

 Navigation

 	
 index

 	
 next |

 	Gpiozero 1.1.0 documentation

gpiozero

[image: Latest Version]
 [https://badge.fury.io/py/gpiozero]A simple interface to everyday GPIO components used with Raspberry Pi.

Created by Ben Nuttall [https://github.com/bennuttall] of the Raspberry Pi Foundation [https://www.raspberrypi.org/], Dave Jones [https://github.com/waveform80], and
other contributors.

About

Component interfaces are provided to allow a frictionless way to get started
with physical computing:

from gpiozero import LED
from time import sleep

led = LED(17)

while True:
 led.on()
 sleep(1)
 led.off()
 sleep(1)

With very little code, you can quickly get going connecting your components
together:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(3)

button.when_pressed = led.on
button.when_released = led.off

pause()

The library includes interfaces to many simple everyday components, as well as
some more complex things like sensors, analogue-to-digital converters, full
colour LEDs, robotics kits and more.

Install

First, update your repositories list:

sudo apt-get update

Then install the package of your choice. Both Python 3 and Python 2 are
supported. Python 3 is recommended:

sudo apt-get install python3-gpiozero

or:

sudo apt-get install python-gpiozero

Documentation

Comprehensive documentation is available at https://gpiozero.readthedocs.org/.

Development

This project is being developed on GitHub [https://github.com/RPi-Distro/python-gpiozero]. Join in:

	Provide suggestions, report bugs and ask questions as issues [https://github.com/RPi-Distro/python-gpiozero/issues]

	Provide examples we can use as recipes [http://gpiozero.readthedocs.org/en/latest/recipes.html]

	Contribute to the code

Alternatively, email suggestions and feedback to mailto:ben@raspberrypi.org or
add to the Google Doc [https://goo.gl/8zJLif].

Contributors

	Ben Nuttall [https://github.com/bennuttall] (project maintainer)

	Dave Jones [https://github.com/waveform80]

	Martin O’Hanlon [https://github.com/martinohanlon]

Table of Contents

	Recipes
	Pin Numbering

	LED

	Button

	Button controlled LED

	Traffic Lights

	Push button stop motion

	Reaction Game

	GPIO Music Box

	All on when pressed

	RGB LED

	Motion sensor

	Light sensor

	Motors

	Robot

	Button controlled robot

	Keyboard controlled robot

	Motion sensor robot

	Potentiometer

	Measure temperature with an ADC

	Full color LED controlled by 3 potentiometers

	Notes
	Keep your script running

	Importing from GPIO Zero

	Input Devices
	Button

	Motion Sensor (PIR)

	Light Sensor (LDR)

	Analog to Digital Converters (ADC)

	Output Devices
	LED

	PWMLED

	RGBLED

	Buzzer

	Motor

	Boards and Accessories
	LED Board

	LED Bar Graph

	Traffic Lights

	PiLITEr

	PiLITEr Bar Graph

	PI-TRAFFIC

	TrafficLightsBuzzer

	Fish Dish

	Traffic HAT

	Robot

	Ryanteck MCB Robot

	CamJam #3 Kit Robot

	Generic Devices
	Base Classes

	Input Devices

	Output Devices

	Mixin Classes

	Pins
	Abstract Pin

	RPiGPIOPin

	RPIOPin

	NativePin

	Changelog
	Release 1.1.0 (2016-02-08)

	Release 1.0.0 (2015-11-16)

	Release 0.9.0 (2015-10-25)

	Release 0.8.0 (2015-10-16)

	Release 0.7.0 (2015-10-09)

	Release 0.6.0 (2015-09-28)

	Release 0.5.0 (2015-09-24)

	Release 0.4.0 (2015-09-23)

	Release 0.3.0 (2015-09-22)

	Release 0.2.0 (2015-09-21)

	License

 Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gpiozero 1.1.0 documentation

Recipes

The following recipes demonstrate some of the capabilities of the gpiozero
library. Please note that all recipes are written assuming Python 3. Recipes
may work under Python 2, but no guarantees!

Pin Numbering

This library uses Broadcom (BCM) pin numbering for the GPIO pins, as opposed
to physical (BOARD) numbering. Unlike in the RPi.GPIO [https://pypi.python.org/pypi/RPi.GPIO] library, this is not
configurable.

Any pin marked GPIO in the diagram below can be used for generic
components:

LED

[image: _images/led.png]
Turn an LED on and off repeatedly:

from gpiozero import LED
from time import sleep

red = LED(17)

while True:
 red.on()
 sleep(1)
 red.off()
 sleep(1)

Alternatively:

from gpiozero import LED
from signal import pause

red = LED(17)

red.blink()

pause()

Note

Reaching the end of a Python script will terminate the process and GPIOs
may be reset. Keep your script alive with signal.pause() [http://docs.python.org/3.4/library/signal.html#signal.pause]. See
Keep your script running for more information.

Button

[image: _images/button.png]
Check if a Button is pressed:

from gpiozero import Button

button = Button(2)

while True:
 if button.is_pressed:
 print("Button is pressed")
 else:
 print("Button is not pressed")

Wait for a button to be pressed before continuing:

from gpiozero import Button

button = Button(2)

button.wait_for_press()
print("Button was pressed")

Run a function every time the button is pressed:

from gpiozero import Button
from signal import pause

def say_hello():
 print("Hello!")

button = Button(2)

button.when_pressed = say_hello

pause()

Button controlled LED

Turn on an LED when a Button is pressed:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

button.when_pressed = led.on
button.when_released = led.off

pause()

Alternatively:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

led.source = button.values

pause()

Traffic Lights

A full traffic lights system.

Using a TrafficLights kit like Pi-Stop:

from gpiozero import TrafficLights
from time import sleep

lights = TrafficLights(2, 3, 4)

lights.green.on()

while True:
 sleep(10)
 lights.green.off()
 lights.amber.on()
 sleep(1)
 lights.amber.off()
 lights.red.on()
 sleep(10)
 lights.amber.on()
 sleep(1)
 lights.green.on()
 lights.amber.off()
 lights.red.off()

Alternatively:

from gpiozero import TrafficLights
from time import sleep
from signal import pause

def traffic_light_sequence():
 while True:
 yield (0, 0, 1) # green
 sleep(10)
 yield (0, 1, 0) # amber
 sleep(1)
 yield (1, 0, 0) # red
 sleep(10)
 yield (1, 1, 0) # red+amber
 sleep(1)

lights.source = traffic_light_sequence()

pause()

Using LED components:

from gpiozero import LED
from time import sleep

red = LED(2)
amber = LED(3)
green = LED(4)

green.on()
amber.off()
red.off()

while True:
 sleep(10)
 green.off()
 amber.on()
 sleep(1)
 amber.off()
 red.on()
 sleep(10)
 amber.on()
 sleep(1)
 green.on()
 amber.off()
 red.off()

Push button stop motion

Capture a picture with the camera module every time a button is pressed:

from gpiozero import Button
from picamera import PiCamera

button = Button(2)

with PiCamera() as camera:
 camera.start_preview()
 frame = 1
 while True:
 button.wait_for_press()
 camera.capture('/home/pi/frame%03d.jpg' % frame)
 frame += 1

See Push Button Stop Motion [https://www.raspberrypi.org/learning/quick-reaction-game/] for a full resource.

Reaction Game

When you see the light come on, the first person to press their button wins!

from gpiozero import Button, LED
from time import sleep
import random

led = LED(17)

player_1 = Button(2)
player_2 = Button(3)

time = random.uniform(5, 10)
sleep(time)
led.on()

while True:
 if player_1.is_pressed:
 print("Player 1 wins!")
 break
 if player_2.is_pressed:
 print("Player 2 wins!")
 break

led.off()

See Quick Reaction Game [https://www.raspberrypi.org/learning/quick-reaction-game/] for a full resource.

GPIO Music Box

Each button plays a different sound!

from gpiozero import Button
import pygame.mixer
from pygame.mixer import Sound
from signal import pause

pygame.mixer.init()

sound_pins = {
 2: Sound("samples/drum_tom_mid_hard.wav"),
 3: Sound("samples/drum_cymbal_open.wav"),
}

buttons = [Button(pin) for pin in sound_pins]
for button in buttons:
 sound = sound_pins[button.pin.number]
 button.when_pressed = sound.play

pause()

See GPIO Music Box [https://www.raspberrypi.org/learning/gpio-music-box/] for a full resource.

All on when pressed

While the button is pressed down, the buzzer and all the lights come on.

FishDish:

from gpiozero import FishDish
from signal import pause

fish = FishDish()

fish.button.when_pressed = fish.on
fish.button.when_released = fish.off

pause()

Ryanteck TrafficHat:

from gpiozero import TrafficHat
from signal import pause

th = TrafficHat()

th.button.when_pressed = th.on
th.button.when_released = th.off

pause()

Using LED, Buzzer, and Button components:

from gpiozero import LED, Buzzer, Button
from signal import pause

button = Button(2)
buzzer = Buzzer(3)
red = LED(4)
amber = LED(5)
green = LED(6)

things = [red, amber, green, buzzer]

def things_on():
 for thing in things:
 thing.on()

def things_off():
 for thing in things:
 thing.off()

button.when_pressed = things_on
button.when_released = things_off

pause()

RGB LED

Making colours with an RGBLED:

from gpiozero import RGBLED
from time import sleep

led = RGBLED(red=9, green=10, blue=11)

led.red = 1 # full red
sleep(1)
led.red = 0.5 # half red
sleep(1)

led.color = (0, 1, 0) # full green
sleep(1)
led.color = (1, 0, 1) # magenta
sleep(1)
led.color = (1, 1, 0) # yellow
sleep(1)
led.color = (0, 1, 1) # cyan
sleep(1)
led.color = (1, 1, 1) # white
sleep(1)

led.color = (0, 0, 0) # off
sleep(1)

slowly increase intensity of blue
for n in range(100):
 led.blue = n/100
 sleep(0.1)

Motion sensor

[image: _images/motion-sensor.png]
Light an LED when a MotionSensor detects motion:

from gpiozero import MotionSensor, LED
from signal import pause

pir = MotionSensor(4)
led = LED(16)

pir.when_motion = led.on
pir.when_no_motion = led.off

pause()

Light sensor

Have a LightSensor detect light and dark:

from gpiozero import LightSensor

sensor = LightSensor(18)

while True:
 sensor.wait_for_light()
 print("It's light! :)")
 sensor.wait_for_dark()
 print("It's dark :(")

Run a function when the light changes:

from gpiozero import LightSensor, LED
from signal import pause

sensor = LightSensor(18)
led = LED(16)

sensor.when_dark = led.on
sensor.when_light = led.off

pause()

Or make a PWMLED change brightness according to the detected light
level:

from gpiozero import LightSensor, LED
from signal import pause

sensor = LightSensor(18)
led = PWMLED(16)

led.source = sensor.values

pause()

Motors

Spin a Motor around forwards and backwards:

from gpiozero import Motor
from time import sleep

motor = Motor(forward=4, back=14)

while True:
 motor.forward()
 sleep(5)
 motor.backward()
 sleep(5)

Robot

Make a Robot drive around in (roughly) a square:

from gpiozero import Robot
from time import sleep

robot = Robot(left=(4, 14), right=(17, 18))

for i in range(4):
 robot.forward()
 sleep(10)
 robot.right()
 sleep(1)

Button controlled robot

Use four GPIO buttons as forward/back/left/right controls for a robot:

from gpiozero import RyanteckRobot, Button
from signal import pause

robot = RyanteckRobot()

left = Button(26)
right = Button(16)
fw = Button(21)
bw = Button(20)

fw.when_pressed = robot.forward
fw.when_released = robot.stop

left.when_pressed = robot.left
left.when_released = robot.stop

right.when_pressed = robot.right
right.when_released = robot.stop

bw.when_pressed = robot.backward
bw.when_released = robot.stop

pause()

Keyboard controlled robot

Use up/down/left/right keys to control a robot:

from gpiozero import RyanteckRobot
from evdev import InputDevice, list_devices, ecodes

robot = RyanteckRobot()

devices = [InputDevice(device) for device in list_devices()]
keyboard = devices[0] # this may vary

keypress_actions = {
 ecodes.KEY_UP: robot.forward,
 ecodes.KEY_DOWN: robot.backward,
 ecodes.KEY_LEFT: robot.left,
 ecodes.KEY_RIGHT: robot.right,
}

for event in keyboard.read_loop():
 if event.type == ecodes.EV_KEY:
 if event.value == 1: # key down
 keypress_actions[event.code]()
 if event.value == 0: # key up
 robot.stop()

Motion sensor robot

Make a robot drive forward when it detects motion:

from gpiozero import Robot, MotionSensor
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))
pir = MotionSensor(5)

pir.when_motion = robot.forward
pir.when_no_motion = robot.stop

pause()

Alternatively:

from gpiozero import Robot, MotionSensor
from signal import pause

robot = Robot(left=(4, 14), right=(17, 18))
pir = MotionSensor(5)

robot.source = zip(pir.values, pir.values)

pause()

Potentiometer

Continually print the value of a potentiometer (values between 0 and 1)
connected to a MCP3008 analog to digital converter:

from gpiozero import MCP3008

while True:
 with MCP3008(channel=0) as pot:
 print(pot.value)

Measure temperature with an ADC

Wire a TMP36 temperature sensor to the first channel of an MCP3008
analog to digital converter:

from gpiozero import MCP3008
from time import sleep

def convert_temp(gen):
 for value in gen:
 yield (value * 3.3 - 0.5) * 100

adc = MCP3008(channel=0)

for temp in convert_temp(adc.values):
 print('The temperature is', temp, 'C')
 sleep(1)

Full color LED controlled by 3 potentiometers

Wire up three potentiometers (for red, green and blue) and use each of their
values to make up the colour of the LED:

from gpiozero import RGBLED, MCP3008

led = RGBLED(red=2, green=3, blue=4)
red_pot = MCP3008(channel=0)
green_pot = MCP3008(channel=1)
blue_pot = MCP3008(channel=2)

while True:
 led.red = red_pot.value
 led.green = green_pot.value
 led.blue = blue_pot.value

Alternatively, the following example is identical, but uses the
source property rather than a while [http://docs.python.org/3.4/reference/compound_stmts.html#while] loop:

from gpiozero import RGBLED, MCP3008
from signal import pause

led = RGBLED(2, 3, 4)
red_pot = MCP3008(0)
green_pot = MCP3008(1)
blue_pot = MCP3008(2)

led.source = zip(red_pot.values, green_pot.values, blue_pot.values)

pause()

Please note the example above requires Python 3. In Python 2, zip() [http://docs.python.org/3.4/library/functions.html#zip]
doesn’t support lazy evaluation so the script will simply hang.

 Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gpiozero 1.1.0 documentation

Notes

Keep your script running

The following script looks like it should turn an LED on:

from gpiozero import LED

led = LED(17)
led.on()

And it does, if you’re using the Python (or IPython or IDLE) shell. However,
if you saved this script as a Python file and ran it, it would flash on
briefly, then the script would end and it would turn off.

The following file includes an intentional pause() [http://docs.python.org/3.4/library/signal.html#signal.pause] to keep the
script alive:

from gpiozero import LED
from signal import pause

led = LED(17)
led.on()
pause()

Now the script will stay running, leaving the LED on, until it is terminated
manually (e.g. by pressing Ctrl+C). Similarly, when setting up callbacks on
button presses or other input devices, the script needs to be running for the
events to be detected:

from gpiozero import Button
from signal import pause

def hello():
 print("Hello")

button = Button(2)
button.when_pressed = hello
pause()

Importing from GPIO Zero

In Python, libraries and functions used in a script must be imported by name
at the top of the file, with the exception of the functions built into Python
by default.

For example, to use the Button interface from GPIO Zero, it
should be explicitly imported:

from gpiozero import Button

Now Button is available directly in your script:

button = Button(2)

Alternatively, the whole GPIO Zero library can be imported:

import gpiozero

In this case, all references to items within GPIO Zero must be prefixed:

button = gpiozero.Button(2)

 Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gpiozero 1.1.0 documentation

Input Devices

These input device component interfaces have been provided for simple use of
everyday components. Components must be wired up correctly before use in code.

Note

All GPIO pin numbers use Broadcom (BCM) numbering. See the Recipes
page for more information.

Button

	
class gpiozero.Button(pin, pull_up=True, bounce_time=None)[source]

	Extends DigitalInputDevice and represents a simple push button
or switch.

Connect one side of the button to a ground pin, and the other to any GPIO
pin. Alternatively, connect one side of the button to the 3V3 pin, and the
other to any GPIO pin, then set pull_up to False in the
Button constructor.

The following example will print a line of text when the button is pushed:

from gpiozero import Button

button = Button(4)
button.wait_for_press()
print("The button was pressed!")

	Parameters:	
	pin (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the button is attached to. See Notes for
valid pin numbers.

	pull_up (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), the GPIO pin will be pulled high by default.
In this case, connect the other side of the button to ground. If
False, the GPIO pin will be pulled low by default. In this case,
connect the other side of the button to 3V3.

	bounce_time (float [http://docs.python.org/3.4/library/functions.html#float]) – If None (the default), no software bounce compensation will be
performed. Otherwise, this is the length in time (in seconds) that the
component will ignore changes in state after an initial change.

	
wait_for_press(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters:	timeout (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is active.

	
wait_for_release(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters:	timeout (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is inactive.

	
is_pressed

	Returns True if the device is currently active and False
otherwise.

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

	
pull_up

	If True, the device uses a pull-up resistor to set the GPIO pin
“high” by default. Defaults to False.

	
when_pressed

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

	
when_released

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

Motion Sensor (PIR)

	
class gpiozero.MotionSensor(pin, queue_len=1, sample_rate=10, threshold=0.5, partial=False)[source]

	Extends SmoothedInputDevice and represents a passive infra-red
(PIR) motion sensor like the sort found in the CamJam #2 EduKit [http://camjam.me/?page_id=623].

A typical PIR device has a small circuit board with three pins: VCC, OUT,
and GND. VCC should be connected to a 5V pin, GND to one of the ground
pins, and finally OUT to the GPIO specified as the value of the pin
parameter in the constructor.

The following code will print a line of text when motion is detected:

from gpiozero import MotionSensor

pir = MotionSensor(4)
pir.wait_for_motion()
print("Motion detected!")

	Parameters:	
	pin (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the button is attached to. See Notes for
valid pin numbers.

	queue_len (int [http://docs.python.org/3.4/library/functions.html#int]) – The length of the queue used to store values read from the sensor. This
defaults to 1 which effectively disables the queue. If your motion
sensor is particularly “twitchy” you may wish to increase this value.

	sample_rate (float [http://docs.python.org/3.4/library/functions.html#float]) – The number of values to read from the device (and append to the
internal queue) per second. Defaults to 10.

	threshold (float [http://docs.python.org/3.4/library/functions.html#float]) – Defaults to 0.5. When the mean of all values in the internal queue
rises above this value, the sensor will be considered “active” by the
is_active property, and all appropriate
events will be fired.

	partial (bool [http://docs.python.org/3.4/library/functions.html#bool]) – When False (the default), the object will not return a value for
is_active until the internal queue has
filled with values. Only set this to True if you require values
immediately after object construction.

	
wait_for_motion(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters:	timeout (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is active.

	
wait_for_no_motion(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters:	timeout (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is inactive.

	
motion_detected

	Returns True if the device is currently active and False
otherwise.

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

	
when_motion

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

	
when_no_motion

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

Light Sensor (LDR)

	
class gpiozero.LightSensor(pin, queue_len=5, charge_time_limit=0.01, threshold=0.1, partial=False)[source]

	Extends SmoothedInputDevice and represents a light dependent
resistor (LDR).

Connect one leg of the LDR to the 3V3 pin; connect one leg of a 1µf
capacitor to a ground pin; connect the other leg of the LDR and the other
leg of the capacitor to the same GPIO pin. This class repeatedly discharges
the capacitor, then times the duration it takes to charge (which will vary
according to the light falling on the LDR).

The following code will print a line of text when light is detected:

from gpiozero import LightSensor

ldr = LightSensor(18)
ldr.wait_for_light()
print("Light detected!")

	Parameters:	
	pin (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the button is attached to. See Notes for
valid pin numbers.

	queue_len (int [http://docs.python.org/3.4/library/functions.html#int]) – The length of the queue used to store values read from the circuit.
This defaults to 5.

	charge_time_limit (float [http://docs.python.org/3.4/library/functions.html#float]) – If the capacitor in the circuit takes longer than this length of time
to charge, it is assumed to be dark. The default (0.01 seconds) is
appropriate for a 0.01µf capacitor coupled with the LDR from the
CamJam #2 EduKit [http://camjam.me/?page_id=623]. You may need to adjust this value for different
valued capacitors or LDRs.

	threshold (float [http://docs.python.org/3.4/library/functions.html#float]) – Defaults to 0.1. When the mean of all values in the internal queue
rises above this value, the area will be considered “light”, and all
appropriate events will be fired.

	partial (bool [http://docs.python.org/3.4/library/functions.html#bool]) – When False (the default), the object will not return a value for
is_active until the internal queue has
filled with values. Only set this to True if you require values
immediately after object construction.

	
wait_for_dark(timeout=None)

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters:	timeout (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is inactive.

	
wait_for_light(timeout=None)

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters:	timeout (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is active.

	
light_detected

	Returns True if the device is currently active and False
otherwise.

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

	
when_dark

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

	
when_light

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

Analog to Digital Converters (ADC)

	
class gpiozero.MCP3004(channel=0, device=0, differential=False)[source]

	The MCP3004 [http://www.farnell.com/datasheets/808965.pdf] is a 10-bit analog to digital converter with 4 channels
(0-3).

	
bus

	The SPI bus that the device is connected to. As the Pi only has a
single (user accessible) SPI bus, this always returns 0.

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), and the
MCP3301 only has 1 channel.

	
device

	The select pin that the device is connected to. The Pi has two select
pins so this will be 0 or 1.

	
differential

	If True, the device is operated in pseudo-differential mode. In
this mode one channel (specified by the channel attribute) is read
relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1.

	
class gpiozero.MCP3008(channel=0, device=0, differential=False)[source]

	The MCP3008 [http://www.farnell.com/datasheets/808965.pdf] is a 10-bit analog to digital converter with 8 channels
(0-7).

	
bus

	The SPI bus that the device is connected to. As the Pi only has a
single (user accessible) SPI bus, this always returns 0.

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), and the
MCP3301 only has 1 channel.

	
device

	The select pin that the device is connected to. The Pi has two select
pins so this will be 0 or 1.

	
differential

	If True, the device is operated in pseudo-differential mode. In
this mode one channel (specified by the channel attribute) is read
relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1.

	
class gpiozero.MCP3204(channel=0, device=0, differential=False)[source]

	The MCP3204 [http://www.farnell.com/datasheets/808967.pdf] is a 12-bit analog to digital converter with 4 channels
(0-3).

	
bus

	The SPI bus that the device is connected to. As the Pi only has a
single (user accessible) SPI bus, this always returns 0.

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), and the
MCP3301 only has 1 channel.

	
device

	The select pin that the device is connected to. The Pi has two select
pins so this will be 0 or 1.

	
differential

	If True, the device is operated in pseudo-differential mode. In
this mode one channel (specified by the channel attribute) is read
relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1.

	
class gpiozero.MCP3208(channel=0, device=0, differential=False)[source]

	The MCP3208 [http://www.farnell.com/datasheets/808967.pdf] is a 12-bit analog to digital converter with 8 channels
(0-7).

	
bus

	The SPI bus that the device is connected to. As the Pi only has a
single (user accessible) SPI bus, this always returns 0.

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), and the
MCP3301 only has 1 channel.

	
device

	The select pin that the device is connected to. The Pi has two select
pins so this will be 0 or 1.

	
differential

	If True, the device is operated in pseudo-differential mode. In
this mode one channel (specified by the channel attribute) is read
relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1.

	
class gpiozero.MCP3301(device=0)[source]

	The MCP3301 [http://www.farnell.com/datasheets/1669397.pdf] is a signed 13-bit analog to digital converter. Please note
that the MCP3301 always operates in differential mode between its two
channels and the output value is scaled from -1 to +1.

	
bus

	The SPI bus that the device is connected to. As the Pi only has a
single (user accessible) SPI bus, this always returns 0.

	
device

	The select pin that the device is connected to. The Pi has two select
pins so this will be 0 or 1.

	
value

	The current value read from the device, scaled to a value between 0 and
1.

	
class gpiozero.MCP3302(channel=0, device=0, differential=False)[source]

	The MCP3302 [http://www.farnell.com/datasheets/1486116.pdf] is a 12/13-bit analog to digital converter with 4 channels
(0-3). When operated in differential mode, the device outputs a signed
13-bit value which is scaled from -1 to +1. When operated in single-ended
mode (the default), the device outputs an unsigned 12-bit value scaled from
0 to 1.

	
bus

	The SPI bus that the device is connected to. As the Pi only has a
single (user accessible) SPI bus, this always returns 0.

