetooth, csi, dsi, headers,
board)

860 https://docs.python.org/3.9/library/stdtypes.html#str
861 https://docs.python.org/3.9/library/constants.html#None

217

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

23.3 HeaderInfo

class gpiozero.HeaderInfo(name, rows, columns, pins)
This class is a namedtuple()862 derivative used to represent information about a pin header on a board.
The object can be used in a format string with various custom specifications:

from gpiozero.pins.native import NativeFactory

factory = NativeFactory()
j8 = factory.board_info.headers['J8']
print(f'{j8}')
print(f'{j8:full}')
p1 = factory.board_info.headers['P1']
print(f'{p1:col2}')
print(f'{p1:row1}')

“color” and “mono” can be prefixed to format specifications to force the use of ANSI color codes863. If neither
is specified, ANSI codes will only be used if stdout is detected to be a tty. “rev” can be added to output the
row or column in reverse order:

force use of ANSI codes
j8 = factory.board_info.headers['J8']
print(f'{j8:color row2}')
force plain ASCII
print(f'{j8:mono row2}')
output in reverse order
print(f'{j8:color rev row1}')

The following attributes are defined:
pprint(color=None)

Pretty-print a diagram of the header pins.
If color is None864 (the default, the diagram will include ANSI color codes if stdout is a color-capable
terminal). Otherwise color can be set to True865 or False866 to force color or monochrome output.

name

The name of the header, typically as it appears silk-screened on the board (e.g. “P1” or “J8”).
rows

The number of rows on the header.
columns

The number of columns on the header.
pins

A dictionary mapping physical pin numbers to PinInfo (page 219) tuples.
862 https://docs.python.org/3.9/library/collections.html#collections.namedtuple
863 https://en.wikipedia.org/wiki/ANSI_escape_code
864 https://docs.python.org/3.9/library/constants.html#None
865 https://docs.python.org/3.9/library/constants.html#True
866 https://docs.python.org/3.9/library/constants.html#False

218 Chapter 23. API - Pi Information

https://docs.python.org/3.9/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/ANSI_escape_code
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

23.4 PinInfo

class gpiozero.PinInfo(number, name, names, pull, row, col, interfaces)
This class is a namedtuple()867 derivative used to represent information about a pin present on a GPIO
header. The following attributes are defined:
number

An integer containing the physical pin number on the header (starting from 1 in accordance with con-
vention).

name

A string describing the function of the pin. Some common examples include “GND” (for pins connecting
to ground), “3V3” (for pins which output 3.3 volts), “GPIO9” (for GPIO9 in the board’s numbering
scheme), etc.

names

A set of all the names that can be used to identify this pin with BoardInfo.find_pin(). The name
(page 219) attribute is the “typical” name for this pin, and will be one of the values in this set.
When “gpio” is in interfaces (page 219), these names can be used with Factory.pin()
(page 226) to construct a Pin (page 227) instance representing this pin.

pull

A string indicating the fixed pull of the pin, if any. This is a blank string if the pin has no fixed pull, but
may be “up” in the case of pins typically used for I2C such as GPIO2 and GPIO3 on a Raspberry Pi.

row

An integer indicating on which row the pin is physically located in the header (1-based)
col

An integer indicating in which column the pin is physically located in the header (1-based)
interfaces

A dict868 mapping interfaces that this pin can be a part of to the description of that pin in that interface
(e.g. “i2c” might map to “I2C0 SDA”). Typical keys are “gpio”, “spi”, “i2c”, “uart”, “pwm”, “smi”, and
“dpi”.

pull_up

Deprecated variant of pull (page 219).
function

Deprecated alias of name (page 219).

867 https://docs.python.org/3.9/library/collections.html#collections.namedtuple
868 https://docs.python.org/3.9/library/stdtypes.html#dict

23.4. PinInfo 219

https://docs.python.org/3.9/library/collections.html#collections.namedtuple
https://docs.python.org/3.9/library/stdtypes.html#dict

gpiozero 2.0.1 Documentation, Release 2.0.1

220 Chapter 23. API - Pi Information

CHAPTER

TWENTYFOUR

API - PINS

As of release 1.1, the GPIO Zero library can be roughly divided into two things: pins and the devices that are
connected to them. The majority of the documentation focuses on devices as pins are below the level that most
users are concerned with. However, some users may wish to take advantage of the capabilities of alternative GPIO
implementations or (in future) use GPIO extender chips. This is the purpose of the pins portion of the library.
When you construct a device, you pass in a pin specification. This is passed to a pin Factory (page 226) which
turns it into a Pin (page 227) implementation. The default factory can be queried (and changed) with Device.
pin_factory (page 199). However, all classes (even internal devices) accept a pin_factory keyword argument to
their constructors permitting the factory to be overridden on a per-device basis (the reason for allowing per-device
factories is made apparent in the Configuring Remote GPIO (page 45) chapter).
This is illustrated in the following flow-chart:

221

gpiozero 2.0.1 Documentation, Release 2.0.1

LED(pin_spec, ...,
pin_factory=None)

pin_factory
is None?

Device.pin_factory
is None?

yes

self.pin_factory =
pin_factory

no

Device.pin_factory =
Device._default_pin_factory()

yes

self.pin_factory =
Device.pin_factory

no

self.pin =
self.pin_factory.pin(pin_spec)

The default factory is constructed when the first device is initialised; if no default factory can be constructed (e.g.
because no GPIO implementations are installed, or all of them fail to load for whatever reason), a BadPinFactory
(page 240) exception will be raised at construction time.
After importing gpiozero, until constructing a gpiozero device, the pin factory is None869, but at the point of first
construction the default pin factory will come into effect:

pi@raspberrypi:~ $ python3
Python 3.7.3 (default, Apr 3 2019, 05:39:12)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from gpiozero import Device, LED
>>> print(Device.pin_factory)
None
>>> led = LED(2)

(continues on next page)
869 https://docs.python.org/3.9/library/constants.html#None

222 Chapter 24. API - Pins

https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
>>> Device.pin_factory
<gpiozero.pins.rpigpio.RPiGPIOFactory object at 0xb667ae30>
>>> led.pin_factory
<gpiozero.pins.rpigpio.RPiGPIOFactory object at 0xb6323530>

As above, on a Raspberry Pi with the RPi.GPIO library installed, (assuming no environment variables are set), the
default pin factory will be RPiGPIOFactory (page 235).
On a PC (with no pin libraries installed and no environment variables set), importing will work but attempting to
create a device will raise BadPinFactory (page 240):

ben@magicman:~ $ python3
Python 3.6.8 (default, Aug 20 2019, 17:12:48)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from gpiozero import Device, LED
>>> print(Device.pin_factory)
None
>>> led = LED(2)
...
BadPinFactory: Unable to load any default pin factory!

24.1 Changing the pin factory

The default pin factory can be replaced by specifying a value for the GPIOZERO_PIN_FACTORY (page 77) envi-
ronment variable. For example:

pi@raspberrypi:~ $ GPIOZERO_PIN_FACTORY=native python3
Python 3.7.3 (default, Apr 3 2019, 05:39:12)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from gpiozero import Device
>>> Device._default_pin_factory()
<gpiozero.pins.native.NativeFactory object at 0x762c26b0>

To set the GPIOZERO_PIN_FACTORY (page 77) for the rest of your session you can export this value:

pi@raspberrypi:~ $ export GPIOZERO_PIN_FACTORY=native
pi@raspberrypi:~ $ python3
Python 3.7.3 (default, Apr 3 2019, 05:39:12)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import gpiozero
>>> Device._default_pin_factory()
<gpiozero.pins.native.NativeFactory object at 0x762c26b0>
>>> quit()
pi@raspberrypi:~ $ python3
Python 3.7.3 (default, Apr 3 2019, 05:39:12)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import gpiozero
>>> Device._default_pin_factory()
<gpiozero.pins.native.NativeFactory object at 0x762c26b0>

If you add the export command to your ~/.bashrc file, you’ll set the default pin factory for all future sessions
too.
If the environment variable is set, the corresponding pin factory will be used, otherwise each of the four GPIO pin
factories will be attempted to be used in turn.

24.1. Changing the pin factory 223

gpiozero 2.0.1 Documentation, Release 2.0.1

The following values, and the corresponding Factory (page 226) and Pin (page 227) classes are listed in the table
below. Factories are listed in the order that they are tried by default.

Name Factory class Pin class
rpig-
pio

gpiozero.pins.rpigpio.
RPiGPIOFactory (page 235)

gpiozero.pins.rpigpio.
RPiGPIOPin (page 235)

lgpio gpiozero.pins.lgpio.LGPIOFactory
(page 235)

gpiozero.pins.lgpio.LGPIOPin
(page 236)

pig-
pio

gpiozero.pins.pigpio.PiGPIOFactory
(page 236)

gpiozero.pins.pigpio.PiGPIOPin
(page 236)

na-
tive

gpiozero.pins.native.NativeFactory
(page 237)

gpiozero.pins.native.NativePin
(page 237)

If you need to change the default pin factory from within a script, either set Device.pin_factory (page 199)
to the new factory instance to use:

from gpiozero.pins.native import NativeFactory
from gpiozero import Device, LED

Device.pin_factory = NativeFactory()

These will now implicitly use NativePin instead of RPiGPIOPin
led1 = LED(16)
led2 = LED(17)

Or use the pin_factory keyword parameter mentioned above:

from gpiozero.pins.native import NativeFactory
from gpiozero import LED

my_factory = NativeFactory()

This will use NativePin instead of RPiGPIOPin for led1
but led2 will continue to use RPiGPIOPin
led1 = LED(16, pin_factory=my_factory)
led2 = LED(17)

Certain factories may take default information from additional sources. For example, to default to creating pins
with gpiozero.pins.pigpio.PiGPIOPin (page 236) on a remote pi called “remote-pi” you can set the
PIGPIO_ADDR (page 77) environment variable when running your script:

$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=remote-pi python3 my_script.py

Like the GPIOZERO_PIN_FACTORY (page 77) value, these can be exported from your ~/.bashrc script too.

Warning: The astute and mischievous reader may note that it is possible to mix factories, e.g. using RPiGPI-
OFactory (page 235) for one pin, and NativeFactory (page 237) for another. This is unsupported, and if
it results in your script crashing, your components failing, or your Raspberry Pi turning into an actual raspberry
pie, you have only yourself to blame.
Sensible uses of multiple pin factories are given in Configuring Remote GPIO (page 45).

224 Chapter 24. API - Pins

gpiozero 2.0.1 Documentation, Release 2.0.1

24.2 Mock pins

There’s also a MockFactory (page 237) which generates entirely fake pins. This was originally intended for GPIO
Zero developers who wish to write tests for devices without having to have the physical device wired in to their Pi.
However, they have also proven useful in developing GPIO Zero scripts without having a Pi to hand. This pin factory
will never be loaded by default; it must be explicitly specified, either by setting an environment variable or setting the
pin factory within the script. For example:

pi@raspberrypi:~ $ GPIOZERO_PIN_FACTORY=mock python3

or:

from gpiozero import Device, LED
from gpiozero.pins.mock import MockFactory

Device.pin_factory = MockFactory()

led = LED(2)

You can create device objects and inspect their value changing as you’d expect:

pi@raspberrypi:~ $ GPIOZERO_PIN_FACTORY=mock python3
Python 3.7.3 (default, Apr 3 2019, 05:39:12)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from gpiozero import LED
>>> led = LED(2)
>>> led.value
0
>>> led.on()
>>> led.value
1

You can even control pin state changes to simulate device behaviour:

>>> from gpiozero import LED, Button

Construct a couple of devices attached to mock pins 16 and 17, and link the␣
↪→devices
>>> led = LED(17)
>>> btn = Button(16)
>>> led.source = btn

Initailly the button isn't "pressed" so the LED should be off
>>> led.value
0

Drive the pin low (this is what would happen electrically when the button is␣
↪→pressed)
>>> btn.pin.drive_low()
The LED is now on
>>> led.value
1

>>> btn.pin.drive_high()
The button is now "released", so the LED should be off again
>>> led.value
0

Several sub-classes of mock pins exist for emulating various other things (pins that do/don’t support PWM, pins that
are connected together, pins that drive high after a delay, etc), for example, you have to use MockPWMPin (page 238)
to be able to use devices requiring PWM:

24.2. Mock pins 225

gpiozero 2.0.1 Documentation, Release 2.0.1

pi@raspberrypi:~ $ GPIOZERO_PIN_FACTORY=mock GPIOZERO_MOCK_PIN_CLASS=mockpwmpin␣
↪→python3

or:

from gpiozero import Device, LED
from gpiozero.pins.mock import MockFactory, MockPWMPin

Device.pin_factory = MockFactory(pin_class=MockPWMPin)

led = LED(2)

Interested users are invited to read the GPIO Zero test suite870 for further examples of usage.

24.3 Base classes

class gpiozero.Factory

Generates pins and SPI interfaces for devices. This is an abstract base class for pin factories. Descendentsmust
override the following methods:

• ticks() (page 227)
• ticks_diff() (page 227)
• _get_board_info()

Descendents may override the following methods, if applicable:
• close() (page 226)
• reserve_pins() (page 226)
• release_pins() (page 226)
• release_all() (page 226)
• pin() (page 226)
• spi() (page 227)

close()

Closes the pin factory. This is expected to clean up all resources manipulated by the factory. It it typically
called at script termination.

pin(name)
Creates an instance of a Pin (page 227) descendent representing the specified pin.

Warning: Descendents must ensure that pin instances representing the same hardware are identical;
i.e. two separate invocations of pin() (page 226) for the same pin specification must return the
same object.

release_all(reserver)
Releases all pin reservations taken out by reserver. See release_pins() (page 226) for further
information).

release_pins(reserver, *names)
Releases the reservation of reserver against pin names. This is typically called during close()
(page 199) to clean up reservations taken during construction. Releasing a reservation that is not currently
held will be silently ignored (to permit clean-up after failed / partial construction).