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), and the
MCP3301 only has 1 channel.

	
device

	The select pin that the device is connected to. The Pi has two select
pins so this will be 0 or 1.

	
differential

	If True, the device is operated in pseudo-differential mode. In
this mode one channel (specified by the channel attribute) is read
relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1.

	
class gpiozero.MCP3304(channel=0, device=0, differential=False)[source]

	The MCP3304 [http://www.farnell.com/datasheets/1486116.pdf] is a 12/13-bit analog to digital converter with 8 channels
(0-7). When operated in differential mode, the device outputs a signed
13-bit value which is scaled from -1 to +1. When operated in single-ended
mode (the default), the device outputs an unsigned 12-bit value scaled from
0 to 1.

	
bus

	The SPI bus that the device is connected to. As the Pi only has a
single (user accessible) SPI bus, this always returns 0.

	
channel

	The channel to read data from. The MCP3008/3208/3304 have 8 channels
(0-7), while the MCP3004/3204/3302 have 4 channels (0-3), and the
MCP3301 only has 1 channel.

	
device

	The select pin that the device is connected to. The Pi has two select
pins so this will be 0 or 1.

	
differential

	If True, the device is operated in pseudo-differential mode. In
this mode one channel (specified by the channel attribute) is read
relative to the value of a second channel (implied by the chip’s
design).

Please refer to the device data-sheet to determine which channel is
used as the relative base value (for example, when using an
MCP3008 in differential mode, channel 0 is read relative to
channel 1).

	
value

	The current value read from the device, scaled to a value between 0 and
1.

 Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gpiozero 1.1.0 documentation

Output Devices

These output device component interfaces have been provided for simple use of
everyday components. Components must be wired up correctly before use in code.

Note

All GPIO pin numbers use Broadcom (BCM) numbering. See the Recipes
page for more information.

LED

	
class gpiozero.LED(pin, active_high=True, initial_value=False)[source]

	Extends DigitalOutputDevice and represents a light emitting diode
(LED).

Connect the cathode (short leg, flat side) of the LED to a ground pin;
connect the anode (longer leg) to a limiting resistor; connect the other
side of the limiting resistor to a GPIO pin (the limiting resistor can be
placed either side of the LED).

The following example will light the LED:

from gpiozero import LED

led = LED(17)
led.on()

	Parameters:	
	pin (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the LED is attached to. See Notes for valid
pin numbers.

	active_high (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), the LED will operate normally with the
circuit described above. If False you should wire the cathode to
the GPIO pin, and the anode to a 3V3 pin (via a limiting resistor).

	initial_value (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If False (the default), the LED will be off initially. If
None, the LED will be left in whatever state the pin is found in
when configured for output (warning: this can be on). If True, the
LED will be switched on initially.

	
blink(on_time=1, off_time=1, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters:	
	on_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	n (int [http://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
toggle()

	Reverse the state of the device. If it’s on, turn it off; if it’s off,
turn it on.

	
is_lit

	Returns True if the device is currently active and False
otherwise.

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

PWMLED

	
class gpiozero.PWMLED(pin, active_high=True, initial_value=0, frequency=100)[source]

	Extends PWMOutputDevice and represents a light emitting diode
(LED) with variable brightness.

A typical configuration of such a device is to connect a GPIO pin to the
anode (long leg) of the LED, and the cathode (short leg) to ground, with
an optional resistor to prevent the LED from burning out.

	Parameters:	
	pin (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the LED is attached to. See Notes for
valid pin numbers.

	active_high (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), the on() method will set the GPIO to
HIGH. If False, the on() method will set the GPIO to LOW (the
off() method always does the opposite).

	initial_value (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If 0 (the default), the LED will be off initially. Other values
between 0 and 1 can be specified as an initial brightness for the LED.
Note that None cannot be specified (unlike the parent class) as
there is no way to tell PWM not to alter the state of the pin.

	frequency (int [http://docs.python.org/3.4/library/functions.html#int]) – The frequency (in Hz) of pulses emitted to drive the LED. Defaults
to 100Hz.

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters:	
	on_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 0.

	fade_out_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 0.

	n (int [http://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
toggle()

	Toggle the state of the device. If the device is currently off
(value is 0.0), this changes it to “fully” on (value is
1.0). If the device has a duty cycle (value) of 0.1, this will
toggle it to 0.9, and so on.

	
is_lit

	Returns True if the device is currently active (value is
non-zero) and False otherwise.

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

	
value

	The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values
in between may be specified for varying levels of power in the device.

RGBLED

	
class gpiozero.RGBLED(red, green, blue, active_high=True, initial_value=(0, 0, 0))[source]

	Extends CompositeDevice and represents a full color LED component
(composed of red, green, and blue LEDs).

Connect the common cathode (longest leg) to a ground pin; connect each of
the other legs (representing the red, green, and blue anodes) to any GPIO
pins. You can either use three limiting resistors (one per anode) or a
single limiting resistor on the cathode.

The following code will make the LED purple:

from gpiozero import RGBLED

led = RGBLED(2, 3, 4)
led.color = (1, 0, 1)

	Parameters:	
	red (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that controls the red component of the RGB LED.

	green (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that controls the green component of the RGB LED.

	blue (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that controls the blue component of the RGB LED.

	active_high (bool [http://docs.python.org/3.4/library/functions.html#bool]) – Set to True (the default) for common cathode RGB LEDs. If you are
using a common anode RGB LED, set this to False.

	initial_value (bool [http://docs.python.org/3.4/library/functions.html#bool]) – The initial color for the LED. Defaults to black (0, 0, 0).

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, on_color=(1, 1, 1), off_color=(0, 0, 0), n=None, background=True)[source]

	Make the device turn on and off repeatedly.

	Parameters:	
	on_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 0.

	fade_out_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 0.

	on_color (tuple [http://docs.python.org/3.4/library/stdtypes.html#tuple]) – The color to use when the LED is “on”. Defaults to white.

	off_color (tuple [http://docs.python.org/3.4/library/stdtypes.html#tuple]) – The color to use when the LED is “off”. Defaults to black.

	n (int [http://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
off()[source]

	Turn the LED off. This is equivalent to setting the LED color to black
(0, 0, 0).

	
on()[source]

	Turn the LED on. This equivalent to setting the LED color to white
(1, 1, 1).

	
toggle()[source]

	Toggle the state of the device. If the device is currently off
(value is (0, 0, 0)), this changes it to “fully” on
(value is (1, 1, 1)). If the device has a specific color,
this method inverts the color.

	
color

	Represents the color of the LED as an RGB 3-tuple of (red, green,
blue) where each value is between 0 and 1.

For example, purple would be (1, 0, 1) and yellow would be (1, 1,
0), while orange would be (1, 0.5, 0).

	
is_lit

	Returns True if the LED is currently active (not black) and
False otherwise.

Buzzer

	
class gpiozero.Buzzer(pin, active_high=True, initial_value=False)[source]

	Extends DigitalOutputDevice and represents a digital buzzer
component.

Connect the cathode (negative pin) of the buzzer to a ground pin; connect
the other side to any GPIO pin.

The following example will sound the buzzer:

from gpiozero import Buzzer

bz = Buzzer(3)
bz.on()

	Parameters:	
	pin (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the buzzer is attached to. See Notes for
valid pin numbers.

	active_high (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), the buzzer will operate normally with the
circuit described above. If False you should wire the cathode to
the GPIO pin, and the anode to a 3V3 pin.

	initial_value (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If False (the default), the buzzer will be silent initially. If
None, the buzzer will be left in whatever state the pin is found in
when configured for output (warning: this can be on). If True, the
buzzer will be switched on initially.

	
beep(on_time=1, off_time=1, n=None, background=True)

	Make the device turn on and off repeatedly.

	Parameters:	
	on_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	n (int [http://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
off()

	Turns the device off.

	
on()

	Turns the device on.

	
toggle()

	Reverse the state of the device. If it’s on, turn it off; if it’s off,
turn it on.

	
is_active

	Returns True if the device is currently active and False
otherwise.

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

Motor

	
class gpiozero.Motor(forward, backward)[source]

	Extends CompositeDevice and represents a generic motor connected
to a bi-directional motor driver circuit (i.e. an H-bridge [https://en.wikipedia.org/wiki/H_bridge]).

Attach an H-bridge [https://en.wikipedia.org/wiki/H_bridge] motor controller to your Pi; connect a power source
(e.g. a battery pack or the 5V pin) to the controller; connect the outputs
of the controller board to the two terminals of the motor; connect the
inputs of the controller board to two GPIO pins.

The following code will make the motor turn “forwards”:

from gpiozero import Motor

motor = Motor(17, 18)
motor.forward()

	Parameters:	
	forward (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that the forward input of the motor driver chip is
connected to.

	backward (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that the backward input of the motor driver chip is
connected to.

	
backward(speed=1)[source]

	Drive the motor backwards.

	Parameters:	speed (float [http://docs.python.org/3.4/library/functions.html#float]) – The speed at which the motor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed).

	
forward(speed=1)[source]

	Drive the motor forwards.

	Parameters:	speed (float [http://docs.python.org/3.4/library/functions.html#float]) – The speed at which the motor should turn. Can be any value between
0 (stopped) and the default 1 (maximum speed).

	
stop()[source]

	Stop the motor.

 Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gpiozero 1.1.0 documentation

Boards and Accessories

These additional interfaces are provided to group collections of components
together for ease of use, and as examples. They are composites made up of
components from the various Input Devices and Output Devices provided by
GPIO Zero. See those pages for more information on using components
individually.

Note

All GPIO pin numbers use Broadcom (BCM) numbering. See the Recipes
page for more information.

LED Board

	
class gpiozero.LEDBoard(*pins, pwm=False)[source]

	Extends CompositeDevice and represents a generic LED board or
collection of LEDs.

The following example turns on all the LEDs on a board containing 5 LEDs
attached to GPIO pins 2 through 6:

from gpiozero import LEDBoard

leds = LEDBoard(2, 3, 4, 5, 6)
leds.on()

	Parameters:	
	*pins (int [http://docs.python.org/3.4/library/functions.html#int]) – Specify the GPIO pins that the LEDs of the board are attached to. You
can designate as many pins as necessary.

	pwm (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, construct PWMLED instances for each pin. If
False (the default), construct regular LED instances. This
parameter can only be specified as a keyword parameter.

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)[source]

	Make all the LEDs turn on and off repeatedly.

	Parameters:	
	on_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [http://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	fade_out_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [http://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	n (int [http://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is
finished (warning: the default value of n will result in this
method never returning).

	
close()[source]

	Shut down the device and release all associated resources.

	
off()[source]

	Turn all the LEDs off.

	
on()[source]

	Turn all the LEDs on.

	
toggle()[source]

	Toggle all the LEDs. For each LED, if it’s on, turn it off; if it’s
off, turn it on.

	
leds

	A tuple of all the LED or PWMLED objects contained by
the instance.

	
source

	The iterable to use as a source of values for value.

	
value

	A tuple containing a value for each LED on the board. This property can
also be set to update the state of all LEDs on the board.

	
values

	An infinite iterator of values read from value.

LED Bar Graph

	
class gpiozero.LEDBarGraph(*pins, initial_value=0)[source]

	Extends CompositeDevice to control a line of LEDs representing a
bar graph. Positive values (0 to 1) light the LEDs from first to last.
Negative values (-1 to 0) light the LEDs from last to first.

The following example turns on all the LEDs on a board containing 5 LEDs
attached to GPIO pins 2 through 6:

from gpiozero import LEDBarGraph

graph = LEDBarGraph(2, 3, 4, 5, 6)
graph.value = 2/5 # Light the first two LEDs only
graph.value = -2/5 # Light the last two LEDs only
graph.off()

As with other output devices, source and values are
supported:

from gpiozero import LEDBarGraph, MCP3008
from signal import pause

graph = LEDBarGraph(2, 3, 4, 5, 6)
pot = MCP3008(channel=0)
graph.source = pot.values
pause()

	Parameters:	
	*pins (int [http://docs.python.org/3.4/library/functions.html#int]) – Specify the GPIO pins that the LEDs of the bar graph are attached to.
You can designate as many pins as necessary.

	initial_value (float [http://docs.python.org/3.4/library/functions.html#float]) – The initial value of the graph given as a float between -1 and
+1. Defaults to 0.0.

	
close()

	Shut down the device and release all associated resources.

	
off()

	Turn all the LEDs off.

	
on()

	Turn all the LEDs on.

	
toggle()

	Toggle all the LEDs. For each LED, if it’s on, turn it off; if it’s
off, turn it on.

	
leds

	A tuple of all the LED or PWMLED objects contained by
the instance.

	
source

	The iterable to use as a source of values for value.

	
value

	The value of the LED bar graph. When no LEDs are lit, the value is 0.
When all LEDs are lit, the value is 1. Values between 0 and 1
light LEDs linearly from first to last. Values between 0 and -1
light LEDs linearly from last to first.

To light a particular number of LEDs, simply divide that number by
the number of LEDs. For example, if your graph contains 3 LEDs, the
following will light the first:

from gpiozero import LEDBarGraph

graph = LEDBarGraph(12, 16, 19)
graph.value = 1/3

Note

Setting value to -1 will light all LEDs. However, querying it
subsequently will return 1 as both representations are the same in
hardware.

	
values

	An infinite iterator of values read from value.

Traffic Lights

	
class gpiozero.TrafficLights(red=None, amber=None, green=None, pwm=False)[source]

	Extends LEDBoard for devices containing red, amber, and green
LEDs.

The following example initializes a device connected to GPIO pins 2, 3,
and 4, then lights the amber LED attached to GPIO 3:

from gpiozero import TrafficLights

traffic = TrafficLights(2, 3, 4)
traffic.amber.on()

	Parameters:	
	red (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that the red LED is attached to.

	amber (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that the amber LED is attached to.

	green (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin that the green LED is attached to.

	pwm (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, construct PWMLED instances to represent each
LED. If False (the default), construct regular LED
instances.

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)

	Make all the LEDs turn on and off repeatedly.

	Parameters:	
	on_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [http://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	fade_out_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [http://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	n (int [http://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is
finished (warning: the default value of n will result in this
method never returning).

	
close()

	Shut down the device and release all associated resources.

	
off()

	Turn all the LEDs off.

	
on()

	Turn all the LEDs on.

	
toggle()

	Toggle all the LEDs. For each LED, if it’s on, turn it off; if it’s
off, turn it on.

	
amber

	The LED or PWMLED object representing the red LED.

	
green

	The LED or PWMLED object representing the green LED.

	
leds

	A tuple of all the LED or PWMLED objects contained by
the instance.

	
red

	The LED or PWMLED object representing the red LED.

	
source

	The iterable to use as a source of values for value.

	
value

	A 3-tuple containing values for the red, amber, and green LEDs. This
property can also be set to alter the state of the LEDs.

	
values

	An infinite iterator of values read from value.

PiLITEr

	
class gpiozero.PiLiter(pwm=False)[source]

	Extends LEDBoard for the Ciseco Pi-LITEr [http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/]: a strip of 8 very bright
LEDs.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them
when constructing this class. The following example turns on all the LEDs
of the Pi-LITEr:

from gpiozero import PiLiter

lite = PiLiter()
lite.on()

	Parameters:	pwm (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, construct PWMLED instances for each pin. If
False (the default), construct regular LED instances. This
parameter can only be specified as a keyword parameter.

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)

	Make all the LEDs turn on and off repeatedly.

	Parameters:	
	on_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [http://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	fade_out_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [http://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	n (int [http://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is
finished (warning: the default value of n will result in this
method never returning).

	
close()

	Shut down the device and release all associated resources.

	
off()

	Turn all the LEDs off.

	
on()

	Turn all the LEDs on.

	
toggle()

	Toggle all the LEDs. For each LED, if it’s on, turn it off; if it’s
off, turn it on.

	
leds

	A tuple of all the LED or PWMLED objects contained by
the instance.

	
source

	The iterable to use as a source of values for value.

	
value

	A tuple containing a value for each LED on the board. This property can
also be set to update the state of all LEDs on the board.

	
values

	An infinite iterator of values read from value.

PiLITEr Bar Graph

	
class gpiozero.PiLiterBarGraph(initial_value=0)[source]

	Extends LEDBarGraph to treat the Ciseco Pi-LITEr [http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/] as an
8-segment bar graph.

The Pi-LITEr pins are fixed and therefore there’s no need to specify them
when constructing this class. The following example sets the graph value
to 0.5:

from gpiozero import PiLiterBarGraph

graph = PiLiterBarGraph()
graph.value = 0.5

	Parameters:	initial_value (bool [http://docs.python.org/3.4/library/functions.html#bool]) – The initial value of the graph given as a float between -1 and +1.
Defaults to 0.0.

	
close()

	Shut down the device and release all associated resources.

	
off()

	Turn all the LEDs off.

	
on()

	Turn all the LEDs on.

	
toggle()

	Toggle all the LEDs. For each LED, if it’s on, turn it off; if it’s
off, turn it on.

	
leds

	A tuple of all the LED or PWMLED objects contained by
the instance.

	
source

	The iterable to use as a source of values for value.

	
value

	The value of the LED bar graph. When no LEDs are lit, the value is 0.
When all LEDs are lit, the value is 1. Values between 0 and 1
light LEDs linearly from first to last. Values between 0 and -1
light LEDs linearly from last to first.

To light a particular number of LEDs, simply divide that number by
the number of LEDs. For example, if your graph contains 3 LEDs, the
following will light the first:

from gpiozero import LEDBarGraph

graph = LEDBarGraph(12, 16, 19)
graph.value = 1/3

Note

Setting value to -1 will light all LEDs. However, querying it
subsequently will return 1 as both representations are the same in
hardware.

	
values

	An infinite iterator of values read from value.

PI-TRAFFIC

	
class gpiozero.PiTraffic[source]

	Extends TrafficLights for the Low Voltage Labs PI-TRAFFIC:
vertical traffic lights board when attached to GPIO pins 9, 10, and 11.

There’s no need to specify the pins if the PI-TRAFFIC is connected to the
default pins (9, 10, 11). The following example turns on the amber LED on
the PI-TRAFFIC:

from gpiozero import PiTraffic

traffic = PiTraffic()
traffic.amber.on()

To use the PI-TRAFFIC board when attached to a non-standard set of pins,
simply use the parent class, TrafficLights.

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)

	Make all the LEDs turn on and off repeatedly.

	Parameters:	
	on_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [http://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	fade_out_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 0. Must be 0 if
pwm was False when the class was constructed
(ValueError [http://docs.python.org/3.4/library/exceptions.html#ValueError] will be raised if not).

	n (int [http://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is
finished (warning: the default value of n will result in this
method never returning).

	
close()

	Shut down the device and release all associated resources.

	
off()

	Turn all the LEDs off.

	
on()

	Turn all the LEDs on.

	
toggle()

	Toggle all the LEDs. For each LED, if it’s on, turn it off; if it’s
off, turn it on.

	
amber

	The LED or PWMLED object representing the red LED.

	
green

	The LED or PWMLED object representing the green LED.

	
leds

	A tuple of all the LED or PWMLED objects contained by
the instance.

	
red

	The LED or PWMLED object representing the red LED.

	
source

	The iterable to use as a source of values for value.

	
value

	A 3-tuple containing values for the red, amber, and green LEDs. This
property can also be set to alter the state of the LEDs.

	
values

	An infinite iterator of values read from value.

TrafficLightsBuzzer

	
class gpiozero.TrafficLightsBuzzer(lights, buzzer, button)[source]

	Extends CompositeDevice and is a generic class for HATs with
traffic lights, a button and a buzzer.

	Parameters:	
	lights (TrafficLights) – An instance of TrafficLights representing the traffic lights
of the HAT.

	buzzer (Buzzer) – An instance of Buzzer representing the buzzer on the HAT.

	button (Button) – An instance of Button representing the button on the HAT.

	
blink(on_time=1, off_time=1, n=None, background=True)[source]

	Make all the board’s components turn on and off repeatedly.

	Parameters:	
	on_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on

	off_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off

	n (int [http://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None means forever

	background (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is
finished (warning: the default value of n will result in this
method never returning).

	
close()[source]

	Shut down the device and release all associated resources.

	
off()[source]

	Turn all the board’s components off.

	
on()[source]

	Turn all the board’s components on.

	
toggle()[source]

	Toggle all the board’s components. For each component, if it’s on, turn
it off; if it’s off, turn it on.

	
all

	A tuple containing objects for all the items on the board (several
LED objects, a Buzzer, and a Button).

	
source

	The iterable to use as a source of values for value.

	
value

	Returns a named-tuple containing values representing the states of
the LEDs, and the buzzer. This property can also be set to a 4-tuple
to update the state of all the board’s components.

	
values

	An infinite iterator of values read from value.

Fish Dish

	
class gpiozero.FishDish(pwm=False)[source]

	Extends TrafficLightsBuzzer for the Pi Supply FishDish: traffic
light LEDs, a button and a buzzer.

The FishDish pins are fixed and therefore there’s no need to specify them
when constructing this class. The following example waits for the button
to be pressed on the FishDish, then turns on all the LEDs:

from gpiozero import FishDish

fish = FishDish()
fish.button.wait_for_press()
fish.lights.on()

	Parameters:	pwm (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, construct PWMLED instances to represent each
LED. If False (the default), construct regular LED
instances.

	
blink(on_time=1, off_time=1, n=None, background=True)

	Make all the board’s components turn on and off repeatedly.

	Parameters:	
	on_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on

	off_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off

	n (int [http://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None means forever

	background (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is
finished (warning: the default value of n will result in this
method never returning).

	
close()

	Shut down the device and release all associated resources.

	
off()

	Turn all the board’s components off.

	
on()

	Turn all the board’s components on.

	
toggle()

	Toggle all the board’s components. For each component, if it’s on, turn
it off; if it’s off, turn it on.

	
all

	A tuple containing objects for all the items on the board (several
LED objects, a Buzzer, and a Button).

	
source

	The iterable to use as a source of values for value.

	
value

	Returns a named-tuple containing values representing the states of
the LEDs, and the buzzer. This property can also be set to a 4-tuple
to update the state of all the board’s components.

	
values

	An infinite iterator of values read from value.

Traffic HAT

	
class gpiozero.TrafficHat(pwm=False)[source]

	Extends TrafficLightsBuzzer for the Ryanteck Traffic HAT: traffic
light LEDs, a button and a buzzer.

The Traffic HAT pins are fixed and therefore there’s no need to specify
them when constructing this class. The following example waits for the
button to be pressed on the Traffic HAT, then turns on all the LEDs:

from gpiozero import TrafficHat

hat = TrafficHat()
hat.button.wait_for_press()
hat.lights.on()

	Parameters:	pwm (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, construct PWMLED instances to represent each
LED. If False (the default), construct regular LED
instances.

	
blink(on_time=1, off_time=1, n=None, background=True)

	Make all the board’s components turn on and off repeatedly.

	Parameters:	
	on_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on

	off_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off

	n (int [http://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None means forever

	background (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, start a background thread to continue blinking and
return immediately. If False, only return when the blink is
finished (warning: the default value of n will result in this
method never returning).

	
close()

	Shut down the device and release all associated resources.

	
off()

	Turn all the board’s components off.

	
on()

	Turn all the board’s components on.

	
toggle()

	Toggle all the board’s components. For each component, if it’s on, turn
it off; if it’s off, turn it on.

	
all

	A tuple containing objects for all the items on the board (several
LED objects, a Buzzer, and a Button).

	
source

	The iterable to use as a source of values for value.

	
value

	Returns a named-tuple containing values representing the states of
the LEDs, and the buzzer. This property can also be set to a 4-tuple
to update the state of all the board’s components.

	
values

	An infinite iterator of values read from value.

Robot

	
class gpiozero.Robot(left=None, right=None)[source]

	Extends CompositeDevice to represent a generic dual-motor robot.

This class is constructed with two tuples representing the forward and
backward pins of the left and right controllers respectively. For example,
if the left motor’s controller is connected to GPIOs 4 and 14, while the
right motor’s controller is connected to GPIOs 17 and 18 then the following
example will turn the robot left:

from gpiozero import Robot

robot = Robot(left=(4, 14), right=(17, 18))
robot.left()

	Parameters:	
	left (tuple [http://docs.python.org/3.4/library/stdtypes.html#tuple]) – A tuple of two GPIO pins representing the forward and backward inputs
of the left motor’s controller.

	right (tuple [http://docs.python.org/3.4/library/stdtypes.html#tuple]) – A tuple of two GPIO pins representing the forward and backward inputs
of the right motor’s controller.

	
backward(speed=1)[source]

	Drive the robot backward by running both motors backward.

	Parameters:	speed (float [http://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
close()[source]

	Shut down the device and release all associated resources.

	
forward(speed=1)[source]

	Drive the robot forward by running both motors forward.

	Parameters:	speed (float [http://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
left(speed=1)[source]

	Make the robot turn left by running the right motor forward and left
motor backward.

	Parameters:	speed (float [http://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
reverse()[source]

	Reverse the robot’s current motor directions. If the robot is currently
running full speed forward, it will run full speed backward. If the
robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

	
right(speed=1)[source]

	Make the robot turn right by running the left motor forward and right
motor backward.

	Parameters:	speed (float [http://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
stop()[source]

	Stop the robot.

	
left_motor

	Returns the Motor device representing the robot’s left motor.

	
right_motor

	Returns the Motor device representing the robot’s right motor.

	
source

	The iterable to use as a source of values for value.

	
value

	Returns a tuple of two floating point values (-1 to 1) representing the
speeds of the robot’s two motors (left and right). This property can
also be set to alter the speed of both motors.

	
values

	An infinite iterator of values read from value.

Ryanteck MCB Robot

	
class gpiozero.RyanteckRobot[source]

	Extends Robot for the Ryanteck MCB robot.

The Ryanteck MCB pins are fixed and therefore there’s no need to specify
them when constructing this class. The following example turns the robot
left:

from gpiozero import RyanteckRobot

robot = RyanteckRobot()
robot.left()

	
backward(speed=1)

	Drive the robot backward by running both motors backward.