870 https://github.com/gpiozero/gpiozero/tree/master/tests

226 Chapter 24. API - Pins

https://github.com/gpiozero/gpiozero/tree/master/tests

gpiozero 2.0.1 Documentation, Release 2.0.1

reserve_pins(requester, *names)
Called to indicate that the device reserves the right to use the specified pin names. This should be done
during device construction. If pins are reserved, you must ensure that the reservation is released by
eventually called release_pins() (page 226).

spi(**spi_args)
Returns an instance of an SPI (page 230) interface, for the specified SPI port and device, or for the
specified pins (clock_pin, mosi_pin, miso_pin, and select_pin). Only one of the schemes can be used;
attempting to mix port and device with pin numbers will raise SPIBadArgs (page 240).

ticks()

Return the current ticks, according to the factory. The reference point is undefined and thus the result of
this method is only meaningful when compared to another value returned by this method.
The format of the time is also arbitrary, as is whether the time wraps after a certain duration. Ticks
should only be compared using the ticks_diff() (page 227) method.

ticks_diff(later, earlier)
Return the time in seconds between two ticks() (page 227) results. The arguments are specified in
the same order as they would be in the formula later - earlier but the result is guaranteed to be in seconds,
and to be positive even if the ticks “wrapped” between calls to ticks() (page 227).

property board_info

Returns a BoardInfo instance (or derivative) representing the board that instances generated by this
factory will be attached to.

class gpiozero.Pin

Abstract base class representing a pin attached to some form of controller, be it GPIO, SPI, ADC, etc.
Descendents should override property getters and setters to accurately represent the capabilities of pins. De-
scendents must override the following methods:

• _get_info()

• _get_function()

• _set_function()

• _get_state()

Descendents may additionally override the following methods, if applicable:
• close() (page 227)
• output_with_state() (page 228)
• input_with_pull() (page 228)
• _set_state()

• _get_frequency()

• _set_frequency()

• _get_pull()

• _set_pull()

• _get_bounce()

• _set_bounce()

• _get_edges()

• _set_edges()

• _get_when_changed()

• _set_when_changed()

24.3. Base classes 227

gpiozero 2.0.1 Documentation, Release 2.0.1

close()

Cleans up the resources allocated to the pin. After this method is called, this Pin (page 227) instance
may no longer be used to query or control the pin’s state.

input_with_pull(pull)
Sets the pin’s function to “input” and specifies an initial pull-up for the pin. By default this is equivalent
to performing:

pin.function = 'input'
pin.pull = pull

However, descendents may override this order to provide the smallest possible delay between configuring
the pin for input and pulling the pin up/down (which can be important for avoiding “blips” in some
configurations).

output_with_state(state)

Sets the pin’s function to “output” and specifies an initial state for the pin. By default this is equivalent to
performing:

pin.function = 'output'
pin.state = state

However, descendents may override this in order to provide the smallest possible delay between config-
uring the pin for output and specifying an initial value (which can be important for avoiding “blips” in
active-low configurations).

property bounce

The amount of bounce detection (elimination) currently in use by edge detection, measured in seconds.
If bounce detection is not currently in use, this is None871.
For example, if edges (page 228) is currently “rising”, bounce (page 228) is currently 5/1000 (5ms),
then the waveform below will only fire when_changed (page 229) on two occasions despite there being
three rising edges:

TIME 0...1...2...3...4...5...6...7...8...9...10..11..12 ms

bounce elimination |===================| |==============

HIGH - - - - > ,--. ,--------------. ,--.
| | | | | |
| | | | | |

LOW ----------------' `-' `-' `-----------
: :
: :

when_changed when_changed
fires fires

If the pin does not support edge detection, attempts to set this property will raise PinEdgeDetectUn-
supported (page 242). If the pin supports edge detection, the class must implement bounce detection,
even if only in software.

property edges

The edge that will trigger execution of the function or bound method assigned to when_changed
(page 229). This can be one of the strings “both” (the default), “rising”, “falling”, or “none”:

HIGH - - - - > ,--------------.
| |
| |

LOW --------------------' `--------------
: :
: :

(continues on next page)

228 Chapter 24. API - Pins

https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

(continued from previous page)
Fires when_changed "both" "both"
when edges is ... "rising" "falling"

If the pin does not support edge detection, attempts to set this property will raise PinEdgeDetec-
tUnsupported (page 242).

property frequency

The frequency (in Hz) for the pin’s PWM implementation, or None872 if PWM is not currently in use.
This value always defaults to None873 and may be changed with certain pin types to activate or deactivate
PWM.
If the pin does not support PWM, PinPWMUnsupported (page 243) will be raised when attempting
to set this to a value other than None874.

property function

The function of the pin. This property is a string indicating the current function or purpose of the pin.
Typically this is the string “input” or “output”. However, in some circumstances it can be other strings
indicating non-GPIO related functionality.
With certain pin types (e.g. GPIO pins), this attribute can be changed to configure the function of a pin.
If an invalid function is specified, for this attribute, PinInvalidFunction (page 242) will be raised.

property info

Returns the PinInfo (page 219) associated with the pin. This can be used to determine physical
properties of the pin, including its location on the header, fixed pulls, and the various specs that can
be used to identify it.

property pull

The pull-up state of the pin represented as a string. This is typically one of the strings “up”, “down”, or
“floating” but additional values may be supported by the underlying hardware.
If the pin does not support changing pull-up state (for example because of a fixed pull-up resistor), at-
tempts to set this property will raise PinFixedPull (page 242). If the specified value is not supported
by the underlying hardware, PinInvalidPull (page 242) is raised.

property state

The state of the pin. This is 0 for low, and 1 for high. As a low level view of the pin, no swapping is
performed in the case of pull ups (see pull (page 229) for more information):

HIGH - - - - > ,----------------------
|
|

LOW ----------------'

Descendents which implement analog, or analog-like capabilities can return values between 0 and 1.
For example, pins implementing PWM (where frequency (page 229) is not None875) return a value
between 0.0 and 1.0 representing the current PWM duty cycle.
If a pin is currently configured for input, and an attempt is made to set this attribute, PinSetInput
(page 242) will be raised. If an invalid value is specified for this attribute, PinInvalidState
(page 242) will be raised.

property when_changed

A function or bound method to be called when the pin’s state changes (more specifically when the edge
specified by edges (page 228) is detected on the pin). The function or bound method must accept two
parameters: the first will report the ticks (from Factory.ticks() (page 227)) when the pin’s state
changed, and the second will report the pin’s current state.

24.3. Base classes 229

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/constants.html#None

gpiozero 2.0.1 Documentation, Release 2.0.1

Warning: Depending on hardware support, the state is not guaranteed to be accurate. For instance,
many GPIO implementations will provide an interrupt indicating when a pin’s state changed but not
what it changed to. In this case the pin driver simply reads the pin’s current state to supply this
parameter, but the pin’s state may have changed since the interrupt. Exercise appropriate caution
when relying upon this parameter.

If the pin does not support edge detection, attempts to set this property will raise PinEdgeDetec-
tUnsupported (page 242).

class gpiozero.SPI(*args, **kwargs)

Abstract interface for Serial Peripheral Interface876 (SPI) implementations. Descendents must override the
following methods:

• transfer() (page 230)
• _get_clock_mode()

Descendents may override the following methods, if applicable:
• read() (page 230)
• write() (page 230)
• _set_clock_mode()

• _get_lsb_first()

• _set_lsb_first()

• _get_select_high()

• _set_select_high()

• _get_bits_per_word()

• _set_bits_per_word()

read(n)
Read n words of data from the SPI interface, returning them as a sequence of unsigned ints, each no
larger than the configured bits_per_word (page 230) of the interface.
This method is typically used with read-only devices that feature half-duplex communication. See
transfer() (page 230) for full duplex communication.

transfer(data)

Write data to the SPI interface. datamust be a sequence of unsigned integer words each of which will fit
within the configured bits_per_word (page 230) of the interface. The method returns the sequence
of words read from the interface while writing occurred (full duplex communication).
The length of the sequence returned dictates the number of words of data written to the inter-
face. Each word in the returned sequence will be an unsigned integer no larger than the configured
bits_per_word (page 230) of the interface.

write(data)

Write data to the SPI interface. datamust be a sequence of unsigned integer words each of which will fit
within the configured bits_per_word (page 230) of the interface. The method returns the number
of words written to the interface (which may be less than or equal to the length of data).
This method is typically used with write-only devices that feature half-duplex communication. See
transfer() (page 230) for full duplex communication.

871 https://docs.python.org/3.9/library/constants.html#None
872 https://docs.python.org/3.9/library/constants.html#None
873 https://docs.python.org/3.9/library/constants.html#None
874 https://docs.python.org/3.9/library/constants.html#None
875 https://docs.python.org/3.9/library/constants.html#None

230 Chapter 24. API - Pins

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

gpiozero 2.0.1 Documentation, Release 2.0.1

property bits_per_word

Controls the number of bits that make up a word, and thus where the word boundaries appear in the data
stream, and the maximum value of a word. Defaults to 8 meaning that words are effectively bytes.
Several implementations do not support non-byte-sized words.

property clock_mode

Presents a value representing the clock_polarity (page 231) and clock_phase (page 231) at-
tributes combined according to the following table:

mode polarity (CPOL) phase (CPHA)
0 False False
1 False True
2 True False
3 True True

Adjusting this value adjusts both the clock_polarity (page 231) and clock_phase (page 231)
attributes simultaneously.

property clock_phase

The phase of the SPI clock pin. If this is False877 (the default), data will be read from the MISO pin
when the clock pin activates. Setting this to True878 will cause data to be read from the MISO pin when
the clock pin deactivates. On many data sheets this is documented as the CPHA value. Whether the clock
edge is rising or falling when the clock is considered activated is controlled by the clock_polarity
(page 231) attribute (corresponding to CPOL).
The following diagram indicates when data is read when clock_polarity (page 231) is False879,
and clock_phase (page 231) is False880 (the default), equivalent to CPHA 0:

,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |

| | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------

: : : : : : :
MISO---. ,---. ,---. ,---. ,---. ,---. ,---.

/ \ / \ / \ / \ / \ / \ / \
-{ Bit X Bit X Bit X Bit X Bit X Bit X Bit }------

\ / \ / \ / \ / \ / \ / \ /
`---' `---' `---' `---' `---' `---' `---'

The following diagram indicates when data is read when clock_polarity (page 231) is False881,
but clock_phase (page 231) is True882, equivalent to CPHA 1:

,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |

| | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------

: : : : : : :
MISO ,---. ,---. ,---. ,---. ,---. ,---. ,---.

/ \ / \ / \ / \ / \ / \ / \
-----{ Bit X Bit X Bit X Bit X Bit X Bit X Bit }--

\ / \ / \ / \ / \ / \ / \ /
`---' `---' `---' `---' `---' `---' `---'

property clock_polarity

The polarity of the SPI clock pin. If this is False883 (the default), the clock pin will idle low, and pulse
high. Setting this to True884 will cause the clock pin to idle high, and pulse low. On many data sheets
this is documented as the CPOL value.
The following diagram illustrates the waveform when clock_polarity (page 231) is False885 (the
default), equivalent to CPOL 0:

24.3. Base classes 231

https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False

gpiozero 2.0.1 Documentation, Release 2.0.1

on on on on on on on
,---. ,---. ,---. ,---. ,---. ,---. ,---.

CLK | | | | | | | | | | | | | |
| | | | | | | | | | | | | |

------' `---' `---' `---' `---' `---' `---' `------
idle off off off off off off idle

The following diagram illustrates the waveform when clock_polarity (page 231) is True886,
equivalent to CPOL 1:

idle off off off off off off idle
------. ,---. ,---. ,---. ,---. ,---. ,---. ,------

| | | | | | | | | | | | | |
CLK | | | | | | | | | | | | | |

`---' `---' `---' `---' `---' `---' `---'
on on on on on on on

property lsb_first

Controls whether words are read and written LSB in (Least Significant Bit first) order. The default is
False887 indicating that words are read andwritten inMSB (Most Significant Bit first) order. Effectively,
this controls the Bit endianness888 of the connection.
The following diagram shows the a word containing the number 5 (binary 0101) transmitted on MISO
with bits_per_word (page 230) set to 4, and clock_mode (page 231) set to 0, when lsb_first
(page 232) is False889 (the default):

,---. ,---. ,---. ,---.
CLK | | | | | | | |

| | | | | | | |
----' `---' `---' `---' `-----

: ,-------. : ,-------.
MISO: | : | : | : |

: | : | : | : |
----------' : `-------' : `----

: : : :
MSB LSB

And now with lsb_first (page 232) set to True890 (and all other parameters the same):

,---. ,---. ,---. ,---.
CLK | | | | | | | |

| | | | | | | |
----' `---' `---' `---' `-----
,-------. : ,-------. :

MISO: | : | : | :
| : | : | : | :

--' : `-------' : `-----------
: : : :

LSB MSB

property rate

Controls the speed of the SPI interface in Hz (or baud).
Note that most software SPI implementations ignore this property, and will raise SPIFixedRate if
an attempt is made to set it, as they have no rate control (they simply bit-bang as fast as possible because
typically this isn’t very fast anyway, and introducing measures to limit the rate would simply slow them
down to the point of being useless).

property select_high

If False891 (the default), the chip select line is considered active when it is pulled low. When set to
True892, the chip select line is considered active when it is driven high.

232 Chapter 24. API - Pins

https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://en.wikipedia.org/wiki/Endianness#Bit_endianness
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

The following diagram shows the waveform of the chip select line, and the clock when
clock_polarity (page 231) is False893, and select_high (page 232) is False894 (the de-
fault):

---. ,------
__ | |
CS | chip is selected, and will react to clock | idle

`---'

,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |

| | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------

And when select_high (page 232) is True895:

,---.
CS | chip is selected, and will react to clock | idle

| |
---' `------

,---. ,---. ,---. ,---. ,---. ,---. ,---.
CLK | | | | | | | | | | | | | |

| | | | | | | | | | | | | |
----' `---' `---' `---' `---' `---' `---' `-------

class gpiozero.pins.pi.PiFactory

Extends Factory (page 226). Abstract base class representing hardware attached to a Raspberry Pi. This
forms the base of LocalPiFactory (page 234).
close()

Closes the pin factory. This is expected to clean up all resources manipulated by the factory. It it typically
called at script termination.

pin(name)
Creates an instance of a Pin descendent representing the specified pin.

Warning: Descendents must ensure that pin instances representing the same hardware are identical;
i.e. two separate invocations of pin() (page 233) for the same pin specification must return the
same object.

876 https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
877 https://docs.python.org/3.9/library/constants.html#False
878 https://docs.python.org/3.9/library/constants.html#True
879 https://docs.python.org/3.9/library/constants.html#False
880 https://docs.python.org/3.9/library/constants.html#False
881 https://docs.python.org/3.9/library/constants.html#False
882 https://docs.python.org/3.9/library/constants.html#True
883 https://docs.python.org/3.9/library/constants.html#False
884 https://docs.python.org/3.9/library/constants.html#True
885 https://docs.python.org/3.9/library/constants.html#False
886 https://docs.python.org/3.9/library/constants.html#True
887 https://docs.python.org/3.9/library/constants.html#False
888 https://en.wikipedia.org/wiki/Endianness#Bit_endianness
889 https://docs.python.org/3.9/library/constants.html#False
890 https://docs.python.org/3.9/library/constants.html#True
891 https://docs.python.org/3.9/library/constants.html#False
892 https://docs.python.org/3.9/library/constants.html#True
893 https://docs.python.org/3.9/library/constants.html#False
894 https://docs.python.org/3.9/library/constants.html#False
895 https://docs.python.org/3.9/library/constants.html#True

24.3. Base classes 233

https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#False
https://docs.python.org/3.9/library/constants.html#True

gpiozero 2.0.1 Documentation, Release 2.0.1

spi(**spi_args)
Returns an SPI interface, for the specified SPI port and device, or for the specified pins (clock_pin,
mosi_pin, miso_pin, and select_pin). Only one of the schemes can be used; attempting to mix port and
device with pin numbers will raise SPIBadArgs (page 240).
If the pins specified match the hardware SPI pins (clock on GPIO11, MOSI on GPIO10, MISO on
GPIO9, and chip select on GPIO8 or GPIO7), and the spidev module can be imported, a hardware based
interface (using spidev) will be returned. Otherwise, a software based interface will be returned which
will use simple bit-banging to communicate.
Both interfaces have the same API, support clock polarity and phase attributes, and can handle half and
full duplex communications, but the hardware interface is significantly faster (though for many simpler
devices this doesn’t matter).

class gpiozero.pins.pi.PiPin(factory, info)
Extends Pin (page 227). Abstract base class representing a multi-function GPIO pin attached to a Raspberry
Pi. Descendents must override the following methods:

• _get_function()

• _set_function()

• _get_state()

• _call_when_changed()

• _enable_event_detect()

• _disable_event_detect()

Descendents may additionally override the following methods, if applicable:
• close()

• output_with_state()

• input_with_pull()

• _set_state()

• _get_frequency()

• _set_frequency()

• _get_pull()

• _set_pull()

• _get_bounce()

• _set_bounce()

• _get_edges()

• _set_edges()

property info

Returns the PinInfo associated with the pin. This can be used to determine physical properties of the
pin, including its location on the header, fixed pulls, and the various specs that can be used to identify it.

class gpiozero.pins.local.LocalPiFactory

Extends PiFactory (page 233). Abstract base class representing pins attached locally to a Pi. This forms the
base class for local-only pin interfaces (RPiGPIOPin (page 235), LGPIOPin (page 236), and NativePin
(page 237)).
static ticks()

Return the current ticks, according to the factory. The reference point is undefined and thus the result of
this method is only meaningful when compared to another value returned by this method.

234 Chapter 24. API - Pins

gpiozero 2.0.1 Documentation, Release 2.0.1

The format of the time is also arbitrary, as is whether the time wraps after a certain duration. Ticks
should only be compared using the ticks_diff() (page 235) method.

static ticks_diff(later, earlier)
Return the time in seconds between two ticks() (page 234) results. The arguments are specified in
the same order as they would be in the formula later - earlier but the result is guaranteed to be in seconds,
and to be positive even if the ticks “wrapped” between calls to ticks() (page 234).

class gpiozero.pins.local.LocalPiPin(factory, info)
Extends PiPin (page 234). Abstract base class representing a multi-function GPIO pin attached to the local
Raspberry Pi.