	Parameters:	speed (float [http://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
close()

	Shut down the device and release all associated resources.

	
forward(speed=1)

	Drive the robot forward by running both motors forward.

	Parameters:	speed (float [http://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
left(speed=1)

	Make the robot turn left by running the right motor forward and left
motor backward.

	Parameters:	speed (float [http://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
reverse()

	Reverse the robot’s current motor directions. If the robot is currently
running full speed forward, it will run full speed backward. If the
robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

	
right(speed=1)

	Make the robot turn right by running the left motor forward and right
motor backward.

	Parameters:	speed (float [http://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
stop()

	Stop the robot.

	
left_motor

	Returns the Motor device representing the robot’s left motor.

	
right_motor

	Returns the Motor device representing the robot’s right motor.

	
source

	The iterable to use as a source of values for value.

	
value

	Returns a tuple of two floating point values (-1 to 1) representing the
speeds of the robot’s two motors (left and right). This property can
also be set to alter the speed of both motors.

	
values

	An infinite iterator of values read from value.

CamJam #3 Kit Robot

	
class gpiozero.CamJamKitRobot[source]

	Extends Robot for the CamJam #3 EduKit [http://camjam.me/?page_id=1035] robot controller.

The CamJam robot controller pins are fixed and therefore there’s no need
to specify them when constructing this class. The following example turns
the robot left:

from gpiozero import CamJamKitRobot

robot = CamJamKitRobot()
robot.left()

	
backward(speed=1)

	Drive the robot backward by running both motors backward.

	Parameters:	speed (float [http://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
close()

	Shut down the device and release all associated resources.

	
forward(speed=1)

	Drive the robot forward by running both motors forward.

	Parameters:	speed (float [http://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
left(speed=1)

	Make the robot turn left by running the right motor forward and left
motor backward.

	Parameters:	speed (float [http://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
reverse()

	Reverse the robot’s current motor directions. If the robot is currently
running full speed forward, it will run full speed backward. If the
robot is turning left at half-speed, it will turn right at half-speed.
If the robot is currently stopped it will remain stopped.

	
right(speed=1)

	Make the robot turn right by running the left motor forward and right
motor backward.

	Parameters:	speed (float [http://docs.python.org/3.4/library/functions.html#float]) – Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1.

	
stop()

	Stop the robot.

	
left_motor

	Returns the Motor device representing the robot’s left motor.

	
right_motor

	Returns the Motor device representing the robot’s right motor.

	
source

	The iterable to use as a source of values for value.

	
value

	Returns a tuple of two floating point values (-1 to 1) representing the
speeds of the robot’s two motors (left and right). This property can
also be set to alter the speed of both motors.

	
values

	An infinite iterator of values read from value.

 Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gpiozero 1.1.0 documentation

Generic Devices

The GPIO Zero class hierarchy is quite extensive. It contains a couple of base
classes:

	GPIODevice for individual devices that attach to a single GPIO pin

	CompositeDevice for devices composed of multiple other devices like
HATs

There are also a couple of mixin classes [https://en.wikipedia.org/wiki/Mixin]:

	ValuesMixin which defines the values properties; there is rarely
a need to use this as the base classes mentioned above both include it
(so all classes in GPIO Zero include the values property)

	SourceMixin which defines the source property; this is generally
included in novel output device classes

The current class hierarchies are displayed below. For brevity, the mixin
classes are omitted:

Finally, for composite devices, the following chart shows which devices are
composed of which other devices:

Base Classes

	
class gpiozero.GPIODevice(pin)[source]

	Represents a generic GPIO device.

This is the class at the root of the gpiozero class hierarchy. It handles
ensuring that two GPIO devices do not share the same pin, and provides
basic services applicable to all devices (specifically the pin
property, is_active property, and the close method).

	Parameters:	pin (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin (in BCM numbering) that the device is connected to. If
this is None a GPIODeviceError will be raised.

	
close()[source]

	Shut down the device and release all associated resources.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

GPIODevice descendents can also be used as context managers
using the with [http://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
is_active

	Returns True if the device is currently active and False
otherwise.

	
pin

	The Pin that the device is connected to. This will be None
if the device has been closed (see the close() method). When
dealing with GPIO pins, query pin.number to discover the GPIO
pin (in BCM numbering) that the device is connected to.

	
value

	Returns True if the device is currently active and False
otherwise.

	
values

	An infinite iterator of values read from value.

	
class gpiozero.CompositeDevice[source]

	Represents a device composed of multiple GPIO devices like simple HATs,
H-bridge motor controllers, robots composed of multiple motors, etc.

	
close()

	Shut down the device and release all associated resources.

	
closed

	Returns True if the device is closed (see the close()
method). Once a device is closed you can no longer use any other
methods or properties to control or query the device.

	
values

	An infinite iterator of values read from value.

Input Devices

	
class gpiozero.InputDevice(pin, pull_up=False)[source]

	Represents a generic GPIO input device.

This class extends GPIODevice to add facilities common to GPIO
input devices. The constructor adds the optional pull_up parameter to
specify how the pin should be pulled by the internal resistors. The
is_active property is adjusted accordingly so that
True still means active regardless of the pull_up setting.

	Parameters:	
	pin (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin (in Broadcom numbering) that the device is connected to.
If this is None a GPIODeviceError will be raised.

	pull_up (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True, the pin will be pulled high with an internal resistor. If
False (the default), the pin will be pulled low.

	
pull_up

	If True, the device uses a pull-up resistor to set the GPIO pin
“high” by default. Defaults to False.

	
class gpiozero.WaitableInputDevice(pin=None, pull_up=False)[source]

	Represents a generic input device with distinct waitable states.

This class extends InputDevice with methods for waiting on the
device’s status (wait_for_active() and wait_for_inactive()),
and properties that hold functions to be called when the device changes
state (when_activated() and when_deactivated()). These are
aliased appropriately in various subclasses.

Note that this class provides no means of actually firing its events; it’s
effectively an abstract base class.

	
wait_for_active(timeout=None)[source]

	Pause the script until the device is activated, or the timeout is
reached.

	Parameters:	timeout (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is active.

	
wait_for_inactive(timeout=None)[source]

	Pause the script until the device is deactivated, or the timeout is
reached.

	Parameters:	timeout (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to wait before proceeding. If this is None
(the default), then wait indefinitely until the device is inactive.

	
when_activated

	The function to run when the device changes state from inactive to
active.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that activated will be passed
as that parameter.

Set this property to None (the default) to disable the event.

	
when_deactivated

	The function to run when the device changes state from active to
inactive.

This can be set to a function which accepts no (mandatory) parameters,
or a Python function which accepts a single mandatory parameter (with
as many optional parameters as you like). If the function accepts a
single mandatory parameter, the device that deactivated will be
passed as that parameter.

Set this property to None (the default) to disable the event.

	
class gpiozero.DigitalInputDevice(pin, pull_up=False, bounce_time=None)[source]

	Represents a generic input device with typical on/off behaviour.

This class extends WaitableInputDevice with machinery to fire the
active and inactive events for devices that operate in a typical digital
manner: straight forward on / off states with (reasonably) clean
transitions between the two.

	Parameters:	bouncetime (float [http://docs.python.org/3.4/library/functions.html#float]) – Specifies the length of time (in seconds) that the component will
ignore changes in state after an initial change. This defaults to
None which indicates that no bounce compensation will be performed.

	
class gpiozero.SmoothedInputDevice(pin=None, pull_up=False, threshold=0.5, queue_len=5, sample_wait=0.0, partial=False)[source]

	Represents a generic input device which takes its value from the mean of a
queue of historical values.

This class extends WaitableInputDevice with a queue which is
filled by a background thread which continually polls the state of the
underlying device. The mean of the values in the queue is compared to a
threshold which is used to determine the state of the is_active
property.

This class is intended for use with devices which either exhibit analog
behaviour (such as the charging time of a capacitor with an LDR), or those
which exhibit “twitchy” behaviour (such as certain motion sensors).

	Parameters:	
	threshold (float [http://docs.python.org/3.4/library/functions.html#float]) – The value above which the device will be considered “on”.

	queue_len (int [http://docs.python.org/3.4/library/functions.html#int]) – The length of the internal queue which is filled by the background
thread.

	sample_wait (float [http://docs.python.org/3.4/library/functions.html#float]) – The length of time to wait between retrieving the state of the
underlying device. Defaults to 0.0 indicating that values are retrieved
as fast as possible.

	partial (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If False (the default), attempts to read the state of the device
(from the is_active property) will block until the queue has
filled. If True, a value will be returned immediately, but be
aware that this value is likely to fluctuate excessively.

	
close()[source]

	Shut down the device and release all associated resources.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

GPIODevice descendents can also be used as context managers
using the with [http://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
is_active

	Returns True if the device is currently active and False
otherwise.

	
partial

	If False (the default), attempts to read the value or
is_active properties will block until the queue has filled.

	
queue_len

	The length of the internal queue of values which is averaged to
determine the overall state of the device. This defaults to 5.

	
threshold

	If value exceeds this amount, then is_active will
return True.

	
value

	Returns the mean of the values in the internal queue. This is compared
to threshold to determine whether is_active is
True.

	
class gpiozero.AnalogInputDevice(device=0, bits=None)[source]

	Represents an analog input device connected to SPI (serial interface).

Typical analog input devices are analog to digital converters [https://en.wikipedia.org/wiki/Analog-to-digital_converter] (ADCs).
Several classes are provided for specific ADC chips, including
MCP3004, MCP3008, MCP3204, and MCP3208.

The following code demonstrates reading the first channel of an MCP3008
chip attached to the Pi’s SPI pins:

from gpiozero import MCP3008

pot = MCP3008(0)
print(pot.value)

The value attribute is normalized such that its value is always
between 0.0 and 1.0 (or in special cases, such as differential sampling,
-1 to +1). Hence, you can use an analog input to control the brightness of
a PWMLED like so:

from gpiozero import MCP3008, PWMLED

pot = MCP3008(0)
led = PWMLED(17)
led.source = pot.values

	
close()[source]

	Shut down the device and release all associated resources.

	
bits

	The bit-resolution of the device/channel.

	
bus

	The SPI bus that the device is connected to. As the Pi only has a
single (user accessible) SPI bus, this always returns 0.

	
device

	The select pin that the device is connected to. The Pi has two select
pins so this will be 0 or 1.

	
raw_value

	The raw value as read from the device.

	
value

	The current value read from the device, scaled to a value between 0 and
1.

Output Devices

	
class gpiozero.OutputDevice(pin, active_high=True, initial_value=False)[source]

	Represents a generic GPIO output device.

This class extends GPIODevice to add facilities common to GPIO
output devices: an on() method to switch the device on, and a
corresponding off() method.

	Parameters:	
	pin (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin (in BCM numbering) that the device is connected to. If
this is None a GPIODeviceError will be raised.

	active_high (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), the on() method will set the GPIO to
HIGH. If False, the on() method will set the GPIO to LOW (the
off() method always does the opposite).

	initial_value (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If False (the default), the device will be off initially. If
None, the device will be left in whatever state the pin is found in
when configured for output (warning: this can be on). If True, the
device will be switched on initially.

	
off()[source]

	Turns the device off.

	
on()[source]

	Turns the device on.

	
class gpiozero.PWMOutputDevice(pin, active_high=True, initial_value=0, frequency=100)[source]

	Generic output device configured for pulse-width modulation (PWM).

	Parameters:	
	pin (int [http://docs.python.org/3.4/library/functions.html#int]) – The GPIO pin which the device is attached to. See Notes for
valid pin numbers.

	active_high (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), the on() method will set the GPIO to
HIGH. If False, the on() method will set the GPIO to LOW (the
off() method always does the opposite).

	initial_value (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If 0 (the default), the device’s duty cycle will be 0 initially.
Other values between 0 and 1 can be specified as an initial duty cycle.
Note that None cannot be specified (unlike the parent class) as
there is no way to tell PWM not to alter the state of the pin.

	frequency (int [http://docs.python.org/3.4/library/functions.html#int]) – The frequency (in Hz) of pulses emitted to drive the device. Defaults
to 100Hz.

	
blink(on_time=1, off_time=1, fade_in_time=0, fade_out_time=0, n=None, background=True)[source]

	Make the device turn on and off repeatedly.

	Parameters:	
	on_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	fade_in_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading in. Defaults to 0.

	fade_out_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds to spend fading out. Defaults to 0.

	n (int [http://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
close()[source]

	Shut down the device and release all associated resources.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

GPIODevice descendents can also be used as context managers
using the with [http://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
off()[source]

	Turns the device off.

	
on()[source]

	Turns the device on.

	
toggle()[source]

	Toggle the state of the device. If the device is currently off
(value is 0.0), this changes it to “fully” on (value is
1.0). If the device has a duty cycle (value) of 0.1, this will
toggle it to 0.9, and so on.

	
frequency

	The frequency of the pulses used with the PWM device, in Hz. The
default is 100Hz.

	
is_active

	Returns True if the device is currently active (value is
non-zero) and False otherwise.

	
value

	The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values
in between may be specified for varying levels of power in the device.

	
class gpiozero.DigitalOutputDevice(pin, active_high=True, initial_value=False)[source]

	Represents a generic output device with typical on/off behaviour.

This class extends OutputDevice with a toggle() method to
switch the device between its on and off states, and a blink() method
which uses an optional background thread to handle toggling the device
state without further interaction.

	
blink(on_time=1, off_time=1, n=None, background=True)[source]

	Make the device turn on and off repeatedly.

	Parameters:	
	on_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds on. Defaults to 1 second.

	off_time (float [http://docs.python.org/3.4/library/functions.html#float]) – Number of seconds off. Defaults to 1 second.

	n (int [http://docs.python.org/3.4/library/functions.html#int]) – Number of times to blink; None (the default) means forever.

	background (bool [http://docs.python.org/3.4/library/functions.html#bool]) – If True (the default), start a background thread to continue
blinking and return immediately. If False, only return when the
blink is finished (warning: the default value of n will result in
this method never returning).

	
close()[source]

	Shut down the device and release all associated resources.

This method is primarily intended for interactive use at the command
line. It disables the device and releases its pin for use by another
device.

You can attempt to do this simply by deleting an object, but unless
you’ve cleaned up all references to the object this may not work (even
if you’ve cleaned up all references, there’s still no guarantee the
garbage collector will actually delete the object at that point). By
contrast, the close method provides a means of ensuring that the object
is shut down.

For example, if you have a breadboard with a buzzer connected to pin
16, but then wish to attach an LED instead:

>>> from gpiozero import *
>>> bz = Buzzer(16)
>>> bz.on()
>>> bz.off()
>>> bz.close()
>>> led = LED(16)
>>> led.blink()

GPIODevice descendents can also be used as context managers
using the with [http://docs.python.org/3.4/reference/compound_stmts.html#with] statement. For example:

>>> from gpiozero import *
>>> with Buzzer(16) as bz:
... bz.on()
...
>>> with LED(16) as led:
... led.on()
...

	
off()[source]

	Turns the device off.

	
on()[source]

	Turns the device on.

	
toggle()[source]

	Reverse the state of the device. If it’s on, turn it off; if it’s off,
turn it on.

Mixin Classes

	
class gpiozero.ValuesMixin(...)[source]

	
	
values

	An infinite iterator of values read from value.

	
class gpiozero.SourceMixin(...)[source]

	
	
source

	The iterable to use as a source of values for value.

 Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gpiozero 1.1.0 documentation

Pins

As of release 1.1, the GPIO Zero library can be roughly divided into two
things: pins and the devices that are connected to them. The majority of the
documentation focuses on devices as pins are below the level that most users
are concerned with. However, some users may wish to take advantage of the
capabilities of alternative GPIO implementations or (in future) use GPIO
extender chips. This is the purpose of the pins portion of the library.

When you construct a device, you pass in a GPIO pin number. However, what the
library actually expects is a Pin implementation. If it finds a simple
integer number instead, it uses one of the following classes to provide the
Pin implementation (classes are listed in favoured order):

	gpiozero.pins.rpigpio.RPiGPIOPin

	gpiozero.pins.rpio.RPIOPin

	gpiozero.pins.native.NativePin

You can change the default pin implementation by over-writing the
DefaultPin global in devices like so:

from gpiozero.pins.native import NativePin
import gpiozero.devices
Force the default pin implementation to be NativePin
gpiozero.devices.DefaultPin = NativePin

from gpiozero import LED

This will now use NativePin instead of RPiGPIOPin
led = LED(16)

In future, this separation should allow the library to utilize pins that are
part of IO extender chips. For example:

from gpiozero import IOExtender, LED

ext = IOExtender()
led = LED(ext.pins[0])
led.on()

Warning

While the devices API is now considered stable and won’t change in
backwards incompatible ways, the pins API is not yet considered stable.
It is potentially subject to change in future versions. We welcome any
comments from testers!

Abstract Pin

	
class gpiozero.Pin[source]

	Abstract base class representing a GPIO pin or a pin from an IO extender.

Descendents should override property getters and setters to accurately
represent the capabilities of pins. The following functions must be
overridden:

	_get_function()

	_get_state()

The following functions may be overridden if applicable:

	close()

	_set_function()

	_set_state()

	_get_frequency()

	_set_frequency()

	_get_pull()

	_set_pull()

	_get_bounce()

	_set_bounce()

	_get_edges()

	_set_edges()

	_get_when_changed()

	_set_when_changed()

	output_with_state()

	input_with_pull()

Warning

Descendents must ensure that pin instances representing the same
physical hardware are identical, right down to object identity. The
framework relies on this to correctly clean up resources at interpreter
shutdown.

	
close()[source]

	Cleans up the resources allocated to the pin. After this method is
called, this Pin instance may no longer be used to query or
control the pin’s state.

	
input_with_pull(pull)[source]

	Sets the pin’s function to “input” and specifies an initial pull-up
for the pin. By default this is equivalent to performing:

pin.function = 'input'
pin.pull = pull

However, descendents may override this order to provide the smallest
possible delay between configuring the pin for input and pulling the
pin up/down (which can be important for avoiding “blips” in some
configurations).

	
output_with_state(state)[source]

	Sets the pin’s function to “output” and specifies an initial state
for the pin. By default this is equivalent to performing:

pin.function = 'output'
pin.state = state

However, descendents may override this in order to provide the smallest
possible delay between configuring the pin for output and specifying an
initial value (which can be important for avoiding “blips” in
active-low configurations).

	
bounce

	The amount of bounce detection (elimination) currently in use by edge
detection, measured in seconds. If bounce detection is not currently in
use, this is None.

If the pin does not support edge detection, attempts to set this
property will raise PinEdgeDetectUnsupported. If the pin
supports edge detection, the class must implement bounce detection,
even if only in software.

	
edges

	The edge that will trigger execution of the function or bound method
assigned to when_changed. This can be one of the strings
“both” (the default), “rising”, “falling”, or “none”.

If the pin does not support edge detection, attempts to set this
property will raise PinEdgeDetectUnsupported.

	
frequency

	The frequency (in Hz) for the pin’s PWM implementation, or None if
PWM is not currently in use. This value always defaults to None and
may be changed with certain pin types to activate or deactivate PWM.

If the pin does not support PWM, PinPWMUnsupported will be
raised when attempting to set this to a value other than None.

	
function

	The function of the pin. This property is a string indicating the
current function or purpose of the pin. Typically this is the string
“input” or “output”. However, in some circumstances it can be other
strings indicating non-GPIO related functionality.

With certain pin types (e.g. GPIO pins), this attribute can be changed
to configure the function of a pin. If an invalid function is
specified, for this attribute, PinInvalidFunction will be
raised. If this pin is fixed function and an attempt is made to set
this attribute, PinFixedFunction will be raised.

	
pull

	The pull-up state of the pin represented as a string. This is typically
one of the strings “up”, “down”, or “floating” but additional values
may be supported by the underlying hardware.

If the pin does not support changing pull-up state (for example because
of a fixed pull-up resistor), attempts to set this property will raise
PinFixedPull. If the specified value is not supported by the
underlying hardware, PinInvalidPull is raised.

	
state

	The state of the pin. This is 0 for low, and 1 for high. As a low level
view of the pin, no swapping is performed in the case of pull ups (see
pull for more information).

If PWM is currently active (when frequency is not None),
this represents the PWM duty cycle as a value between 0.0 and 1.0.

If a pin is currently configured for input, and an attempt is made to
set this attribute, PinSetInput will be raised. If an invalid
value is specified for this attribute, PinInvalidState will be
raised.

	
when_changed

	A function or bound method to be called when the pin’s state changes
(more specifically when the edge specified by edges is detected
on the pin). The function or bound method must take no parameters.

If the pin does not support edge detection, attempts to set this
property will raise PinEdgeDetectUnsupported.

RPiGPIOPin

	
class gpiozero.pins.rpigpio.RPiGPIOPin[source]

	Uses the RPi.GPIO [https://pypi.python.org/pypi/RPi.GPIO] library to interface to the Pi’s GPIO pins. This is
the default pin implementation if the RPi.GPIO library is installed.
Supports all features including PWM (via software).

RPIOPin

	
class gpiozero.pins.rpio.RPIOPin[source]

	Uses the RPIO [https://pythonhosted.org/RPIO/] library to interface to the Pi’s GPIO pins. This is
the default pin implementation if the RPi.GPIO library is not installed,
but RPIO is. Supports all features including PWM (hardware via DMA).

Note

Please note that at the time of writing, RPIO is only compatible with
Pi 1’s; the Raspberry Pi 2 Model B is not supported. Also note that
root access is required so scripts must typically be run with sudo.

NativePin

	
class gpiozero.pins.native.NativePin[source]

	Uses a built-in pure Python implementation to interface to the Pi’s GPIO
pins. This is the default pin implementation if no third-party libraries
are discovered.

Warning

This implementation does not currently support PWM. Attempting to
use any class which requests PWM will raise an exception. This
implementation is also experimental; we make no guarantees it will
not eat your Pi for breakfast!

 Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Gpiozero 1.1.0 documentation

Changelog

Release 1.1.0 (2016-02-08)

	Documentation converted to reST and expanded to include generic classes
and several more recipes (#80 [https://github.com/RPi-Distro/python-gpiozero/issues/80], #82 [https://github.com/RPi-Distro/python-gpiozero/issues/82], #101 [https://github.com/RPi-Distro/python-gpiozero/issues/101], #119 [https://github.com/RPi-Distro/python-gpiozero/issues/119], #135 [https://github.com/RPi-Distro/python-gpiozero/issues/135], #168 [https://github.com/RPi-Distro/python-gpiozero/issues/168])

	New LEDBarGraph class (many thanks to Martin O’Hanlon!) (#126 [https://github.com/RPi-Distro/python-gpiozero/issues/126],
#176 [https://github.com/RPi-Distro/python-gpiozero/issues/176])

	New Pin implementation abstracts out the concept of a GPIO pin
paving the way for alternate library support and IO extenders in future
(#141 [https://github.com/RPi-Distro/python-gpiozero/issues/141])

	New LEDBoard.blink() method which works properly even when background
is set to False (#94 [https://github.com/RPi-Distro/python-gpiozero/issues/94], #161 [https://github.com/RPi-Distro/python-gpiozero/issues/161])

	New RGBLED.blink() method which implements (rudimentary) color fading
too! (#135 [https://github.com/RPi-Distro/python-gpiozero/issues/135], #174 [https://github.com/RPi-Distro/python-gpiozero/issues/174])

	New initial_value attribute on OutputDevice ensures consistent
behaviour on construction (#118 [https://github.com/RPi-Distro/python-gpiozero/issues/118])

	New active_high attribute on PWMOutputDevice and RGBLED
allows use of common anode devices (#143 [https://github.com/RPi-Distro/python-gpiozero/issues/143], #154 [https://github.com/RPi-Distro/python-gpiozero/issues/154])

	Loads of new ADC chips supported (many thanks to GitHub user pcopa!)
(#150 [https://github.com/RPi-Distro/python-gpiozero/issues/150])

Release 1.0.0 (2015-11-16)

	Debian packaging added (#44 [https://github.com/RPi-Distro/python-gpiozero/issues/44])

	PWMLED class added (#58 [https://github.com/RPi-Distro/python-gpiozero/issues/58])

	TemperatureSensor removed pending further work (#93 [https://github.com/RPi-Distro/python-gpiozero/issues/93])

	Buzzer.beep() alias method added (#75 [https://github.com/RPi-Distro/python-gpiozero/issues/75])

	Motor PWM devices exposed, and Robot motor devices exposed
(#107 [https://github.com/RPi-Distro/python-gpiozero/issues/107])

Release 0.9.0 (2015-10-25)

Fourth public beta

	Added source and values properties to all relevant classes (#76 [https://github.com/RPi-Distro/python-gpiozero/issues/76])

	Fix names of parameters in Motor constructor (#79 [https://github.com/RPi-Distro/python-gpiozero/issues/79])

	Added wrappers for LED groups on add-on boards (#81 [https://github.com/RPi-Distro/python-gpiozero/issues/81])

Release 0.8.0 (2015-10-16)

Third public beta

	Added generic AnalogInputDevice class along with specific classes
for the MCP3008 and MCP3004 (#41 [https://github.com/RPi-Distro/python-gpiozero/issues/41])

	Fixed DigitalOutputDevice.blink() (#57 [https://github.com/RPi-Distro/python-gpiozero/issues/57])

Release 0.7.0 (2015-10-09)

Second public beta

Release 0.6.0 (2015-09-28)

First public beta

Release 0.5.0 (2015-09-24)

Release 0.4.0 (2015-09-23)

Release 0.3.0 (2015-09-22)

Release 0.2.0 (2015-09-21)

Initial release

 Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Gpiozero 1.1.0 documentation

License

Copyright 2015 Raspberry Pi Foundation [http://raspberrypi.org/].

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Gpiozero 1.1.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | V
 | W

A

 	

 	all (gpiozero.FishDish attribute)

 	

 	(gpiozero.TrafficHat attribute)

 	(gpiozero.TrafficLightsBuzzer attribute)

 	amber (gpiozero.PiTraffic attribute)

 	

 	(gpiozero.TrafficLights attribute)

 	

 	AnalogInputDevice (class in gpiozero)

B

 	

 	backward() (gpiozero.CamJamKitRobot method)

 	

 	(gpiozero.Motor method)

 	(gpiozero.Robot method)

 	(gpiozero.RyanteckRobot method)

 	beep() (gpiozero.Buzzer method)

 	bits (gpiozero.AnalogInputDevice attribute)

 	blink() (gpiozero.DigitalOutputDevice method)

 	

 	(gpiozero.FishDish method)

 	(gpiozero.LED method)

 	(gpiozero.LEDBoard method)

 	(gpiozero.PWMLED method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.PiLiter method)

 	(gpiozero.PiTraffic method)

 	(gpiozero.RGBLED method)

 	(gpiozero.TrafficHat method)

 	(gpiozero.TrafficLights method)

 	(gpiozero.TrafficLightsBuzzer method)

 	

 	bounce (gpiozero.Pin attribute)

 	bus (gpiozero.AnalogInputDevice attribute)

 	

 	(gpiozero.MCP3004 attribute)

 	(gpiozero.MCP3008 attribute)

 	(gpiozero.MCP3204 attribute)

 	(gpiozero.MCP3208 attribute)

 	(gpiozero.MCP3301 attribute)

 	(gpiozero.MCP3302 attribute)

 	(gpiozero.MCP3304 attribute)

 	Button (class in gpiozero)

 	Buzzer (class in gpiozero)

C

 	

 	CamJamKitRobot (class in gpiozero)

 	channel (gpiozero.MCP3004 attribute)

 	

 	(gpiozero.MCP3008 attribute)

 	(gpiozero.MCP3204 attribute)

 	(gpiozero.MCP3208 attribute)

 	(gpiozero.MCP3302 attribute)

 	(gpiozero.MCP3304 attribute)

 	close() (gpiozero.AnalogInputDevice method)

 	

 	(gpiozero.CamJamKitRobot method)

 	(gpiozero.CompositeDevice method)

 	(gpiozero.DigitalOutputDevice method)

 	(gpiozero.FishDish method)

 	(gpiozero.GPIODevice method)

 	(gpiozero.LEDBarGraph method)

 	(gpiozero.LEDBoard method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.PiLiter method)

 	(gpiozero.PiLiterBarGraph method)

 	(gpiozero.PiTraffic method)

 	(gpiozero.Pin method)

 	(gpiozero.Robot method)

 	(gpiozero.RyanteckRobot method)

 	(gpiozero.SmoothedInputDevice method)

 	(gpiozero.TrafficHat method)

 	(gpiozero.TrafficLights method)

 	(gpiozero.TrafficLightsBuzzer method)

 	

 	closed (gpiozero.CompositeDevice attribute)

 	color (gpiozero.RGBLED attribute)

 	CompositeDevice (class in gpiozero)

D

 	

 	device (gpiozero.AnalogInputDevice attribute)

 	

 	(gpiozero.MCP3004 attribute)

 	(gpiozero.MCP3008 attribute)

 	(gpiozero.MCP3204 attribute)

 	(gpiozero.MCP3208 attribute)

 	(gpiozero.MCP3301 attribute)

 	(gpiozero.MCP3302 attribute)

 	(gpiozero.MCP3304 attribute)

 	differential (gpiozero.MCP3004 attribute)

 	

 	(gpiozero.MCP3008 attribute)

 	(gpiozero.MCP3204 attribute)

 	(gpiozero.MCP3208 attribute)

 	(gpiozero.MCP3302 attribute)

 	(gpiozero.MCP3304 attribute)

 	

 	DigitalInputDevice (class in gpiozero)

 	DigitalOutputDevice (class in gpiozero)

E

 	

 	edges (gpiozero.Pin attribute)

F

 	

 	FishDish (class in gpiozero)

 	forward() (gpiozero.CamJamKitRobot method)

 	

 	(gpiozero.Motor method)

 	(gpiozero.Robot method)

 	(gpiozero.RyanteckRobot method)

 	

 	frequency (gpiozero.Pin attribute)

 	

 	(gpiozero.PWMOutputDevice attribute)

 	function (gpiozero.Pin attribute)

G

 	

 	GPIODevice (class in gpiozero)

 	

 	green (gpiozero.PiTraffic attribute)

 	

 	(gpiozero.TrafficLights attribute)

I

 	

 	input_with_pull() (gpiozero.Pin method)

 	InputDevice (class in gpiozero)

 	is_active (gpiozero.Buzzer attribute)

 	

 	(gpiozero.GPIODevice attribute)

 	(gpiozero.PWMOutputDevice attribute)

 	(gpiozero.SmoothedInputDevice attribute)

 	

 	is_lit (gpiozero.LED attribute)

 	

 	(gpiozero.PWMLED attribute)

 	(gpiozero.RGBLED attribute)

 	is_pressed (gpiozero.Button attribute)

L

 	

 	LED (class in gpiozero)

 	LEDBarGraph (class in gpiozero)

 	LEDBoard (class in gpiozero)

 	leds (gpiozero.LEDBarGraph attribute)

 	

 	(gpiozero.LEDBoard attribute)

 	(gpiozero.PiLiter attribute)

 	(gpiozero.PiLiterBarGraph attribute)

 	(gpiozero.PiTraffic attribute)

 	(gpiozero.TrafficLights attribute)

 	

 	left() (gpiozero.CamJamKitRobot method)

 	

 	(gpiozero.Robot method)

 	(gpiozero.RyanteckRobot method)

 	left_motor (gpiozero.CamJamKitRobot attribute)

 	

 	(gpiozero.Robot attribute)

 	(gpiozero.RyanteckRobot attribute)

 	light_detected (gpiozero.LightSensor attribute)

 	LightSensor (class in gpiozero)

M

 	

 	MCP3004 (class in gpiozero)

 	MCP3008 (class in gpiozero)

 	MCP3204 (class in gpiozero)

 	MCP3208 (class in gpiozero)

 	MCP3301 (class in gpiozero)

 	

 	MCP3302 (class in gpiozero)

 	MCP3304 (class in gpiozero)

 	motion_detected (gpiozero.MotionSensor attribute)

 	MotionSensor (class in gpiozero)

 	Motor (class in gpiozero)

N

 	

 	NativePin (class in gpiozero.pins.native)

O

 	

 	off() (gpiozero.Buzzer method)

 	

 	(gpiozero.DigitalOutputDevice method)

 	(gpiozero.FishDish method)

 	(gpiozero.LED method)

 	(gpiozero.LEDBarGraph method)

 	(gpiozero.LEDBoard method)

 	(gpiozero.OutputDevice method)

 	(gpiozero.PWMLED method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.PiLiter method)

 	(gpiozero.PiLiterBarGraph method)

 	(gpiozero.PiTraffic method)

 	(gpiozero.RGBLED method)

 	(gpiozero.TrafficHat method)

 	(gpiozero.TrafficLights method)

 	(gpiozero.TrafficLightsBuzzer method)

 	on() (gpiozero.Buzzer method)

 	

 	(gpiozero.DigitalOutputDevice method)

 	(gpiozero.FishDish method)

 	(gpiozero.LED method)

 	(gpiozero.LEDBarGraph method)

 	(gpiozero.LEDBoard method)

 	(gpiozero.OutputDevice method)

 	(gpiozero.PWMLED method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.PiLiter method)

 	(gpiozero.PiLiterBarGraph method)

 	(gpiozero.PiTraffic method)

 	(gpiozero.RGBLED method)

 	(gpiozero.TrafficHat method)

 	(gpiozero.TrafficLights method)

 	(gpiozero.TrafficLightsBuzzer method)

 	

 	output_with_state() (gpiozero.Pin method)

 	OutputDevice (class in gpiozero)

P

 	

 	partial (gpiozero.SmoothedInputDevice attribute)

 	PiLiter (class in gpiozero)

 	PiLiterBarGraph (class in gpiozero)

 	Pin (class in gpiozero)

 	pin (gpiozero.Button attribute)

 	

 	(gpiozero.Buzzer attribute)

 	(gpiozero.GPIODevice attribute)

 	(gpiozero.LED attribute)

 	(gpiozero.LightSensor attribute)

 	(gpiozero.MotionSensor attribute)

 	(gpiozero.PWMLED attribute)

 	

 	PiTraffic (class in gpiozero)

 	pull (gpiozero.Pin attribute)

 	pull_up (gpiozero.Button attribute)

 	

 	(gpiozero.InputDevice attribute)

 	PWMLED (class in gpiozero)

 	PWMOutputDevice (class in gpiozero)

Q

 	

 	queue_len (gpiozero.SmoothedInputDevice attribute)

R

 	

 	raw_value (gpiozero.AnalogInputDevice attribute)

 	red (gpiozero.PiTraffic attribute)

 	

 	(gpiozero.TrafficLights attribute)

 	reverse() (gpiozero.CamJamKitRobot method)

 	

 	(gpiozero.Robot method)

 	(gpiozero.RyanteckRobot method)

 	RGBLED (class in gpiozero)

 	right() (gpiozero.CamJamKitRobot method)

 	

 	(gpiozero.Robot method)

 	(gpiozero.RyanteckRobot method)

 	

 	right_motor (gpiozero.CamJamKitRobot attribute)

 	

 	(gpiozero.Robot attribute)

 	(gpiozero.RyanteckRobot attribute)

 	Robot (class in gpiozero)

 	RPiGPIOPin (class in gpiozero.pins.rpigpio)

 	RPIOPin (class in gpiozero.pins.rpio)

 	RyanteckRobot (class in gpiozero)

S

 	

 	SmoothedInputDevice (class in gpiozero)

 	source (gpiozero.CamJamKitRobot attribute)

 	

 	(gpiozero.FishDish attribute)

 	(gpiozero.LEDBarGraph attribute)

 	(gpiozero.LEDBoard attribute)

 	(gpiozero.PiLiter attribute)

 	(gpiozero.PiLiterBarGraph attribute)

 	(gpiozero.PiTraffic attribute)

 	(gpiozero.Robot attribute)

 	(gpiozero.RyanteckRobot attribute)

 	(gpiozero.SourceMixin attribute)

 	(gpiozero.TrafficHat attribute)

 	(gpiozero.TrafficLights attribute)

 	(gpiozero.TrafficLightsBuzzer attribute)

 	SourceMixin (class in gpiozero)

 	

 	state (gpiozero.Pin attribute)

 	stop() (gpiozero.CamJamKitRobot method)

 	

 	(gpiozero.Motor method)

 	(gpiozero.Robot method)

 	(gpiozero.RyanteckRobot method)

T

 	

 	threshold (gpiozero.SmoothedInputDevice attribute)

 	toggle() (gpiozero.Buzzer method)

 	

 	(gpiozero.DigitalOutputDevice method)

 	(gpiozero.FishDish method)

 	(gpiozero.LED method)

 	(gpiozero.LEDBarGraph method)

 	(gpiozero.LEDBoard method)

 	(gpiozero.PWMLED method)

 	(gpiozero.PWMOutputDevice method)

 	(gpiozero.PiLiter method)

 	(gpiozero.PiLiterBarGraph method)

 	(gpiozero.PiTraffic method)

 	(gpiozero.RGBLED method)

 	(gpiozero.TrafficHat method)

 	(gpiozero.TrafficLights method)

 	(gpiozero.TrafficLightsBuzzer method)

 	TrafficHat (class in gpiozero)

 	

 	TrafficLights (class in gpiozero)

 	TrafficLightsBuzzer (class in gpiozero)

V

 	

 	value (gpiozero.AnalogInputDevice attribute)

 	

 	(gpiozero.CamJamKitRobot attribute)

 	(gpiozero.FishDish attribute)

 	(gpiozero.GPIODevice attribute)

 	(gpiozero.LEDBarGraph attribute)

 	(gpiozero.LEDBoard attribute)

 	(gpiozero.MCP3004 attribute)

 	(gpiozero.MCP3008 attribute)

 	(gpiozero.MCP3204 attribute)

 	(gpiozero.MCP3208 attribute)

 	(gpiozero.MCP3301 attribute)

 	(gpiozero.MCP3302 attribute)

 	(gpiozero.MCP3304 attribute)

 	(gpiozero.PWMLED attribute)

 	(gpiozero.PWMOutputDevice attribute)

 	(gpiozero.PiLiter attribute)

 	(gpiozero.PiLiterBarGraph attribute)

 	(gpiozero.PiTraffic attribute)

 	(gpiozero.Robot attribute)

 	(gpiozero.RyanteckRobot attribute)

 	(gpiozero.SmoothedInputDevice attribute)

 	(gpiozero.TrafficHat attribute)

 	(gpiozero.TrafficLights attribute)

 	(gpiozero.TrafficLightsBuzzer attribute)

 	values (gpiozero.CamJamKitRobot attribute)

 	

 	(gpiozero.CompositeDevice attribute)

 	(gpiozero.FishDish attribute)

 	(gpiozero.GPIODevice attribute)

 	(gpiozero.LEDBarGraph attribute)

 	(gpiozero.LEDBoard attribute)

 	(gpiozero.PiLiter attribute)

 	(gpiozero.PiLiterBarGraph attribute)

 	(gpiozero.PiTraffic attribute)

 	(gpiozero.Robot attribute)

 	(gpiozero.RyanteckRobot attribute)

 	(gpiozero.TrafficHat attribute)

 	(gpiozero.TrafficLights attribute)

 	(gpiozero.TrafficLightsBuzzer attribute)

 	(gpiozero.ValuesMixin attribute)

 	

 	ValuesMixin (class in gpiozero)

W

 	

 	wait_for_active() (gpiozero.WaitableInputDevice method)

 	wait_for_dark() (gpiozero.LightSensor method)

 	wait_for_inactive() (gpiozero.WaitableInputDevice method)

 	wait_for_light() (gpiozero.LightSensor method)

 	wait_for_motion() (gpiozero.MotionSensor method)

 	wait_for_no_motion() (gpiozero.MotionSensor method)

 	wait_for_press() (gpiozero.Button method)

 	wait_for_release() (gpiozero.Button method)

 	WaitableInputDevice (class in gpiozero)

 	

 	when_activated (gpiozero.WaitableInputDevice attribute)

 	when_changed (gpiozero.Pin attribute)

 	when_dark (gpiozero.LightSensor attribute)

 	when_deactivated (gpiozero.WaitableInputDevice attribute)

 	when_light (gpiozero.LightSensor attribute)

 	when_motion (gpiozero.MotionSensor attribute)

 	when_no_motion (gpiozero.MotionSensor attribute)

 	when_pressed (gpiozero.Button attribute)

 	when_released (gpiozero.Button attribute)

 Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

 _modules/gpiozero/devices.html

 Navigation

 		
 index

 		Gpiozero 1.1.0 documentation »

 		Module code »

 Source code for gpiozero.devices

from __future__ import (
 unicode_literals,
 print_function,
 absolute_import,
 division,
)
nstr = str
str = type('')

import atexit
import weakref
from threading import Thread, Event, RLock
from collections import deque
from types import FunctionType

from .exc import GPIODeviceError, GPIODeviceClosed, InputDeviceError

Get a pin implementation to use as the default; we prefer RPi.GPIO's here
as it supports PWM, and all Pi revisions. If no third-party libraries are
available, however, we fall back to a pure Python implementation which
supports platforms like PyPy
from .pins import PINS_CLEANUP
try:
 from .pins.rpigpio import RPiGPIOPin
 DefaultPin = RPiGPIOPin
except ImportError:
 try:
 from .pins.rpio import RPIOPin
 DefaultPin = RPIOPin
 except ImportError:
 from .pins.native import NativePin
 DefaultPin = NativePin

_THREADS = set()
_PINS = set()
Due to interactions between RPi.GPIO cleanup and the GPIODevice.close()
method the same thread may attempt to acquire this lock, leading to deadlock
unless the lock is re-entrant
_PINS_LOCK = RLock()

def _shutdown():
 while _THREADS:
 for t in _THREADS.copy():
 t.stop()
 with _PINS_LOCK:
 while _PINS:
 _PINS.pop().close()
 # Any cleanup routines registered by pins libraries must be called *after*
 # cleanup of pin objects used by devices
 for routine in PINS_CLEANUP:
 routine()

atexit.register(_shutdown)

class GPIOMeta(type):
 # NOTE Yes, this is a metaclass. Don't be scared - it's a simple one.

 def __new__(mcls, name, bases, cls_dict):
 # Construct the class as normal
 cls = super(GPIOMeta, mcls).__new__(mcls, name, bases, cls_dict)
 for attr_name, attr in cls_dict.items():
 # If there's a method in the class which has no docstring, search
 # the base classes recursively for a docstring to copy
 if isinstance(attr, FunctionType) and not attr.__doc__:
 for base_cls in cls.__mro__:
 if hasattr(base_cls, attr_name):
 base_fn = getattr(base_cls, attr_name)
 if base_fn.__doc__:
 attr.__doc__ = base_fn.__doc__
 break
 return cls

 def __call__(mcls, *args, **kwargs):
 # Construct the instance as normal and ensure it's an instance of
 # GPIOBase (defined below with a custom __setattrs__)
 result = super(GPIOMeta, mcls).__call__(*args, **kwargs)
 assert isinstance(result, GPIOBase)
 # At this point __new__ and __init__ have all been run. We now fix the
 # set of attributes on the class by dir'ing the instance and creating a
 # frozenset of the result called __attrs__ (which is queried by
 # GPIOBase.__setattr__)
 result.__attrs__ = frozenset(dir(result))
 return result

Cross-version compatible method of using a metaclass
class GPIOBase(GPIOMeta(nstr('GPIOBase'), (), {})):
 def __setattr__(self, name, value):
 # This overridden __setattr__ simply ensures that additional attributes
 # cannot be set on the class after construction (it manages this in
 # conjunction with the meta-class above). Traditionally, this is
 # managed with __slots__; however, this doesn't work with Python's
 # multiple inheritance system which we need to use in order to avoid
 # repeating the "source" and "values" property code in myriad places
 if hasattr(self, '__attrs__') and name not in self.__attrs__:
 raise AttributeError(
 "'%s' object has no attribute '%s'" % (
 self.__class__.__name__, name))
 return super(GPIOBase, self).__setattr__(name, value)

 def __del__(self):
 self.close()

 def close(self):
 # This is a placeholder which is simply here to ensure close() can be
 # safely called from subclasses without worrying whether super-class'
 # have it (which in turn is useful in conjunction with the SourceMixin
 # class).
 """
 Shut down the device and release all associated resources.
 """
 pass

 @property
 def closed(self):
 """
 Returns ``True`` if the device is closed (see the :meth:`close`
 method). Once a device is closed you can no longer use any other
 methods or properties to control or query the device.
 """
 return False

 def __enter__(self):
 return self

 def __exit__(self, exc_type, exc_value, exc_tb):
 self.close()

[docs]class ValuesMixin(object):
 # NOTE Use this mixin *first* in the parent list

 @property
 def values(self):
 """
 An infinite iterator of values read from `value`.
 """
 while True:
 try:
 yield self.value
 except GPIODeviceClosed:
 break

[docs]class SourceMixin(object):
 # NOTE Use this mixin *first* in the parent list

 def __init__(self, *args, **kwargs):
 self._source = None
 self._source_thread = None
 super(SourceMixin, self).__init__(*args, **kwargs)

 def close(self):
 try:
 super(SourceMixin, self).close()
 except AttributeError:
 pass
 self.source = None

 def _copy_values(self, source):
 for v in source:
 self.value = v
 if self._source_thread.stopping.wait(0):
 break

 @property
 def source(self):
 """
 The iterable to use as a source of values for `value`.
 """
 return self._source

 @source.setter
 def source(self, value):
 if self._source_thread is not None:
 self._source_thread.stop()
 self._source_thread = None
 self._source = value
 if value is not None:
 self._source_thread = GPIOThread(target=self._copy_values, args=(value,))
 self._source_thread.start()

[docs]class CompositeDevice(ValuesMixin, GPIOBase):
 """
 Represents a device composed of multiple GPIO devices like simple HATs,
 H-bridge motor controllers, robots composed of multiple motors, etc.
 """
 def __repr__(self):
 return "<gpiozero.%s object>" % (self.__class__.__name__)

[docs]class GPIODevice(ValuesMixin, GPIOBase):
 """
 Represents a generic GPIO device.

 This is the class at the root of the gpiozero class hierarchy. It handles
 ensuring that two GPIO devices do not share the same pin, and provides
 basic services applicable to all devices (specifically the :attr:`pin`
 property, :attr:`is_active` property, and the :attr:`close` method).

 :param int pin:
 The GPIO pin (in BCM numbering) that the device is connected to. If
 this is ``None`` a :exc:`GPIODeviceError` will be raised.
 """
 def __init__(self, pin=None):
 super(GPIODevice, self).__init__()
 # self._pin must be set before any possible exceptions can be raised
 # because it's accessed in __del__. However, it mustn't be given the
 # value of pin until we've verified that it isn't already allocated
 self._pin = None
 if pin is None:
 raise GPIODeviceError('No pin given')
 if isinstance(pin, int):
 pin = DefaultPin(pin)
 with _PINS_LOCK:
 if pin in _PINS:
 raise GPIODeviceError(
 'pin %r is already in use by another gpiozero object' % pin
)
 _PINS.add(pin)
 self._pin = pin
 self._active_state = True
 self._inactive_state = False

 def _read(self):
 try:
 return self.pin.state == self._active_state
 except TypeError:
 self._check_open()
 raise

 def _fire_events(self):
 pass

 def _check_open(self):
 if self.closed:
 raise GPIODeviceClosed(
 '%s is closed or uninitialized' % self.__class__.__name__)

[docs] def close(self):
 """
 Shut down the device and release all associated resources.

 This method is primarily intended for interactive use at the command
 line. It disables the device and releases its pin for use by another
 device.

 You can attempt to do this simply by deleting an object, but unless
 you've cleaned up all references to the object this may not work (even
 if you've cleaned up all references, there's still no guarantee the
 garbage collector will actually delete the object at that point). By
 contrast, the close method provides a means of ensuring that the object
 is shut down.

 For example, if you have a breadboard with a buzzer connected to pin
 16, but then wish to attach an LED instead:

 >>> from gpiozero import *
 >>> bz = Buzzer(16)
 >>> bz.on()
 >>> bz.off()
 >>> bz.close()
 >>> led = LED(16)
 >>> led.blink()

 :class:`GPIODevice` descendents can also be used as context managers
 using the :keyword:`with` statement. For example:

 >>> from gpiozero import *
 >>> with Buzzer(16) as bz:
 ... bz.on()
 ...
 >>> with LED(16) as led:
 ... led.on()
 ...
 """
 super(GPIODevice, self).close()
 with _PINS_LOCK:
 pin = self._pin
 self._pin = None
 if pin in _PINS:
 _PINS.remove(pin)
 pin.close()

 @property
 def closed(self):
 return self._pin is None

 @property
 def pin(self):
 """
 The :class:`Pin` that the device is connected to. This will be ``None``
 if the device has been closed (see the :meth:`close` method). When
 dealing with GPIO pins, query ``pin.number`` to discover the GPIO
 pin (in BCM numbering) that the device is connected to.
 """
 return self._pin

 @property
 def value(self):
 """
 Returns ``True`` if the device is currently active and ``False``
 otherwise.
 """
 return self._read()

 is_active = value

 def __repr__(self):
 try:
 return "<gpiozero.%s object on pin %r, is_active=%s>" % (
 self.__class__.__name__, self.pin, self.is_active)
 except GPIODeviceClosed:
 return "<gpiozero.%s object closed>" % self.__class__.__name__

class GPIOThread(Thread):
 def __init__(self, group=None, target=None, name=None, args=(), kwargs={}):
 super(GPIOThread, self).__init__(group, target, name, args, kwargs)
 self.stopping = Event()
 self.daemon = True

 def start(self):
 self.stopping.clear()
 _THREADS.add(self)
 super(GPIOThread, self).start()

 def stop(self):
 self.stopping.set()
 self.join()

 def join(self):
 super(GPIOThread, self).join()
 _THREADS.discard(self)

class GPIOQueue(GPIOThread):
 def __init__(self, parent, queue_len=5, sample_wait=0.0, partial=False):
 assert isinstance(parent, GPIODevice)
 super(GPIOQueue, self).__init__(target=self.fill)
 if queue_len < 1:
 raise InputDeviceError('queue_len must be at least one')
 self.queue = deque(maxlen=queue_len)
 self.partial = partial
 self.sample_wait = sample_wait
 self.full = Event()
 self.parent = weakref.proxy(parent)

 @property
 def value(self):
 if not self.partial:
 self.full.wait()
 try:
 return sum(self.queue) / len(self.queue)
 except ZeroDivisionError:
 # No data == inactive value
 return 0.0

 def fill(self):
 try:
 while (not self.stopping.wait(self.sample_wait) and
 len(self.queue) < self.queue.maxlen):
 self.queue.append(self.parent._read())
 if self.partial:
 self.parent._fire_events()
 self.full.set()
 while not self.stopping.wait(self.sample_wait):
 self.queue.append(self.parent._read())
 self.parent._fire_events()
 except ReferenceError:
 # Parent is dead; time to die!
 pass

 © Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

_modules/gpiozero/output_devices.html

 Navigation

 		
 index

 		Gpiozero 1.1.0 documentation »

 		Module code »

 Source code for gpiozero.output_devices

from __future__ import (
 unicode_literals,
 print_function,
 absolute_import,
 division,
)

import warnings
from time import sleep
from threading import Lock
from itertools import repeat, cycle, chain

from .exc import OutputDeviceError, GPIODeviceError, GPIODeviceClosed
from .devices import GPIODevice, GPIOThread, CompositeDevice, SourceMixin

[docs]class OutputDevice(SourceMixin, GPIODevice):
 """
 Represents a generic GPIO output device.