24.4 RPi.GPIO

class gpiozero.pins.rpigpio.RPiGPIOFactory

Extends LocalPiFactory (page 234). Uses the RPi.GPIO896 library to interface to the Pi’s GPIO pins.
This is the default pin implementation if the RPi.GPIO library is installed. Supports all features including
PWM (via software).
Because this is the default pin implementation you can use it simply by specifying an integer number for the
pin in most operations, e.g.:

from gpiozero import LED

led = LED(12)

However, you can also construct RPi.GPIO pins manually if you wish:

from gpiozero.pins.rpigpio import RPiGPIOFactory
from gpiozero import LED

factory = RPiGPIOFactory()
led = LED(12, pin_factory=factory)

class gpiozero.pins.rpigpio.RPiGPIOPin(factory, info)
Extends LocalPiPin (page 235). Pin implementation for the RPi.GPIO897 library. See RPiGPIOFac-
tory (page 235) for more information.

24.5 lgpio

class gpiozero.pins.lgpio.LGPIOFactory(chip=None)

Extends LocalPiFactory (page 234). Uses the lgpio898 library to interface to the local computer’s GPIO
pins. The lgpio library simply talks to Linux gpiochip devices; it is not specific to the Raspberry Pi although
this class is currently constructed under the assumption that it is running on a Raspberry Pi.
You can construct lgpio pins manually like so:

from gpiozero.pins.lgpio import LGPIOFactory
from gpiozero import LED

factory = LGPIOFactory(chip=0)
led = LED(12, pin_factory=factory)

896 https://pypi.python.org/pypi/RPi.GPIO
897 https://pypi.python.org/pypi/RPi.GPIO

24.4. RPi.GPIO 235

https://pypi.python.org/pypi/RPi.GPIO
https://pypi.python.org/pypi/RPi.GPIO
http://abyz.me.uk/lg/py_lgpio.html

gpiozero 2.0.1 Documentation, Release 2.0.1

The chip parameter to the factory constructor specifies which gpiochip device to attempt to open. It defaults
to 0 and thus doesn’t normally need to be specified (the example above only includes it for completeness).
The lgpio library relies on access to the /dev/gpiochip* devices. If you run into issues, please check that
your user has read/write access to the specific gpiochip device you are attempting to open (0 by default).

class gpiozero.pins.lgpio.LGPIOPin(factory, info)
Extends LocalPiPin (page 235). Pin implementation for the lgpio899 library. See LGPIOFactory
(page 235) for more information.

24.6 PiGPIO

class gpiozero.pins.pigpio.PiGPIOFactory(host=None, port=None)
Extends PiFactory (page 233). Uses the pigpio900 library to interface to the Pi’s GPIO pins. The pig-
pio library relies on a daemon (pigpiod) to be running as root to provide access to the GPIO pins, and
communicates with this daemon over a network socket.
While this does mean only the daemon itself should control the pins, the architecture does have several advan-
tages:

• Pins can be remote controlled from another machine (the other machine doesn’t even have to be a Rasp-
berry Pi; it simply needs the pigpio901 client library installed on it)

• The daemon supports hardware PWM via the DMA controller
• Your script itself doesn’t require root privileges; it just needs to be able to communicate with the daemon

You can construct pigpio pins manually like so:

from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero import LED

factory = PiGPIOFactory()
led = LED(12, pin_factory=factory)

This is particularly useful for controlling pins on a remote machine. To accomplish this simply specify the host
(and optionally port) when constructing the pin:

from gpiozero.pins.pigpio import PiGPIOFactory
from gpiozero import LED

factory = PiGPIOFactory(host='192.168.0.2')
led = LED(12, pin_factory=factory)

Note: In some circumstances, especially when playing with PWM, it does appear to be possible to get the
daemon into “unusual” states. We would be most interested to hear any bug reports relating to this (it may be
a bug in our pin implementation). A workaround for now is simply to restart the pigpiod daemon.

class gpiozero.pins.pigpio.PiGPIOPin(factory, info)
Extends PiPin (page 234). Pin implementation for the pigpio902 library. See PiGPIOFactory (page 236)
for more information.

898 http://abyz.me.uk/lg/py_lgpio.html
899 http://abyz.me.uk/lg/py_lgpio.html
900 http://abyz.me.uk/rpi/pigpio/
901 http://abyz.me.uk/rpi/pigpio/
902 http://abyz.me.uk/rpi/pigpio/

236 Chapter 24. API - Pins

http://abyz.me.uk/lg/py_lgpio.html
http://abyz.me.uk/rpi/pigpio/
http://abyz.me.uk/rpi/pigpio/
http://abyz.me.uk/rpi/pigpio/

gpiozero 2.0.1 Documentation, Release 2.0.1

24.7 Native

class gpiozero.pins.native.NativeFactory

Extends LocalPiFactory (page 234). Uses a built-in pure Python implementation to interface to the Pi’s
GPIO pins. This is the default pin implementation if no third-party libraries are discovered.

Warning: This implementation does not currently support PWM. Attempting to use any class which
requests PWM will raise an exception.

You can construct native pin instances manually like so:

from gpiozero.pins.native import NativeFactory
from gpiozero import LED

factory = NativeFactory()
led = LED(12, pin_factory=factory)

class gpiozero.pins.native.NativePin(factory, info)
Extends LocalPiPin (page 235). Native pin implementation. See NativeFactory (page 237) for more
information.

class gpiozero.pins.native.Native2835Pin(factory, info)
Extends NativePin (page 237) for Pi hardware prior to the Pi 4 (Pi 0, 1, 2, 3, and 3+).

class gpiozero.pins.native.Native2711Pin(factory, info)
Extends NativePin (page 237) for Pi 4 hardware (Pi 4, CM4, Pi 400 at the time of writing).

24.8 Mock

class gpiozero.pins.mock.MockFactory(revision=None, pin_class=None)
Factory for generating mock pins.
The revision parameter specifies what revision of Pi the mock factory pretends to be (this affects the result of
the Factory.board_info attribute as well as where pull-ups are assumed to be).
The pin_class attribute specifies which mock pin class will be generated by the pin() (page 237) method by
default. This can be changed after construction by modifying the pin_class (page 237) attribute.
pin_class

This attribute stores the MockPin (page 238) class (or descendant) that will be used when constructing
pins with the pin() (page 237) method (if no pin_class parameter is used to override it). It defaults on
construction to the value of the pin_class parameter in the constructor, or MockPin (page 238) if that
is unspecified.

pin(name, pin_class=None, **kwargs)

The pin method for MockFactory (page 237) additionally takes a pin_class attribute which can be
used to override the class’ pin_class (page 237) attribute. Any additional keyword arguments will
be passed along to the pin constructor (useful with things like MockConnectedPin (page 238) which
expect to be constructed with another pin).

reset()

Clears the pins and reservations sets. This is primarily useful in test suites to ensure the pin factory is
back in a “clean” state before the next set of tests are run.

24.7. Native 237

gpiozero 2.0.1 Documentation, Release 2.0.1

static ticks()

Return the current ticks, according to the factory. The reference point is undefined and thus the result of
this method is only meaningful when compared to another value returned by this method.
The format of the time is also arbitrary, as is whether the time wraps after a certain duration. Ticks
should only be compared using the ticks_diff() (page 238) method.

static ticks_diff(later, earlier)
Return the time in seconds between two ticks() (page 237) results. The arguments are specified in
the same order as they would be in the formula later - earlier but the result is guaranteed to be in seconds,
and to be positive even if the ticks “wrapped” between calls to ticks() (page 237).

class gpiozero.pins.mock.MockPin(factory, info)
A mock pin used primarily for testing. This class does not support PWM.

class gpiozero.pins.mock.MockPWMPin(factory, info)
This derivative of MockPin (page 238) adds PWM support.

class gpiozero.pins.mock.MockConnectedPin(factory, info, input_pin=None)
This derivative of MockPin (page 238) emulates a pin connected to another mock pin. This is used in the
“real pins” portion of the test suite to check that one pin can influence another.

class gpiozero.pins.mock.MockChargingPin(factory, info, charge_time=0.01)
This derivative of MockPin (page 238) emulates a pin which, when set to input, waits a predetermined length
of time and then drives itself high (as if attached to, e.g. a typical circuit using an LDR and a capacitor to time
the charging rate).

class gpiozero.pins.mock.MockTriggerPin(factory, info, echo_pin=None, echo_time=0.04)
This derivative of MockPin (page 238) is intended to be used with another MockPin (page 238) to emulate
a distance sensor. Set echo_pin to the corresponding pin instance. When this pin is driven high it will trigger
the echo pin to drive high for the echo time.

class gpiozero.pins.mock.MockSPIDevice(clock_pin, mosi_pin=None, miso_pin=None,
select_pin=None, *, clock_polarity=False,
clock_phase=False, lsb_first=False, bits_per_word=8,
select_high=False, pin_factory=None)

This class is used to test SPIDevice implementations. It can be used to mock up the slave side of simple
SPI devices, e.g. the MCP3xxx series of ADCs.
Descendants should override the on_start() and/or on_bit() methods to respond to SPI interface
events. The rx_word() and tx_word() methods can be used facilitate communications within these
methods. Such descendents can then be passed as the spi_class parameter of the MockFactory (page 237)
constructor to have instances attached to any SPI interface requested by an SPIDevice.

238 Chapter 24. API - Pins

CHAPTER

TWENTYFIVE

API - EXCEPTIONS

The following exceptions are defined by GPIO Zero. Please note that multiple inheritance is heavily used in the
exception hierarchy to make testing for exceptions easier. For example, to capture any exception generated by GPIO
Zero’s code:

from gpiozero import *

led = PWMLED(17)
try:

led.value = 2
except GPIOZeroError:

print('A GPIO Zero error occurred')

Since all GPIO Zero’s exceptions descend from GPIOZeroError (page 239), this will work. However, certain spe-
cific errors have multiple parents. For example, in the case that an out of range value is passed to OutputDevice.
value (page 145) you would expect a ValueError903 to be raised. In fact, a OutputDeviceBadValue
(page 242) error will be raised. However, note that this descends from both GPIOZeroError (page 239) (indi-
rectly) and from ValueError904 so you can still do the obvious:

from gpiozero import *

led = PWMLED(17)
try:

led.value = 2
except ValueError:

print('Bad value specified')

25.1 Errors

exception gpiozero.GPIOZeroError

Bases: Exception905

Base class for all exceptions in GPIO Zero
exception gpiozero.DeviceClosed

Bases: GPIOZeroError (page 239)
Error raised when an operation is attempted on a closed device

exception gpiozero.BadEventHandler

Bases: GPIOZeroError (page 239), ValueError906

Error raised when an event handler with an incompatible prototype is specified

903 https://docs.python.org/3.9/library/exceptions.html#ValueError
904 https://docs.python.org/3.9/library/exceptions.html#ValueError
905 https://docs.python.org/3.9/library/exceptions.html#Exception
906 https://docs.python.org/3.9/library/exceptions.html#ValueError

239

https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#Exception
https://docs.python.org/3.9/library/exceptions.html#ValueError

gpiozero 2.0.1 Documentation, Release 2.0.1

exception gpiozero.BadWaitTime

Bases: GPIOZeroError (page 239), ValueError907

Error raised when an invalid wait time is specified
exception gpiozero.BadQueueLen

Bases: GPIOZeroError (page 239), ValueError908

Error raised when non-positive queue length is specified
exception gpiozero.BadPinFactory

Bases: GPIOZeroError (page 239), ImportError909

Error raised when an unknown pin factory name is specified
exception gpiozero.ZombieThread

Bases: GPIOZeroError (page 239), RuntimeError910

Error raised when a thread fails to die within a given timeout
exception gpiozero.CompositeDeviceError

Bases: GPIOZeroError (page 239)
Base class for errors specific to the CompositeDevice hierarchy

exception gpiozero.CompositeDeviceBadName

Bases: CompositeDeviceError (page 240), ValueError911

Error raised when a composite device is constructed with a reserved name
exception gpiozero.CompositeDeviceBadOrder

Bases: CompositeDeviceError (page 240), ValueError912

Error raised when a composite device is constructed with an incomplete order
exception gpiozero.CompositeDeviceBadDevice

Bases: CompositeDeviceError (page 240), ValueError913

Error raised when a composite device is constructed with an object that doesn’t inherit from Device
(page 199)

exception gpiozero.EnergenieSocketMissing

Bases: CompositeDeviceError (page 240), ValueError914

Error raised when socket number is not specified
exception gpiozero.EnergenieBadSocket

Bases: CompositeDeviceError (page 240), ValueError915

Error raised when an invalid socket number is passed to Energenie (page 180)
exception gpiozero.SPIError

Bases: GPIOZeroError (page 239)
Base class for errors related to the SPI implementation

907 https://docs.python.org/3.9/library/exceptions.html#ValueError
908 https://docs.python.org/3.9/library/exceptions.html#ValueError
909 https://docs.python.org/3.9/library/exceptions.html#ImportError
910 https://docs.python.org/3.9/library/exceptions.html#RuntimeError
911 https://docs.python.org/3.9/library/exceptions.html#ValueError
912 https://docs.python.org/3.9/library/exceptions.html#ValueError
913 https://docs.python.org/3.9/library/exceptions.html#ValueError
914 https://docs.python.org/3.9/library/exceptions.html#ValueError
915 https://docs.python.org/3.9/library/exceptions.html#ValueError

240 Chapter 25. API - Exceptions

https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ImportError
https://docs.python.org/3.9/library/exceptions.html#RuntimeError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError

gpiozero 2.0.1 Documentation, Release 2.0.1

exception gpiozero.SPIBadArgs

Bases: SPIError (page 240), ValueError916

Error raised when invalid arguments are given while constructing SPIDevice (page 154)
exception gpiozero.SPIBadChannel

Bases: SPIError (page 240), ValueError917

Error raised when an invalid channel is given to an AnalogInputDevice (page 153)
exception gpiozero.SPIFixedClockMode

Bases: SPIError (page 240), AttributeError918

Error raised when the SPI clock mode cannot be changed
exception gpiozero.SPIInvalidClockMode

Bases: SPIError (page 240), ValueError919

Error raised when an invalid clock mode is given to an SPI implementation
exception gpiozero.SPIFixedBitOrder

Bases: SPIError (page 240), AttributeError920

Error raised when the SPI bit-endianness cannot be changed
exception gpiozero.SPIFixedSelect

Bases: SPIError (page 240), AttributeError921

Error raised when the SPI select polarity cannot be changed
exception gpiozero.SPIFixedWordSize

Bases: SPIError (page 240), AttributeError922

Error raised when the number of bits per word cannot be changed
exception gpiozero.SPIInvalidWordSize

Bases: SPIError (page 240), ValueError923

Error raised when an invalid (out of range) number of bits per word is specified
exception gpiozero.GPIODeviceError

Bases: GPIOZeroError (page 239)
Base class for errors specific to the GPIODevice hierarchy

exception gpiozero.GPIODeviceClosed

Bases: GPIODeviceError (page 241), DeviceClosed (page 239)
Deprecated descendent of DeviceClosed (page 239)

exception gpiozero.GPIOPinInUse

Bases: GPIODeviceError (page 241)
Error raised when attempting to use a pin already in use by another device

exception gpiozero.GPIOPinMissing

Bases: GPIODeviceError (page 241), ValueError924

Error raised when a pin specification is not given

916 https://docs.python.org/3.9/library/exceptions.html#ValueError
917 https://docs.python.org/3.9/library/exceptions.html#ValueError
918 https://docs.python.org/3.9/library/exceptions.html#AttributeError
919 https://docs.python.org/3.9/library/exceptions.html#ValueError
920 https://docs.python.org/3.9/library/exceptions.html#AttributeError
921 https://docs.python.org/3.9/library/exceptions.html#AttributeError
922 https://docs.python.org/3.9/library/exceptions.html#AttributeError
923 https://docs.python.org/3.9/library/exceptions.html#ValueError
924 https://docs.python.org/3.9/library/exceptions.html#ValueError

25.1. Errors 241

https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#AttributeError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#AttributeError
https://docs.python.org/3.9/library/exceptions.html#AttributeError
https://docs.python.org/3.9/library/exceptions.html#AttributeError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError

gpiozero 2.0.1 Documentation, Release 2.0.1

exception gpiozero.InputDeviceError

Bases: GPIODeviceError (page 241)
Base class for errors specific to the InputDevice hierarchy

exception gpiozero.OutputDeviceError

Bases: GPIODeviceError (page 241)
Base class for errors specified to the OutputDevice hierarchy

exception gpiozero.OutputDeviceBadValue

Bases: OutputDeviceError (page 242), ValueError925

Error raised when value is set to an invalid value
exception gpiozero.PinError

Bases: GPIOZeroError (page 239)
Base class for errors related to pin implementations

exception gpiozero.PinInvalidFunction

Bases: PinError (page 242), ValueError926

Error raised when attempting to change the function of a pin to an invalid value
exception gpiozero.PinInvalidState

Bases: PinError (page 242), ValueError927

Error raised when attempting to assign an invalid state to a pin
exception gpiozero.PinInvalidPull

Bases: PinError (page 242), ValueError928

Error raised when attempting to assign an invalid pull-up to a pin
exception gpiozero.PinInvalidEdges

Bases: PinError (page 242), ValueError929

Error raised when attempting to assign an invalid edge detection to a pin
exception gpiozero.PinInvalidBounce

Bases: PinError (page 242), ValueError930

Error raised when attempting to assign an invalid bounce time to a pin
exception gpiozero.PinSetInput

Bases: PinError (page 242), AttributeError931

Error raised when attempting to set a read-only pin
exception gpiozero.PinFixedPull

Bases: PinError (page 242), AttributeError932

Error raised when attempting to set the pull of a pin with fixed pull-up
exception gpiozero.PinEdgeDetectUnsupported

Bases: PinError (page 242), AttributeError933

Error raised when attempting to use edge detection on unsupported pins

925 https://docs.python.org/3.9/library/exceptions.html#ValueError
926 https://docs.python.org/3.9/library/exceptions.html#ValueError
927 https://docs.python.org/3.9/library/exceptions.html#ValueError
928 https://docs.python.org/3.9/library/exceptions.html#ValueError
929 https://docs.python.org/3.9/library/exceptions.html#ValueError
930 https://docs.python.org/3.9/library/exceptions.html#ValueError
931 https://docs.python.org/3.9/library/exceptions.html#AttributeError
932 https://docs.python.org/3.9/library/exceptions.html#AttributeError
933 https://docs.python.org/3.9/library/exceptions.html#AttributeError

242 Chapter 25. API - Exceptions

https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#AttributeError
https://docs.python.org/3.9/library/exceptions.html#AttributeError
https://docs.python.org/3.9/library/exceptions.html#AttributeError

gpiozero 2.0.1 Documentation, Release 2.0.1

exception gpiozero.PinUnsupported

Bases: PinError (page 242), NotImplementedError934

Error raised when attempting to obtain a pin interface on unsupported pins
exception gpiozero.PinSPIUnsupported

Bases: PinError (page 242), NotImplementedError935

Error raised when attempting to obtain an SPI interface on unsupported pins
exception gpiozero.PinPWMError

Bases: PinError (page 242)
Base class for errors related to PWM implementations

exception gpiozero.PinPWMUnsupported

Bases: PinPWMError (page 243), AttributeError936

Error raised when attempting to activate PWM on unsupported pins
exception gpiozero.PinPWMFixedValue

Bases: PinPWMError (page 243), AttributeError937

Error raised when attempting to initialize PWM on an input pin
exception gpiozero.PinUnknownPi

Bases: PinError (page 242), RuntimeError938

Error raised when gpiozero doesn’t recognize a revision of the Pi
exception gpiozero.PinMultiplePins

Bases: PinError (page 242), RuntimeError939

Error raised when multiple pins support the requested function
exception gpiozero.PinNoPins

Bases: PinError (page 242), RuntimeError940

Error raised when no pins support the requested function
exception gpiozero.PinInvalidPin

Bases: PinError (page 242), ValueError941

Error raised when an invalid pin specification is provided

25.2 Warnings

exception gpiozero.GPIOZeroWarning

Bases: Warning942

Base class for all warnings in GPIO Zero

934 https://docs.python.org/3.9/library/exceptions.html#NotImplementedError
935 https://docs.python.org/3.9/library/exceptions.html#NotImplementedError
936 https://docs.python.org/3.9/library/exceptions.html#AttributeError
937 https://docs.python.org/3.9/library/exceptions.html#AttributeError
938 https://docs.python.org/3.9/library/exceptions.html#RuntimeError
939 https://docs.python.org/3.9/library/exceptions.html#RuntimeError
940 https://docs.python.org/3.9/library/exceptions.html#RuntimeError
941 https://docs.python.org/3.9/library/exceptions.html#ValueError
942 https://docs.python.org/3.9/library/exceptions.html#Warning

25.2. Warnings 243

https://docs.python.org/3.9/library/exceptions.html#NotImplementedError
https://docs.python.org/3.9/library/exceptions.html#NotImplementedError
https://docs.python.org/3.9/library/exceptions.html#AttributeError
https://docs.python.org/3.9/library/exceptions.html#AttributeError
https://docs.python.org/3.9/library/exceptions.html#RuntimeError
https://docs.python.org/3.9/library/exceptions.html#RuntimeError
https://docs.python.org/3.9/library/exceptions.html#RuntimeError
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/exceptions.html#Warning

gpiozero 2.0.1 Documentation, Release 2.0.1

exception gpiozero.DistanceSensorNoEcho

Bases: GPIOZeroWarning (page 243)
Warning raised when the distance sensor sees no echo at all

exception gpiozero.SPIWarning

Bases: GPIOZeroWarning (page 243)
Base class for warnings related to the SPI implementation

exception gpiozero.SPISoftwareFallback

Bases: SPIWarning (page 244)
Warning raised when falling back to the SPI software implementation

exception gpiozero.PinWarning

Bases: GPIOZeroWarning (page 243)
Base class for warnings related to pin implementations

exception gpiozero.PinFactoryFallback

Bases: PinWarning (page 244)
Warning raised when a default pin factory fails to load and a fallback is tried

exception gpiozero.PinNonPhysical

Bases: PinWarning (page 244)
Warning raised when a non-physical pin is specified in a constructor

exception gpiozero.ThresholdOutOfRange

Bases: GPIOZeroWarning (page 243)
Warning raised when a threshold is out of range specified by min and max values

exception gpiozero.CallbackSetToNone

Bases: GPIOZeroWarning (page 243)
Warning raised when a callback is set to None when its previous value was None

244 Chapter 25. API - Exceptions

CHAPTER

TWENTYSIX

CHANGELOG

26.1 Release 2.0.1 (2024-02-15)

• Fixed Python 3.12 compatibility, and clarify that 3.9 is the lowest supported version in our CI configuration
(#1113943)

26.2 Release 2.0 (2023-09-12)

• Removed Python 2.x support; many thanks to Fangchen Li for a substantial amount of work on this! (#799944
#896945)

• Removed RPIO pin implementation
• Made gpiozero.pins.lgpio.LGPIOFactory (page 235) the default factory; the former default,
gpiozero.pins.rpigpio.RPiGPIOFactory (page 235), is now the second place preference

• Added Backwards Compatibility (page 87) chapter
• Added pintest utility
• Added Raspberry Pi 5 board data

26.3 Release 1.6.2 (2021-03-18)

• Correct docs referring to 1.6.0 as the last version supporting Python 2

Warning: This is the last release to support Python 2

26.4 Release 1.6.1 (2021-03-17)

• Fix missing font files for 7-segment displays
943 https://github.com/gpiozero/gpiozero/issues/1113
944 https://github.com/gpiozero/gpiozero/issues/799
945 https://github.com/gpiozero/gpiozero/issues/896

245

https://github.com/gpiozero/gpiozero/issues/1113
https://github.com/gpiozero/gpiozero/issues/799
https://github.com/gpiozero/gpiozero/issues/896

gpiozero 2.0.1 Documentation, Release 2.0.1

26.5 Release 1.6.0 (2021-03-14)

• Added RotaryEncoder (page 115) class (thanks to Paulo Mateus) (#482946, #928947)
• Added support for multi-segment character displays with LEDCharDisplay (page 162) and LEDMulti-
CharDisplay (page 163) along with “font” support using LEDCharFont (page 165) (thanks to Martin
O’Hanlon) (#357948, #485949, #488950, #493951, #930952)

• Added Pibrella (page 175) class (thanks to Carl Monk) (#773953, #798954)
• Added TrafficpHat (page 174) class (thanks to Ryan Walmsley) (#845955, #846956)
• Added support for the lgpio957 library as a pin factory (LGPIOFactory (page 235)) (thanks to Joan for lg)
(#927958)

• Allow Motor (page 134) to pass pin_factory (page 199) to its child OutputDevice (page 144) objects
(thanks to Yisrael Dov Lebow) (#792959)

• Small SPI exception fix (thanks to Maksim Levental) (#762960)
• Warn users when using default pin factory for Servos and Distance Sensors (thanks to Sofiia Kosovan and
Daniele Procida at the EuroPython sprints) (#780961, #781962)

• Added pulse_width (page 138) property to Servo (page 137) (suggested by Daniele Procida at the PyCon
UK sprints) (#795963, #797964)

• Added event-driven functionality to internal devices (page 189) (#941965)
• Allowed Energenie (page 180) sockets preserve their state on construction (thanks to Jack Wearden)
(#865966)

• Added source tools scaled_half() and scaled_full()
• Added complete Pi 4 support toNativeFactory (page 237) (thanks toAndrew Scheller) (#920967, #929968,
#940969)

• Updated add-on boards to use BOARD numbering (#349970, #860971)
• Fixed ButtonBoard (page 165) release events (#761972)
• Add ASCII art diagrams to pinout for Pi 400 and CM4 (#932973)

946 https://github.com/gpiozero/gpiozero/issues/482
947 https://github.com/gpiozero/gpiozero/issues/928
948 https://github.com/gpiozero/gpiozero/issues/357
949 https://github.com/gpiozero/gpiozero/issues/485
950 https://github.com/gpiozero/gpiozero/issues/488
951 https://github.com/gpiozero/gpiozero/issues/493
952 https://github.com/gpiozero/gpiozero/issues/930
953 https://github.com/gpiozero/gpiozero/issues/773
954 https://github.com/gpiozero/gpiozero/issues/798
955 https://github.com/gpiozero/gpiozero/issues/845
956 https://github.com/gpiozero/gpiozero/issues/846
957 http://abyz.me.uk/lg/py_lgpio.html
958 https://github.com/gpiozero/gpiozero/issues/927
959 https://github.com/gpiozero/gpiozero/issues/792
960 https://github.com/gpiozero/gpiozero/issues/762
961 https://github.com/gpiozero/gpiozero/issues/780
962 https://github.com/gpiozero/gpiozero/issues/781
963 https://github.com/gpiozero/gpiozero/issues/795
964 https://github.com/gpiozero/gpiozero/issues/797
965 https://github.com/gpiozero/gpiozero/issues/941
966 https://github.com/gpiozero/gpiozero/issues/865
967 https://github.com/gpiozero/gpiozero/issues/920
968 https://github.com/gpiozero/gpiozero/issues/929
969 https://github.com/gpiozero/gpiozero/issues/940
970 https://github.com/gpiozero/gpiozero/issues/349
971 https://github.com/gpiozero/gpiozero/issues/860
972 https://github.com/gpiozero/gpiozero/issues/761
973 https://github.com/gpiozero/gpiozero/issues/932

246 Chapter 26. Changelog

https://github.com/gpiozero/gpiozero/issues/482
https://github.com/gpiozero/gpiozero/issues/928
https://github.com/gpiozero/gpiozero/issues/357
https://github.com/gpiozero/gpiozero/issues/485
https://github.com/gpiozero/gpiozero/issues/488
https://github.com/gpiozero/gpiozero/issues/493
https://github.com/gpiozero/gpiozero/issues/930
https://github.com/gpiozero/gpiozero/issues/773
https://github.com/gpiozero/gpiozero/issues/798
https://github.com/gpiozero/gpiozero/issues/845
https://github.com/gpiozero/gpiozero/issues/846
http://abyz.me.uk/lg/py_lgpio.html
https://github.com/gpiozero/gpiozero/issues/927
https://github.com/gpiozero/gpiozero/issues/792
https://github.com/gpiozero/gpiozero/issues/762
https://github.com/gpiozero/gpiozero/issues/780
https://github.com/gpiozero/gpiozero/issues/781
https://github.com/gpiozero/gpiozero/issues/795
https://github.com/gpiozero/gpiozero/issues/797
https://github.com/gpiozero/gpiozero/issues/941
https://github.com/gpiozero/gpiozero/issues/865
https://github.com/gpiozero/gpiozero/issues/920
https://github.com/gpiozero/gpiozero/issues/929
https://github.com/gpiozero/gpiozero/issues/940
https://github.com/gpiozero/gpiozero/issues/349
https://github.com/gpiozero/gpiozero/issues/860
https://github.com/gpiozero/gpiozero/issues/761
https://github.com/gpiozero/gpiozero/issues/932

gpiozero 2.0.1 Documentation, Release 2.0.1

• Cleaned up software SPI (thanks to Andrew Scheller and Kyle Morgan) (#777974, #895975, #900976)
• Added USB3 and Ethernet speed attributes to pi_info() (page 217)
• Various docs updates

26.6 Release 1.5.1 (2019-06-24)

• Added Raspberry Pi 4 data for pi_info() (page 217) and pinout
• Minor docs updates

26.7 Release 1.5.0 (2019-02-12)

• Introduced pin event timing to increase accuracy of certain devices such as the HC-SR04 DistanceSensor
(page 113). (#664977, #665978)

• Further improvements to DistanceSensor (page 113) (ignoring missed edges). (#719979)
• Allow source to take a device object as well as values or other values. See Source/Values (page 61).
(#640980)

• Added internal device classes LoadAverage (page 193) and DiskUsage (page 195) (thanks to Jeevan M
R for the latter). (#532981, #714982)

• Added support for colorzero983 with RGBLED (page 128) (this adds a new dependency). (#655984)
• Added TonalBuzzer (page 133) with Tone (page 215) API for specifying frequencies raw or via MIDI or
musical notes. (#681985, #717986)

• Added PiHutXmasTree (page 169). (#502987)
• Added PumpkinPi (page 184) and JamHat (page 174) (thanks to Claire Pollard). (#680988, #681989,
#717990)

• Ensured gpiozero can be imported without a valid pin factory set. (#591991, #713992)
• Reduced import time by not computing default pin factory at the point of import. (#675993, #722994)
• Added support for various pin numbering mechanisms. (#470995)
• Motor (page 134) instances now use DigitalOutputDevice (page 141) for non-PWM pins.