 This class extends :class:`GPIODevice` to add facilities common to GPIO
 output devices: an :meth:`on` method to switch the device on, and a
 corresponding :meth:`off` method.

 :param int pin:
 The GPIO pin (in BCM numbering) that the device is connected to. If
 this is ``None`` a :exc:`GPIODeviceError` will be raised.

 :param bool active_high:
 If ``True`` (the default), the :meth:`on` method will set the GPIO to
 HIGH. If ``False``, the :meth:`on` method will set the GPIO to LOW (the
 :meth:`off` method always does the opposite).

 :param bool initial_value:
 If ``False`` (the default), the device will be off initially. If
 ``None``, the device will be left in whatever state the pin is found in
 when configured for output (warning: this can be on). If ``True``, the
 device will be switched on initially.
 """
 def __init__(self, pin=None, active_high=True, initial_value=False):
 self._active_high = active_high
 super(OutputDevice, self).__init__(pin)
 self._active_state = True if active_high else False
 self._inactive_state = False if active_high else True
 if initial_value is None:
 self.pin.function = 'output'
 elif initial_value:
 self.pin.output_with_state(self._active_state)
 else:
 self.pin.output_with_state(self._inactive_state)

 def _write(self, value):
 if not self.active_high:
 value = not value
 try:
 self.pin.state = bool(value)
 except ValueError:
 self._check_open()
 raise

[docs] def on(self):
 """
 Turns the device on.
 """
 self._write(True)

[docs] def off(self):
 """
 Turns the device off.
 """
 self._write(False)

 @property
 def value(self):
 return super(OutputDevice, self).value

 @value.setter
 def value(self, value):
 self._write(value)

 @property
 def active_high(self):
 return self._active_high

 def __repr__(self):
 try:
 return '<gpiozero.%s object on pin %r, active_high=%s, is_active=%s>' % (
 self.__class__.__name__, self.pin, self.active_high, self.is_active)
 except:
 return super(OutputDevice, self).__repr__()

[docs]class DigitalOutputDevice(OutputDevice):
 """
 Represents a generic output device with typical on/off behaviour.

 This class extends :class:`OutputDevice` with a :meth:`toggle` method to
 switch the device between its on and off states, and a :meth:`blink` method
 which uses an optional background thread to handle toggling the device
 state without further interaction.
 """
 def __init__(self, pin=None, active_high=True, initial_value=False):
 self._blink_thread = None
 super(DigitalOutputDevice, self).__init__(pin, active_high, initial_value)
 self._lock = Lock()

[docs] def close(self):
 self._stop_blink()
 super(DigitalOutputDevice, self).close()

[docs] def on(self):
 self._stop_blink()
 self._write(True)

[docs] def off(self):
 self._stop_blink()
 self._write(False)

[docs] def toggle(self):
 """
 Reverse the state of the device. If it's on, turn it off; if it's off,
 turn it on.
 """
 with self._lock:
 if self.is_active:
 self.off()
 else:
 self.on()

[docs] def blink(self, on_time=1, off_time=1, n=None, background=True):
 """
 Make the device turn on and off repeatedly.

 :param float on_time:
 Number of seconds on. Defaults to 1 second.

 :param float off_time:
 Number of seconds off. Defaults to 1 second.

 :param int n:
 Number of times to blink; ``None`` (the default) means forever.

 :param bool background:
 If ``True`` (the default), start a background thread to continue
 blinking and return immediately. If ``False``, only return when the
 blink is finished (warning: the default value of *n* will result in
 this method never returning).
 """
 self._stop_blink()
 self._blink_thread = GPIOThread(
 target=self._blink_device, args=(on_time, off_time, n)
)
 self._blink_thread.start()
 if not background:
 self._blink_thread.join()
 self._blink_thread = None

 def _stop_blink(self):
 if self._blink_thread:
 self._blink_thread.stop()
 self._blink_thread = None

 def _blink_device(self, on_time, off_time, n):
 iterable = repeat(0) if n is None else repeat(0, n)
 for i in iterable:
 self._write(True)
 if self._blink_thread.stopping.wait(on_time):
 break
 self._write(False)
 if self._blink_thread.stopping.wait(off_time):
 break

[docs]class LED(DigitalOutputDevice):
 """
 Extends :class:`DigitalOutputDevice` and represents a light emitting diode
 (LED).

 Connect the cathode (short leg, flat side) of the LED to a ground pin;
 connect the anode (longer leg) to a limiting resistor; connect the other
 side of the limiting resistor to a GPIO pin (the limiting resistor can be
 placed either side of the LED).

 The following example will light the LED::

 from gpiozero import LED

 led = LED(17)
 led.on()

 :param int pin:
 The GPIO pin which the LED is attached to. See :doc:`notes` for valid
 pin numbers.

 :param bool active_high:
 If ``True`` (the default), the LED will operate normally with the
 circuit described above. If ``False`` you should wire the cathode to
 the GPIO pin, and the anode to a 3V3 pin (via a limiting resistor).

 :param bool initial_value:
 If ``False`` (the default), the LED will be off initially. If
 ``None``, the LED will be left in whatever state the pin is found in
 when configured for output (warning: this can be on). If ``True``, the
 LED will be switched on initially.
 """
 pass

LED.is_lit = LED.is_active

[docs]class Buzzer(DigitalOutputDevice):
 """
 Extends :class:`DigitalOutputDevice` and represents a digital buzzer
 component.

 Connect the cathode (negative pin) of the buzzer to a ground pin; connect
 the other side to any GPIO pin.

 The following example will sound the buzzer::

 from gpiozero import Buzzer

 bz = Buzzer(3)
 bz.on()

 :param int pin:
 The GPIO pin which the buzzer is attached to. See :doc:`notes` for
 valid pin numbers.

 :param bool active_high:
 If ``True`` (the default), the buzzer will operate normally with the
 circuit described above. If ``False`` you should wire the cathode to
 the GPIO pin, and the anode to a 3V3 pin.

 :param bool initial_value:
 If ``False`` (the default), the buzzer will be silent initially. If
 ``None``, the buzzer will be left in whatever state the pin is found in
 when configured for output (warning: this can be on). If ``True``, the
 buzzer will be switched on initially.
 """
 pass

Buzzer.beep = Buzzer.blink

[docs]class PWMOutputDevice(OutputDevice):
 """
 Generic output device configured for pulse-width modulation (PWM).

 :param int pin:
 The GPIO pin which the device is attached to. See :doc:`notes` for
 valid pin numbers.

 :param bool active_high:
 If ``True`` (the default), the :meth:`on` method will set the GPIO to
 HIGH. If ``False``, the :meth:`on` method will set the GPIO to LOW (the
 :meth:`off` method always does the opposite).

 :param bool initial_value:
 If ``0`` (the default), the device's duty cycle will be 0 initially.
 Other values between 0 and 1 can be specified as an initial duty cycle.
 Note that ``None`` cannot be specified (unlike the parent class) as
 there is no way to tell PWM not to alter the state of the pin.

 :param int frequency:
 The frequency (in Hz) of pulses emitted to drive the device. Defaults
 to 100Hz.
 """
 def __init__(self, pin=None, active_high=True, initial_value=0, frequency=100):
 self._blink_thread = None
 if not 0 <= initial_value <= 1:
 raise OutputDeviceError("initial_value must be between 0 and 1")
 super(PWMOutputDevice, self).__init__(pin, active_high)
 try:
 # XXX need a way of setting these together
 self.pin.frequency = frequency
 self.value = initial_value
 except:
 self.close()
 raise

[docs] def close(self):
 self._stop_blink()
 try:
 self.pin.frequency = None
 except AttributeError:
 # If the pin's already None, ignore the exception
 pass
 super(PWMOutputDevice, self).close()

 def _read(self):
 self._check_open()
 if self.active_high:
 return self.pin.state
 else:
 return 1 - self.pin.state

 def _write(self, value):
 if not self.active_high:
 value = 1 - value
 if not 0 <= value <= 1:
 raise OutputDeviceError("PWM value must be between 0 and 1")
 try:
 self.pin.state = value
 except AttributeError:
 self._check_open()
 raise

 @property
 def value(self):
 """
 The duty cycle of the PWM device. 0.0 is off, 1.0 is fully on. Values
 in between may be specified for varying levels of power in the device.
 """
 return self._read()

 @value.setter
 def value(self, value):
 self._stop_blink()
 self._write(value)

[docs] def on(self):
 self._stop_blink()
 self._write(1)

[docs] def off(self):
 self._stop_blink()
 self._write(0)

[docs] def toggle(self):
 """
 Toggle the state of the device. If the device is currently off
 (:attr:`value` is 0.0), this changes it to "fully" on (:attr:`value` is
 1.0). If the device has a duty cycle (:attr:`value`) of 0.1, this will
 toggle it to 0.9, and so on.
 """
 self._stop_blink()
 self.value = 1 - self.value

 @property
 def is_active(self):
 """
 Returns ``True`` if the device is currently active (:attr:`value` is
 non-zero) and ``False`` otherwise.
 """
 return self.value != 0

 @property
 def frequency(self):
 """
 The frequency of the pulses used with the PWM device, in Hz. The
 default is 100Hz.
 """
 return self.pin.frequency

 @frequency.setter
 def frequency(self, value):
 self.pin.frequency = value

[docs] def blink(
 self, on_time=1, off_time=1, fade_in_time=0, fade_out_time=0,
 n=None, background=True):
 """
 Make the device turn on and off repeatedly.

 :param float on_time:
 Number of seconds on. Defaults to 1 second.

 :param float off_time:
 Number of seconds off. Defaults to 1 second.

 :param float fade_in_time:
 Number of seconds to spend fading in. Defaults to 0.

 :param float fade_out_time:
 Number of seconds to spend fading out. Defaults to 0.

 :param int n:
 Number of times to blink; ``None`` (the default) means forever.

 :param bool background:
 If ``True`` (the default), start a background thread to continue
 blinking and return immediately. If ``False``, only return when the
 blink is finished (warning: the default value of *n* will result in
 this method never returning).
 """
 self._stop_blink()
 self._blink_thread = GPIOThread(
 target=self._blink_device,
 args=(on_time, off_time, fade_in_time, fade_out_time, n)
)
 self._blink_thread.start()
 if not background:
 self._blink_thread.join()
 self._blink_thread = None

 def _stop_blink(self):
 if self._blink_thread:
 self._blink_thread.stop()
 self._blink_thread = None

 def _blink_device(
 self, on_time, off_time, fade_in_time, fade_out_time, n, fps=50):
 sequence = []
 if fade_in_time > 0:
 sequence += [
 (i * (1 / fps) / fade_in_time, 1 / fps)
 for i in range(int(fps * fade_in_time))
]
 sequence.append((1, on_time))
 if fade_out_time > 0:
 sequence += [
 (1 - (i * (1 / fps) / fade_out_time), 1 / fps)
 for i in range(int(fps * fade_out_time))
]
 sequence.append((0, off_time))
 sequence = (
 cycle(sequence) if n is None else
 chain.from_iterable(repeat(sequence, n))
)
 for value, delay in sequence:
 self._write(value)
 if self._blink_thread.stopping.wait(delay):
 break

[docs]class PWMLED(PWMOutputDevice):
 """
 Extends :class:`PWMOutputDevice` and represents a light emitting diode
 (LED) with variable brightness.

 A typical configuration of such a device is to connect a GPIO pin to the
 anode (long leg) of the LED, and the cathode (short leg) to ground, with
 an optional resistor to prevent the LED from burning out.

 :param int pin:
 The GPIO pin which the LED is attached to. See :doc:`notes` for
 valid pin numbers.

 :param bool active_high:
 If ``True`` (the default), the :meth:`on` method will set the GPIO to
 HIGH. If ``False``, the :meth:`on` method will set the GPIO to LOW (the
 :meth:`off` method always does the opposite).

 :param bool initial_value:
 If ``0`` (the default), the LED will be off initially. Other values
 between 0 and 1 can be specified as an initial brightness for the LED.
 Note that ``None`` cannot be specified (unlike the parent class) as
 there is no way to tell PWM not to alter the state of the pin.

 :param int frequency:
 The frequency (in Hz) of pulses emitted to drive the LED. Defaults
 to 100Hz.
 """
 pass

PWMLED.is_lit = PWMLED.is_active

def _led_property(index, doc=None):
 def getter(self):
 return self._leds[index].value
 def setter(self, value):
 self._stop_blink()
 self._leds[index].value = value
 return property(getter, setter, doc=doc)

[docs]class RGBLED(SourceMixin, CompositeDevice):
 """
 Extends :class:`CompositeDevice` and represents a full color LED component
 (composed of red, green, and blue LEDs).

 Connect the common cathode (longest leg) to a ground pin; connect each of
 the other legs (representing the red, green, and blue anodes) to any GPIO
 pins. You can either use three limiting resistors (one per anode) or a
 single limiting resistor on the cathode.

 The following code will make the LED purple::

 from gpiozero import RGBLED

 led = RGBLED(2, 3, 4)
 led.color = (1, 0, 1)

 :param int red:
 The GPIO pin that controls the red component of the RGB LED.

 :param int green:
 The GPIO pin that controls the green component of the RGB LED.

 :param int blue:
 The GPIO pin that controls the blue component of the RGB LED.

 :param bool active_high:
 Set to ``True`` (the default) for common cathode RGB LEDs. If you are
 using a common anode RGB LED, set this to ``False``.

 :param bool initial_value:
 The initial color for the LED. Defaults to black ``(0, 0, 0)``.
 """
 def __init__(
 self, red=None, green=None, blue=None, active_high=True,
 initial_value=(0, 0, 0)):
 self._leds = ()
 self._blink_thread = None
 if not all([red, green, blue]):
 raise OutputDeviceError('red, green, and blue pins must be provided')
 super(RGBLED, self).__init__()
 self._leds = tuple(PWMLED(pin, active_high) for pin in (red, green, blue))
 self.value = initial_value

 red = _led_property(0)
 green = _led_property(1)
 blue = _led_property(2)

 @property
 def value(self):
 """
 Represents the color of the LED as an RGB 3-tuple of ``(red, green,
 blue)`` where each value is between 0 and 1.

 For example, purple would be ``(1, 0, 1)`` and yellow would be ``(1, 1,
 0)``, while orange would be ``(1, 0.5, 0)``.
 """
 return (self.red, self.green, self.blue)

 @value.setter
 def value(self, value):
 self.red, self.green, self.blue = value

 @property
 def is_active(self):
 """
 Returns ``True`` if the LED is currently active (not black) and
 ``False`` otherwise.
 """
 return self.value != (0, 0, 0)

 is_lit = is_active
 color = value

[docs] def on(self):
 """
 Turn the LED on. This equivalent to setting the LED color to white
 ``(1, 1, 1)``.
 """
 self.value = (1, 1, 1)

[docs] def off(self):
 """
 Turn the LED off. This is equivalent to setting the LED color to black
 ``(0, 0, 0)``.
 """
 self.value = (0, 0, 0)

[docs] def toggle(self):
 """
 Toggle the state of the device. If the device is currently off
 (:attr:`value` is ``(0, 0, 0)``), this changes it to "fully" on
 (:attr:`value` is ``(1, 1, 1)``). If the device has a specific color,
 this method inverts the color.
 """
 r, g, b = self.value
 self.value = (1 - r, 1 - g, 1 - b)

 def close(self):
 self._stop_blink()
 for led in self._leds:
 led.close()

[docs] def blink(
 self, on_time=1, off_time=1, fade_in_time=0, fade_out_time=0,
 on_color=(1, 1, 1), off_color=(0, 0, 0), n=None, background=True):
 """
 Make the device turn on and off repeatedly.

 :param float on_time:
 Number of seconds on. Defaults to 1 second.

 :param float off_time:
 Number of seconds off. Defaults to 1 second.

 :param float fade_in_time:
 Number of seconds to spend fading in. Defaults to 0.

 :param float fade_out_time:
 Number of seconds to spend fading out. Defaults to 0.

 :param tuple on_color:
 The color to use when the LED is "on". Defaults to white.

 :param tuple off_color:
 The color to use when the LED is "off". Defaults to black.

 :param int n:
 Number of times to blink; ``None`` (the default) means forever.

 :param bool background:
 If ``True`` (the default), start a background thread to continue
 blinking and return immediately. If ``False``, only return when the
 blink is finished (warning: the default value of *n* will result in
 this method never returning).
 """
 self._stop_blink()
 self._blink_thread = GPIOThread(
 target=self._blink_device,
 args=(on_time, off_time, fade_in_time, fade_out_time, on_color, off_color, n)
)
 self._blink_thread.start()
 if not background:
 self._blink_thread.join()
 self._blink_thread = None

 def _stop_blink(self):
 if self._blink_thread:
 self._blink_thread.stop()
 self._blink_thread = None

 def _blink_device(
 self, on_time, off_time, fade_in_time, fade_out_time, on_color,
 off_color, n, fps=50):
 # Define some simple lambdas to perform linear interpolation between
 # off_color and on_color
 lerp = lambda t, fade_in: tuple(
 (1 - t) * off + t * on
 if fade_in else
 (1 - t) * on + t * off
 for off, on in zip(off_color, on_color)
)
 sequence = []
 if fade_in_time > 0:
 sequence += [
 (lerp(i * (1 / fps) / fade_in_time, True), 1 / fps)
 for i in range(int(fps * fade_in_time))
]
 sequence.append((on_color, on_time))
 if fade_out_time > 0:
 sequence += [
 (lerp(i * (1 / fps) / fade_out_time, False), 1 / fps)
 for i in range(int(fps * fade_out_time))
]
 sequence.append((off_color, off_time))
 sequence = (
 cycle(sequence) if n is None else
 chain.from_iterable(repeat(sequence, n))
)
 for value, delay in sequence:
 self._leds[0].value, self._leds[1].value, self._leds[2].value = value
 if self._blink_thread.stopping.wait(delay):
 break

[docs]class Motor(SourceMixin, CompositeDevice):
 """
 Extends :class:`CompositeDevice` and represents a generic motor connected
 to a bi-directional motor driver circuit (i.e. an `H-bridge`_).

 Attach an `H-bridge`_ motor controller to your Pi; connect a power source
 (e.g. a battery pack or the 5V pin) to the controller; connect the outputs
 of the controller board to the two terminals of the motor; connect the
 inputs of the controller board to two GPIO pins.

 .. _H-bridge: https://en.wikipedia.org/wiki/H_bridge

 The following code will make the motor turn "forwards"::

 from gpiozero import Motor

 motor = Motor(17, 18)
 motor.forward()

 :param int forward:
 The GPIO pin that the forward input of the motor driver chip is
 connected to.

 :param int backward:
 The GPIO pin that the backward input of the motor driver chip is
 connected to.
 """
 def __init__(self, forward=None, backward=None):
 if not all([forward, backward]):
 raise OutputDeviceError(
 'forward and backward pins must be provided'
)
 super(Motor, self).__init__()
 self._forward = PWMOutputDevice(forward)
 self._backward = PWMOutputDevice(backward)

 def close(self):
 self._forward.close()
 self._backward.close()

 @property
 def closed(self):
 return self._forward.closed and self._backward.closed

 @property
 def forward_device(self):
 """
 Returns the `PWMOutputDevice` representing the forward pin of the motor
 controller.
 """
 return self._forward

 @property
 def backward_device(self):
 """
 Returns the `PWMOutputDevice` representing the backward pin of the
 motor controller.
 """
 return self._backward

 @property
 def value(self):
 """
 Represents the speed of the motor as a floating point value between -1
 (full speed backward) and 1 (full speed forward).
 """
 return self._forward.value - self._backward.value

 @value.setter
 def value(self, value):
 if not -1 <= value <= 1:
 raise OutputDeviceError("Motor value must be between -1 and 1")
 if value > 0:
 self.forward(value)
 elif value < 0:
 self.backward(-value)
 else:
 self.stop()

 @property
 def is_active(self):
 """
 Returns ``True`` if the motor is currently running and ``False``
 otherwise.
 """
 return self.value != 0

[docs] def forward(self, speed=1):
 """
 Drive the motor forwards.

 :param float speed:
 The speed at which the motor should turn. Can be any value between
 0 (stopped) and the default 1 (maximum speed).
 """
 self._backward.off()
 self._forward.value = speed

[docs] def backward(self, speed=1):
 """
 Drive the motor backwards.

 :param float speed:
 The speed at which the motor should turn. Can be any value between
 0 (stopped) and the default 1 (maximum speed).
 """
 self._forward.off()
 self._backward.value = speed

 def reverse(self):
 """
 Reverse the current direction of the motor. If the motor is currently
 idle this does nothing. Otherwise, the motor's direction will be
 reversed at the current speed.
 """
 self.value = -self.value

[docs] def stop(self):
 """
 Stop the motor.
 """
 self._forward.off()
 self._backward.off()

 © Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

_static/up.png

_modules/gpiozero/pins/rpigpio.html

 Navigation

 		
 index

 		Gpiozero 1.1.0 documentation »

 		Module code »

 		gpiozero.pins »

 Source code for gpiozero.pins.rpigpio

from __future__ import (
 unicode_literals,
 absolute_import,
 print_function,
 division,
)
str = type('')

from RPi import GPIO

from . import Pin
from .exc import (
 PinInvalidFunction,
 PinSetInput,
 PinFixedPull,
)

[docs]class RPiGPIOPin(Pin):
 """
 Uses the `RPi.GPIO`_ library to interface to the Pi's GPIO pins. This is
 the default pin implementation if the RPi.GPIO library is installed.
 Supports all features including PWM (via software).