974 https://github.com/gpiozero/gpiozero/issues/777
975 https://github.com/gpiozero/gpiozero/issues/895
976 https://github.com/gpiozero/gpiozero/issues/900
977 https://github.com/gpiozero/gpiozero/issues/664
978 https://github.com/gpiozero/gpiozero/issues/665
979 https://github.com/gpiozero/gpiozero/issues/719
980 https://github.com/gpiozero/gpiozero/issues/640
981 https://github.com/gpiozero/gpiozero/issues/532
982 https://github.com/gpiozero/gpiozero/issues/714
983 https://colorzero.readthedocs.io/en/stable
984 https://github.com/gpiozero/gpiozero/issues/655
985 https://github.com/gpiozero/gpiozero/issues/681
986 https://github.com/gpiozero/gpiozero/issues/717
987 https://github.com/gpiozero/gpiozero/issues/502
988 https://github.com/gpiozero/gpiozero/issues/680
989 https://github.com/gpiozero/gpiozero/issues/681
990 https://github.com/gpiozero/gpiozero/issues/717
991 https://github.com/gpiozero/gpiozero/issues/591
992 https://github.com/gpiozero/gpiozero/issues/713
993 https://github.com/gpiozero/gpiozero/issues/675
994 https://github.com/gpiozero/gpiozero/issues/722
995 https://github.com/gpiozero/gpiozero/issues/470

26.6. Release 1.5.1 (2019-06-24) 247

https://github.com/gpiozero/gpiozero/issues/777
https://github.com/gpiozero/gpiozero/issues/895
https://github.com/gpiozero/gpiozero/issues/900
https://github.com/gpiozero/gpiozero/issues/664
https://github.com/gpiozero/gpiozero/issues/665
https://github.com/gpiozero/gpiozero/issues/719
https://github.com/gpiozero/gpiozero/issues/640
https://github.com/gpiozero/gpiozero/issues/532
https://github.com/gpiozero/gpiozero/issues/714
https://colorzero.readthedocs.io/en/stable
https://github.com/gpiozero/gpiozero/issues/655
https://github.com/gpiozero/gpiozero/issues/681
https://github.com/gpiozero/gpiozero/issues/717
https://github.com/gpiozero/gpiozero/issues/502
https://github.com/gpiozero/gpiozero/issues/680
https://github.com/gpiozero/gpiozero/issues/681
https://github.com/gpiozero/gpiozero/issues/717
https://github.com/gpiozero/gpiozero/issues/591
https://github.com/gpiozero/gpiozero/issues/713
https://github.com/gpiozero/gpiozero/issues/675
https://github.com/gpiozero/gpiozero/issues/722
https://github.com/gpiozero/gpiozero/issues/470

gpiozero 2.0.1 Documentation, Release 2.0.1

• Allow non-PWM use of Robot (page 176). (#481996)
• Added optional enable init param to Motor (page 134). (#366997)
• Added --xyz option to pinout command line tool to open pinout.xyz998 in a web browser. (#604999)
• Added 3B+, 3A+ and CM3+ to Pi model data. (#6271000, #7041001)
• Minor improvements to Energenie (page 180), thanks to Steve Amor. (#6291002, #6341003)
• Allow SmoothedInputDevice (page 120), LightSensor (page 111) and MotionSensor
(page 109) to have pull-up configured. (#6521004)

• Allow input devices to be pulled up or down externally, thanks to Philippe Muller. (#5931005, #6581006)
• Minor changes to support Python 3.7, thanks to RusselWinder and Rick Ansell. (#6661007, #6681008, #6691009,
#6711010, #6731011)

• Added zip_values() (page 208) source tool.
• Correct row/col numbering logic in PinInfo (page 219). (#6741012)
• Many additional tests, and other improvements to the test suite.
• Many documentation corrections, additions and clarifications.
• Automatic documentation class hierarchy diagram generation.
• Automatic copyright attribution in source files.

26.8 Release 1.4.1 (2018-02-20)

This release is mostly bug-fixes, but a few enhancements have made it in too:
• Added curve_left and curve_right parameters to Robot.forward() (page 177) and Robot.
backward() (page 177). (#3061013 and #6191014)

• Fixed DistanceSensor (page 113) returning incorrect readings after a long pause, and added a lock to
ensure multiple distance sensors can operate simultaneously in a single project. (#5841015, #5951016, #6171017,
#6181018)

• Added support for phase/enable motor drivers with PhaseEnableMotor (page 136), PhaseEnableR-
obot (page 178), and descendants, thanks to Ian Harcombe! (#3861019)

996 https://github.com/gpiozero/gpiozero/issues/481
997 https://github.com/gpiozero/gpiozero/issues/366
998 https://pinout.xyz
999 https://github.com/gpiozero/gpiozero/issues/604
1000 https://github.com/gpiozero/gpiozero/issues/627
1001 https://github.com/gpiozero/gpiozero/issues/704
1002 https://github.com/gpiozero/gpiozero/issues/629
1003 https://github.com/gpiozero/gpiozero/issues/634
1004 https://github.com/gpiozero/gpiozero/issues/652
1005 https://github.com/gpiozero/gpiozero/issues/593
1006 https://github.com/gpiozero/gpiozero/issues/658
1007 https://github.com/gpiozero/gpiozero/issues/666
1008 https://github.com/gpiozero/gpiozero/issues/668
1009 https://github.com/gpiozero/gpiozero/issues/669
1010 https://github.com/gpiozero/gpiozero/issues/671
1011 https://github.com/gpiozero/gpiozero/issues/673
1012 https://github.com/gpiozero/gpiozero/issues/674
1013 https://github.com/gpiozero/gpiozero/issues/306
1014 https://github.com/gpiozero/gpiozero/issues/619
1015 https://github.com/gpiozero/gpiozero/issues/584
1016 https://github.com/gpiozero/gpiozero/issues/595
1017 https://github.com/gpiozero/gpiozero/issues/617
1018 https://github.com/gpiozero/gpiozero/issues/618
1019 https://github.com/gpiozero/gpiozero/issues/386

248 Chapter 26. Changelog

https://github.com/gpiozero/gpiozero/issues/481
https://github.com/gpiozero/gpiozero/issues/366
https://pinout.xyz
https://github.com/gpiozero/gpiozero/issues/604
https://github.com/gpiozero/gpiozero/issues/627
https://github.com/gpiozero/gpiozero/issues/704
https://github.com/gpiozero/gpiozero/issues/629
https://github.com/gpiozero/gpiozero/issues/634
https://github.com/gpiozero/gpiozero/issues/652
https://github.com/gpiozero/gpiozero/issues/593
https://github.com/gpiozero/gpiozero/issues/658
https://github.com/gpiozero/gpiozero/issues/666
https://github.com/gpiozero/gpiozero/issues/668
https://github.com/gpiozero/gpiozero/issues/669
https://github.com/gpiozero/gpiozero/issues/671
https://github.com/gpiozero/gpiozero/issues/673
https://github.com/gpiozero/gpiozero/issues/674
https://github.com/gpiozero/gpiozero/issues/306
https://github.com/gpiozero/gpiozero/issues/619
https://github.com/gpiozero/gpiozero/issues/584
https://github.com/gpiozero/gpiozero/issues/595
https://github.com/gpiozero/gpiozero/issues/617
https://github.com/gpiozero/gpiozero/issues/618
https://github.com/gpiozero/gpiozero/issues/386

gpiozero 2.0.1 Documentation, Release 2.0.1

• A variety of other minor enhancements, largely thanks to Andrew Scheller! (#4791020, #4891021, #4911022,
#4921023)

26.9 Release 1.4.0 (2017-07-26)

• Pin factory is now configurable from device constructors (page 223) as well as command line. NOTE: this is a
backwards incompatible change for manual pin construction but it’s hoped this is (currently) a sufficiently rare
use case that this won’t affect too many people and the benefits of the new system warrant such a change, i.e.
the ability to use remote pin factories with HAT classes that don’t accept pin assignations (#2791024)

• Major work on SPI, primarily to support remote hardware SPI (#4211025, #4591026, #4651027, #4681028,
#5751029)

• Pin reservation now works properly between GPIO and SPI devices (#4591030, #4681031)
• Lots of work on the documentation: source/values chapter (page 61), better charts, more recipes, remote GPIO

configuration (page 45), mock pins, better PDF output (#4841032, #4691033, #5231034, #5201035, #4341036,
#5651037, #5761038)

• Support for StatusZero (page 181) and StatusBoard (page 182) HATs (#5581039)
• Added pinout command line tool to provide a simple reference to the GPIO layout and information about
the associated Pi (#4971040, #5041041) thanks to Stewart Adcock for the initial work

• pi_info() (page 217) made more lenient for new (unknown) Pi models (#5291042)
• Fixed a variety of packaging issues (#5351043, #5181044, #5191045)
• Improved text in factory fallback warnings (#5721046)

1020 https://github.com/gpiozero/gpiozero/issues/479
1021 https://github.com/gpiozero/gpiozero/issues/489
1022 https://github.com/gpiozero/gpiozero/issues/491
1023 https://github.com/gpiozero/gpiozero/issues/492
1024 https://github.com/gpiozero/gpiozero/issues/279
1025 https://github.com/gpiozero/gpiozero/issues/421
1026 https://github.com/gpiozero/gpiozero/issues/459
1027 https://github.com/gpiozero/gpiozero/issues/465
1028 https://github.com/gpiozero/gpiozero/issues/468
1029 https://github.com/gpiozero/gpiozero/issues/575
1030 https://github.com/gpiozero/gpiozero/issues/459
1031 https://github.com/gpiozero/gpiozero/issues/468
1032 https://github.com/gpiozero/gpiozero/issues/484
1033 https://github.com/gpiozero/gpiozero/issues/469
1034 https://github.com/gpiozero/gpiozero/issues/523
1035 https://github.com/gpiozero/gpiozero/issues/520
1036 https://github.com/gpiozero/gpiozero/issues/434
1037 https://github.com/gpiozero/gpiozero/issues/565
1038 https://github.com/gpiozero/gpiozero/issues/576
1039 https://github.com/gpiozero/gpiozero/issues/558
1040 https://github.com/gpiozero/gpiozero/issues/497
1041 https://github.com/gpiozero/gpiozero/issues/504
1042 https://github.com/gpiozero/gpiozero/issues/529
1043 https://github.com/gpiozero/gpiozero/issues/535
1044 https://github.com/gpiozero/gpiozero/issues/518
1045 https://github.com/gpiozero/gpiozero/issues/519
1046 https://github.com/gpiozero/gpiozero/issues/572

26.9. Release 1.4.0 (2017-07-26) 249

https://github.com/gpiozero/gpiozero/issues/479
https://github.com/gpiozero/gpiozero/issues/489
https://github.com/gpiozero/gpiozero/issues/491
https://github.com/gpiozero/gpiozero/issues/492
https://github.com/gpiozero/gpiozero/issues/279
https://github.com/gpiozero/gpiozero/issues/421
https://github.com/gpiozero/gpiozero/issues/459
https://github.com/gpiozero/gpiozero/issues/465
https://github.com/gpiozero/gpiozero/issues/468
https://github.com/gpiozero/gpiozero/issues/575
https://github.com/gpiozero/gpiozero/issues/459
https://github.com/gpiozero/gpiozero/issues/468
https://github.com/gpiozero/gpiozero/issues/484
https://github.com/gpiozero/gpiozero/issues/469
https://github.com/gpiozero/gpiozero/issues/523
https://github.com/gpiozero/gpiozero/issues/520
https://github.com/gpiozero/gpiozero/issues/434
https://github.com/gpiozero/gpiozero/issues/565
https://github.com/gpiozero/gpiozero/issues/576
https://github.com/gpiozero/gpiozero/issues/558
https://github.com/gpiozero/gpiozero/issues/497
https://github.com/gpiozero/gpiozero/issues/504
https://github.com/gpiozero/gpiozero/issues/529
https://github.com/gpiozero/gpiozero/issues/535
https://github.com/gpiozero/gpiozero/issues/518
https://github.com/gpiozero/gpiozero/issues/519
https://github.com/gpiozero/gpiozero/issues/572

gpiozero 2.0.1 Documentation, Release 2.0.1

26.10 Release 1.3.2 (2017-03-03)

• Added new Pi models to stop pi_info() (page 217) breaking
• Fix issue with pi_info() (page 217) breaking on unknown Pi models

26.11 Release 1.3.1 (2016-08-31 … later)

• Fixed hardware SPI support which Dave broke in 1.3.0. Sorry!
• Some minor docs changes

26.12 Release 1.3.0 (2016-08-31)

• Added ButtonBoard (page 165) for reading multiple buttons in a single class (#3401047)
• Added Servo (page 137) and AngularServo (page 139) classes for controlling simple servo motors
(#2481048)

• Lots of work on supporting easier use of internal and third-party pin implementations (#3591049)
• Robot (page 176) now has a proper value (page 178) attribute (#3051050)
• Added CPUTemperature (page 192) as another demo of “internal” devices (#2941051)
• A temporary work-around for an issue with DistanceSensor (page 113) was included but a full fix is in
the works (#3851052)

• More work on the documentation (#3201053, #2951054, #2891055, etc.)
Not quite as much as we’d hoped to get done this time, but we’re rushing to make a Raspbian freeze. As always,
thanks to the community - your suggestions and PRs have been brilliant and even if we don’t take stuff exactly as is,
it’s always great to see your ideas. Onto 1.4!

26.13 Release 1.2.0 (2016-04-10)

• Added Energenie (page 180) class for controlling Energenie plugs (#691056)
• Added LineSensor (page 108) class for single line-sensors (#1091057)
• Added DistanceSensor (page 113) class for HC-SR04 ultra-sonic sensors (#1141058)
• Added SnowPi (page 183) class for the Ryanteck Snow-pi board (#1301059)
• Added when_held (page 106) (and related properties) to Button (page 105) (#1151060)

1047 https://github.com/gpiozero/gpiozero/issues/340
1048 https://github.com/gpiozero/gpiozero/issues/248
1049 https://github.com/gpiozero/gpiozero/issues/359
1050 https://github.com/gpiozero/gpiozero/issues/305
1051 https://github.com/gpiozero/gpiozero/issues/294
1052 https://github.com/gpiozero/gpiozero/issues/385
1053 https://github.com/gpiozero/gpiozero/issues/320
1054 https://github.com/gpiozero/gpiozero/issues/295
1055 https://github.com/gpiozero/gpiozero/issues/289
1056 https://github.com/gpiozero/gpiozero/issues/69
1057 https://github.com/gpiozero/gpiozero/issues/109
1058 https://github.com/gpiozero/gpiozero/issues/114
1059 https://github.com/gpiozero/gpiozero/issues/130
1060 https://github.com/gpiozero/gpiozero/issues/115

250 Chapter 26. Changelog

https://github.com/gpiozero/gpiozero/issues/340
https://github.com/gpiozero/gpiozero/issues/248
https://github.com/gpiozero/gpiozero/issues/359
https://github.com/gpiozero/gpiozero/issues/305
https://github.com/gpiozero/gpiozero/issues/294
https://github.com/gpiozero/gpiozero/issues/385
https://github.com/gpiozero/gpiozero/issues/320
https://github.com/gpiozero/gpiozero/issues/295
https://github.com/gpiozero/gpiozero/issues/289
https://github.com/gpiozero/gpiozero/issues/69
https://github.com/gpiozero/gpiozero/issues/109
https://github.com/gpiozero/gpiozero/issues/114
https://github.com/gpiozero/gpiozero/issues/130
https://github.com/gpiozero/gpiozero/issues/115

gpiozero 2.0.1 Documentation, Release 2.0.1

• Fixed issues with installing GPIO Zero for python 3 on Raspbian Wheezy releases (#1401061)
• Added support for lots of ADC chips (MCP3xxx family) (#1621062) - many thanks to pcopa and lurch!
• Added support for pigpiod as a pin implementation with PiGPIOPin (page 236) (#1801063)
• Many refinements to the base classes mean more consistency in composite devices and several bugs squashed
(#1641064, #1751065, #1821066, #1891067, #1931068, #2291069)

• GPIOZero is now aware of what sort of Pi it’s running on viapi_info() (page 217) and has a fairly extensive
database of Pi information which it uses to determine when users request impossible things (like pull-down on
a pin with a physical pull-up resistor) (#2221070)

• The source/values system was enhanced to ensure normal usage doesn’t stress the CPU and lots of utilities were
added (#1811071, #2511072)

And I’ll just add a note of thanks to the many people in the community who contributed to this release: we’ve had
some great PRs, suggestions, and bug reports in this version. Of particular note:

• Schelto van Doorn was instrumental in adding support for numerous ADC chips
• Alex Eames generously donated a RasPiO Analog board which was extremely useful in developing the software
SPI interface (and testing the ADC support)

• Andrew Scheller squashed several dozen bugs (usually a day or so after Dave had introduced them ;)
As always, many thanks to the whole community - we look forward to hearing from you more in 1.3!

26.14 Release 1.1.0 (2016-02-08)

• Documentation converted to reST and expanded to include generic classes and several more recipes (#801073,
#821074, #1011075, #1191076, #1351077, #1681078)

• New CamJamKitRobot (page 179) class with the pre-defined motor pins for the new CamJam EduKit
• New LEDBarGraph (page 160) class (many thanks to Martin O’Hanlon!) (#1261079, #1761080)
• New Pin (page 227) implementation abstracts out the concept of a GPIO pin paving the way for alternate
library support and IO extenders in future (#1411081)

• NewLEDBoard.blink() (page 158)method which works properly even when background is set toFalse
(#941082, #1611083)

• New RGBLED.blink() (page 129) method which implements (rudimentary) color fading too! (#1351084,
1061 https://github.com/gpiozero/gpiozero/issues/140
1062 https://github.com/gpiozero/gpiozero/issues/162
1063 https://github.com/gpiozero/gpiozero/issues/180
1064 https://github.com/gpiozero/gpiozero/issues/164
1065 https://github.com/gpiozero/gpiozero/issues/175
1066 https://github.com/gpiozero/gpiozero/issues/182
1067 https://github.com/gpiozero/gpiozero/issues/189
1068 https://github.com/gpiozero/gpiozero/issues/193
1069 https://github.com/gpiozero/gpiozero/issues/229
1070 https://github.com/gpiozero/gpiozero/issues/222
1071 https://github.com/gpiozero/gpiozero/issues/181
1072 https://github.com/gpiozero/gpiozero/issues/251
1073 https://github.com/gpiozero/gpiozero/issues/80
1074 https://github.com/gpiozero/gpiozero/issues/82
1075 https://github.com/gpiozero/gpiozero/issues/101
1076 https://github.com/gpiozero/gpiozero/issues/119
1077 https://github.com/gpiozero/gpiozero/issues/135
1078 https://github.com/gpiozero/gpiozero/issues/168
1079 https://github.com/gpiozero/gpiozero/issues/126
1080 https://github.com/gpiozero/gpiozero/issues/176
1081 https://github.com/gpiozero/gpiozero/issues/141
1082 https://github.com/gpiozero/gpiozero/issues/94
1083 https://github.com/gpiozero/gpiozero/issues/161
1084 https://github.com/gpiozero/gpiozero/issues/135

26.14. Release 1.1.0 (2016-02-08) 251

https://github.com/gpiozero/gpiozero/issues/140
https://github.com/gpiozero/gpiozero/issues/162
https://github.com/gpiozero/gpiozero/issues/180
https://github.com/gpiozero/gpiozero/issues/164
https://github.com/gpiozero/gpiozero/issues/175
https://github.com/gpiozero/gpiozero/issues/182
https://github.com/gpiozero/gpiozero/issues/189
https://github.com/gpiozero/gpiozero/issues/193
https://github.com/gpiozero/gpiozero/issues/229
https://github.com/gpiozero/gpiozero/issues/222
https://github.com/gpiozero/gpiozero/issues/181
https://github.com/gpiozero/gpiozero/issues/251
https://github.com/gpiozero/gpiozero/issues/80
https://github.com/gpiozero/gpiozero/issues/82
https://github.com/gpiozero/gpiozero/issues/101
https://github.com/gpiozero/gpiozero/issues/119
https://github.com/gpiozero/gpiozero/issues/135
https://github.com/gpiozero/gpiozero/issues/168
https://github.com/gpiozero/gpiozero/issues/126
https://github.com/gpiozero/gpiozero/issues/176
https://github.com/gpiozero/gpiozero/issues/141
https://github.com/gpiozero/gpiozero/issues/94
https://github.com/gpiozero/gpiozero/issues/161
https://github.com/gpiozero/gpiozero/issues/135

gpiozero 2.0.1 Documentation, Release 2.0.1

#1741085)
• New initial_value attribute on OutputDevice (page 144) ensures consistent behaviour on construc-
tion (#1181086)

• New active_high attribute on PWMOutputDevice (page 142) and RGBLED (page 128) allows use of
common anode devices (#1431087, #1541088)

• Loads of new ADC chips supported (many thanks to GitHub user pcopa!) (#1501089)

26.15 Release 1.0.0 (2015-11-16)

• Debian packaging added (#441090)
• PWMLED (page 127) class added (#581091)
• TemperatureSensor removed pending further work (#931092)
• Buzzer.beep() (page 132) alias method added (#751093)
• Motor (page 134) PWM devices exposed, and Robot (page 176) motor devices exposed (#1071094)

26.16 Release 0.9.0 (2015-10-25)

Fourth public beta
• Added source and values properties to all relevant classes (#761095)
• Fix names of parameters in Motor (page 134) constructor (#791096)
• Added wrappers for LED groups on add-on boards (#811097)

26.17 Release 0.8.0 (2015-10-16)

Third public beta
• Added generic AnalogInputDevice (page 153) class along with specific classes for the MCP3008
(page 149) and MCP3004 (page 149) (#411098)

• Fixed DigitalOutputDevice.blink() (page 141) (#571099)
1085 https://github.com/gpiozero/gpiozero/issues/174
1086 https://github.com/gpiozero/gpiozero/issues/118
1087 https://github.com/gpiozero/gpiozero/issues/143
1088 https://github.com/gpiozero/gpiozero/issues/154
1089 https://github.com/gpiozero/gpiozero/issues/150
1090 https://github.com/gpiozero/gpiozero/issues/44
1091 https://github.com/gpiozero/gpiozero/issues/58
1092 https://github.com/gpiozero/gpiozero/issues/93
1093 https://github.com/gpiozero/gpiozero/issues/75
1094 https://github.com/gpiozero/gpiozero/issues/107
1095 https://github.com/gpiozero/gpiozero/issues/76
1096 https://github.com/gpiozero/gpiozero/issues/79
1097 https://github.com/gpiozero/gpiozero/issues/81
1098 https://github.com/gpiozero/gpiozero/issues/41
1099 https://github.com/gpiozero/gpiozero/issues/57

252 Chapter 26. Changelog

https://github.com/gpiozero/gpiozero/issues/174
https://github.com/gpiozero/gpiozero/issues/118
https://github.com/gpiozero/gpiozero/issues/143
https://github.com/gpiozero/gpiozero/issues/154
https://github.com/gpiozero/gpiozero/issues/150
https://github.com/gpiozero/gpiozero/issues/44
https://github.com/gpiozero/gpiozero/issues/58
https://github.com/gpiozero/gpiozero/issues/93
https://github.com/gpiozero/gpiozero/issues/75
https://github.com/gpiozero/gpiozero/issues/107
https://github.com/gpiozero/gpiozero/issues/76
https://github.com/gpiozero/gpiozero/issues/79
https://github.com/gpiozero/gpiozero/issues/81
https://github.com/gpiozero/gpiozero/issues/41
https://github.com/gpiozero/gpiozero/issues/57

gpiozero 2.0.1 Documentation, Release 2.0.1

26.18 Release 0.7.0 (2015-10-09)

Second public beta

26.19 Release 0.6.0 (2015-09-28)

First public beta

26.20 Release 0.5.0 (2015-09-24)

26.21 Release 0.4.0 (2015-09-23)

26.22 Release 0.3.0 (2015-09-22)

26.23 Release 0.2.0 (2015-09-21)

Initial release

26.18. Release 0.7.0 (2015-10-09) 253

gpiozero 2.0.1 Documentation, Release 2.0.1

254 Chapter 26. Changelog

CHAPTER

TWENTYSEVEN

LICENSE

Copyright © 2015-2020 Ben Nuttall <ben@bennuttall.com> and contributors; see gpiozero (page 1) for current list
SPDX-License-Identifier: BSD-3-Clause
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIEDWARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUTNOT LIMITED TO, PROCUREMENTOF SUBSTITUTEGOODSOR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED ANDONANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

255

mailto:ben@bennuttall.com

gpiozero 2.0.1 Documentation, Release 2.0.1

256 Chapter 27. License

PYTHON MODULE INDEX

g
gpiozero, 3
gpiozero.boards, 157
gpiozero.devices, 197
gpiozero.exc, 239
gpiozero.fonts, 211
gpiozero.input_devices, 105
gpiozero.internal_devices, 189
gpiozero.output_devices, 125
gpiozero.pins, 221
gpiozero.pins.data, 217
gpiozero.pins.lgpio, 235
gpiozero.pins.local, 234
gpiozero.pins.mock, 237
gpiozero.pins.native, 237
gpiozero.pins.pi, 233
gpiozero.pins.pigpio, 236
gpiozero.pins.rpigpio, 235
gpiozero.spi_devices, 147
gpiozero.tones, 215
gpiozero.tools, 203

257

gpiozero 2.0.1 Documentation, Release 2.0.1

258 Python Module Index

INDEX

Symbols
_shared_key() (gpiozero.SharedMixin class

method), 200
--color

pinout command line option, 71
--help

pinout command line option, 71
pintest command line option, 76

--monochrome
pinout command line option, 71

--pins
pintest command line option, 76

--revision
pinout command line option, 71
pintest command line option, 76

--skip
pintest command line option, 76

--version
pintest command line option, 76

--xyz
pinout command line option, 71

--yes
pintest command line option, 76

-c
pinout command line option, 71

-h
pinout command line option, 71
pintest command line option, 76

-m
pinout command line option, 71

-p
pintest command line option, 76

-r
pinout command line option, 71
pintest command line option, 76

-s
pintest command line option, 76

-x
pinout command line option, 71

-y
pintest command line option, 76

A
absoluted() (in module gpiozero.tools), 203
active_high (gpiozero.OutputDevice property), 144

active_time (gpiozero.DigitalInputDevice property),
119

active_time (gpiozero.EventsMixin property), 201
all_values() (in module gpiozero.tools), 206
alternating_values() (in module gpi-

ozero.tools), 208
amber (gpiozero.TrafficLights attribute), 168
AnalogInputDevice (class in gpiozero), 153
angle (gpiozero.AngularServo property), 140
AngularServo (class in gpiozero), 139
any_values() (in module gpiozero.tools), 207
arms (gpiozero.SnowPi attribute), 183
averaged() (in module gpiozero.tools), 207

B
backward() (gpiozero.Motor method), 135
backward() (gpiozero.PhaseEnableMotor method),

136
backward() (gpiozero.Robot method), 177
BadEventHandler, 239
BadPinFactory, 240
BadQueueLen, 240
BadWaitTime, 239
beep() (gpiozero.Buzzer method), 132
bits (gpiozero.AnalogInputDevice property), 154
bits_per_word (gpiozero.SPI property), 230
blink() (gpiozero.DigitalOutputDevice method), 141
blink() (gpiozero.LED method), 126
blink() (gpiozero.LEDBoard method), 158
blink() (gpiozero.PWMLED method), 127
blink() (gpiozero.PWMOutputDevice method), 142
blink() (gpiozero.RGBLED method), 129
blue (gpiozero.RGBLED property), 130
board_info (gpiozero.Factory property), 227
booleanized() (in module gpiozero.tools), 203
bounce (gpiozero.Pin property), 228
Button (class in gpiozero), 105
button (gpiozero.Pibrella attribute), 176
button (gpiozero.StatusBoard attribute), 182
button (gpiozero.TrafficLightsBuzzer attribute), 169
ButtonBoard (class in gpiozero), 165
Buzzer (class in gpiozero), 131
buzzer (gpiozero.JamHat attribute), 175
buzzer (gpiozero.Pibrella attribute), 176
buzzer (gpiozero.TrafficLightsBuzzer attribute), 168

259

gpiozero 2.0.1 Documentation, Release 2.0.1

C
CallbackSetToNone, 244
CamJamKitRobot (class in gpiozero), 179
channel (gpiozero.MCP3002 property), 148
channel (gpiozero.MCP3004 property), 149
channel (gpiozero.MCP3008 property), 149
channel (gpiozero.MCP3202 property), 150
channel (gpiozero.MCP3204 property), 150
channel (gpiozero.MCP3208 property), 150
channel (gpiozero.MCP3302 property), 151
channel (gpiozero.MCP3304 property), 152
clamped() (in module gpiozero.tools), 204
clock_mode (gpiozero.SPI property), 231
clock_phase (gpiozero.SPI property), 231
clock_polarity (gpiozero.SPI property), 231
close() (gpiozero.CompositeDevice method), 187
close() (gpiozero.Device method), 199
close() (gpiozero.Factory method), 226
close() (gpiozero.GPIODevice method), 122
close() (gpiozero.Pin method), 227
close() (gpiozero.pins.pi.PiFactory method), 233
close() (gpiozero.SPIDevice method), 154
closed (gpiozero.CompositeDevice property), 188
closed (gpiozero.Device property), 199
closed (gpiozero.GPIODevice property), 123
closed (gpiozero.SPIDevice property), 155
col (gpiozero.PinInfo attribute), 219
color (gpiozero.RGBLED property), 130
columns (gpiozero.HeaderInfo attribute), 218
CompositeDevice (class in gpiozero), 187
CompositeDeviceBadDevice, 240
CompositeDeviceBadName, 240
CompositeDeviceBadOrder, 240
CompositeDeviceError, 240
CompositeOutputDevice (class in gpiozero), 186
cos_values() (in module gpiozero.tools), 208
CPUTemperature (class in gpiozero), 192

D
detach() (gpiozero.Servo method), 138
Device (class in gpiozero), 199
DeviceClosed, 239
differential (gpiozero.MCP3002 property), 148
differential (gpiozero.MCP3004 property), 149
differential (gpiozero.MCP3008 property), 149
differential (gpiozero.MCP3202 property), 150
differential (gpiozero.MCP3204 property), 150
differential (gpiozero.MCP3208 property), 150
differential (gpiozero.MCP3302 property), 151
differential (gpiozero.MCP3304 property), 152
DigitalInputDevice (class in gpiozero), 119
DigitalOutputDevice (class in gpiozero), 141
DiskUsage (class in gpiozero), 195
distance (gpiozero.DistanceSensor property), 114
DistanceSensor (class in gpiozero), 113
DistanceSensorNoEcho, 243
down() (gpiozero.tones.Tone method), 215

E
echo (gpiozero.DistanceSensor property), 114
edges (gpiozero.Pin property), 228
end_time (gpiozero.TimeOfDay property), 190
Energenie (class in gpiozero), 180
EnergenieBadSocket, 240
EnergenieSocketMissing, 240
environment variable

GPIOZERO_PIN_FACTORY, 49, 58, 77, 81, 89,
223, 224

GPIOZERO_TEST_INPUT_PIN, 102
GPIOZERO_TEST_PIN, 102
PIGPIO_ADDR, 48, 58, 77, 224
PIGPIO_PORT, 77

EventsMixin (class in gpiozero), 201
eyes (gpiozero.PumpkinPi attribute), 184
eyes (gpiozero.SnowPi attribute), 183

F
Factory (class in gpiozero), 226
FishDish (class in gpiozero), 173
font (gpiozero.LEDCharDisplay property), 163
forward() (gpiozero.Motor method), 135
forward() (gpiozero.PhaseEnableMotor method), 136
forward() (gpiozero.Robot method), 177
frame_width (gpiozero.Servo property), 138
frequency (gpiozero.Pin property), 229
frequency (gpiozero.PWMOutputDevice property),

143
frequency (gpiozero.tones.Tone property), 216
from_frequency() (gpiozero.tones.Tone class

method), 216
from_midi() (gpiozero.tones.Tone class method), 216
from_note() (gpiozero.tones.Tone class method), 216
function (gpiozero.Pin property), 229
function (gpiozero.PinInfo attribute), 219