 .. _RPi.GPIO: https://pypi.python.org/pypi/RPi.GPIO
 """

 _PINS = {}

 GPIO_FUNCTIONS = {
 'input': GPIO.IN,
 'output': GPIO.OUT,
 'i2c': GPIO.I2C,
 'spi': GPIO.SPI,
 'pwm': GPIO.PWM,
 'serial': GPIO.SERIAL,
 'unknown': GPIO.UNKNOWN,
 }

 GPIO_PULL_UPS = {
 'up': GPIO.PUD_UP,
 'down': GPIO.PUD_DOWN,
 'floating': GPIO.PUD_OFF,
 }

 GPIO_EDGES = {
 'both': GPIO.BOTH,
 'rising': GPIO.RISING,
 'falling': GPIO.FALLING,
 }

 GPIO_FUNCTION_NAMES = {v: k for (k, v) in GPIO_FUNCTIONS.items()}
 GPIO_PULL_UP_NAMES = {v: k for (k, v) in GPIO_PULL_UPS.items()}
 GPIO_EDGES_NAMES = {v: k for (k, v) in GPIO_EDGES.items()}

 def __new__(cls, number):
 if not cls._PINS:
 GPIO.setmode(GPIO.BCM)
 GPIO.setwarnings(False)
 try:
 return cls._PINS[number]
 except KeyError:
 self = super(RPiGPIOPin, cls).__new__(cls)
 cls._PINS[number] = self
 self._number = number
 self._pull = 'up' if number in (2, 3) else 'floating'
 self._pwm = None
 self._frequency = None
 self._duty_cycle = None
 self._bounce = -666
 self._when_changed = None
 self._edges = GPIO.BOTH
 GPIO.setup(self._number, GPIO.IN, self.GPIO_PULL_UPS[self._pull])
 return self

 def __repr__(self):
 return "GPIO%d" % self._number

 @property
 def number(self):
 return self._number

 def close(self):
 self.frequency = None
 self.when_changed = None
 GPIO.cleanup(self._number)

 def output_with_state(self, state):
 self._pull = 'floating'
 GPIO.setup(self._number, GPIO.OUT, initial=state)

 def input_with_pull(self, pull):
 if pull != 'up' and self._number in (2, 3):
 raise PinFixedPull('%r has a physical pull-up resistor' % self)
 try:
 GPIO.setup(self._number, GPIO.IN, self.GPIO_PULL_UPS[pull])
 self._pull = pull
 except KeyError:
 raise PinInvalidPull('invalid pull "%s" for pin %r' % (pull, self))

 def _get_function(self):
 return self.GPIO_FUNCTION_NAMES[GPIO.gpio_function(self._number)]

 def _set_function(self, value):
 if value != 'input':
 self._pull = 'floating'
 try:
 GPIO.setup(self._number, self.GPIO_FUNCTIONS[value], self.GPIO_PULL_UPS[self._pull])
 except KeyError:
 raise PinInvalidFunction('invalid function "%s" for pin %r' % (value, self))

 def _get_state(self):
 if self._pwm:
 return self._duty_cycle
 else:
 return GPIO.input(self._number)

 def _set_state(self, value):
 if self._pwm:
 try:
 self._pwm.ChangeDutyCycle(value * 100)
 except ValueError:
 raise PinInvalidValue('invalid state "%s" for pin %r' % (value, self))
 self._duty_cycle = value
 else:
 try:
 GPIO.output(self._number, value)
 except ValueError:
 raise PinInvalidState('invalid state "%s" for pin %r' % (value, self))
 except RuntimeError:
 raise PinSetInput('cannot set state of pin %r' % self)

 def _get_pull(self):
 return self._pull

 def _set_pull(self, value):
 if self.function != 'input':
 raise PinFixedPull('cannot set pull on non-input pin %r' % self)
 if value != 'up' and self._number in (2, 3):
 raise PinFixedPull('%r has a physical pull-up resistor' % self)
 try:
 GPIO.setup(self._number, GPIO.IN, self.GPIO_PULL_UPS[value])
 self._pull = value
 except KeyError:
 raise PinInvalidPull('invalid pull "%s" for pin %r' % (value, self))

 def _get_frequency(self):
 return self._frequency

 def _set_frequency(self, value):
 if self._frequency is None and value is not None:
 try:
 self._pwm = GPIO.PWM(self._number, value)
 except RuntimeError:
 raise PinPWMFixedValue('cannot start PWM on pin %r' % self)
 self._pwm.start(0)
 self._duty_cycle = 0
 self._frequency = value
 elif self._frequency is not None and value is not None:
 self._pwm.ChangeFrequency(value)
 self._frequency = value
 elif self._frequency is not None and value is None:
 self._pwm.stop()
 self._pwm = None
 self._duty_cycle = None
 self._frequency = None

 def _get_bounce(self):
 return None if self._bounce == -666 else (self._bounce / 1000)

 def _set_bounce(self, value):
 f = self.when_changed
 self.when_changed = None
 try:
 self._bounce = -666 if value is None else (value * 1000)
 finally:
 self.when_changed = f

 def _get_edges(self):
 return self.GPIO_EDGES_NAMES[self._edges]

 def _set_edges(self, value):
 f = self.when_changed
 self.when_changed = None
 try:
 self._edges = self.GPIO_EDGES[value]
 finally:
 self.when_changed = f

 def _get_when_changed(self):
 return self._when_changed

 def _set_when_changed(self, value):
 if self._when_changed is None and value is not None:
 self._when_changed = value
 GPIO.add_event_detect(
 self._number, self._edges,
 callback=lambda channel: self._when_changed(),
 bouncetime=self._bounce)
 elif self._when_changed is not None and value is None:
 GPIO.remove_event_detect(self._number)
 self._when_changed = None
 else:
 self._when_changed = value

 © Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_images/led.png

_modules/gpiozero/pins/native.html

 Navigation

 		
 index

 		Gpiozero 1.1.0 documentation »

 		Module code »

 		gpiozero.pins »

 Source code for gpiozero.pins.native

from __future__ import (
 unicode_literals,
 absolute_import,
 print_function,
 division,
)
nstr = str
str = type('')

import io
import os
import mmap
import errno
import struct
from time import sleep
from threading import Thread, Event, Lock
from collections import Counter

from . import Pin, PINS_CLEANUP
from .exc import (
 PinInvalidPull,
 PinInvalidEdges,
 PinInvalidFunction,
 PinFixedPull,
)

class GPIOMemory(object):

 GPIO_BASE_OFFSET = 0x200000
 PERI_BASE_OFFSET = {
 'BCM2708': 0x20000000,
 'BCM2835': 0x20000000,
 'BCM2709': 0x3f000000,
 'BCM2836': 0x3f000000,
 }

 # From BCM2835 data-sheet, p.91
 GPFSEL_OFFSET = 0x00 >> 2
 GPSET_OFFSET = 0x1c >> 2
 GPCLR_OFFSET = 0x28 >> 2
 GPLEV_OFFSET = 0x34 >> 2
 GPEDS_OFFSET = 0x40 >> 2
 GPREN_OFFSET = 0x4c >> 2
 GPFEN_OFFSET = 0x58 >> 2
 GPHEN_OFFSET = 0x64 >> 2
 GPLEN_OFFSET = 0x70 >> 2
 GPAREN_OFFSET = 0x7c >> 2
 GPAFEN_OFFSET = 0x88 >> 2
 GPPUD_OFFSET = 0x94 >> 2
 GPPUDCLK_OFFSET = 0x98 >> 2

 def __init__(self):
 try:
 self.fd = os.open('/dev/gpiomem', os.O_RDWR | os.O_SYNC)
 except OSError:
 try:
 self.fd = os.open('/dev/mem', os.O_RDWR | os.O_SYNC)
 except OSError:
 raise IOError(
 'unable to open /dev/gpiomem or /dev/mem; '
 'upgrade your kernel or run as root')
 else:
 offset = self.peripheral_base() + self.GPIO_BASE_OFFSET
 else:
 offset = 0
 self.mem = mmap.mmap(self.fd, 4096, offset=offset)

 def close(self):
 self.mem.close()
 os.close(self.fd)

 def peripheral_base(self):
 try:
 with io.open('/proc/device-tree/soc/ranges', 'rb') as f:
 f.seek(4)
 return struct.unpack(nstr('>L'), f.read(4))[0]
 except IOError:
 with io.open('/proc/cpuinfo', 'r') as f:
 for line in f:
 if line.startswith('Hardware'):
 try:
 return self.PERI_BASE_OFFSET[line.split(':')[1].strip()]
 except KeyError:
 raise IOError('unable to determine RPi revision')
 raise IOError('unable to determine peripheral base')

 def __getitem__(self, index):
 return struct.unpack_from(nstr('<L'), self.mem, index * 4)[0]

 def __setitem__(self, index, value):
 struct.pack_into(nstr('<L'), self.mem, index * 4, value)

class GPIOFS(object):

 GPIO_PATH = '/sys/class/gpio'

 def __init__(self):
 self._lock = Lock()
 self._pin_refs = Counter()

 def path(self, name):
 return os.path.join(self.GPIO_PATH, name)

 def export(self, pin):
 with self._lock:
 if self._pin_refs[pin] == 0:
 # Set the count to 1 to indicate the GPIO is already exported
 # (we'll correct this if we find it isn't, but this enables us
 # to "leave the system in the state we found it")
 self._pin_refs[pin] = 1
 result = None
 # Dirty hack to wait for udev to set permissions on
 # gpioN/direction; there's no other way around this as there's
 # no synchronous mechanism for setting permissions on sysfs
 for i in range(10):
 try:
 result = io.open(self.path('gpio%d/value' % pin), 'w+b', buffering=0)
 except IOError as e:
 if e.errno == errno.ENOENT:
 with io.open(self.path('export'), 'wb') as f:
 f.write(str(pin).encode('ascii'))
 # Pin wasn't exported, so correct the ref-count
 self._pin_refs[pin] = 0
 elif e.errno == errno.EACCES:
 sleep(i / 100)
 else:
 raise
 else:
 break
 if not result:
 raise RuntimeError('failed to export pin %d' % pin)
 else:
 result = io.open(self.path('gpio%d/value' % pin), 'w+b', buffering=0)
 self._pin_refs[pin] += 1
 return result

 def unexport(self, pin):
 with self._lock:
 self._pin_refs[pin] -= 1
 if self._pin_refs[pin] == 0:
 with io.open(self.path('unexport'), 'wb') as f:
 f.write(str(pin).encode('ascii'))

[docs]class NativePin(Pin):
 """
 Uses a built-in pure Python implementation to interface to the Pi's GPIO
 pins. This is the default pin implementation if no third-party libraries
 are discovered.

 .. warning::

 This implementation does *not* currently support PWM. Attempting to
 use any class which requests PWM will raise an exception. This
 implementation is also experimental; we make no guarantees it will
 not eat your Pi for breakfast!
 """

 _MEM = None
 _PINS = {}

 PULL_NAMES = {
 0b00: 'floating',
 0b01: 'down',
 0b10: 'up',
 0b11: 'reserved',
 }

 FUNCTION_NAMES = {
 0b000: 'input',
 0b001: 'output',
 0b100: 'alt0',
 0b101: 'alt1',
 0b110: 'alt2',
 0b111: 'alt3',
 0b011: 'alt4',
 0b010: 'alt5',
 }

 EDGE_NAMES = {
 (True, True): 'both',
 (True, False): 'rising',
 (False, True): 'falling',
 (False, False): 'none',
 }

 PULL_VALUES = {v: k for (k, v) in PULL_NAMES.items()}
 FUNCTION_VALUES = {v: k for (k, v) in FUNCTION_NAMES.items()}
 EDGE_VALUES = {v: k for (k, v) in EDGE_NAMES.items()}

 def __new__(cls, number):
 if not cls._PINS:
 cls._MEM = GPIOMemory()
 PINS_CLEANUP.append(cls._MEM.close)
 if not (0 <= number < 54):
 raise ValueError('invalid pin %d specified (must be 0..53)' % number)
 try:
 return cls._PINS[number]
 except KeyError:
 self = super(NativePin, cls).__new__(cls)
 cls._PINS[number] = self
 self._number = number
 self._func_offset = self._MEM.GPFSEL_OFFSET + (number // 10)
 self._func_shift = (number % 10) * 3
 self._set_offset = self._MEM.GPSET_OFFSET + (number // 32)
 self._set_shift = number % 32
 self._clear_offset = self._MEM.GPCLR_OFFSET + (number // 32)
 self._clear_shift = number % 32
 self._level_offset = self._MEM.GPLEV_OFFSET + (number // 32)
 self._level_shift = number % 32
 self._pull_offset = self._MEM.GPPUDCLK_OFFSET + (number // 32)
 self._pull_shift = number % 32
 self._edge_offset = self._MEM.GPEDS_OFFSET + (number // 32)
 self._edge_shift = number % 32
 self._rising_offset = self._MEM.GPREN_OFFSET + (number // 32)
 self._rising_shift = number % 32
 self._falling_offset = self._MEM.GPFEN_OFFSET + (number // 32)
 self._falling_shift = number % 32
 self._when_changed = None
 self._change_thread = None
 self._change_event = Event()
 self.function = 'input'
 self.pull = 'up' if number in (2, 3) else 'floating'
 self.bounce = None
 self.edges = 'both'
 return self

 def __repr__(self):
 return "GPIO%d" % self._number

 @property
 def number(self):
 return self._number

 def close(self):
 self.when_changed = None
 self.function = 'input'

 def _get_function(self):
 return self.FUNCTION_NAMES[(self._MEM[self._func_offset] >> self._func_shift) & 7]

 def _set_function(self, value):
 try:
 value = self.FUNCTION_VALUES[value]
 except KeyError:
 raise PinInvalidFunction('invalid function "%s" for pin %r' % self)
 self._MEM[self._func_offset] = (
 self._MEM[self._func_offset]
 & ~(7 << self._func_shift)
 | (value << self._func_shift)
)

 def _get_state(self):
 return bool(self._MEM[self._level_offset] & (1 << self._level_shift))

 def _set_state(self, value):
 if value:
 self._MEM[self._set_offset] = 1 << self._set_shift
 else:
 self._MEM[self._clear_offset] = 1 << self._clear_shift

 def _get_pull(self):
 return self.PULL_NAMES[self._pull]

 def _set_pull(self, value):
 if self.function != 'input':
 raise PinFixedPull('cannot set pull on non-input pin %r' % self)
 if value != 'up' and self._number in (2, 3):
 raise PinFixedPull('%r has a physical pull-up resistor' % self)
 try:
 value = self.PULL_VALUES[value]
 except KeyError:
 raise PinInvalidPull('invalid pull direction "%s" for pin %r' % self)
 self._MEM[self._MEM.GPPUD_OFFSET] = value
 sleep(0.000000214)
 self._MEM[self._pull_offset] = 1 << self._pull_shift
 sleep(0.000000214)
 self._MEM[self._MEM.GPPUD_OFFSET] = 0
 self._MEM[self._pull_offset] = 0
 self._pull = value

 def _get_edges(self):
 rising = bool(self._MEM[self._rising_offset] & (1 << self._rising_shift))
 falling = bool(self._MEM[self._falling_offset] & (1 << self._falling_shift))
 return self.EDGE_NAMES[(rising, falling)]

 def _set_edges(self, value):
 try:
 rising, falling = self.EDGE_VALUES[value]
 except KeyError:
 raise PinInvalidEdges('invalid edge specification "%s" for pin %r' % self)
 f = self.when_changed
 self.when_changed = None
 try:
 self._MEM[self._rising_offset] = (
 self._MEM[self._rising_offset]
 & ~(1 << self._rising_shift)
 | (rising << self._rising_shift)
)
 self._MEM[self._falling_offset] = (
 self._MEM[self._falling_offset]
 & ~(1 << self._falling_shift)
 | (falling << self._falling_shift)
)
 finally:
 self.when_changed = f

 def _get_when_changed(self):
 return self._when_changed

 def _set_when_changed(self, value):
 if self._when_changed is None and value is not None:
 self._when_changed = value
 self._change_thread = Thread(target=self._change_watch)
 self._change_thread.daemon = True
 self._change_event.clear()
 self._change_thread.start()
 elif self._when_changed is not None and value is None:
 self._change_event.set()
 self._change_thread.join()
 self._change_thread = None
 self._when_changed = None
 else:
 self._when_changed = value

 def _change_watch(self):
 offset = self._edge_offset
 mask = 1 << self._edge_shift
 self._MEM[offset] = mask # clear any existing detection bit
 while not self._change_event.wait(0.001):
 if self._MEM[offset] & mask:
 self._MEM[offset] = mask
 self._when_changed()

 © Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

_modules/gpiozero/pins/rpio.html

 Navigation

 		
 index

 		Gpiozero 1.1.0 documentation »

 		Module code »

 		gpiozero.pins »

 Source code for gpiozero.pins.rpio

from __future__ import (
 unicode_literals,
 absolute_import,
 print_function,
 division,
)
str = type('')

from threading import Lock

import RPIO
import RPIO.PWM

from . import Pin, PINS_CLEANUP
from .exc import (
 PinInvalidFunction,
 PinSetInput,
 PinFixedPull,
)

[docs]class RPIOPin(Pin):
 """
 Uses the `RPIO`_ library to interface to the Pi's GPIO pins. This is
 the default pin implementation if the RPi.GPIO library is not installed,
 but RPIO is. Supports all features including PWM (hardware via DMA).

 .. note::

 Please note that at the time of writing, RPIO is only compatible with
 Pi 1's; the Raspberry Pi 2 Model B is *not* supported. Also note that
 root access is required so scripts must typically be run with ``sudo``.

 .. _RPIO: https://pythonhosted.org/RPIO/
 """

 _PINS = {}

 GPIO_FUNCTIONS = {
 'input': RPIO.IN,
 'output': RPIO.OUT,
 'alt0': RPIO.ALT0,
 }

 GPIO_PULL_UPS = {
 'up': RPIO.PUD_UP,
 'down': RPIO.PUD_DOWN,
 'floating': RPIO.PUD_OFF,
 }

 GPIO_FUNCTION_NAMES = {v: k for (k, v) in GPIO_FUNCTIONS.items()}
 GPIO_PULL_UP_NAMES = {v: k for (k, v) in GPIO_PULL_UPS.items()}

 def __new__(cls, number):
 if not cls._PINS:
 RPIO.setmode(RPIO.BCM)
 RPIO.setwarnings(False)
 RPIO.wait_for_interrupts(threaded=True)
 RPIO.PWM.setup()
 RPIO.PWM.init_channel(0, 10000)
 PINS_CLEANUP.append(RPIO.PWM.cleanup)
 PINS_CLEANUP.append(RPIO.stop_waiting_for_interrupts)
 PINS_CLEANUP.append(RPIO.cleanup)
 try:
 return cls._PINS[number]
 except KeyError:
 self = super(RPIOPin, cls).__new__(cls)
 cls._PINS[number] = self
 self._number = number
 self._pull = 'up' if number in (2, 3) else 'floating'
 self._pwm = False
 self._duty_cycle = None
 self._bounce = None
 self._when_changed = None
 self._edges = 'both'
 RPIO.setup(self._number, RPIO.IN, self.GPIO_PULL_UPS[self._pull])
 return self

 def __repr__(self):
 return "GPIO%d" % self._number

 @property
 def number(self):
 return self._number

 def close(self):
 self.frequency = None
 self.when_changed = None
 RPIO.setup(self._number, RPIO.IN, RPIO.PUD_OFF)

 def _get_function(self):
 return self.GPIO_FUNCTION_NAMES[RPIO.gpio_function(self._number)]

 def _set_function(self, value):
 if value != 'input':
 self._pull = 'floating'
 try:
 RPIO.setup(self._number, self.GPIO_FUNCTIONS[value], self.GPIO_PULL_UPS[self._pull])
 except KeyError:
 raise PinInvalidFunction('invalid function "%s" for pin %r' % (value, self))

 def _get_state(self):
 if self._pwm:
 return self._duty_cycle
 else:
 return RPIO.input(self._number)

 def _set_state(self, value):
 if not 0 <= value <= 1:
 raise PinInvalidValue('invalid state "%s" for pin %r' % (value, self))
 if self._pwm:
 RPIO.PWM.clear_channel_gpio(0, self._number)
 if value == 0:
 RPIO.output(self._number, False)
 elif value == 1:
 RPIO.output(self._number, True)
 else:
 RPIO.PWM.add_channel_pulse(0, self._number, start=0, width=int(1000 * value))
 self._duty_cycle = value
 else:
 try:
 RPIO.output(self._number, value)
 except ValueError:
 raise PinInvalidState('invalid state "%s" for pin %r' % (value, self))
 except RuntimeError:
 raise PinSetInput('cannot set state of pin %r' % self)

 def _get_pull(self):
 return self._pull

 def _set_pull(self, value):
 if self.function != 'input':
 raise PinFixedPull('cannot set pull on non-input pin %r' % self)
 if value != 'up' and self._number in (2, 3):
 raise PinFixedPull('%r has a physical pull-up resistor' % self)
 try:
 RPIO.setup(self._number, RPIO.IN, self.GPIO_PULL_UPS[value])
 self._pull = value
 except KeyError:
 raise PinInvalidPull('invalid pull "%s" for pin %r' % (value, self))

 def _get_frequency(self):
 return 100

 def _set_frequency(self, value):
 if value is not None and value != 100:
 raise PinPWMError(
 'RPIOPin implementation is currently limited to '
 '100Hz sub-cycles')
 if not self._pwm and value is not None:
 self._pwm = True
 # Dirty hack to get RPIO's PWM support to setup, but do nothing,
 # for a given GPIO pin
 RPIO.PWM.add_channel_pulse(0, self._number, start=0, width=0)
 RPIO.PWM.clear_channel_gpio(0, self._number)
 elif self._pwm and value is None:
 RPIO.PWM.clear_channel_gpio(0, self._number)
 self._pwm = False

 def _get_bounce(self):
 return None if self._bounce is None else (self._bounce / 1000)

 def _set_bounce(self, value):
 f = self.when_changed
 self.when_changed = None
 try:
 self._bounce = None if value is None else (value * 1000)
 finally:
 self.when_changed = f

 def _get_edges(self):
 return self._edges

 def _set_edges(self, value):
 f = self.when_changed
 self.when_changed = None
 try:
 self._edges = value
 finally:
 self.when_changed = f

 def _get_when_changed(self):
 return self._when_changed

 def _set_when_changed(self, value):
 if self._when_changed is None and value is not None:
 self._when_changed = value
 RPIO.add_interrupt_callback(
 self._number,
 lambda channel, value: self._when_changed(),
 self._edges, self.GPIO_PULL_UPS[self._pull], self._bounce)
 elif self._when_changed is not None and value is None:
 try:
 RPIO.del_interrupt_callback(self._number)
 except KeyError:
 # Ignore this exception which occurs during shutdown; this
 # simply means RPIO's built-in cleanup has already run and
 # removed the handler
 pass
 self._when_changed = None
 else:
 self._when_changed = value

 © Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_images/motion-sensor.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		Gpiozero 1.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

_images/button.png
abocde
THEEEN

.
.
L

NEEEEN EEEEND2
BNEEEENR EEEEN

.

o
.
.
.
.
.
.
.
.

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_modules/gpiozero/input_devices.html

 Navigation

 		
 index

 		Gpiozero 1.1.0 documentation »

 		Module code »

 Source code for gpiozero.input_devices

vim: set fileencoding=utf-8:

from __future__ import (
 unicode_literals,
 print_function,
 absolute_import,
 division,
)

import inspect
import warnings
from functools import wraps
from time import sleep, time
from threading import Event

from spidev import SpiDev

from .exc import InputDeviceError, GPIODeviceError, GPIODeviceClosed
from .devices import GPIODevice, CompositeDevice, GPIOQueue

[docs]class InputDevice(GPIODevice):
 """
 Represents a generic GPIO input device.

 This class extends :class:`GPIODevice` to add facilities common to GPIO
 input devices. The constructor adds the optional *pull_up* parameter to
 specify how the pin should be pulled by the internal resistors. The
 :attr:`~GPIODevice.is_active` property is adjusted accordingly so that
 ``True`` still means active regardless of the :attr:`pull_up` setting.

 :param int pin:
 The GPIO pin (in Broadcom numbering) that the device is connected to.
 If this is ``None`` a :exc:`GPIODeviceError` will be raised.

 :param bool pull_up:
 If ``True``, the pin will be pulled high with an internal resistor. If
 ``False`` (the default), the pin will be pulled low.
 """
 def __init__(self, pin=None, pull_up=False):
 super(InputDevice, self).__init__(pin)
 try:
 if self.pin.function != 'input':
 self.pin.function = 'input'
 pull = 'up' if pull_up else 'down'
 if self.pin.pull != pull:
 self.pin.pull = pull
 except:
 self.close()
 raise
 self._active_state = False if pull_up else True
 self._inactive_state = True if pull_up else False

 @property
 def pull_up(self):
 """
 If ``True``, the device uses a pull-up resistor to set the GPIO pin
 "high" by default. Defaults to ``False``.
 """
 return self.pin.pull == 'up'

 def __repr__(self):
 try:
 return "<gpiozero.%s object on pin %r, pull_up=%s, is_active=%s>" % (
 self.__class__.__name__, self.pin, self.pull_up, self.is_active)
 except:
 return super(InputDevice, self).__repr__()

[docs]class WaitableInputDevice(InputDevice):
 """
 Represents a generic input device with distinct waitable states.

 This class extends :class:`InputDevice` with methods for waiting on the
 device's status (:meth:`wait_for_active` and :meth:`wait_for_inactive`),
 and properties that hold functions to be called when the device changes
 state (:meth:`when_activated` and :meth:`when_deactivated`). These are
 aliased appropriately in various subclasses.

 Note that this class provides no means of actually firing its events; it's
 effectively an abstract base class.
 """
 def __init__(self, pin=None, pull_up=False):
 super(WaitableInputDevice, self).__init__(pin, pull_up)
 self._active_event = Event()
 self._inactive_event = Event()
 self._when_activated = None
 self._when_deactivated = None
 self._last_state = None

[docs] def wait_for_active(self, timeout=None):
 """
 Pause the script until the device is activated, or the timeout is
 reached.

 :param float timeout:
 Number of seconds to wait before proceeding. If this is ``None``
 (the default), then wait indefinitely until the device is active.
 """
 return self._active_event.wait(timeout)

[docs] def wait_for_inactive(self, timeout=None):
 """
 Pause the script until the device is deactivated, or the timeout is
 reached.

 :param float timeout:
 Number of seconds to wait before proceeding. If this is ``None``
 (the default), then wait indefinitely until the device is inactive.
 """
 return self._inactive_event.wait(timeout)

 @property
 def when_activated(self):
 """
 The function to run when the device changes state from inactive to
 active.

 This can be set to a function which accepts no (mandatory) parameters,
 or a Python function which accepts a single mandatory parameter (with
 as many optional parameters as you like). If the function accepts a
 single mandatory parameter, the device that activated will be passed
 as that parameter.

 Set this property to ``None`` (the default) to disable the event.
 """
 return self._when_activated

 @when_activated.setter
 def when_activated(self, value):
 self._when_activated = self._wrap_callback(value)

 @property
 def when_deactivated(self):
 """
 The function to run when the device changes state from active to
 inactive.

 This can be set to a function which accepts no (mandatory) parameters,
 or a Python function which accepts a single mandatory parameter (with
 as many optional parameters as you like). If the function accepts a
 single mandatory parameter, the device that deactivated will be
 passed as that parameter.