G
GPIODevice (class in gpiozero), 122
GPIODeviceClosed, 241
GPIODeviceError, 241
GPIOPinInUse, 241
GPIOPinMissing, 241
gpiozero

module, 3
gpiozero.boards

module, 157
gpiozero.devices

module, 197
gpiozero.exc

module, 239
gpiozero.fonts

module, 211
gpiozero.input_devices

module, 105
gpiozero.internal_devices

module, 189
gpiozero.output_devices

260 Index

gpiozero 2.0.1 Documentation, Release 2.0.1

module, 125
gpiozero.pins

module, 221
gpiozero.pins.data

module, 217
gpiozero.pins.lgpio

module, 235
gpiozero.pins.local

module, 234
gpiozero.pins.mock

module, 237
gpiozero.pins.native

module, 237
gpiozero.pins.pi

module, 233
gpiozero.pins.pigpio

module, 236
gpiozero.pins.rpigpio

module, 235
gpiozero.spi_devices

module, 147
gpiozero.tones

module, 215
gpiozero.tools

module, 203
GPIOZERO_PIN_FACTORY, 49, 58, 81, 89, 223, 224
GPIOZERO_TEST_INPUT_PIN, 102
GPIOZERO_TEST_PIN, 102
GPIOZeroError, 239
GPIOZeroWarning, 243
green (gpiozero.RGBLED property), 130
green (gpiozero.StatusBoard attribute), 182
green (gpiozero.StatusZero attribute), 181
green (gpiozero.TrafficLights attribute), 168

H
HeaderInfo (class in gpiozero), 218
held_time (gpiozero.Button property), 106
held_time (gpiozero.HoldMixin property), 202
hold_repeat (gpiozero.Button property), 106
hold_repeat (gpiozero.HoldMixin property), 202
hold_time (gpiozero.Button property), 106
hold_time (gpiozero.HoldMixin property), 202
HoldMixin (class in gpiozero), 202
host (gpiozero.PingServer property), 191

I
inactive_time (gpiozero.DigitalInputDevice prop-

erty), 119
inactive_time (gpiozero.EventsMixin property), 201
info (gpiozero.Pin property), 229
info (gpiozero.pins.pi.PiPin property), 234
input_with_pull() (gpiozero.Pin method), 228
InputDevice (class in gpiozero), 121
InputDeviceError, 241
inputs (gpiozero.Pibrella attribute), 176
interfaces (gpiozero.PinInfo attribute), 219
InternalDevice (class in gpiozero), 196

inverted() (in module gpiozero.tools), 204
is_active (gpiozero.AngularServo property), 140
is_active (gpiozero.Buzzer property), 132
is_active (gpiozero.CompositeDevice property), 188
is_active (gpiozero.CPUTemperature property), 193
is_active (gpiozero.Device property), 199
is_active (gpiozero.DiskUsage property), 195
is_active (gpiozero.InputDevice property), 122
is_active (gpiozero.LoadAverage property), 194
is_active (gpiozero.Motor property), 135
is_active (gpiozero.PhaseEnableMotor property),

136
is_active (gpiozero.PingServer property), 191
is_active (gpiozero.PWMOutputDevice property),

143
is_active (gpiozero.Servo property), 138
is_active (gpiozero.SmoothedInputDevice property),

121
is_active (gpiozero.TimeOfDay property), 190
is_active (gpiozero.TonalBuzzer property), 134
is_held (gpiozero.Button property), 106
is_held (gpiozero.HoldMixin property), 202
is_lit (gpiozero.LED property), 126
is_lit (gpiozero.LEDCollection property), 186
is_lit (gpiozero.PWMLED property), 128
is_lit (gpiozero.RGBLED property), 130
is_pressed (gpiozero.Button property), 106
is_pressed (gpiozero.ButtonBoard property), 166

J
JamHat (class in gpiozero), 174

L
LED (class in gpiozero), 125
LEDBarGraph (class in gpiozero), 160
LEDBoard (class in gpiozero), 157
LedBorg (class in gpiozero), 170
LEDCharDisplay (class in gpiozero), 162
LEDCharFont (class in gpiozero), 165
LEDCollection (class in gpiozero), 186
LEDMultiCharDisplay (class in gpiozero), 163
leds (gpiozero.LEDCollection property), 186
left() (gpiozero.Robot method), 177
left_motor (gpiozero.Robot attribute), 177
LGPIOFactory (class in gpiozero.pins.lgpio), 235
LGPIOPin (class in gpiozero.pins.lgpio), 236
light_detected (gpiozero.LightSensor property),

112
lights (gpiozero.Pibrella attribute), 176
lights (gpiozero.StatusBoard attribute), 182
lights (gpiozero.TrafficLightsBuzzer attribute), 168
LightSensor (class in gpiozero), 111
LineSensor (class in gpiozero), 108
lit_count (gpiozero.LEDBarGraph property), 161
load_average (gpiozero.LoadAverage property), 194
load_font_14seg() (in module gpiozero.fonts),

211
load_font_7seg() (in module gpiozero.fonts), 211

Index 261

gpiozero 2.0.1 Documentation, Release 2.0.1

load_segment_font() (in module gpiozero.fonts),
212

LoadAverage (class in gpiozero), 193
LocalPiFactory (class in gpiozero.pins.local), 234
LocalPiPin (class in gpiozero.pins.local), 235
lsb_first (gpiozero.SPI property), 232

M
max() (gpiozero.AngularServo method), 140
max() (gpiozero.Servo method), 138
max_angle (gpiozero.AngularServo property), 140
max_distance (gpiozero.DistanceSensor property),

114
max_pulse_width (gpiozero.Servo property), 138
max_steps (gpiozero.RotaryEncoder property), 116
max_tone (gpiozero.TonalBuzzer property), 134
max_voltage (gpiozero.AnalogInputDevice property),

154
MCP3001 (class in gpiozero), 148
MCP3002 (class in gpiozero), 148
MCP3004 (class in gpiozero), 149
MCP3008 (class in gpiozero), 149
MCP3201 (class in gpiozero), 149
MCP3202 (class in gpiozero), 150
MCP3204 (class in gpiozero), 150
MCP3208 (class in gpiozero), 150
MCP3301 (class in gpiozero), 151
MCP3302 (class in gpiozero), 151
MCP3304 (class in gpiozero), 152
mid() (gpiozero.AngularServo method), 140
mid() (gpiozero.Servo method), 138
mid_tone (gpiozero.TonalBuzzer property), 134
midi (gpiozero.tones.Tone property), 216
min() (gpiozero.AngularServo method), 140
min() (gpiozero.Servo method), 138
min_angle (gpiozero.AngularServo property), 140
min_pulse_width (gpiozero.Servo property), 138
min_tone (gpiozero.TonalBuzzer property), 134
MockChargingPin (class in gpiozero.pins.mock), 238
MockConnectedPin (class in gpiozero.pins.mock),

238
MockFactory (class in gpiozero.pins.mock), 237
MockPin (class in gpiozero.pins.mock), 238
MockPWMPin (class in gpiozero.pins.mock), 238
MockSPIDevice (class in gpiozero.pins.mock), 238
MockTriggerPin (class in gpiozero.pins.mock), 238
module

gpiozero, 3
gpiozero.boards, 157
gpiozero.devices, 197
gpiozero.exc, 239
gpiozero.fonts, 211
gpiozero.input_devices, 105
gpiozero.internal_devices, 189
gpiozero.output_devices, 125
gpiozero.pins, 221
gpiozero.pins.data, 217
gpiozero.pins.lgpio, 235

gpiozero.pins.local, 234
gpiozero.pins.mock, 237
gpiozero.pins.native, 237
gpiozero.pins.pi, 233
gpiozero.pins.pigpio, 236
gpiozero.pins.rpigpio, 235
gpiozero.spi_devices, 147
gpiozero.tones, 215
gpiozero.tools, 203

motion_detected (gpiozero.MotionSensor prop-
erty), 110

MotionSensor (class in gpiozero), 109
Motor (class in gpiozero), 134
multiplied() (in module gpiozero.tools), 207

N
name (gpiozero.HeaderInfo attribute), 218
name (gpiozero.PinInfo attribute), 219
namedtuple (gpiozero.CompositeDevice property),

188
names (gpiozero.PinInfo attribute), 219
Native2711Pin (class in gpiozero.pins.native), 237
Native2835Pin (class in gpiozero.pins.native), 237
NativeFactory (class in gpiozero.pins.native), 237
NativePin (class in gpiozero.pins.native), 237
negated() (in module gpiozero.tools), 204
nose (gpiozero.SnowPi attribute), 183
note (gpiozero.tones.Tone property), 216
number (gpiozero.PinInfo attribute), 219

O
octaves (gpiozero.TonalBuzzer property), 134
off() (gpiozero.Buzzer method), 132
off() (gpiozero.CompositeOutputDevice method), 186
off() (gpiozero.DigitalOutputDevice method), 142
off() (gpiozero.Energenie method), 180
off() (gpiozero.JamHat method), 175
off() (gpiozero.LED method), 126
off() (gpiozero.LEDBoard method), 158
off() (gpiozero.OutputDevice method), 144
off() (gpiozero.Pibrella method), 176
off() (gpiozero.PWMLED method), 127
off() (gpiozero.PWMOutputDevice method), 143
off() (gpiozero.RGBLED method), 130
on() (gpiozero.Buzzer method), 132
on() (gpiozero.CompositeOutputDevice method), 186
on() (gpiozero.DigitalOutputDevice method), 142
on() (gpiozero.Energenie method), 180
on() (gpiozero.JamHat method), 175
on() (gpiozero.LED method), 126
on() (gpiozero.LEDBoard method), 158
on() (gpiozero.OutputDevice method), 144
on() (gpiozero.Pibrella method), 176
on() (gpiozero.PWMLED method), 127
on() (gpiozero.PWMOutputDevice method), 143
on() (gpiozero.RGBLED method), 130
output_with_state() (gpiozero.Pin method), 228
OutputDevice (class in gpiozero), 144

262 Index

gpiozero 2.0.1 Documentation, Release 2.0.1

OutputDeviceBadValue, 242
OutputDeviceError, 242
outputs (gpiozero.Pibrella attribute), 176

P
partial (gpiozero.SmoothedInputDevice property),

121
PhaseEnableMotor (class in gpiozero), 136
PhaseEnableRobot (class in gpiozero), 178
pi_info() (in module gpiozero), 217
PiBoardInfo (class in gpiozero), 217
Pibrella (class in gpiozero), 175
PiFactory (class in gpiozero.pins.pi), 233
PIGPIO_ADDR, 48, 58, 224
PiGPIOFactory (class in gpiozero.pins.pigpio), 236
PiGPIOPin (class in gpiozero.pins.pigpio), 236
PiHutXmasTree (class in gpiozero), 169
PiLiter (class in gpiozero), 170
PiLiterBarGraph (class in gpiozero), 171
Pin (class in gpiozero), 227
pin (gpiozero.Button property), 106
pin (gpiozero.Buzzer property), 132
pin (gpiozero.GPIODevice property), 123
pin (gpiozero.LED property), 126
pin (gpiozero.LightSensor property), 112
pin (gpiozero.LineSensor property), 108
pin (gpiozero.MotionSensor property), 110
pin (gpiozero.PWMLED property), 128
pin() (gpiozero.Factory method), 226
pin() (gpiozero.pins.mock.MockFactory method), 237
pin() (gpiozero.pins.pi.PiFactory method), 233
pin_class (gpiozero.pins.mock.MockFactory at-

tribute), 237
pin_factory (gpiozero.Device attribute), 199
PinEdgeDetectUnsupported, 242
PinError, 242
PinFactoryFallback, 244
PinFixedPull, 242
PingServer (class in gpiozero), 191
PinInfo (class in gpiozero), 219
PinInvalidBounce, 242
PinInvalidEdges, 242
PinInvalidFunction, 242
PinInvalidPin, 243
PinInvalidPull, 242
PinInvalidState, 242
PinMultiplePins, 243
PinNonPhysical, 244
PinNoPins, 243
pinout command line option

--color, 71
--help, 71
--monochrome, 71
--revision, 71
--xyz, 71
-c, 71
-h, 71
-m, 71

-r, 71
-x, 71

PinPWMError, 243
PinPWMFixedValue, 243
PinPWMUnsupported, 243
pins (gpiozero.HeaderInfo attribute), 218
PinSetInput, 242
PinSPIUnsupported, 243
pintest command line option

--help, 76
--pins, 76
--revision, 76
--skip, 76
--version, 76
--yes, 76
-h, 76
-p, 76
-r, 76
-s, 76
-y, 76

PinUnknownPi, 243
PinUnsupported, 242
PinWarning, 244
PiPin (class in gpiozero.pins.pi), 234
PiStop (class in gpiozero), 172
PiTraffic (class in gpiozero), 171
play() (gpiozero.TonalBuzzer method), 133
plex_delay (gpiozero.LEDMultiCharDisplay prop-

erty), 164
PolledInternalDevice (class in gpiozero), 196
PololuDRV8835Robot (class in gpiozero), 179
post_delayed() (in module gpiozero.tools), 204
post_periodic_filtered() (in module gpi-

ozero.tools), 204
pprint() (gpiozero.HeaderInfo method), 218
pre_delayed() (in module gpiozero.tools), 205
pre_periodic_filtered() (in module gpi-

ozero.tools), 205
pressed_time (gpiozero.ButtonBoard property), 166
pull (gpiozero.Pin property), 229
pull (gpiozero.PinInfo attribute), 219
pull_up (gpiozero.Button property), 106
pull_up (gpiozero.InputDevice property), 122
pull_up (gpiozero.PinInfo attribute), 219
pulse() (gpiozero.LEDBoard method), 159
pulse() (gpiozero.PWMLED method), 127
pulse() (gpiozero.PWMOutputDevice method), 143
pulse() (gpiozero.RGBLED method), 130
pulse_width (gpiozero.Servo property), 138
PumpkinPi (class in gpiozero), 184
PWMLED (class in gpiozero), 127
PWMOutputDevice (class in gpiozero), 142

Q
quantized() (in module gpiozero.tools), 205
queue_len (gpiozero.SmoothedInputDevice property),

121
queued() (in module gpiozero.tools), 205

Index 263

gpiozero 2.0.1 Documentation, Release 2.0.1

R
ramping_values() (in module gpiozero.tools), 209
random_values() (in module gpiozero.tools), 209
rate (gpiozero.SPI property), 232
raw_value (gpiozero.AnalogInputDevice property),

154
read() (gpiozero.SPI method), 230
red (gpiozero.RGBLED property), 130
red (gpiozero.StatusBoard attribute), 182
red (gpiozero.StatusZero attribute), 181
red (gpiozero.TrafficLights attribute), 168
release_all() (gpiozero.Factory method), 226
release_pins() (gpiozero.Factory method), 226
reserve_pins() (gpiozero.Factory method), 226
reset() (gpiozero.pins.mock.MockFactory method),

237
reverse() (gpiozero.Motor method), 135
reverse() (gpiozero.PhaseEnableMotor method), 136
reverse() (gpiozero.Robot method), 177
RGBLED (class in gpiozero), 128
right() (gpiozero.Robot method), 177
right_motor (gpiozero.Robot attribute), 177
Robot (class in gpiozero), 176
RotaryEncoder (class in gpiozero), 115
row (gpiozero.PinInfo attribute), 219
rows (gpiozero.HeaderInfo attribute), 218
RPiGPIOFactory (class in gpiozero.pins.rpigpio), 235
RPiGPIOPin (class in gpiozero.pins.rpigpio), 235
RyanteckRobot (class in gpiozero), 178

S
scaled() (in module gpiozero.tools), 206
select_high (gpiozero.SPI property), 232
Servo (class in gpiozero), 137
SharedMixin (class in gpiozero), 200
sides (gpiozero.PumpkinPi attribute), 184
sin_values() (in module gpiozero.tools), 209
smoothed() (in module gpiozero.tools), 206
SmoothedInputDevice (class in gpiozero), 120
SnowPi (class in gpiozero), 183
socket (gpiozero.Energenie property), 180
source (gpiozero.LEDBarGraph property), 161
source (gpiozero.SourceMixin property), 200
source_delay (gpiozero.SourceMixin property), 200
SourceMixin (class in gpiozero), 200
SPI (class in gpiozero), 230
spi() (gpiozero.Factory method), 227
spi() (gpiozero.pins.pi.PiFactory method), 233
SPIBadArgs, 240
SPIBadChannel, 241
SPIDevice (class in gpiozero), 154
SPIError, 240
SPIFixedBitOrder, 241
SPIFixedClockMode, 241
SPIFixedSelect, 241
SPIFixedWordSize, 241
SPIInvalidClockMode, 241
SPIInvalidWordSize, 241