 Set this property to ``None`` (the default) to disable the event.
 """
 return self._when_deactivated

 @when_deactivated.setter
 def when_deactivated(self, value):
 self._when_deactivated = self._wrap_callback(value)

 def _wrap_callback(self, fn):
 if fn is None:
 return None
 elif not callable(fn):
 raise InputDeviceError('value must be None or a callable')
 elif inspect.isbuiltin(fn):
 # We can't introspect the prototype of builtins. In this case we
 # assume that the builtin has no (mandatory) parameters; this is
 # the most reasonable assumption on the basis that pre-existing
 # builtins have no knowledge of gpiozero, and the sole parameter
 # we would pass is a gpiozero object
 return fn
 else:
 # Try binding ourselves to the argspec of the provided callable.
 # If this works, assume the function is capable of accepting no
 # parameters
 try:
 inspect.getcallargs(fn)
 return fn
 except TypeError:
 try:
 # If the above fails, try binding with a single parameter
 # (ourselves). If this works, wrap the specified callback
 inspect.getcallargs(fn, self)
 @wraps(fn)
 def wrapper():
 return fn(self)
 return wrapper
 except TypeError:
 raise InputDeviceError(
 'value must be a callable which accepts up to one '
 'mandatory parameter')

 def _fire_events(self):
 old_state = self._last_state
 new_state = self._last_state = self.is_active
 if old_state is None:
 # Initial "indeterminate" state; set events but don't fire
 # callbacks as there's not necessarily an edge
 if new_state:
 self._active_event.set()
 else:
 self._inactive_event.set()
 else:
 if not old_state and new_state:
 self._inactive_event.clear()
 self._active_event.set()
 if self.when_activated:
 self.when_activated()
 elif old_state and not new_state:
 self._active_event.clear()
 self._inactive_event.set()
 if self.when_deactivated:
 self.when_deactivated()

[docs]class DigitalInputDevice(WaitableInputDevice):
 """
 Represents a generic input device with typical on/off behaviour.

 This class extends :class:`WaitableInputDevice` with machinery to fire the
 active and inactive events for devices that operate in a typical digital
 manner: straight forward on / off states with (reasonably) clean
 transitions between the two.

 :param float bouncetime:
 Specifies the length of time (in seconds) that the component will
 ignore changes in state after an initial change. This defaults to
 ``None`` which indicates that no bounce compensation will be performed.
 """
 def __init__(self, pin=None, pull_up=False, bounce_time=None):
 super(DigitalInputDevice, self).__init__(pin, pull_up)
 try:
 self.pin.bounce = bounce_time
 self.pin.edges = 'both'
 self.pin.when_changed = self._fire_events
 # Call _fire_events once to set initial state of events
 self._fire_events()
 except:
 self.close()
 raise

[docs]class SmoothedInputDevice(WaitableInputDevice):
 """
 Represents a generic input device which takes its value from the mean of a
 queue of historical values.

 This class extends :class:`WaitableInputDevice` with a queue which is
 filled by a background thread which continually polls the state of the
 underlying device. The mean of the values in the queue is compared to a
 threshold which is used to determine the state of the :attr:`is_active`
 property.

 This class is intended for use with devices which either exhibit analog
 behaviour (such as the charging time of a capacitor with an LDR), or those
 which exhibit "twitchy" behaviour (such as certain motion sensors).

 :param float threshold:
 The value above which the device will be considered "on".

 :param int queue_len:
 The length of the internal queue which is filled by the background
 thread.

 :param float sample_wait:
 The length of time to wait between retrieving the state of the
 underlying device. Defaults to 0.0 indicating that values are retrieved
 as fast as possible.

 :param bool partial:
 If ``False`` (the default), attempts to read the state of the device
 (from the :attr:`is_active` property) will block until the queue has
 filled. If ``True``, a value will be returned immediately, but be
 aware that this value is likely to fluctuate excessively.
 """
 def __init__(
 self, pin=None, pull_up=False, threshold=0.5,
 queue_len=5, sample_wait=0.0, partial=False):
 self._queue = None
 super(SmoothedInputDevice, self).__init__(pin, pull_up)
 try:
 self._queue = GPIOQueue(self, queue_len, sample_wait, partial)
 self.threshold = float(threshold)
 except:
 self.close()
 raise

[docs] def close(self):
 try:
 self._queue.stop()
 except AttributeError:
 # If the queue isn't initialized (it's None) ignore the error
 # because we're trying to close anyway
 if self._queue is not None:
 raise
 except RuntimeError:
 # Cannot join thread before it starts; we don't care about this
 # because we're trying to close the thread anyway
 pass
 else:
 self._queue = None
 super(SmoothedInputDevice, self).close()

 def __repr__(self):
 try:
 self._check_open()
 except GPIODeviceClosed:
 return super(SmoothedInputDevice, self).__repr__()
 else:
 if self.partial or self._queue.full.wait(0):
 return super(SmoothedInputDevice, self).__repr__()
 else:
 return "<gpiozero.%s object on pin=%d, pull_up=%s>" % (
 self.__class__.__name__, self.pin, self.pull_up)

 @property
 def queue_len(self):
 """
 The length of the internal queue of values which is averaged to
 determine the overall state of the device. This defaults to 5.
 """
 self._check_open()
 return self._queue.queue.maxlen

 @property
 def partial(self):
 """
 If ``False`` (the default), attempts to read the :attr:`value` or
 :attr:`is_active` properties will block until the queue has filled.
 """
 self._check_open()
 return self._queue.partial

 @property
 def value(self):
 """
 Returns the mean of the values in the internal queue. This is compared
 to :attr:`threshold` to determine whether :attr:`is_active` is
 ``True``.
 """
 self._check_open()
 return self._queue.value

 @property
 def threshold(self):
 """
 If :attr:`value` exceeds this amount, then :attr:`is_active` will
 return ``True``.
 """
 return self._threshold

 @threshold.setter
 def threshold(self, value):
 if not (0.0 < value < 1.0):
 raise InputDeviceError(
 'threshold must be between zero and one exclusive'
)
 self._threshold = float(value)

 @property
 def is_active(self):
 """
 Returns ``True`` if the device is currently active and ``False``
 otherwise.
 """
 return self.value > self.threshold

[docs]class Button(DigitalInputDevice):
 """
 Extends :class:`DigitalInputDevice` and represents a simple push button
 or switch.

 Connect one side of the button to a ground pin, and the other to any GPIO
 pin. Alternatively, connect one side of the button to the 3V3 pin, and the
 other to any GPIO pin, then set *pull_up* to ``False`` in the
 :class:`Button` constructor.

 The following example will print a line of text when the button is pushed::

 from gpiozero import Button

 button = Button(4)
 button.wait_for_press()
 print("The button was pressed!")

 :param int pin:
 The GPIO pin which the button is attached to. See :doc:`notes` for
 valid pin numbers.

 :param bool pull_up:
 If ``True`` (the default), the GPIO pin will be pulled high by default.
 In this case, connect the other side of the button to ground. If
 ``False``, the GPIO pin will be pulled low by default. In this case,
 connect the other side of the button to 3V3.

 :param float bounce_time:
 If ``None`` (the default), no software bounce compensation will be
 performed. Otherwise, this is the length in time (in seconds) that the
 component will ignore changes in state after an initial change.
 """
 def __init__(self, pin=None, pull_up=True, bounce_time=None):
 super(Button, self).__init__(pin, pull_up, bounce_time)

Button.is_pressed = Button.is_active
Button.when_pressed = Button.when_activated
Button.when_released = Button.when_deactivated
Button.wait_for_press = Button.wait_for_active
Button.wait_for_release = Button.wait_for_inactive

class LineSensor(DigitalInputDevice):
 """
 A single sensor line detector.
 """
 def __init__(self, pin=None, pull_up=True, bounce_time=None):
 super(LineSensor, self).__init__(pin, pull_up, bounce_time)

LineSensor.line_detected = LineSensor.is_active
LineSensor.when_line = LineSensor.when_activated
LineSensor.when_no_line = LineSensor.when_deactivated
LineSensor.wait_for_line = LineSensor.wait_for_active
LineSensor.wait_for_no_line = LineSensor.wait_for_inactive

[docs]class MotionSensor(SmoothedInputDevice):
 """
 Extends :class:`SmoothedInputDevice` and represents a passive infra-red
 (PIR) motion sensor like the sort found in the `CamJam #2 EduKit`_.

 .. _CamJam #2 EduKit: http://camjam.me/?page_id=623

 A typical PIR device has a small circuit board with three pins: VCC, OUT,
 and GND. VCC should be connected to a 5V pin, GND to one of the ground
 pins, and finally OUT to the GPIO specified as the value of the *pin*
 parameter in the constructor.

 The following code will print a line of text when motion is detected::

 from gpiozero import MotionSensor

 pir = MotionSensor(4)
 pir.wait_for_motion()
 print("Motion detected!")

 :param int pin:
 The GPIO pin which the button is attached to. See :doc:`notes` for
 valid pin numbers.

 :param int queue_len:
 The length of the queue used to store values read from the sensor. This
 defaults to 1 which effectively disables the queue. If your motion
 sensor is particularly "twitchy" you may wish to increase this value.

 :param float sample_rate:
 The number of values to read from the device (and append to the
 internal queue) per second. Defaults to 10.

 :param float threshold:
 Defaults to 0.5. When the mean of all values in the internal queue
 rises above this value, the sensor will be considered "active" by the
 :attr:`~SmoothedInputDevice.is_active` property, and all appropriate
 events will be fired.

 :param bool partial:
 When ``False`` (the default), the object will not return a value for
 :attr:`~SmoothedInputDevice.is_active` until the internal queue has
 filled with values. Only set this to ``True`` if you require values
 immediately after object construction.
 """
 def __init__(
 self, pin=None, queue_len=1, sample_rate=10, threshold=0.5,
 partial=False):
 super(MotionSensor, self).__init__(
 pin, pull_up=False, threshold=threshold,
 queue_len=queue_len, sample_wait=1 / sample_rate, partial=partial
)
 try:
 self._queue.start()
 except:
 self.close()
 raise

MotionSensor.motion_detected = MotionSensor.is_active
MotionSensor.when_motion = MotionSensor.when_activated
MotionSensor.when_no_motion = MotionSensor.when_deactivated
MotionSensor.wait_for_motion = MotionSensor.wait_for_active
MotionSensor.wait_for_no_motion = MotionSensor.wait_for_inactive

[docs]class LightSensor(SmoothedInputDevice):
 """
 Extends :class:`SmoothedInputDevice` and represents a light dependent
 resistor (LDR).

 Connect one leg of the LDR to the 3V3 pin; connect one leg of a 1µf
 capacitor to a ground pin; connect the other leg of the LDR and the other
 leg of the capacitor to the same GPIO pin. This class repeatedly discharges
 the capacitor, then times the duration it takes to charge (which will vary
 according to the light falling on the LDR).

 The following code will print a line of text when light is detected::

 from gpiozero import LightSensor

 ldr = LightSensor(18)
 ldr.wait_for_light()
 print("Light detected!")

 :param int pin:
 The GPIO pin which the button is attached to. See :doc:`notes` for
 valid pin numbers.

 :param int queue_len:
 The length of the queue used to store values read from the circuit.
 This defaults to 5.

 :param float charge_time_limit:
 If the capacitor in the circuit takes longer than this length of time
 to charge, it is assumed to be dark. The default (0.01 seconds) is
 appropriate for a 0.01µf capacitor coupled with the LDR from the
 `CamJam #2 EduKit`_. You may need to adjust this value for different
 valued capacitors or LDRs.

 :param float threshold:
 Defaults to 0.1. When the mean of all values in the internal queue
 rises above this value, the area will be considered "light", and all
 appropriate events will be fired.

 :param bool partial:
 When ``False`` (the default), the object will not return a value for
 :attr:`~SmoothedInputDevice.is_active` until the internal queue has
 filled with values. Only set this to ``True`` if you require values
 immediately after object construction.

 .. _CamJam #2 EduKit: http://camjam.me/?page_id=623
 """
 def __init__(
 self, pin=None, queue_len=5, charge_time_limit=0.01,
 threshold=0.1, partial=False):
 super(LightSensor, self).__init__(
 pin, pull_up=False, threshold=threshold,
 queue_len=queue_len, sample_wait=0.0, partial=partial
)
 try:
 self._charge_time_limit = charge_time_limit
 self._charged = Event()
 self.pin.edges = 'rising'
 self.pin.bounce = None
 self.pin.when_changed = self._charged.set
 self._queue.start()
 except:
 self.close()
 raise

 @property
 def charge_time_limit(self):
 return self._charge_time_limit

 def _read(self):
 # Drain charge from the capacitor
 self.pin.function = 'output'
 self.pin.state = False
 sleep(0.1)
 # Time the charging of the capacitor
 start = time()
 self._charged.clear()
 self.pin.function = 'input'
 self._charged.wait(self.charge_time_limit)
 return (
 1.0 - min(self.charge_time_limit, time() - start) /
 self.charge_time_limit
)

LightSensor.light_detected = LightSensor.is_active
LightSensor.when_light = LightSensor.when_activated
LightSensor.when_dark = LightSensor.when_deactivated
LightSensor.wait_for_light = LightSensor.wait_for_active
LightSensor.wait_for_dark = LightSensor.wait_for_inactive

[docs]class AnalogInputDevice(CompositeDevice):
 """
 Represents an analog input device connected to SPI (serial interface).

 Typical analog input devices are `analog to digital converters`_ (ADCs).
 Several classes are provided for specific ADC chips, including
 :class:`MCP3004`, :class:`MCP3008`, :class:`MCP3204`, and :class:`MCP3208`.

 The following code demonstrates reading the first channel of an MCP3008
 chip attached to the Pi's SPI pins::

 from gpiozero import MCP3008

 pot = MCP3008(0)
 print(pot.value)

 The :attr:`value` attribute is normalized such that its value is always
 between 0.0 and 1.0 (or in special cases, such as differential sampling,
 -1 to +1). Hence, you can use an analog input to control the brightness of
 a :class:`PWMLED` like so::

 from gpiozero import MCP3008, PWMLED

 pot = MCP3008(0)
 led = PWMLED(17)
 led.source = pot.values

 .. _analog to digital converters: https://en.wikipedia.org/wiki/Analog-to-digital_converter
 """

 def __init__(self, device=0, bits=None):
 if bits is None:
 raise InputDeviceError('you must specify the bit resolution of the device')
 if device not in (0, 1):
 raise InputDeviceError('device must be 0 or 1')
 self._device = device
 self._bits = bits
 self._spi = SpiDev()
 self._spi.open(0, self.device)
 super(AnalogInputDevice, self).__init__()

[docs] def close(self):
 """
 Shut down the device and release all associated resources.
 """
 if self._spi:
 s = self._spi
 self._spi = None
 s.close()
 super(AnalogInputDevice, self).close()

 @property
 def bits(self):
 """
 The bit-resolution of the device/channel.
 """
 return self._bits

 @property
 def bus(self):
 """
 The SPI bus that the device is connected to. As the Pi only has a
 single (user accessible) SPI bus, this always returns 0.
 """
 return 0

 @property
 def device(self):
 """
 The select pin that the device is connected to. The Pi has two select
 pins so this will be 0 or 1.
 """
 return self._device

 def _read(self):
 raise NotImplementedError

 @property
 def value(self):
 """
 The current value read from the device, scaled to a value between 0 and
 1.
 """
 return self._read() / (2**self.bits - 1)

 @property
 def raw_value(self):
 """
 The raw value as read from the device.
 """
 return self._read()

class MCP3xxx(AnalogInputDevice):
 """
 Extends :class:`AnalogInputDevice` to implement an interface for all ADC
 chips with a protocol similar to the Microchip MCP3xxx series of devices.
 """

 def __init__(self, channel=0, device=0, bits=10, differential=False):
 self._channel = channel
 self._bits = bits
 self._differential = bool(differential)
 super(MCP3xxx, self).__init__(device, bits)

 @property
 def channel(self):
 """
 The channel to read data from. The MCP3008/3208/3304 have 8 channels
 (0-7), while the MCP3004/3204/3302 have 4 channels (0-3), and the
 MCP3301 only has 1 channel.
 """
 return self._channel

 @property
 def differential(self):
 """
 If ``True``, the device is operated in pseudo-differential mode. In
 this mode one channel (specified by the channel attribute) is read
 relative to the value of a second channel (implied by the chip's
 design).

 Please refer to the device data-sheet to determine which channel is
 used as the relative base value (for example, when using an
 :class:`MCP3008` in differential mode, channel 0 is read relative to
 channel 1).
 """
 return self._differential

 def _read(self):
 # MCP3008/04 or MCP3208/04 protocol looks like the following:
 #
 # Byte 0 1 2
 # ==== ======== ======== ========
 # Tx 0001MCCC xxxxxxxx xxxxxxxx
 # Rx xxxxxxxx x0RRRRRR RRRRxxxx for the 3004/08
 # Rx xxxxxxxx x0RRRRRR RRRRRRxx for the 3204/08
 #
 # The transmit bits start with 3 preamble bits "000" (to warm up), a
 # start bit "1" followed by the single/differential bit (M) which is 1
 # for single-ended read, and 0 for differential read, followed by
 # 3-bits for the channel (C). The remainder of the transmission are
 # "don't care" bits (x).
 #
 # The first byte received and the top 1 bit of the second byte are
 # don't care bits (x). These are followed by a null bit (0), and then
 # the result bits (R). 10 bits for the MCP300x, 12 bits for the
 # MCP320x.
 #
 # XXX Differential mode still requires testing
 data = self._spi.xfer2([16 + [8, 0][self.differential] + self.channel, 0, 0])
 return ((data[1] & 63) << (self.bits - 6)) | (data[2] >> (14 - self.bits))

class MCP33xx(MCP3xxx):
 """
 Extends :class:`MCP3xxx` with functionality specific to the MCP33xx family
 of ADCs; specifically this handles the full differential capability of
 these chips supporting the full 13-bit signed range of output values.
 """

 def __init__(self, channel=0, device=0, differential=False):
 super(MCP33xx, self).__init__(channel, device, 12, differential)

 def _read(self):
 # MCP3304/02 protocol looks like the following:
 #
 # Byte 0 1 2
 # ==== ======== ======== ========
 # Tx 0001MCCC xxxxxxxx xxxxxxxx
 # Rx xxxxxxxx x0SRRRRR RRRRRRRx
 #
 # The transmit bits start with 3 preamble bits "000" (to warm up), a
 # start bit "1" followed by the single/differential bit (M) which is 1
 # for single-ended read, and 0 for differential read, followed by
 # 3-bits for the channel (C). The remainder of the transmission are
 # "don't care" bits (x).
 #
 # The first byte received and the top 1 bit of the second byte are
 # don't care bits (x). These are followed by a null bit (0), then the
 # sign bit (S), and then the 12 result bits (R).
 #
 # In single read mode (the default) the sign bit is always zero and the
 # result is effectively 12-bits. In differential mode, the sign bit is
 # significant and the result is a two's-complement 13-bit value.
 #
 # The MCP3301 variant of the chip always operates in differential
 # mode and effectively only has one channel (composed of an IN+ and
 # IN-). As such it requires no input, just output. This is the reason
 # we split out _send() below; so that MCP3301 can override it.
 data = self._spi.xfer2(self._send())
 # Extract the last two bytes (again, for MCP3301)
 data = data[-2:]
 result = ((data[0] & 63) << 7) | (data[1] >> 1)
 # Account for the sign bit
 if self.differential and value > 4095:
 result = -(8192 - result)
 assert -4096 <= result < 4096
 return result

 def _send(self):
 return [16 + [8, 0][self.differential] + self.channel, 0, 0]

[docs]class MCP3004(MCP3xxx):
 """
 The `MCP3004`_ is a 10-bit analog to digital converter with 4 channels
 (0-3).

 .. _MCP3004: http://www.farnell.com/datasheets/808965.pdf
 """
 def __init__(self, channel=0, device=0, differential=False):
 if not 0 <= channel < 4:
 raise InputDeviceError('channel must be between 0 and 3')
 super(MCP3004, self).__init__(channel, device, 10, differential)

[docs]class MCP3008(MCP3xxx):
 """
 The `MCP3008`_ is a 10-bit analog to digital converter with 8 channels
 (0-7).

 .. _MCP3008: http://www.farnell.com/datasheets/808965.pdf
 """
 def __init__(self, channel=0, device=0, differential=False):
 if not 0 <= channel < 8:
 raise InputDeviceError('channel must be between 0 and 7')
 super(MCP3008, self).__init__(channel, device, 10, differential)

[docs]class MCP3204(MCP3xxx):
 """
 The `MCP3204`_ is a 12-bit analog to digital converter with 4 channels
 (0-3).

 .. _MCP3204: http://www.farnell.com/datasheets/808967.pdf
 """
 def __init__(self, channel=0, device=0, differential=False):
 if not 0 <= channel < 4:
 raise InputDeviceError('channel must be between 0 and 3')
 super(MCP3204, self).__init__(channel, device, 12, differential)

[docs]class MCP3208(MCP3xxx):
 """
 The `MCP3208`_ is a 12-bit analog to digital converter with 8 channels
 (0-7).

 .. _MCP3208: http://www.farnell.com/datasheets/808967.pdf
 """
 def __init__(self, channel=0, device=0, differential=False):
 if not 0 <= channel < 8:
 raise InputDeviceError('channel must be between 0 and 7')
 super(MCP3208, self).__init__(channel, device, 12, differential)

[docs]class MCP3301(MCP33xx):
 """
 The `MCP3301`_ is a signed 13-bit analog to digital converter. Please note
 that the MCP3301 always operates in differential mode between its two
 channels and the output value is scaled from -1 to +1.

 .. _MCP3301: http://www.farnell.com/datasheets/1669397.pdf
 """
 def __init__(self, device=0):
 super(MCP3301, self).__init__(0, device, differential=True)

 def _send(self):
 return [0, 0]

[docs]class MCP3302(MCP33xx):
 """
 The `MCP3302`_ is a 12/13-bit analog to digital converter with 4 channels
 (0-3). When operated in differential mode, the device outputs a signed
 13-bit value which is scaled from -1 to +1. When operated in single-ended
 mode (the default), the device outputs an unsigned 12-bit value scaled from
 0 to 1.

 .. _MCP3302: http://www.farnell.com/datasheets/1486116.pdf
 """
 def __init__(self, channel=0, device=0, differential=False):
 if not 0 <= channel < 4:
 raise InputDeviceError('channel must be between 0 and 4')
 super(MCP3302, self).__init__(channel, device, differential)

[docs]class MCP3304(MCP33xx):
 """
 The `MCP3304`_ is a 12/13-bit analog to digital converter with 8 channels
 (0-7). When operated in differential mode, the device outputs a signed
 13-bit value which is scaled from -1 to +1. When operated in single-ended
 mode (the default), the device outputs an unsigned 12-bit value scaled from
 0 to 1.

 .. _MCP3304: http://www.farnell.com/datasheets/1486116.pdf
 """
 def __init__(self, channel=0, device=0, differential=False):
 if not 0 <= channel < 8:
 raise InputDeviceError('channel must be between 0 and 7')
 super(MCP3304, self).__init__(channel, device, differential)

 © Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

_modules/gpiozero/boards.html

 Navigation

 		
 index

 		Gpiozero 1.1.0 documentation »

 		Module code »

 Source code for gpiozero.boards

from __future__ import (
 unicode_literals,
 print_function,
 absolute_import,
 division,
)
try:
 from itertools import izip as zip
except ImportError:
 pass

from time import sleep
from collections import namedtuple
from itertools import repeat, cycle, chain

from .exc import InputDeviceError, OutputDeviceError
from .input_devices import Button
from .output_devices import LED, PWMLED, Buzzer, Motor
from .devices import GPIOThread, CompositeDevice, SourceMixin

class LEDCollection(SourceMixin, CompositeDevice):
 """
 Abstract base class for :class:`LEDBoard` and :class:`LEDBarGraph`.
 """

 def __init__(self, *pins, **kwargs):
 self._blink_thread = None
 super(LEDCollection, self).__init__()
 pwm = kwargs.get('pwm', False)
 LEDClass = PWMLED if pwm else LED
 self._leds = tuple(LEDClass(pin) for pin in pins)

 def close(self):
 for led in self.leds:
 led.close()

 @property
 def closed(self):
 return all(led.closed for led in self.leds)

 @property
 def leds(self):
 """
 A tuple of all the :class:`LED` or :class:`PWMLED` objects contained by
 the instance.
 """
 return self._leds

 def on(self):
 """
 Turn all the LEDs on.
 """
 for led in self.leds:
 led.on()

 def off(self):
 """
 Turn all the LEDs off.
 """
 for led in self.leds:
 led.off()

 def toggle(self):
 """
 Toggle all the LEDs. For each LED, if it's on, turn it off; if it's
 off, turn it on.
 """
 for led in self.leds:
 led.toggle()

[docs]class LEDBoard(LEDCollection):
 """
 Extends :class:`CompositeDevice` and represents a generic LED board or
 collection of LEDs.

 The following example turns on all the LEDs on a board containing 5 LEDs
 attached to GPIO pins 2 through 6::

 from gpiozero import LEDBoard

 leds = LEDBoard(2, 3, 4, 5, 6)
 leds.on()

 :param int *pins:
 Specify the GPIO pins that the LEDs of the board are attached to. You
 can designate as many pins as necessary.

 :param bool pwm:
 If ``True``, construct :class:`PWMLED` instances for each pin. If
 ``False`` (the default), construct regular :class:`LED` instances. This
 parameter can only be specified as a keyword parameter.
 """

[docs] def close(self):
 self._stop_blink()
 super(LEDBoard, self).close()

 @property
 def value(self):
 """
 A tuple containing a value for each LED on the board. This property can
 also be set to update the state of all LEDs on the board.
 """
 return tuple(led.value for led in self._leds)

 @value.setter
 def value(self, value):
 self._stop_blink()
 for l, v in zip(self.leds, value):
 l.value = v

[docs] def on(self):
 self._stop_blink()
 super(LEDBoard, self).on()

[docs] def off(self):
 self._stop_blink()
 super(LEDBoard, self).off()

[docs] def toggle(self):
 self._stop_blink()
 super(LEDBoard, self).toggle()

[docs] def blink(
 self, on_time=1, off_time=1, fade_in_time=0, fade_out_time=0,
 n=None, background=True):
 """
 Make all the LEDs turn on and off repeatedly.

 :param float on_time:
 Number of seconds on. Defaults to 1 second.

 :param float off_time:
 Number of seconds off. Defaults to 1 second.

 :param float fade_in_time:
 Number of seconds to spend fading in. Defaults to 0. Must be 0 if
 ``pwm`` was ``False`` when the class was constructed
 (:exc:`ValueError` will be raised if not).

 :param float fade_out_time:
 Number of seconds to spend fading out. Defaults to 0. Must be 0 if
 ``pwm`` was ``False`` when the class was constructed
 (:exc:`ValueError` will be raised if not).

 :param int n:
 Number of times to blink; ``None`` (the default) means forever.

 :param bool background:
 If ``True``, start a background thread to continue blinking and
 return immediately. If ``False``, only return when the blink is
 finished (warning: the default value of *n* will result in this
 method never returning).
 """
 if isinstance(self.leds[0], LED):
 if fade_in_time:
 raise ValueError('fade_in_time must be 0 with non-PWM LEDs')
 if fade_out_time:
 raise ValueError('fade_out_time must be 0 with non-PWM LEDs')
 self._stop_blink()
 self._blink_thread = GPIOThread(
 target=self._blink_device,
 args=(on_time, off_time, fade_in_time, fade_out_time, n)
)
 self._blink_thread.start()
 if not background:
 self._blink_thread.join()
 self._blink_thread = None

 def _stop_blink(self):
 if self._blink_thread:
 self._blink_thread.stop()
 self._blink_thread = None

 def _blink_device(self, on_time, off_time, fade_in_time, fade_out_time, n, fps=50):
 sequence = []
 if fade_in_time > 0:
 sequence += [
 (i * (1 / fps) / fade_in_time, 1 / fps)
 for i in range(int(fps * fade_in_time))
]
 sequence.append((1, on_time))
 if fade_out_time > 0:
 sequence += [
 (1 - (i * (1 / fps) / fade_out_time), 1 / fps)
 for i in range(int(fps * fade_out_time))
]
 sequence.append((0, off_time))
 sequence = (
 cycle(sequence) if n is None else
 chain.from_iterable(repeat(sequence, n))
)
 for value, delay in sequence:
 for led in self.leds:
 led.value = value
 if self._blink_thread.stopping.wait(delay):
 break

[docs]class LEDBarGraph(LEDCollection):
 """
 Extends :class:`CompositeDevice` to control a line of LEDs representing a
 bar graph. Positive values (0 to 1) light the LEDs from first to last.
 Negative values (-1 to 0) light the LEDs from last to first.

 The following example turns on all the LEDs on a board containing 5 LEDs
 attached to GPIO pins 2 through 6::

 from gpiozero import LEDBarGraph

 graph = LEDBarGraph(2, 3, 4, 5, 6)
 graph.value = 2/5 # Light the first two LEDs only
 graph.value = -2/5 # Light the last two LEDs only
 graph.off()

 As with other output devices, :attr:`source` and :attr:`values` are
 supported::

 from gpiozero import LEDBarGraph, MCP3008
 from signal import pause

 graph = LEDBarGraph(2, 3, 4, 5, 6)
 pot = MCP3008(channel=0)
 graph.source = pot.values
 pause()

 :param int *pins:
 Specify the GPIO pins that the LEDs of the bar graph are attached to.
 You can designate as many pins as necessary.

 :param float initial_value:
 The initial :attr:`value` of the graph given as a float between -1 and
 +1. Defaults to 0.0.
 """

 def __init__(self, *pins, **kwargs):
 super(LEDBarGraph, self).__init__(*pins, pwm=False)
 initial_value = kwargs.get('initial_value', 0)
 self.value = initial_value

 @property
 def value(self):
 """
 The value of the LED bar graph. When no LEDs are lit, the value is 0.
 When all LEDs are lit, the value is 1. Values between 0 and 1
 light LEDs linearly from first to last. Values between 0 and -1
 light LEDs linearly from last to first.

 To light a particular number of LEDs, simply divide that number by
 the number of LEDs. For example, if your graph contains 3 LEDs, the
 following will light the first::

 from gpiozero import LEDBarGraph

 graph = LEDBarGraph(12, 16, 19)
 graph.value = 1/3

 .. note::

 Setting value to -1 will light all LEDs. However, querying it
 subsequently will return 1 as both representations are the same in
 hardware.
 """
 for index, led in enumerate(self.leds):
 if not led.is_lit:
 break
 else:
 index = len(self.leds)
 if not index:
 for index, led in enumerate(reversed(self.leds)):
 if not led.is_lit:
 break
 index = -index
 return index / len(self.leds)

 @value.setter
 def value(self, value):
 count = len(self.leds)
 if value >= 0:
 for index, led in enumerate(self.leds, start=1):
 led.value = value >= (index / count)
 else:
 for index, led in enumerate(reversed(self.leds), start=1):
 led.value = value <= -(index / count)

[docs]class PiLiter(LEDBoard):
 """
 Extends :class:`LEDBoard` for the `Ciseco Pi-LITEr`_: a strip of 8 very bright
 LEDs.

 The Pi-LITEr pins are fixed and therefore there's no need to specify them
 when constructing this class. The following example turns on all the LEDs
 of the Pi-LITEr::

 from gpiozero import PiLiter

 lite = PiLiter()
 lite.on()

 :param bool pwm:
 If ``True``, construct :class:`PWMLED` instances for each pin. If
 ``False`` (the default), construct regular :class:`LED` instances. This
 parameter can only be specified as a keyword parameter.

 .. _Ciseco Pi-LITEr: http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/
 """
 def __init__(self, pwm=False):
 super(PiLiter, self).__init__(4, 17, 27, 18, 22, 23, 24, 25, pwm=pwm)

[docs]class PiLiterBarGraph(LEDBarGraph):
 """
 Extends :class:`LEDBarGraph` to treat the `Ciseco Pi-LITEr`_ as an
 8-segment bar graph.

 The Pi-LITEr pins are fixed and therefore there's no need to specify them
 when constructing this class. The following example sets the graph value
 to 0.5::

 from gpiozero import PiLiterBarGraph

 graph = PiLiterBarGraph()
 graph.value = 0.5

 :param bool initial_value:
 The initial value of the graph given as a float between -1 and +1.
 Defaults to 0.0.

 .. _Ciseco Pi-LITEr: http://shop.ciseco.co.uk/pi-liter-8-led-strip-for-the-raspberry-pi/
 """
 def __init__(self, initial_value=0):
 super(PiLiterBarGraph, self).__init__(
 4, 17, 27, 18, 22, 23, 24, 25, initial_value=initial_value)

TrafficLightTuple = namedtuple('TrafficLightTuple', ('red', 'amber', 'green'))

[docs]class TrafficLights(LEDBoard):
 """
 Extends :class:`LEDBoard` for devices containing red, amber, and green
 LEDs.

 The following example initializes a device connected to GPIO pins 2, 3,
 and 4, then lights the amber LED attached to GPIO 3::

 from gpiozero import TrafficLights

 traffic = TrafficLights(2, 3, 4)
 traffic.amber.on()

 :param int red:
 The GPIO pin that the red LED is attached to.

 :param int amber:
 The GPIO pin that the amber LED is attached to.

 :param int green:
 The GPIO pin that the green LED is attached to.

 :param bool pwm:
 If ``True``, construct :class:`PWMLED` instances to represent each
 LED. If ``False`` (the default), construct regular :class:`LED`
 instances.
 """
 def __init__(self, red=None, amber=None, green=None, pwm=False):
 if not all([red, amber, green]):
 raise OutputDeviceError(
 'red, amber and green pins must be provided'
)
 super(TrafficLights, self).__init__(red, amber, green, pwm=pwm)

 @property
 def value(self):
 """
 A 3-tuple containing values for the red, amber, and green LEDs. This
 property can also be set to alter the state of the LEDs.
 """
 return TrafficLightTuple(*super(TrafficLights, self).value)

 @value.setter
 def value(self, value):
 # Eurgh, this is horrid but necessary (see #90)
 super(TrafficLights, self.__class__).value.fset(self, value)

 @property
 def red(self):
 """
 The :class:`LED` or :class:`PWMLED` object representing the red LED.
 """
 return self.leds[0]

 @property
 def amber(self):
 """
 The :class:`LED` or :class:`PWMLED` object representing the red LED.
 """
 return self.leds[1]

 @property
 def green(self):
 """
 The :class:`LED` or :class:`PWMLED` object representing the green LED.
 """
 return self.leds[2]

[docs]class PiTraffic(TrafficLights):
 """
 Extends :class:`TrafficLights` for the Low Voltage Labs PI-TRAFFIC:
 vertical traffic lights board when attached to GPIO pins 9, 10, and 11.

 There's no need to specify the pins if the PI-TRAFFIC is connected to the
 default pins (9, 10, 11). The following example turns on the amber LED on
 the PI-TRAFFIC::

 from gpiozero import PiTraffic

 traffic = PiTraffic()
 traffic.amber.on()

 To use the PI-TRAFFIC board when attached to a non-standard set of pins,
 simply use the parent class, :class:`TrafficLights`.
 """
 def __init__(self):
 super(PiTraffic, self).__init__(9, 10, 11)

TrafficLightsBuzzerTuple = namedtuple('TrafficLightsBuzzerTuple', (
 'red', 'amber', 'green', 'buzzer'))

[docs]class TrafficLightsBuzzer(SourceMixin, CompositeDevice):
 """
 Extends :class:`CompositeDevice` and is a generic class for HATs with
 traffic lights, a button and a buzzer.

 :param TrafficLights lights:
 An instance of :class:`TrafficLights` representing the traffic lights
 of the HAT.

 :param Buzzer buzzer:
 An instance of :class:`Buzzer` representing the buzzer on the HAT.

 :param Button button:
 An instance of :class:`Button` representing the button on the HAT.
 """
 def __init__(self, lights, buzzer, button):
 super(TrafficLightsBuzzer, self).__init__()
 self.lights = lights
 self.buzzer = buzzer
 self.button = button
 self._all = self.lights.leds + (self.buzzer,)

[docs] def close(self):
 self.lights.close()
 self.buzzer.close()
 self.button.close()

 @property
 def closed(self):
 return all(o.closed for o in self.all)

 @property
 def all(self):
 """
 A tuple containing objects for all the items on the board (several
 :class:`LED` objects, a :class:`Buzzer`, and a :class:`Button`).
 """
 return self._all

 @property
 def value(self):
 """
 Returns a named-tuple containing values representing the states of
 the LEDs, and the buzzer. This property can also be set to a 4-tuple
 to update the state of all the board's components.
 """
 return TrafficLightsBuzzerTuple(
 self.lights.red.value,
 self.lights.amber.value,
 self.lights.green.value,
 self.buzzer.value,
)

 @value.setter
 def value(self, value):
 for i, v in zip(self.all, value):
 i.value = v

[docs] def on(self):
 """
 Turn all the board's components on.
 """
 for thing in self.all:
 thing.on()

[docs] def off(self):
 """
 Turn all the board's components off.
 """
 for thing in self.all:
 thing.off()

[docs] def toggle(self):
 """
 Toggle all the board's components. For each component, if it's on, turn
 it off; if it's off, turn it on.
 """
 for thing in self.all:
 thing.toggle()

[docs] def blink(self, on_time=1, off_time=1, n=None, background=True):
 """
 Make all the board's components turn on and off repeatedly.

 :param float on_time:
 Number of seconds on

 :param float off_time:
 Number of seconds off

 :param int n:
 Number of times to blink; ``None`` means forever

 :param bool background:
 If ``True``, start a background thread to continue blinking and
 return immediately. If ``False``, only return when the blink is
 finished (warning: the default value of *n* will result in this
 method never returning).
 """
 # XXX This isn't going to work for background=False
 for thing in self._all:
 thing.blink(on_time, off_time, n, background)

[docs]class FishDish(TrafficLightsBuzzer):
 """
 Extends :class:`TrafficLightsBuzzer` for the Pi Supply FishDish: traffic
 light LEDs, a button and a buzzer.

 The FishDish pins are fixed and therefore there's no need to specify them
 when constructing this class. The following example waits for the button
 to be pressed on the FishDish, then turns on all the LEDs::

 from gpiozero import FishDish

 fish = FishDish()
 fish.button.wait_for_press()
 fish.lights.on()

 :param bool pwm:
 If ``True``, construct :class:`PWMLED` instances to represent each
 LED. If ``False`` (the default), construct regular :class:`LED`
 instances.
 """
 def __init__(self, pwm=False):
 super(FishDish, self).__init__(
 TrafficLights(9, 22, 4, pwm=pwm),
 Buzzer(8),
 Button(7, pull_up=False),
)

[docs]class TrafficHat(TrafficLightsBuzzer):
 """
 Extends :class:`TrafficLightsBuzzer` for the Ryanteck Traffic HAT: traffic
 light LEDs, a button and a buzzer.

 The Traffic HAT pins are fixed and therefore there's no need to specify
 them when constructing this class. The following example waits for the
 button to be pressed on the Traffic HAT, then turns on all the LEDs::

 from gpiozero import TrafficHat

 hat = TrafficHat()
 hat.button.wait_for_press()
 hat.lights.on()

 :param bool pwm:
 If ``True``, construct :class:`PWMLED` instances to represent each
 LED. If ``False`` (the default), construct regular :class:`LED`
 instances.
 """
 def __init__(self, pwm=False):
 super(TrafficHat, self).__init__(
 TrafficLights(24, 23, 22, pwm=pwm),
 Buzzer(5),
 Button(25),
)

RobotTuple = namedtuple('RobotTuple', ('left', 'right'))

[docs]class Robot(SourceMixin, CompositeDevice):
 """
 Extends :class:`CompositeDevice` to represent a generic dual-motor robot.

 This class is constructed with two tuples representing the forward and
 backward pins of the left and right controllers respectively. For example,
 if the left motor's controller is connected to GPIOs 4 and 14, while the
 right motor's controller is connected to GPIOs 17 and 18 then the following
 example will turn the robot left::

 from gpiozero import Robot

 robot = Robot(left=(4, 14), right=(17, 18))
 robot.left()

 :param tuple left:
 A tuple of two GPIO pins representing the forward and backward inputs
 of the left motor's controller.

 :param tuple right:
 A tuple of two GPIO pins representing the forward and backward inputs
 of the right motor's controller.
 """
 def __init__(self, left=None, right=None):
 if not all([left, right]):
 raise OutputDeviceError(
 'left and right motor pins must be provided'
)
 super(Robot, self).__init__()
 self._left = Motor(*left)
 self._right = Motor(*right)

[docs] def close(self):
 self._left.close()
 self._right.close()

 @property
 def closed(self):
 return self._left.closed and self._right.closed

 @property
 def left_motor(self):
 """
 Returns the `Motor` device representing the robot's left motor.
 """
 return self._left

 @property
 def right_motor(self):
 """
 Returns the `Motor` device representing the robot's right motor.
 """
 return self._right

 @property
 def value(self):
 """
 Returns a tuple of two floating point values (-1 to 1) representing the
 speeds of the robot's two motors (left and right). This property can
 also be set to alter the speed of both motors.
 """
 return RobotTuple(self._left.value, self._right.value)

 @value.setter
 def value(self, value):
 self._left.value, self._right.value = value

[docs] def forward(self, speed=1):
 """
 Drive the robot forward by running both motors forward.

 :param float speed:
 Speed at which to drive the motors, as a value between 0 (stopped)
 and 1 (full speed). The default is 1.
 """
 self._left.forward(speed)
 self._right.forward(speed)

[docs] def backward(self, speed=1):
 """
 Drive the robot backward by running both motors backward.

 :param float speed:
 Speed at which to drive the motors, as a value between 0 (stopped)
 and 1 (full speed). The default is 1.
 """
 self._left.backward(speed)
 self._right.backward(speed)

[docs] def left(self, speed=1):
 """
 Make the robot turn left by running the right motor forward and left
 motor backward.

 :param float speed:
 Speed at which to drive the motors, as a value between 0 (stopped)
 and 1 (full speed). The default is 1.
 """
 self._right.forward(speed)
 self._left.backward(speed)

[docs] def right(self, speed=1):
 """
 Make the robot turn right by running the left motor forward and right
 motor backward.

 :param float speed:
 Speed at which to drive the motors, as a value between 0 (stopped)
 and 1 (full speed). The default is 1.
 """
 self._left.forward(speed)
 self._right.backward(speed)

[docs] def reverse(self):
 """
 Reverse the robot's current motor directions. If the robot is currently
 running full speed forward, it will run full speed backward. If the
 robot is turning left at half-speed, it will turn right at half-speed.
 If the robot is currently stopped it will remain stopped.
 """
 self._left.value = -self._left.value
 self._right.value = -self._right.value

[docs] def stop(self):
 """
 Stop the robot.
 """
 self._left.stop()
 self._right.stop()

[docs]class RyanteckRobot(Robot):
 """
 Extends :class:`Robot` for the Ryanteck MCB robot.

 The Ryanteck MCB pins are fixed and therefore there's no need to specify
 them when constructing this class. The following example turns the robot
 left::

 from gpiozero import RyanteckRobot

 robot = RyanteckRobot()
 robot.left()
 """
 def __init__(self):
 super(RyanteckRobot, self).__init__(left=(17, 18), right=(22, 23))

[docs]class CamJamKitRobot(Robot):
 """
 Extends :class:`Robot` for the `CamJam #3 EduKit`_ robot controller.

 The CamJam robot controller pins are fixed and therefore there's no need
 to specify them when constructing this class. The following example turns
 the robot left::

 from gpiozero import CamJamKitRobot

 robot = CamJamKitRobot()
 robot.left()

 .. _CamJam #3 EduKit: http://camjam.me/?page_id=1035
 """
 def __init__(self):
 super(CamJamKitRobot, self).__init__(left=(9, 10), right=(7, 8))

 © Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		Gpiozero 1.1.0 documentation »

 All modules for which code is available

		gpiozero.boards

		gpiozero.devices

		gpiozero.input_devices

		gpiozero.output_devices

		gpiozero.pins

		gpiozero.pins.native

		gpiozero.pins.rpigpio

		gpiozero.pins.rpio

 © Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

_modules/gpiozero/pins.html

 Navigation

 		
 index

 		Gpiozero 1.1.0 documentation »

 		Module code »

 Source code for gpiozero.pins

from __future__ import (
 unicode_literals,
 absolute_import,
 print_function,
 division,
)
str = type('')

from .exc import (
 PinFixedFunction,
 PinSetInput,
 PinFixedPull,
 PinPWMUnsupported,
 PinEdgeDetectUnsupported,
)

PINS_CLEANUP = []

[docs]class Pin(object):
 """
 Abstract base class representing a GPIO pin or a pin from an IO extender.

 Descendents should override property getters and setters to accurately
 represent the capabilities of pins. The following functions *must* be
 overridden:

 * :meth:`_get_function`
 * :meth:`_get_state`

 The following functions *may* be overridden if applicable:

 * :meth:`close`
 * :meth:`_set_function`
 * :meth:`_set_state`
 * :meth:`_get_frequency`
 * :meth:`_set_frequency`
 * :meth:`_get_pull`
 * :meth:`_set_pull`
 * :meth:`_get_bounce`
 * :meth:`_set_bounce`
 * :meth:`_get_edges`
 * :meth:`_set_edges`
 * :meth:`_get_when_changed`
 * :meth:`_set_when_changed`
 * :meth:`output_with_state`
 * :meth:`input_with_pull`

 .. warning::

 Descendents must ensure that pin instances representing the same
 physical hardware are identical, right down to object identity. The
 framework relies on this to correctly clean up resources at interpreter
 shutdown.
 """

 def __repr__(self):
 return "Abstract pin"

[docs] def close(self):
 """
 Cleans up the resources allocated to the pin. After this method is
 called, this :class:`Pin` instance may no longer be used to query or
 control the pin's state.
 """
 pass

[docs] def output_with_state(self, state):
 """
 Sets the pin's function to "output" and specifies an initial state
 for the pin. By default this is equivalent to performing::

 pin.function = 'output'
 pin.state = state

 However, descendents may override this in order to provide the smallest
 possible delay between configuring the pin for output and specifying an
 initial value (which can be important for avoiding "blips" in
 active-low configurations).
 """
 self.function = 'output'
 self.state = state

[docs] def input_with_pull(self, pull):
 """
 Sets the pin's function to "input" and specifies an initial pull-up
 for the pin. By default this is equivalent to performing::

 pin.function = 'input'
 pin.pull = pull

 However, descendents may override this order to provide the smallest
 possible delay between configuring the pin for input and pulling the
 pin up/down (which can be important for avoiding "blips" in some
 configurations).
 """
 self.function = 'input'
 self.pull = pull

 def _get_function(self):
 return "input"

 def _set_function(self, value):
 raise PinFixedFunction("Cannot set the function of pin %r" % self)

 function = property(
 lambda self: self._get_function(),
 lambda self, value: self._set_function(value),
 doc="""\
 The function of the pin. This property is a string indicating the
 current function or purpose of the pin. Typically this is the string
 "input" or "output". However, in some circumstances it can be other
 strings indicating non-GPIO related functionality.

 With certain pin types (e.g. GPIO pins), this attribute can be changed
 to configure the function of a pin. If an invalid function is
 specified, for this attribute, :exc:`PinInvalidFunction` will be
 raised. If this pin is fixed function and an attempt is made to set
 this attribute, :exc:`PinFixedFunction` will be raised.
 """)

 def _get_state(self):
 return 0

 def _set_state(self, value):
 raise PinSetInput("Cannot set the state of input pin %r" % self)

 state = property(
 lambda self: self._get_state(),
 lambda self, value: self._set_state(value),
 doc="""\
 The state of the pin. This is 0 for low, and 1 for high. As a low level
 view of the pin, no swapping is performed in the case of pull ups (see
 :attr:`pull` for more information).

 If PWM is currently active (when :attr:`frequency` is not ``None``),
 this represents the PWM duty cycle as a value between 0.0 and 1.0.

 If a pin is currently configured for input, and an attempt is made to
 set this attribute, :exc:`PinSetInput` will be raised. If an invalid
 value is specified for this attribute, :exc:`PinInvalidState` will be
 raised.
 """)

 def _get_pull(self):
 return 'floating'

 def _set_pull(self, value):
 raise PinFixedPull("Cannot change pull-up on pin %r" % self)

 pull = property(
 lambda self: self._get_pull(),
 lambda self, value: self._set_pull(value),
 doc="""\
 The pull-up state of the pin represented as a string. This is typically
 one of the strings "up", "down", or "floating" but additional values
 may be supported by the underlying hardware.

 If the pin does not support changing pull-up state (for example because
 of a fixed pull-up resistor), attempts to set this property will raise
 :exc:`PinFixedPull`. If the specified value is not supported by the
 underlying hardware, :exc:`PinInvalidPull` is raised.
 """)

 def _get_frequency(self):
 return None

 def _set_frequency(self, value):
 if value is not None:
 raise PinPWMUnsupported("PWM is not supported on pin %r" % self)

 frequency = property(
 lambda self: self._get_frequency(),
 lambda self, value: self._set_frequency(value),
 doc="""\
 The frequency (in Hz) for the pin's PWM implementation, or ``None`` if
 PWM is not currently in use. This value always defaults to ``None`` and
 may be changed with certain pin types to activate or deactivate PWM.

 If the pin does not support PWM, :exc:`PinPWMUnsupported` will be
 raised when attempting to set this to a value other than ``None``.
 """)

 def _get_bounce(self):
 return None

 def _set_bounce(self, value):
 if value is not None:
 raise PinEdgeDetectUnsupported("Edge detection is not supported on pin %r" % self)

 bounce = property(
 lambda self: self._get_bounce(),
 lambda self, value: self._set_bounce(value),
 doc="""\
 The amount of bounce detection (elimination) currently in use by edge
 detection, measured in seconds. If bounce detection is not currently in
 use, this is ``None``.

 If the pin does not support edge detection, attempts to set this
 property will raise :exc:`PinEdgeDetectUnsupported`. If the pin
 supports edge detection, the class must implement bounce detection,
 even if only in software.
 """)

 def _get_edges(self):
 return 'none'

 def _set_edges(self, value):
 raise PinEdgeDetectUnsupported("Edge detection is not supported on pin %r" % self)

 edges = property(
 lambda self: self._get_edges(),
 lambda self, value: self._set_edges(value),
 doc="""\
 The edge that will trigger execution of the function or bound method
 assigned to :attr:`when_changed`. This can be one of the strings
 "both" (the default), "rising", "falling", or "none".

 If the pin does not support edge detection, attempts to set this
 property will raise :exc:`PinEdgeDetectUnsupported`.
 """)

 def _get_when_changed(self):
 return None

 def _set_when_changed(self, value):
 raise PinEdgeDetectUnsupported("Edge detection is not supported on pin %r" % self)

 when_changed = property(
 lambda self: self._get_when_changed(),
 lambda self, value: self._set_when_changed(value),
 doc="""\
 A function or bound method to be called when the pin's state changes
 (more specifically when the edge specified by :attr:`edges` is detected
 on the pin). The function or bound method must take no parameters.

 If the pin does not support edge detection, attempts to set this
 property will raise :exc:`PinEdgeDetectUnsupported`.
 """)

 © Copyright 2015 Ben Nuttall.
 Created using Sphinx 1.3.5.