SPISoftwareFallback, 244
SPIWarning, 244
star (gpiozero.PiHutXmasTree attribute), 169
start_time (gpiozero.TimeOfDay property), 190
state (gpiozero.Pin property), 229
StatusBoard (class in gpiozero), 182
StatusZero (class in gpiozero), 181
steps (gpiozero.RotaryEncoder property), 116
stop() (gpiozero.Motor method), 135
stop() (gpiozero.PhaseEnableMotor method), 136
stop() (gpiozero.Robot method), 177
stop() (gpiozero.TonalBuzzer method), 133
summed() (in module gpiozero.tools), 208

T
temperature (gpiozero.CPUTemperature property),

193
threshold (gpiozero.SmoothedInputDevice property),

121
threshold_distance (gpiozero.DistanceSensor

property), 114
threshold_steps (gpiozero.RotaryEncoder prop-

erty), 117
ThresholdOutOfRange, 244
ticks() (gpiozero.Factory method), 227
ticks() (gpiozero.pins.local.LocalPiFactory static

method), 234
ticks() (gpiozero.pins.mock.MockFactory static

method), 237
ticks_diff() (gpiozero.Factory method), 227
ticks_diff() (gpiozero.pins.local.LocalPiFactory

static method), 235
ticks_diff() (gpiozero.pins.mock.MockFactory

static method), 238
TimeOfDay (class in gpiozero), 190
toggle() (gpiozero.Buzzer method), 132
toggle() (gpiozero.CompositeOutputDevice method),

186
toggle() (gpiozero.LED method), 126
toggle() (gpiozero.LEDBoard method), 159
toggle() (gpiozero.OutputDevice method), 144
toggle() (gpiozero.PWMLED method), 128
toggle() (gpiozero.PWMOutputDevice method), 143
toggle() (gpiozero.RGBLED method), 130
TonalBuzzer (class in gpiozero), 133
Tone (class in gpiozero.tones), 215
tone (gpiozero.TonalBuzzer property), 134
TrafficHat (class in gpiozero), 173
TrafficLights (class in gpiozero), 167
TrafficLightsBuzzer (class in gpiozero), 168
TrafficpHat (class in gpiozero), 174
transfer() (gpiozero.SPI method), 230
trigger (gpiozero.DistanceSensor property), 114

U
up() (gpiozero.tones.Tone method), 216
usage (gpiozero.DiskUsage property), 195
utc (gpiozero.TimeOfDay property), 190

264 Index

gpiozero 2.0.1 Documentation, Release 2.0.1

V
value (gpiozero.AnalogInputDevice property), 154
value (gpiozero.AngularServo property), 140
value (gpiozero.Button property), 106
value (gpiozero.ButtonBoard property), 166
value (gpiozero.Buzzer property), 132
value (gpiozero.CompositeDevice property), 188
value (gpiozero.CompositeOutputDevice property), 186
value (gpiozero.CPUTemperature property), 193
value (gpiozero.Device property), 199
value (gpiozero.DigitalInputDevice property), 119
value (gpiozero.DigitalOutputDevice property), 142
value (gpiozero.DiskUsage property), 195
value (gpiozero.DistanceSensor property), 115
value (gpiozero.Energenie property), 180
value (gpiozero.GPIODevice property), 123
value (gpiozero.InputDevice property), 122
value (gpiozero.LED property), 126
value (gpiozero.LEDBarGraph property), 161
value (gpiozero.LEDCharDisplay property), 163
value (gpiozero.LEDMultiCharDisplay property), 164
value (gpiozero.LightSensor property), 112
value (gpiozero.LineSensor property), 109
value (gpiozero.LoadAverage property), 194
value (gpiozero.MCP3001 property), 148
value (gpiozero.MCP3002 property), 148
value (gpiozero.MCP3004 property), 149
value (gpiozero.MCP3008 property), 149
value (gpiozero.MCP3201 property), 149
value (gpiozero.MCP3202 property), 150
value (gpiozero.MCP3204 property), 150
value (gpiozero.MCP3208 property), 151
value (gpiozero.MCP3301 property), 151
value (gpiozero.MCP3302 property), 151
value (gpiozero.MCP3304 property), 152
value (gpiozero.MotionSensor property), 110
value (gpiozero.Motor property), 135
value (gpiozero.OutputDevice property), 145
value (gpiozero.PhaseEnableMotor property), 136
value (gpiozero.PingServer property), 191
value (gpiozero.PWMLED property), 128
value (gpiozero.PWMOutputDevice property), 143
value (gpiozero.RGBLED property), 130
value (gpiozero.Robot property), 178
value (gpiozero.RotaryEncoder property), 117
value (gpiozero.Servo property), 138
value (gpiozero.SmoothedInputDevice property), 121
value (gpiozero.TimeOfDay property), 190
value (gpiozero.TonalBuzzer property), 134
values (gpiozero.LEDBarGraph property), 161
values (gpiozero.ValuesMixin property), 200
ValuesMixin (class in gpiozero), 200
voltage (gpiozero.AnalogInputDevice property), 154

W
wait_for_active() (gpiozero.DigitalInputDevice

method), 119

wait_for_active() (gpiozero.EventsMixin
method), 201

wait_for_dark() (gpiozero.LightSensor method),
112

wait_for_in_range() (gpiozero.DistanceSensor
method), 114

wait_for_inactive() (gpi-
ozero.DigitalInputDevice method), 119

wait_for_inactive() (gpiozero.EventsMixin
method), 201

wait_for_light() (gpiozero.LightSensor method),
112

wait_for_line() (gpiozero.LineSensor method),
108

wait_for_motion() (gpiozero.MotionSensor
method), 110

wait_for_no_line() (gpiozero.LineSensor
method), 108

wait_for_no_motion() (gpiozero.MotionSensor
method), 110

wait_for_out_of_range() (gpi-
ozero.DistanceSensor method), 114

wait_for_press() (gpiozero.Button method), 106
wait_for_press() (gpiozero.ButtonBoard method),

166
wait_for_release() (gpiozero.Button method),

106
wait_for_release() (gpiozero.ButtonBoard

method), 166
wait_for_rotate() (gpiozero.RotaryEncoder

method), 116
wait_for_rotate_clockwise() (gpi-

ozero.RotaryEncoder method), 116
wait_for_rotate_counter_clockwise()

(gpiozero.RotaryEncoder method), 116
when_activated (gpiozero.CPUTemperature at-

tribute), 193
when_activated (gpiozero.DigitalInputDevice

attribute), 119
when_activated (gpiozero.DiskUsage attribute), 195
when_activated (gpiozero.EventsMixin attribute),

201
when_activated (gpiozero.LoadAverage attribute),

194
when_activated (gpiozero.PingServer attribute),

192
when_activated (gpiozero.TimeOfDay attribute),

190
when_changed (gpiozero.Pin property), 229
when_dark (gpiozero.LightSensor attribute), 112
when_deactivated (gpiozero.CPUTemperature at-

tribute), 193
when_deactivated (gpiozero.DigitalInputDevice at-

tribute), 119
when_deactivated (gpiozero.DiskUsage attribute),

195
when_deactivated (gpiozero.EventsMixin at-

tribute), 201

Index 265

gpiozero 2.0.1 Documentation, Release 2.0.1

when_deactivated (gpiozero.LoadAverage at-
tribute), 194

when_deactivated (gpiozero.PingServer attribute),
192

when_deactivated (gpiozero.TimeOfDay attribute),
191

when_held (gpiozero.Button attribute), 106
when_held (gpiozero.HoldMixin attribute), 202
when_in_range (gpiozero.DistanceSensor attribute),

115
when_light (gpiozero.LightSensor attribute), 112
when_line (gpiozero.LineSensor attribute), 109
when_motion (gpiozero.MotionSensor attribute), 110
when_no_line (gpiozero.LineSensor attribute), 109
when_no_motion (gpiozero.MotionSensor attribute),

111
when_out_of_range (gpiozero.DistanceSensor at-

tribute), 115
when_pressed (gpiozero.Button attribute), 107
when_pressed (gpiozero.ButtonBoard attribute), 166
when_released (gpiozero.Button attribute), 107
when_released (gpiozero.ButtonBoard attribute),

167
when_rotated (gpiozero.RotaryEncoder attribute),

117
when_rotated_clockwise (gpi-

ozero.RotaryEncoder attribute), 117
when_rotated_counter_clockwise (gpi-

ozero.RotaryEncoder attribute), 117
wrap (gpiozero.RotaryEncoder property), 117
write() (gpiozero.SPI method), 230

Y
yellow (gpiozero.TrafficLights attribute), 168

Z
zip_values() (in module gpiozero.tools), 208
ZombieThread, 240

266 Index

	Installing GPIO Zero
	Raspberry Pi
	apt
	pip

	PC/Mac
	Documentation

	Basic Recipes
	Importing GPIO Zero
	Pin Numbering
	LED
	LED with variable brightness
	Button
	Button controlled LED
	Button controlled camera
	Shutdown button
	LEDBoard
	LEDBarGraph
	LEDCharDisplay
	Traffic Lights
	Push button stop motion
	Reaction Game
	GPIO Music Box
	All on when pressed
	Full color LED
	Motion sensor
	Light sensor
	Distance sensor
	Rotary encoder
	Servo
	Motors
	Robot
	Button controlled robot
	Keyboard controlled robot
	Motion sensor robot
	Potentiometer
	Measure temperature with an ADC
	Full color LED controlled by 3 potentiometers
	Timed heat lamp
	Internet connection status indicator
	CPU Temperature Bar Graph
	More recipes

	Advanced Recipes
	LEDBoard
	Multi-character 7-segment display
	Who’s home indicator
	Travis build LED indicator
	Button controlled robot
	Robot controlled by 2 potentiometers
	BlueDot LED
	BlueDot robot
	Controlling the Pi’s own LEDs

	Configuring Remote GPIO
	Preparing the Raspberry Pi
	Enable remote connections
	Command-line: systemctl
	Command-line: pigpiod

	Preparing the control computer
	Raspberry Pi
	Linux
	Mac OS
	Windows

	Environment variables
	Pin factories
	Remote GPIO usage

	Remote GPIO Recipes
	LED + Button
	LED + 2 Buttons
	Multi-room motion alert
	Multi-room doorbell
	Remote button robot
	Light sensor + Sense HAT

	Pi Zero USB OTG
	GPIO expander method - no SD card required
	Raspberry Pi Desktop x86 setup
	Raspberry Pi setup (using Raspberry Pi OS)
	Ubuntu setup
	Access the GPIOs

	Legacy method - SD card required

	Source/Values
	Processing values
	Source Tools
	Internal devices
	Composite devices

	Command-line Tools
	pinout
	Synopsis
	Description
	Options
	Examples

	pintest
	Synopsis
	Description
	Options
	Examples

	Environment Variables

	Frequently Asked Questions
	How do I keep my script running?
	What’s the difference between when_pressed, is_pressed and wait_for_press?
	My event handler isn’t being called
	Why do I get PinFactoryFallback warnings when I import gpiozero?
	How can I tell what version of gpiozero I have installed?
	Why do I get “command not found” when running pinout?
	The pinout command line tool incorrectly identifies my Raspberry Pi model
	What’s the gpiozero equivalent of GPIO.cleanup()?
	How do I use button.when_pressed and button.when_held together?
	Why do I get “ImportError: cannot import name” when trying to import from gpiozero?
	Why do I get an AttributeError trying to set attributes on a device object?
	Why is it called GPIO Zero? Does it only work on Pi Zero?

	Backwards Compatibility
	Finding and fixing deprecated usage
	Python 2.x support dropped
	RPIO pin factory removed
	Deprecated pin-factory aliases removed
	Keyword arguments
	Robots take Motors, and PhaseEnableRobot is deprecated
	PiBoardInfo, HeaderInfo, PinInfo

	Migrating from RPi.GPIO
	Output devices
	Input devices
	Composite devices, boards and accessories
	PWM (Pulse-width modulation)
	Cleanup
	Pi Information
	More
	FAQs

	Contributing
	Suggestions
	Bugs
	Documentation
	Commit messages and pull requests
	Backwards compatibility
	Python 2/3

	Development
	Development installation
	Building the docs
	Test suite
	Mock pins

	API - Input Devices
	Regular Classes
	Button
	LineSensor (TRCT5000)
	MotionSensor (D-SUN PIR)
	LightSensor (LDR)
	DistanceSensor (HC-SR04)
	RotaryEncoder

	Base Classes
	DigitalInputDevice
	SmoothedInputDevice
	InputDevice
	GPIODevice

	API - Output Devices
	Regular Classes
	LED
	PWMLED
	RGBLED
	Buzzer
	TonalBuzzer
	Motor
	PhaseEnableMotor
	Servo
	AngularServo

	Base Classes
	DigitalOutputDevice
	PWMOutputDevice
	OutputDevice
	GPIODevice

	API - SPI Devices
	SPI keyword args
	Analog to Digital Converters (ADC)
	MCP3001
	MCP3002
	MCP3004
	MCP3008
	MCP3201
	MCP3202
	MCP3204
	MCP3208
	MCP3301
	MCP3302
	MCP3304

	Base Classes
	AnalogInputDevice
	SPIDevice

	API - Boards and Accessories
	Regular Classes
	LEDBoard
	LEDBarGraph
	LEDCharDisplay
	LEDMultiCharDisplay
	LEDCharFont
	ButtonBoard
	TrafficLights
	TrafficLightsBuzzer
	PiHutXmasTree
	LedBorg
	PiLiter
	PiLiterBarGraph
	PiTraffic
	PiStop
	FishDish
	TrafficHat
	TrafficpHat
	JamHat
	Pibrella
	Robot
	PhaseEnableRobot
	RyanteckRobot
	CamJamKitRobot
	PololuDRV8835Robot
	Energenie
	StatusZero
	StatusBoard
	SnowPi
	PumpkinPi

	Base Classes
	LEDCollection
	CompositeOutputDevice
	CompositeDevice

	API - Internal Devices
	Regular Classes
	TimeOfDay
	PingServer
	CPUTemperature
	LoadAverage
	DiskUsage

	Base Classes
	PolledInternalDevice
	InternalDevice

	API - Generic Classes
	Device
	ValuesMixin
	SourceMixin
	SharedMixin
	EventsMixin
	HoldMixin

	API - Device Source Tools
	Single source conversions
	Combining sources
	Artificial sources

	API - Fonts
	Font Parsing

	API - Tones
	Tone

	API - Pi Information
	pi_info
	PiBoardInfo
	HeaderInfo
	PinInfo

	API - Pins
	Changing the pin factory
	Mock pins
	Base classes
	RPi.GPIO
	lgpio
	PiGPIO
	Native
	Mock

	API - Exceptions
	Errors
	Warnings

	Changelog
	Release 2.0.1 (2024-02-15)
	Release 2.0 (2023-09-12)
	Release 1.6.2 (2021-03-18)
	Release 1.6.1 (2021-03-17)
	Release 1.6.0 (2021-03-14)
	Release 1.5.1 (2019-06-24)
	Release 1.5.0 (2019-02-12)
	Release 1.4.1 (2018-02-20)
	Release 1.4.0 (2017-07-26)
	Release 1.3.2 (2017-03-03)
	Release 1.3.1 (2016-08-31 … later)
	Release 1.3.0 (2016-08-31)
	Release 1.2.0 (2016-04-10)
	Release 1.1.0 (2016-02-08)
	Release 1.0.0 (2015-11-16)
	Release 0.9.0 (2015-10-25)
	Release 0.8.0 (2015-10-16)
	Release 0.7.0 (2015-10-09)
	Release 0.6.0 (2015-09-28)
	Release 0.5.0 (2015-09-24)
	Release 0.4.0 (2015-09-23)
	Release 0.3.0 (2015-09-22)
	Release 0.2.0 (2015-09-21)

	License
	Python Module Index
	Index

